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Retrieving this vector Is tough!
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ag, a9, a10, 11, @12, 413, 14, a1s,
a16, a17, 18, @19, a20, 421, a22, a3,
a4, axs, a6, A27, A28, @29, a0, a3l )
— (ao, a1, a3, a2, as, as, ar, ae,

ag, a9, a11, 410, @12, 413, a15, a4,
a16, a17, 419, a18, a20, 421, a23, a2,

(30, di, d2, d3, d4, d5, 46, 37) |

(a0, a1, a2, a3, a4, as, a7, ag)
is a “Toffoli gate” =

“controlled controlled NOT
(g0, 91, 92) — (q0 ® q192, q



(ag, a1, a2, a3, aa, as, @, a7) —
(a0, a1, a3, a2, a4, as, a7, ag)

is a “reversible XOR gate” =
“controlled NOT gate”:

(90,91, 92) — (g0 @ q91. 91, §2).

Example with more qubits:

(a0, a1, @2, a3, as, as, ae, ar,

ag, a9, a10, 411, @12, 413, 14, a15s,
16, a17, 18, @19, 20, a1, a22, a3,
a4, axs, axe, a27, a2, a9, a0, as1)
— (ao, a1, a3, a2, as, as, ar, as,

ag, a9, a11, a10, @12, 413, a15, a4,
a16, a17, 419, @18, 20, 421, a23, a2,

(ag, a1, a2, a3, aa, as, @, a7) —

(a0, a1, a2, a3, a4, as, a7, ag)
is a “Toffoli gate” =

“controlled controlled NOT gate”:
(90, g1, q2) — (90 © q1G2, 91, G2).



(ag, a1, a2, a3, aa, as, @, a7) —
(a0, a1, a3, a2, a4, as, a7, ag)

is a “reversible XOR gate” =
“controlled NOT gate”:

(90,91, 92) — (g0 @ q91. 91, §2).

Example with more qubits:

(a0, a1, @2, a3, as, as, ae, ar,

ag, a9, a10, 411, @12, 413, 14, a15s,
16, a17, 18, @19, 20, a1, a22, a3,
a4, axs, axe, a27, a2, a9, a0, as1)
— (ao, a1, a3, a2, as, as, ar, as,

ag, a9, a11, a10, @12, 413, a15, a4,
a16, a17, 419, @18, 20, 421, a23, a2,

(ag, a1, a2, a3, aa, as, @, a7) —
(a0, a1, a2, a3, a4, as, a7, ag)

is a “Toffoli gate” =
“controlled controlled NOT gate”:

(90,91, q2) — (g0 @ 9192, 91, G2).

Example with more qubits:

(a0, a1, @2, a3, as, as, ae, ar,

ag, a9, a10, a11, 12, 13, a4, 315,
a16, a17, a1g, 419, a0, a21, a22, a3,
a4, azs, axe, a27, a8, a29, asQ, asl)
— (ao, a1, a2, a3, as, as, ar, as,

ag, a9, a10, a11, 12, 13, a15, 314,
a16, a17, a1, 419, a0, a21, a23, a2,
aga, axs, axe, @27, a8, @29, @31, a30)-



1, a3, a4, as, ag, a7) —
13, a2, a4, as, ar, a6)
ersible XOR gate” =
led NOT gate":

12) — (g0 ® g1, 91, G2)-

- with more qubits:

12, d3, d4, d5, d6, d7,

0, a11, d12, @13, 314, a15,
a1g, a19, 20, a1, a22, a3,
ae, a27, 28, a29, a3, a31)
1, a3, a2, a4, as, a7, a6,

1, d10, @12, 313, a15, 314,
a19, a1g, 20, 421, a23, a2,

(ag, a1, a2, a3, aa, as, ap, a7) —
(a0, a1, a2, a3, a4, as, a7, ag)

is a “Toffoli gate” =

“controlled controlled NOT gate”:

(90,91, g2) — (g0 @ 9192, 91, G2)-

Example with more qubits:

(a0, a1, a2, a3, as, as, ae, ar,

ag, a9, a10, 11, @12, 413, 14, a1s,
16, a17, 18, @19, a20, 421, a22, a3,
a4, azs, axe, a27, a8, a29, a0, asl)
— (ao, a1, a2, a3, as, as, ar, ae,

ag, a9, a10, 11, @12, 413, a1, a4,
a16, a17, 18, @19, a20, 421, a23, a2,
an4, a5, aze, a27, @28, a29, a1, a30).-

Reversib

Say p is
of {0, 1,

General
these fa:
to obtai

(ag, a1, -
(ap-1(0)



e qubits:

5, d6, 47,

, 313, 314, a15,
20, @21, 422, a3,
28, 329, 430, a31)
4, as, ay, ae,

, 313, 315, 14,
20, @21, 423, @22,

(ag, a1, a2, a3, aa, as, a6, a7) —

(a0, a1, a2, a3, a4, as, a7, ag)
is a “Toffoli gate” =

“controlled controlled NOT gate”:

(90,91, q2) — (g0 @ 9192, 91, G2).

Example with more qubits:

(20, a1, a2, a3, a4, as, a6, a7,

dg, d9, d10, 411, 412, d13, 414, 415,
d16, d17, 418, 419, 420, d21, d22, d23,
a4, s, axe, a7, a8, a9, 330, a31)
— (ag, a1, a2, a3, a4, as, ay, ag,

ag, ag, a10, @11, 412, 413, a15, 14,
a16, 417, 418, 419, @20, 421, a23, 422,

Reversible comput

Say p is a permut.
of {0,1,...,2" —

General strategy t
these fast quantur
to obtain Index pe

(30, dl,..., aQn_l)
(3p-10) 3p1(1)"



12).

d15,

), 323,
), a31)
.
314,

3, 322,

1, 330).

(ag, a1, a», a3, aa, as, ap, a7) —

(a0, a1, a2, a3, a4, as, a7, ag)
is a “Toffoli gate” =

“controlled controlled NOT gate”:

(90,91, g2) — (g0 @ 9192, 91, G2).

Example with more qubits:

(a0, a1, a2, a3, as, as, ae, ar,

ag, a9, a10, 11, @12, 413, 14, a1s,
a16, a17, 18, @19, a20, 421, a22, a3,
a4, azs, axe, a27, a8, a29, a0, asl)
— (ao, a1, a2, a3, as, as, ar, ae,

ag, a9, a10, 11, @12, 413, a1, a14,
a16, a17, 18, @19, a20, 421, a23, a2,

Reversible computation

Say p is a permutation
of {0,1,...,2" —1}.

General strategy to compose
these fast quantum operatio
to obtain index permutation
(ao, al, ..., 32”—1) —>

(3p-1(0) 3p-1(2)r - 312



(ag, a1, a2, a3, aa, as, @, a7) —

(a0, a1, a2, a3, a4, as, a7, ag)
is a “Toffoli gate” =

“controlled controlled NOT gate”:

(90,91, q2) — (g0 @ 9142, 91, G2).

Example with more qubits:

(a0, a1, @2, a3, as, as, ae, ar,

ag, a9, a10, 411, @12, 413, 14, a15s,
16, a17, 18, @19, 20, a1, a22, a3,
a4, azs, axe, a27, a8, a29, asQ, asl)
— (ao, a1, a2, a3, as, as, ar, as,

ag, a9, a10, 411, @12, 413, a15, a4,
a16, a17, 18, @19, a20, 421, a23, a2,

Reversible computation

Say p is a permutation
of {0,1,...,2" —1}.

General strategy to compose
these fast quantum operations
to obtain index permutation
(ao, al, ..., 32n_1) >

(3p-1(0) 3p-1(1)r -+ 3p-L(2n-1))



(ag, a1, a2, a3, aa, as, @, a7) —

(a0, a1, a2, a3, a4, as, a7, ag)
is a “Toffoli gate” =

“controlled controlled NOT gate”:

(90,91, q2) — (g0 @ 9142, 91, G2).

Example with more qubits:

(a0, a1, @2, a3, as, as, ae, ar,

ag, a9, a10, 411, @12, 413, 14, a15s,
16, a17, 18, @19, 20, a1, a22, a3,
a4, axs, axe, a27, a2, a9, a0, as1)
— (ao, a1, a2, a3, as, as, ar, as,

ag, a9, a10, 411, @12, 413, a15, a4,
a16, a17, 18, @19, a20, 421, a23, a2,

Reversible computation

Say p is a permutation
of {0,1,...,2" —1}.

General strategy to compose
these fast quantum operations
to obtain index permutation

(30, al, ..., aQn_l) >
(3p-1(0) 3p-1(1)r -+ 3p-L(2n-1))
1. Build a traditional circuit

to compute j — p(j)
using NOT /XOR/AND gates.

2. Convert into reversible gates:
e.g., convert AND into Toffoli.



1, a3, a4, as, ag, a7) —

1, a3, a4, as, ar, ag)
ffoll gate” =

led controlled NOT gate”:

12) — (g0 ® q192, 91, g2).

- with more qubits:

12, d3, d4, d5, d6, d7,

0, a11, d12, @13, 314, a15,
a1g, a19, 20, a1, a22, a3,
ae, a27, 28, a29, a3, a31)
1,a2, a3, a4, as, a7, a6,

0, d11, @12, 313, d15, a14,
a1g, a19, 20, a21, a23, a2,

Reversible computation

Say p is a permutation
of {0,1,...,2" —1}.

General strategy to compose
these fast quantum operations
to obtain index permutation

(ao, al, ..., azn_l) —>

(3p-1(0) 3p-1(1) -+ 3p-1(20-1))

1. Build a traditional circuit
to compute j — p(J)
using NOT /XOR/AND gates.

2. Convert into reversible gates:
e.g., convert AND into Toffoli.

Example
(ag, a1,

(a7, ag,
permuta

1. Build
to comp

\

q0

go b 1



5, g, a7)
5, a7, a6 )

lled NOT gate”:

e qubits:

5, d6, 47,

, 313, 314, a15,
20, @21, 422, a3,
28, 329, 430, a31)
4, as, ay, ae,

, 313, 315, 14,
20, @21, 423, @22,

Reversible computation

Say p is a permutation
of {0,1,...,2" —1}.

General strategy to compose
these fast quantum operations
to obtain index permutation

(30, al, ..., aQn_l) >

(3p-1(0) 3p-1(1) - 3p-L(2n-1))

1. Build a traditional circuit
to compute j — p(j)
using NOT /XOR/AND gates.

2. Convert into reversible gates:
e.g., convert AND into Toffoli.

Example: Let's co

(ag, a1, a2, a3, aa, ¢

(a7, ag, a1, a2, a3, ¢
permutation g —

1. Build a traditio
to compute g +— ¢




gate” :

a5,
), @23,
), 331)

14,
3, d22,

1, 330).

Reversible computation

Say p is a permutation
of {0,1,...,2" —1}.

General strategy to compose
these fast quantum operations
to obtain index permutation

(30,31,...,32n_1)l—%

(3p-1(0) 3p-1(1) -+ -+ 3p-1(20-1))

1. Build a traditional circuit
to compute j — p(J)
using NOT /XOR/AND gates.

2. Convert into reversible gates:
e.g., convert AND into Toffoli.

Example: Let's compute

(ao, ai, a2, as, a4, as, ae, 37) |

(a7, ag, a1, a2, a3, a4, as, ag);
permutation g — g + 1 moc

1. Build a traditional circuit
to compute g — g+ 1 mod

qo0 qi1 G

N

€1 = 4190

qo @1 g1 © qo g ¢



Reversible computation

Say p is a permutation
of {0,1,...,2" —1}.

General strategy to compose
these fast quantum operations
to obtain index permutation

(30, al, ..., aQn_l) >

(3p-1(0) 3p-1(1) - 3p-L(2n-1))

1. Build a traditional circuit
to compute j — p(j)
using NOT /XOR/AND gates.

2. Convert into reversible gates:
e.g., convert AND into Toffoli.

Example: Let's compute
(ag, a1, a2, a3, aa, as, ap, a7) —

(a7, ag, a1, a2, a3, a4, as, agp);
permutation g — g + 1 mod 8.

1. Build a traditional circuit
to compute g — g + 1 mod 8.

q2




le computation

a permutation
"1}

strategy to compose
st quantum operations
1 index permutation

L, aon_1) —

Ap-1(1) -+ 3p-1(2n-1)):

a traditional circuit

ute j — p(j)
DT /XOR/AND gates.

ert into reversible gates:
vert AND into Toffoli.

Example: Let's compute
(ag, a1, a2, a3, aa, as, ap, a7) —

(a7, ag, a1, a2, a3, a4, as, ag);
permutation g — g + 1 mod 8.

1. Build a traditional circuit
to compute g — g + 1 mod 8.

q0 di1 q2

N

€1 = 4190

qo @1 g1 © qo g2 D ¢y

2. Conv

Toffoli fi

(ag, a1, ¢
(ag, a1,



ation

ation
1}

0O COMPOSE
n operations
rmutation
>

C ap_1(2n_1)):

nal circuit
()
AND gates.

versible gates:
into Toffoll.

Example: Let's compute
(ag, a1, a2, a3, aa, as, ap, a7) —

(a7, ag, a1, a2, a3, a4, as, agp);
permutation g — g + 1 mod 8.

1. Build a traditional circuit
to compute g — g + 1 mod 8.

q2

2. Convert into re

Toffoli for go < g

(ag, a1, a2, a3, aa, ¢
(ag, a1, a2, a7, aa, ¢



7_1)):

S.

1tes:
ol

Example: Let's compute
(ag, a1, a2, a3, aa, as, ap, a7) —

(a7, ag, a1, a2, a3, a4, as, ag);
permutation g — g + 1 mod 8.

1. Build a traditional circuit
to compute g — g + 1 mod 8.

q0 di1 q2

N

€1 = 4190

qo @1 g1 © qo g2 D ¢y

2. Convert into reversible g:

Toffoli for gy < g> & g19p:

(ag, a1, a2, a3, aa, as, ag, a7)
(ag, a1, a2, a7, aa, as, ae, a3).



Example: Let's compute
(ag, a1, a2, a3, aa, as, ap, a7) —

(a7, ag, a1, a2, a3, a4, as, agp);
permutation g — g + 1 mod 8.

1. Build a traditional circuit
to compute g — g + 1 mod 8.

q2

2. Convert into reversible gates.

Toffoli for g» < g> D g190p:
(ao, a1, a2, a3, aa, as, a6, a7) —
(ag, a1, a2, a7, aa, as, ae, a3).



Example: Let's compute
(ag, a1, a2, a3, aa, as, ap, a7) —

(a7, ag, a1, a2, a3, a4, as, agp);
permutation g — g + 1 mod 8.

1. Build a traditional circuit
to compute g — g + 1 mod 8.

q2

2. Convert into reversible gates.

Toffoli for g» < g> D g190p:
(ao, a1, a2, a3, aa, as, a6, a7) —
(ag, a1, a2, a7, aa, as, ae, a3).

Controlled NOT for g1 < g1 P qp:
(ag, a1, a2, a7, aa, as, a6, a3) —
(ag, a7, a», a1, aa, a3, ae, as).



Example: Let's compute
(ag, a1, a2, a3, aa, as, ap, a7) —

(a7, ag, a1, a2, a3, a4, as, agp);
permutation g — g + 1 mod 8.

1. Build a traditional circuit
to compute g — g + 1 mod 8.

q2

2. Convert into reversible gates.

Toffoli for g» < g> D g190p:
(ao, a1, a2, a3, aa, as, a6, a7) —
(ag, a1, a2, a7, aa, as, ae, a3).

Controlled NOT for g1 < g1 P qp:
(ag, a1, a2, a7, aa, as, a6, a3) —
(ag, a7, a», a1, aa, a3, ae, as).

NOT for gy + qgp @ 1
(ag, a7, a2, a1, a4, a3, ag, as) —
(a7, ag, a1, a2, a3, a4, as, ag ).



: Let's compute

10, a3, a4, as, ag, a7) —
11, a2, a3, a4, as, 3g);
tion g — g+ 1 mod 8.

a traditional circuit
ute g — g+ 1 mod 8.

di1 q2

O\

€1 = 4190

d1 D qo g> D 1

2. Convert into reversible gates.

Toffoli for gy < g> & g19p:
(ag, a1, a2, a3, aa, as, ap, a7) —
(ag, a1, a2, a7, aa, as, ae, a3).

Controlled NOT for g1 + g1 @ qp:

(ag, a1, a2, a7, aa, as, ag, a3) —
(ag, a7, a», a1, aa, a3, ae, as).

NOT for gy + qgp @ 1
(ag, a7, a2, a1, a4, a3, ag, as) —
(a7, ag, a1, a2, a3, a4, as, ag ).

This per
was dec

It didn't

For largse
need ma
Really w



mpute
5, a6, a7)

)4,35,36);
qg+ 1 mod 8.

nal circuit
1 + 1 mod 8.

q2

q> D 1

2. Convert into reversible gates.

Toffoli for g» < g2 D g190p:
(ao, a1, a2, a3, aa, as, a6, a7) —
(ag, a1, a2, a7, aa, as, ae, a3).

Controlled NOT for g1 + g1 @ qp:

(ag, a1, a2, a7, aa, as, a6, a3) —
(ag, a7, a», a1, aa, a3, ae, as).

NOT for gy + qgp @ 1
(ag, a7, a2, a1, a4, a3, ag, as) —
(a7, ag, a1, a2, a3, a4, as, ag ).

This permutation
was deceptively ea

It didn't need mar

For large n, most
need many operat
Really want fast c



| 3.

2. Convert into reversible gates.

Toffoli for g» < g> & g19p:
(ag, a1, a2, a3, aa, as, ap, a7) —
(ag, a1, a2, a7, aa, as, ae, a3).

Controlled NOT for g1 + g1 @ qp:

(ag, a1, a2, a7, aa, as, ag, a3) —
(ag, a7, a», a1, aa, a3, ae, as).

NOT for gy + qgp @ 1
(ag, a7, a2, a1, a4, a3, ag, as) —
(a7, ag, a1, a2, a3, a4, as, ag ).

This permutation example
was deceptively easy.

It didn't need many operatic

For large n, most permutati
need many operations = slc
Really want fast circuits.



2. Convert into reversible gates.

Toffoli for g» < g2 D g190p:
(ag, a1, a2, a3, aa, as, @, a7) —
(ag, a1, a2, a7, aa, as, ae, a3).

Controlled NOT for g1 < g1 @ qp:

(ag, a1, a2, a7, aa, as, a6, a3) —
(ag, a7, a», a1, aa, a3, ae, as).

NOT for gy + qgp @ 1
(ag, a7, a2, a1, a4, a3, ag, as) —
(a7, ag, a1, a2, a3, a4, as, ag ).

This permutation example
was deceptively easy.

It didn't need many operations.

For large n, most permutations p
need many operations = slow.
Really want fast circuits.



2. Convert into reversible gates.

Toffoli for g» < g2 D g190p:
(ag, a1, a2, a3, aa, as, @, a7) —
(ag, a1, a2, a7, aa, as, ae, a3).

Controlled NOT for g1 < g1 @ qp:

(ag, a1, a2, a7, aa, as, a6, a3) —
(ag, a7, a», a1, aa, a3, ae, as).

NOT for gy + qgp @ 1
(ag, a7, a2, a1, a4, a3, ag, as) —
(a7, ag, a1, a2, a3, a4, as, ag ).

This permutation example
was deceptively easy.

It didn't need many operations.

For large n, most permutations p
need many operations = slow.
Really want fast circuits.

Also, 1t didn't need extra storage:
circuit operated “in place” after
computation ¢ < g1gg was
merged Into gy < go P ¢y.

Typical circuits aren't in-place.



ert into reversible gates.

Or @2 <= g2 © 41490:
10, a3, a4, as, ag, a7y ) —

12, d7, d4, dy, d6, 33).

ed NOT for g1 < g1 D qp:

10, a7, a4, as, ag, a3) —
10, a1, a4, a3, ag, as).

" qo < qo & 1:

10, a1, a4, a3, a6, a5) —
11, 2, a3, a4, as, ag).

This permutation example
was deceptively easy.

It didn't need many operations.

For large n, most permutations p
need many operations = slow.
Really want fast circuits.

Also, it didn't need extra storage:

circuit operated “in place” after
computation ¢; < g1gg was
merged Into gy < g» D ¢y.

Typical circuits aren't in-place.

Start frc
inputs b
b1 ="
bjio =

b = 1¢
specified



versible gates.

> D 4190
5, a6, A7)

5, 36, a3 ).

r g1 < q1 D qo:

5, a6, a3)
3, 36, a5).
P 1:

3, 36, d5)
4, as, 6 ).

This permutation example
was deceptively easy.

It didn't need many operations.

For large n, most permutations p
need many operations = slow.
Really want fast circuits.

Also, 1t didn't need extra storage:

circuit operated “in place” after
computation ¢; < g1gg was
merged Into gy < g2 P ¢y.

Typical circuits aren't in-place.

Start from any cir
inputs by, by, ...,
biy1 =1 bf(j1
bit2 =1 br(jyp

br = 1@ br(1)bgy
specified outputs.



1tes.

This permutation example
was deceptively easy.

It didn't need many operations.

For large n, most permutations p
need many operations = slow.
Really want fast circuits.

Also, it didn't need extra storage:

circuit operated “in place” after
computation ¢; < g1gg was
merged Into gy < g» D ¢y.

Typical circuits aren't in-place.

Start from any circuit:
inputs by, by, ..., b;;

bi+1 =1 bf(j11)bg(it1);
bjy2 =1 br(jy2)bg(it2);

br = 1 br(1) bg(7);
specified outputs.



This permutation example
was deceptively easy.

It didn't need many operations.

For large n, most permutations p
need many operations = slow.
Really want fast circuits.

Also, 1t didn't need extra storage:

circuit operated “in place” after
computation ¢; < g1gg was
merged Into gy < go P ¢y.

Typical circuits aren't in-place.

Start from any circuit:
inputs b1, by, ..., b,';

bit1 =1 br(j1)bg(it1);
bi2 = 1@ br(i12)bg(i12);

br = 1 ® (1) bg(7);
specified outputs.



This permutation example
was deceptively easy.

It didn't need many operations.

For large n, most permutations p
need many operations = slow.
Really want fast circuits.

Also, 1t didn't need extra storage:

circuit operated “in place” after
computation ¢; < g1gg was
merged Into gy < go P ¢y.

Typical circuits aren't in-place.

Start from any circuit:
inputs b1, by, ..., b,';

bit1 =1 br(j1)bg(it1);
bi2 = 1@ br(i12)bg(i12);

br = 1 ® (1) bg(7);
specified outputs.

Reversible but dirty:

inputs by, by, ..., bT;

bit1 < 1@ bit1 @ br(i11)bg(it1);
bit2 < 1@ bj12 @ br(i12)bg(i+2);

br <~ 1@ br & bf(T) bg(T)-
Same outputs if all of
bji1,..., by started as 0.
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ptively easy.

need many operations.

> n, most permutations p
ny operations = slow.
ant fast circuits.

didn’'t need extra storage:

perated “in place” after
ition ¢ < gi1qgp was

Into go < go» P 1.

circuits aren't in-place.

Start from any circuit:
inputs by, by, ..., b;;

bit1 =1 br(j1)bg(it1):
biy2 =1 br(jy2)bg(it2);

br = 1 ® br(1) bg(7);
specified outputs.

Reversible but dirty:

inputs by, by, ..., bT;

bit1 < 1 ® bit1 ® br(i11)bg(it1);
bit2 < 1@ bj12 @ br(i12)bg(it2);

br <~ 1® br @ bf(T) bg(T)-
Same outputs if all of
bji1,..., by started as 0.

Reversib

after fin

set non-
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Sy.

1y operations.
permutations p

ions = slow.
IrCults.

d extra storage:

n place’ after

- d14o Was
g2 © C1.

2n't in-place.

Start from any circuit:

inputs by, by, ...

biy1 =1 by

, bj;
1) Dg (i

br = 1 ® (1) bg(7);
specified outputs.

Reversible but dirty:

inputs by, by, ..

. br;

bio1 4 1®bj1® bf(,-
b,'__2 — 16 b,'__2 D bf(,'_

1)

bit2 = 1@ br(jy2)bg(it2);

1) bg(it1)

2) bg(i+2)

br <~ 1@ br & bf(T) bg(T)-
Same outputs if all of

b,'_|_1, ..

., by started as 0.

Reversible and cle
after finishing dirt
set non-outputs b:
by repeating same
on non-outputs In

Original computat
(inputs) —
(inputs, dirt, outpu

Dirty reversible co
(inputs, zeros, zero

(inputs, dirt, outpu

Clean reversible cc
(inputs, zeros, zero

(inputs, zeros, outj
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Start from any circuit:

inputs by, by, ...

b:.

1= 1O br(iy1)bg(;

b:.

, bj;

2 = 1@ br(jy2)bg(iv

br = 1 ® br(1)bg(7);
specified outputs.

Reversible but dirty:

inputs by, by, ..

b:.

1 < 16 b,

b:.

., br;

> < 16 b,

+1) bg (i

+2) bg (i-

br <~ 1® br @ bf(T) bg(T)-
Same outputs if all of

bii1, ..

., bt started as 0.

Reversible and clean:

after finishing dirty computa

set non-outputs back to 0,

by
on

repeating same operation
non-outputs In reverse or

Original computation:

(inputs) —

(inputs, dirt, outputs).

Dirty reversible computation

(in
(in

outs, zeros, zeros) —

outs, dirt, outputs).

Clean reversible computatiol

(in
(in

outs, zeros, zeros) —

outs, zeros, outputs).



Start from any circuit: Reversible and clean:

inputs by, by, ..., b;; after finishing dirty computation,
bi+1 = 1@ bf(i1+1)bg(i+1); set non-outputs back to 0,
bit2 = 1@ br(iy2)bg(it2); by repeating same operations

on non-outputs in reverse order.

br = 1 ® (1) bg(7);

- Original computation:
specified outputs.

(inputs) —

Reversible but dirty: (inputs, dirt, outputs).
nputs by, by, ..., br; Dirty reversible computation:
bit1 < 1@ bj11 @ br(ir1)bg(it1); (in

bit2 < 1@ bj12 @ br(i10)bg(i+2); (in

outs, zeros, zeros) —

outs, dirt, outputs).

br < 1@ by & b(1yby(7). C.Iean reversible computation:
Same outputs if all of (inputs, zeros, zeros) —
bji1,..., by started as 0. (inputs, zeros, outputs).




m any Circuit:

1, by, ..., b;;

L@ br(j11)bg(i+1);
LD br(i12)bg(i+2);

B br(1)bg(T);
| outputs.

le but dirty:

1,b2,...,b7';

1@ bit1 ® br(ir1)bg(it1);
1 @ b2 @ br(j2)bg(i12);

® br & bf(T) bg(T)-
itputs if all of
, bt started as 0.

Reversible and clean:

after finishing dirty computation,

set non-outputs back to 0,

by
on

repeating same operations
non-outputs in reverse order.

Original computation:

(inputs) —

(inputs, dirt, outputs).

Dirty reversible computation:

(in
(in

outs, zeros, zeros) —

outs, dirt, outputs).

Clean reversible computation:

(in
(in

outs, zeros, zeros) —

outs, zeros, outputs).

Given fa
and fast

build fas
(x, zeros




Reversible and clean:

after finishing dirty computation,
set non-outputs back to 0,

by repeating same operations

on non-outputs in reverse order.

Original computation:
(inputs) —
(inputs, dirt, outputs).

Dirty reversible computation:
(inputs, zeros, zeros) +—

(inputs, dirt, outputs).

Clean reversible computation:
(inputs, zeros, zeros) —

(inputs, zeros, outputs).

Given fast circuit

dNdG

bui

fast circuit for
d fast reversibl

(x, zeros) — (p(x)
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Reversible and clean:

after finishing dirty computation,
set non-outputs back to 0,

by repeating same operations

on non-outputs in reverse order.

Original computation:
(inputs) —
(inputs, dirt, outputs).

Dirty reversible computation:
(inputs, zeros, zeros) +—

(inputs, dirt, outputs).

Clean reversible computation:
(inputs, zeros, zeros) —

(inputs, zeros, outputs).

Given fast circuit for p

and fast circuit for p_l,

build fast reversible circuit f
(x, zeros) — (p(x), zeros).



Reversible and clean:

after finishing dirty computation,
set non-outputs back to 0,

by repeating same operations

on non-outputs in reverse order.

Original computation:
(inputs) —
(inputs, dirt, outputs).

Dirty reversible computation:
(inputs, zeros, zeros) +—

(inputs, dirt, outputs).

Clean reversible computation:
(inputs, zeros, zeros) —

(inputs, zeros, outputs).

Given fast circuit for p

and fast circuit for p_l,

build fast reversible circuit for
(x, zeros) — (p(x), zeros).



Reversible and clean:

after finishing dirty computation,
set non-outputs back to 0,

by repeating same operations

on non-outputs in reverse order.

Original computation:
(inputs) —
(inputs, dirt, outputs).

Dirty reversible computation:
(inputs, zeros, zeros) +—

(inputs, dirt, outputs).

Clean reversible computation:
(inputs, zeros, zeros) —

(inputs, zeros, outputs).

Given fast circuit for p

and fast circuit for p_l,

build fast reversible circuit for
(x, zeros) — (p(x), zeros).

Replace reversible bit operations

with Toffoli gates etc.

2n—|—z 2n—|—z

permuting C — C .

Permutation on first 2" entries is
(ag, a1,...,am_1) —

(3p-1(0) 3p-1(2)r -+ Fp-1(20-1))

Typically prepare vectors
supported on first 2" entries
so don't care how permutation
acts on last 27172 — 2" entries.



le and clean:
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—
dirt, outputs).

/ersible computation:
ZEros, Zeros)
dirt, outputs).

versible computation:
ZEeros, Zeros) —
zeros, outputs).

Given fast circuit for p

and fast circuit for p_l,

build fast reversible circuit for
(x, zeros) — (p(x), zeros).

Replace reversible bit operations

with Toffoli gates etc.

2n—|—z 2n—|—z

permuting C — C

Permutation on first 2”7 entries is
(ag, a1,...,am_1) —

(3p-1(0) 3p-1(1) -+ Fp-1(2n-1));

Typically prepare vectors
supported on first 2" entries
so don't care how permutation
acts on last 27172 — 2" entries.

Warning
~ numb

In origin

This car
than nut

In the ot
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Given fast circuit for p

and fast circuit for p_l,

build fast reversible circuit for
(x, zeros) — (p(x), zeros).

Replace reversible bit operations

with Toffoli gates etc.

2n—|—z 2n—|—z

permuting C — C .

Permutation on first 2" entries is

(ag, a1,...,am_1) —

(3p-1(0) 3p-1(2)r -+ Fp-1(20-1))

Typically prepare vectors
supported on first 2" entries
so don't care how permutation
acts on last 27172 — 2" entries.

Warning: Number
~ number of bit ¢

in original p, p~1

This can be much
than number of bi
in the original circ
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der.

Given fast circuit for p

and fast circuit for p_l,

build fast reversible circuit for
(x, zeros) — (p(x), zeros).

Replace reversible bit operations

with Toffoli gates etc.

2n—|—z 2n—|—z

permuting C — C

Permutation on first 2”7 entries is
(ag, a1,...,am_1) —

(3p-1(0) 3p-1(1) -+ Fp-1(2n-1));

Typically prepare vectors
supported on first 2" entries
so don't care how permutation
acts on last 27172 — 2" entries.

Warning: Number of qubits
~ number of bit operation

—1

in original p, p~ " circuits.

This can be much larger
than number of bits stored
in the original circuits.



Given fast circuit for p

and fast circuit for p_l,

build fast reversible circuit for
(x, zeros) — (p(x), zeros).

Replace reversible bit operations

with Toffoli gates etc.

2n—|—z 2n—|—z

permuting C — C .

Permutation on first 2" entries is
(ag, a1,...,am_1) —

(3p-1(0) 3p-1(2)r -+ Fp-1(2-1))

Typically prepare vectors
supported on first 2" entries
so don't care how permutation
acts on last 27172 — 2" entries.

Warning: Number of qubits
~ number of bit operations

—1

in original p, p~* circuits.

This can be much larger
than number of bits stored
in the original circuits.



Given fast circuit for p

and fast circuit for p_l,

build fast reversible circuit for
(x, zeros) — (p(x), zeros).

Replace reversible bit operations

with Toffoli gates etc.

2n—|—z 2n—|—z

permuting C — C .

Permutation on first 2" entries is
(ag, a1,...,am_1) —

(3p-1(0) 3p-1(2)r -+ Fp-1(2-1))

Typically prepare vectors
supported on first 2" entries
so don't care how permutation
acts on last 27172 — 2" entries.

Warning: Number of qubits
~ number of bit operations

—1

in original p, p~* circuits.

This can be much larger
than number of bits stored
in the original circuits.

Many useful techniques

to compress into fewer qubits,
but often these lose time.
Many subtle tradeoffs.



Given fast circuit for p

and fast circuit for p_l,

build fast reversible circuit for
(x, zeros) — (p(x), zeros).

Replace reversible bit operations

with Toffoli gates etc.

2n—|—z 2n—|—z

permuting C — C .

Permutation on first 2" entries is
(ag, a1,...,am_1) —

(3p-1(0) 3p-1(2)r -+ Fp-1(2-1))

Typically prepare vectors
supported on first 2" entries
so don't care how permutation
acts on last 27172 — 2" entries.

Warning: Number of qubits
~ number of bit operations

—1

in original p, p~* circuits.

This can be much larger
than number of bits stored
in the original circuits.

Many useful techniques

to compress into fewer qubits,
but often these lose time.
Many subtle tradeoffs.

Crude “poly-time” analyses
don't care about this,

but serious cryptanalysis

IS much more precise.
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d on first 2" entries
care how permutation
last 277Z — 2" entries.

Warning: Number of qubits
~ number of bit operations

—1

in original p, p~ " circuits.

This can be much larger
than number of bits stored
in the original circuits.

Many useful techniques

to compress into fewer qubits,

but often these lose time.
Many subtle tradeoftfs.

Crude “poly-time” analyses
don't care about this,

but serious cryptanalysis

IS much more precise.
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for p Warning: Number of qubits Fast quantum ope

, pfl, | ~ number of bit1 operations adamard”
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, zeros). This can be much larger
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etc. . in the original circuits.
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B but often these lose time.
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2N antries don't care about this,
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_ 2N antries. IS much more precise.
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Warning: Number of qubits
~ number of bit operations

—1

in original p, p~ " circuits.

This can be much larger
than number of bits stored
in the original circuits.

Many useful techniques

to compress into fewer qubits,
but often these lose time.
Many subtle tradeoftfs.

Crude “poly-time” analyses
don't care about this,

but serious cryptanalysis

IS much more precise.

Fast quantum operations, p:

"Hadamard' :

(ao, 31) — (a() + ad1,dg — 31:



Warning: Number of qubits Fast quantum operations, part 2

~ number of bit operations
—1

"Hadamard' :

circuits.
(ao, 31) — (ao + a1,a0 — 31).

in original p, p

This can be much larger
than number of bits stored
in the original circuits.

Many useful techniques

to compress into fewer qubits,
but often these lose time.
Many subtle tradeoffs.

Crude “poly-time” analyses
don't care about this,

but serious cryptanalysis

IS much more precise.




Warning: Number of qubits Fast quantum operations, part 2

~ number of bit operations
—1

"Hadamard' :

circuits.
(ao, 31) — (ao + a1,a0 — 31).

in original p, p
This can be much larger
(a0, a1, a2, a3) —

than number of bits stored
(a() +a1,a0 — 31,32 + a3, ay — 33).

In the original circuits.

Many useful techniques

to compress into fewer qubits,
but often these lose time.
Many subtle tradeoffs.

Crude “poly-time” analyses
don't care about this,

but serious cryptanalysis

IS much more precise.




Warning: Number of qubits Fast quantum operations, part 2

~ number of bit operations
—1

"Hadamard' :

circuits.
(ao, 31) — (ao + a1,a0 — 31).

in original p, p
This can be much larger
(a0, a1, a2, a3) —

than number of bits stored
(a() +a1,a0 — 31,32 + a3, ay — 33).

In the original circuits.
Same for qubit 1:
(ag, a1, a2, az) —
(a() +a2,d] +az3,ap — an,al — 33).

Many useful techniques

to compress into fewer qubits,
but often these lose time.
Many subtle tradeoffs.

Crude “poly-time” analyses
don't care about this,

but serious cryptanalysis

IS much more precise.




Warning: Number of qubits
~ number of bit operations

—1

in original p, p~* circuits.

This can be much larger
than number of bits stored
in the original circuits.

Many useful techniques

to compress into fewer qubits,
but often these lose time.
Many subtle tradeoffs.

Crude “poly-time” analyses
don't care about this,

but serious cryptanalysis

IS much more precise.

Fast quantum operations, part 2

"Hadamard' :

(ao, 31) —> (ao + a1,d0 — 31).

(a0, a1, a2, a3)
(a() +a1,a0 — 31,32 + a3, ay — 33).

Same for qubit 1:
(a0, a1, a2, a3) —
(a() +a2,a1 +a3,d9 — a,al — 33).

Qubit 0 and then qubit 1:
(ag, a1, a2, a3) —
(ao+al,ao—al,ag+33,ag—ag) —>
(ag+a1+ax+az, a0 —a1+apx—as,
ao——al—ag—ag,ao—al—ag+33).
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Fast quantum operations, part 2

"Hadamard' :

(ao, 31) — (a() + a1,a0 — 31).

(a0, a1, a2, a3) +
(ao +a1,a90 — 31,32 +a3,ay — 33).

Same for qubit 1:

(ag, a1, a», a3) —
(ag + ap, a1 + a3, ag — ap, a1 — a3).

Qubit 0 and then qubit 1:

(ag, a1, a2, a3) —
(ag+a1,ap—a1, ax+a3, a»—az) —
(ag+a1+ax+a3, ap—ay+ap—as,

ao——al—ag—ag,ao—al—ag+a3).

Repeat |
(1,0,0,.

Measurii
always

Measuri
can proc
Prloutpt
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Fast

quantum operations, part 2

"Hadamard' :

(ao, 31) —> (ao + a1,da0 — 31).

(a0, a1, a2, a3)
(a() +a1,a0 — 31,32 + a3, ay — 33).

Sam

e for qubit 1:

(ag, a1, a2, a3) —
(ag + ap, a1 + a3, ag — ap, a1 — a3).

Qub

it 0 and then qubit 1:

(ag, a1, a2, a3) —
(ap+a1,ap—a1, ax+az, ap—az) —

(a0 -

-d] +dp+as,ag—ai+ax — as,

d(

—31—32—33,30—31—32+a3).

Repeat n times: e
(1,0,0,...,0) — 1

Measuring (1, 0, 0,
always produces 0

Measuring (1,1, 1,
can produce any
Prloutput = q] =



S,

Fast

quantum operations, part 2

"Hadamard' :

(ao, 31) — (a() + a1,d0 — 31).

(a0, a1, a2, a3) +
(ao +a1,a90 — 31,32 +a3,ay — 33).

Sam

e for qubit 1:

(a0, a1, a2, a3) —
(ao +a2,a1 +a3,agp — a,al — 33).

Qub

it 0 and then qubit 1:

(ag, a1, a2, a3) —
(ap+a1,ap—a1, ax+a3z, ap—az) —

(a0 -

-d] +dp+az,dp—ai+a— as,

d(

—31—32—33,30—31—32+33).

Repeat n times: e.g.,

(1,0,0,...,0) — (1,1,1,...

Measuring (1,0,0,...,0)
always produces 0.

Measuring (1,1,1,...,1)
can produce any output:
Prloutput = g = 1/2".



Fast

quantum operations, part 2

"Hadamard' :

(ao, 31) —> (ao + a1,d0 — 31).

(a0, a1, a2, a3)
(a() +a1,a0 — 31,32 + a3, ay — 33).

Sam

e for qubit 1:

(a0, a1, a2, a3) —
(a() +a2,a1 +a3,d9 — a2, al — 33).

Qub

it 0 and then qubit 1:

(ag, a1, a2, a3) —
(ap+a1,ap—a1, ax+az, ap—az) —

(a0 -

-d] +dp+as,ag—ai+ax — as,

d(

—31—32—33,30—31—32+a3).

Repeat n times: e.g.,
(1,0,0,...,0) — (1,1,1,...,1).

Measuring (1,0,0,...,0)
always produces 0.

Measuring (1,1,1,...,1)
can produce any output:
Prloutput = q] = 1/2".



Fast quantum operations, part 2

"Hadamard' :

(ao, 31) —> (ao + 31,49 — 31).

(ag, a1, a2, a3) —

(a() +a1,a0 — 31,32 + a3, ay — 33).

Same for qubit 1:
(ag, a1, a2, az) —

(a() +adp,a1 +a3,ap — az, a1 — 33).

Qubit 0 and then qubit 1:
(ag, a1, a2, a3) —

(ag+a1,ap—a1, ax+a3, a»—az) —
(ag+a1+ax+az, ap—ar +ap—as,
ap +ai; — ap — as, ao—al—az—l—ag).

Repeat n times: e.g.,
(1,0,0,...,0) — (1,1,1,...,1).

Measuring (1,0,0,...,0)
always produces 0.

Measuring (1,1,1,...,1)
can produce any output:
Prloutput = q] = 1/2".

Aside from “normalization”
(irrelevant to measurement),
have Hadamard = Hadamard !,
so easily work backwards

from “uniform superposition”
(1,1,1,...,1) to “pure state”
(1,0,0,...,0).



intum operations, part 2

ard” :

— (ag + a1, a0 — a1).

92,33) —
,d) — d1,4d2 + a3, ay — 33).

r qubit 1:
92,33) —
,a1 +as, ap — a2, a1 — az).

and then qubit 1:

92,33) —>
ao—al,ag+ag,ag—33) —
+a+as,dg—ai+az— as,
—32—33,80—81—32—|—33).

Repeat n times: e.g.,

(1,0,0,...,0) — (1,1,1,...,1).

Measuring (1,0,0,...,0)
always produces 0.

Measuring (1,1,1,...,1)
can produce any output:
Prloutput = g = 1/2".

Aside from “normalization”
(irrelevant to measurement),
have Hadamard = Hadamard !,
so easily work backwards

from “uniform superposition”
(1,1,1,...,1) to “pure state”
(1,0,0,...,0).

Simon's

Assume:
satisfies
for every
Can we
given a -



rations, part 2

1,40 — a].)

1+ a3, ap — az).

0 — a», 31 — a3).

qubit 1:

+az, ap—az) —
ap —ai +az — as,
ag — a1 —32—|—33).

Repeat n times: e.g.,

(1,0,0,...,0)— (1,1,1,...,1).

Measuring (1,0,0,...,0)
always produces 0.

Measuring (1,1,1,...,1)
can produce any output:
Prloutput = q] = 1/2".

Aside from “normalization”
(irrelevant to measurement),
have Hadamard = Hadamard 1,
so easily work backwards

from “uniform superposition”
(1,1,1,...,1) to “pure state”
(1,0,0,...,0).

Simon’s algorithm

Assume: nonzero
satisfies f(x) = f(
for every x € {0, 1
Can we find this p
given a fast circuif



33) —

42 — a3,

2 + a3).

Repeat n times: e.g.,

(1,0,0,...,0) — (1,1,1,..

Measuring (1,0,0, ..., 0)
always produces 0.

Measuring (1,1,1,...,1)
can produce any output:
Prloutput = g = 1/2".

Aside from “normalization”
(irrelevant to measurement),
have Hadamard = Hadamard_l,

so easily work backwards

from “uniform superposition”
(1,1,1,...,1) to “pure state”

(1,0,0,...,0).

Simon’s algorithm

Assume: nonzero s € {0, 1}
satisfies f(x) = f(x @ s)
for every x € {0, 1}".

Can we find this period s,
given a fast circuit for 7



Repeat n times: e.g.,

(1,0,0,...,0)— (1,1,1,...,1).

Measuring (1,0,0, ..., 0)
always produces 0.

Measuring (1,1,1,...,1)
can produce any output:
Prloutput = q] = 1/2".

Aside from “normalization”
(irrelevant to measurement),

have Hadamard = Hadamard_l,

so easily work backwards
from “uniform superposition”
(1,1,1,...,1) to “pure state”
(1,0,0,...,0).

Simon’s algorithm

Assume: nonzero s € {0,1}"
satisfies f(x) = f(x @ s)

for every x € {0,1}".

Can we find this period s,
given a fast circuit for 7



Repeat n times: e.g.,

(1,0,0,...,0)— (1,1,1,...,1).

Measuring (1,0,0, ..., 0)
always produces 0.

Measuring (1,1,1,...,1)
can produce any output:
Prloutput = q] = 1/2".

Aside from “normalization”
(irrelevant to measurement),

have Hadamard = Hadamard_l,

so easily work backwards
from “uniform superposition”
(1,1,1,...,1) to “pure state”
(1,0,0,...,0).

Simon’s algorithm
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Complete table shows that
f(x) = f(x & 5) for all x.

Let's watch Simon's algorithm
for f, using 6 qubits.
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0,0,0,0
0,0,0,0
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0,0,0,0
0,0,0,0
0,0,0,0
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2,0,2,0,0,2,0,2,
2,0,2,0,0,2,0,2,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
2,0,2,0,0,2,0,2.

Step 9. Measure.
First 3 qubits are uniform random
vector orthogonal to 101: 1.e.,

000, 010, 101, or 111.

Grover's algorithm

Assume: unique s
has f(s) = 0.

Traditional algorit

compute f for ma

hope to find outpt

Success pro
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Step 8. Hadamard on qubit 2:

0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
2,0,2,0,0,2,0,2,

2,0,2,0,0,2,0,2,
2,0,2,0,0,2,0,2,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,

2,0,2,0,0,2,0,2.

Step 9. Measure.
First 3 qubits are uniform random

vector orthogonal to 101: I1.e.,
000, 010, 101, or 111.

Grover's algorithm

Assume: un

ique s € {0,1}"

has f(s) = 0.

Traditional algorithm to finc

compute f
hope to finc
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or many Iinputs,
output 0.

Success pro

nability Is very Ic

until #inputs approaches 2"



Step 8. Hadamard on qubit 2:

0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,

2,0,2,0,0,2,0,2,
2,0,2,0,0,2,0,2,
2,0,2,0,0,2,0,2,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
2,0,2,0,0,2,0,2.

Step 9. Measure.
First 3 qubits are uniform random
vector orthogonal to 101: 1.e.,

000, 010, 101, or 111.

Grover's algorithm

Assume: unique s € {0, 1}"
has f(s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output O.

Success pro

nability 1s very low

until #inputs approaches 2",



Step 8. Hadamard on qubit 2:

0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
2,0,2,0,0,2,0,2,
2,0,2,0,0,2,0,2,
2,0,2,0,0,2,0,2,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,

2,0,2,0,0,2,0,2.

Step 9. Measure.
First 3 qubits are uniform random

vector orthogonal to 101: 1.e.,
000, 010, 101, or 111.

Grover's algorithm

Assume: unique s € {0, 1}"
has f(s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output O.
Success pro

nability 1s very low

until #inputs approaches 2",

Grover's algorithm takes only on/2

reversi
Typica
IS Sma
easily

ly: reversibility
| enough that t

heats traditiona

ole computations of f.
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Hadamard on qubit 2: Grover's algorithm Start frc
0,0,0,0, Assume: unique s € {0, 1}” over al
.0,0,0,0, has f(s) = 0. Step 1:
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.0,0,0,0, e
0000 Success probability is very low Step 2:
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Measure. . .
| | reversible computations of f. Repeat !
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| Typically: reversibility overhead about O.
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Is small enough that this
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| on qubit 2:

uniform random
to 101: 1.e.,
111.

Grover's algorithm

Assume: unique s € {0, 1}"
has f(s) = 0.

Traditional algorithm to find s:
compute f for many inputs,
hope to find output O.

Success probability is very low
until #inputs approaches 2",

Grover's algorithm takes only on/2
reversible computations of f.

Typically: reversibility overhead
Is small enough that this

easily beats traditional algorithm.

Start from uniforn
over all n-bit strin

Step 1: Set a «+ I

bg = —aq if f(q)
bg = aq otherwise
This i1s fast.

Step 2: “Grover d
Negate a around |
This is also fast.

Repeat Step 1 +
about 0.58 - 2057

Measure the n qul
With high probabi



ndom

Grover's algorithm

Assume: unique s € {0, 1}"
has f(s) = 0.

Traditional algorithm to find s:
compute f for many inputs,
hope to find output O.

Success probability is very low
until #inputs approaches 2",

Grover's algorithm takes only on/2
reversible computations of f.
Typically: reversibility overhead

Is small enough that this

easily beats traditional algorithm.

Start from uniform superpos
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this fii



Grover's algorithm Start from uniform superposition

Assume: unique s € {0, 1} over all n-bit strings q.

has f(s) = 0. Step 1: Set a < b where
bg = —aq if f(q) =0,

Traditional algorithm to find s: |
by = aq otherwise.

compute f for many inputs,

. This is fast.
hope to find output O. S 15 Tast
Success probability is very low Step 2: “Grover diffusion”.
until #inputs approaches 2". Negate a around Its average.

Grover's algorithm takes only on/2 This is also fast.

reversible computations of f. Repeat Step 1 + Step 2

Typically: reversibility overhead about 0.58 - 2927 times.

Is small enough that this .
& Measure the n qubits.

With high probability this finds s.

easily beats traditional algorithm.




“algorithm

unique s € {0, 1}"
= 0.

1al algorithm to find s:
 f for many inputs,
find output O.

probability is very low
1puts approaches 2"

algorithm takes only 2//2
e computations of f.

/. reversibility overhead
enough that this

ats traditional algorithm.

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —aq if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

Normali;
for an e
after O s

1.0—

—0.5+

-1.0—
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Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — a,

for an example with n = 12

after O steps:
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-0.5
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Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — ag

for an example with n = 12

after O steps:

1.0

0.5

0.0

-0.5

-1.0




Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — ag

for an example with n = 12
after Step 1:
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0.5
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-0.5

-1.0




Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — ag

for an example with n = 12
after Step 1 + Step 2:
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-0.5

-1.0




Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — ag

for an example with n = 12
after Step 1 + Step 2 + Step 1:

1.0

0.5

0.0

-0.5

-1.0




Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — ag
for an example with n = 12
after 2 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — ag
for an example with n = 12
after 3 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — ag
for an example with n = 12
after 4 x (Step 1 + Step 2):

1.0

0.5+

OO S FE

-0.5+

-1.0




Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — ag
for an example with n = 12
after 5 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — ag
for an example with n = 12
after 6 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — ag
for an example with n = 12
after 7 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — ag
for an example with n = 12
after 8 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — ag
for an example with n = 12
after 9 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — ag
for an example with n = 12
after 10 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — ag
for an example with n = 12
after 11 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — ag
for an example with n = 12
after 12 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — ag
for an example with n = 12
after 13 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — ag
for an example with n = 12
after 14 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — ag
for an example with n = 12
after 15 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — ag
for an example with n = 12
after 16 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — ag
for an example with n = 12
after 17 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — ag
for an example with n = 12
after 18 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — ag
for an example with n = 12
after 19 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — ag
for an example with n = 12
after 20 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — ag
for an example with n = 12
after 25 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — ag
for an example with n = 12
after 30 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — ag
for an example with n = 12
after 35 x (Step 1 + Step 2):
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Good moment to stop, measure.



Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — ag
for an example with n = 12
after 40 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — ag
for an example with n = 12
after 45 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — ag
for an example with n = 12
after 50 x (Step 1 + Step 2):

1.0

0.5+

0.0

-0.5+

-1.0

Traditional stopping point.



Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — ag
for an example with n = 12
after 60 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — ag
for an example with n = 12
after 70 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — ag
for an example with n = 12
after 80 x (Step 1 + Step 2):
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2009 Bernstein—Lange—
Peters—van Tilborg.

2009 Bernstein: post-quantum.

2009 Finiasz—Sendrier.

2010 Bernstein—Lange—Peters.

2011 May—Meurer—Thomae.

2011 Becker—Coron—Joux.

2012 Becker—Joux—May—Meurer.

2013 Bernstein—Jeffery—Lange—
Meurer: post-quantum.

2015 May—Ozerov.

Modern McEliece

Easily rescue system by using
a larger public key: “random”
(n/2) x n matrix K over F».
e.g., 1800 x 3600.

Larger weight w =~ n/(2lg n).
e.g. ec F§6OO of weight 150.

1962 attack cost: 2(1t+o(1))w

After extensive research,
2015 attack cost: 2(1+o(1))w.

Post-quantum: 2(0-5+o(1))w

226 Grover iterations

253

e.g. ~

to search choices of S.



