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is complementing index bit 0,

hence “complementing qubit 0”.

(a0; a1; a2; a3; a4; a5; a6; a7)

is measured as (q0; q1; q2),

representing q = q0 + 2q1 + 4q2,

with probability |aq |2=
P
r |ar |2.

(a1; a0; a3; a2; a5; a4; a7; a6)

is measured as (q0 ⊕ 1; q1; q2),

representing q ⊕ 1,

with probability |aq |2=
P
r |ar |2.

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a4; a5; a6; a7; a0; a1; a2; a3)

is “complementing qubit 2”:

(q0; q1; q2) 7→ (q0; q1; q2 ⊕ 1).

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a4; a2; a6; a1; a5; a3; a7)

is “swapping qubits 0 and 2”:

(q0; q1; q2) 7→ (q2; q1; q0).

Complementing qubit 2

= swapping qubits 0 and 2

◦ complementing qubit 0

◦ swapping qubits 0 and 2.

Similarly: swapping qubits i ; j .

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a3; a2; a4; a5; a7; a6)

is a “reversible XOR gate” =

“controlled NOT gate”:

(q0; q1; q2) 7→ (q0 ⊕ q1; q1; q2).



(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a4; a5; a6; a7; a0; a1; a2; a3)

is “complementing qubit 2”:

(q0; q1; q2) 7→ (q0; q1; q2 ⊕ 1).

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a4; a2; a6; a1; a5; a3; a7)

is “swapping qubits 0 and 2”:

(q0; q1; q2) 7→ (q2; q1; q0).

Complementing qubit 2

= swapping qubits 0 and 2

◦ complementing qubit 0

◦ swapping qubits 0 and 2.

Similarly: swapping qubits i ; j .

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a3; a2; a4; a5; a7; a6)

is a “reversible XOR gate” =

“controlled NOT gate”:

(q0; q1; q2) 7→ (q0 ⊕ q1; q1; q2).



(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a4; a5; a6; a7; a0; a1; a2; a3)

is “complementing qubit 2”:

(q0; q1; q2) 7→ (q0; q1; q2 ⊕ 1).

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a4; a2; a6; a1; a5; a3; a7)

is “swapping qubits 0 and 2”:

(q0; q1; q2) 7→ (q2; q1; q0).

Complementing qubit 2

= swapping qubits 0 and 2

◦ complementing qubit 0

◦ swapping qubits 0 and 2.

Similarly: swapping qubits i ; j .

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a3; a2; a4; a5; a7; a6)

is a “reversible XOR gate” =

“controlled NOT gate”:

(q0; q1; q2) 7→ (q0 ⊕ q1; q1; q2).

Example with more qubits:

(a0; a1; a2; a3; a4; a5; a6; a7;

a8; a9; a10; a11; a12; a13; a14; a15;

a16; a17; a18; a19; a20; a21; a22; a23;

a24; a25; a26; a27; a28; a29; a30; a31)

7→ (a0; a1; a3; a2; a4; a5; a7; a6;

a8; a9; a11; a10; a12; a13; a15; a14;

a16; a17; a19; a18; a20; a21; a23; a22;

a24; a25; a27; a26; a28; a29; a31; a30).



(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a4; a5; a6; a7; a0; a1; a2; a3)

is “complementing qubit 2”:

(q0; q1; q2) 7→ (q0; q1; q2 ⊕ 1).

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a4; a2; a6; a1; a5; a3; a7)

is “swapping qubits 0 and 2”:

(q0; q1; q2) 7→ (q2; q1; q0).

Complementing qubit 2

= swapping qubits 0 and 2

◦ complementing qubit 0

◦ swapping qubits 0 and 2.

Similarly: swapping qubits i ; j .

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a3; a2; a4; a5; a7; a6)

is a “reversible XOR gate” =

“controlled NOT gate”:

(q0; q1; q2) 7→ (q0 ⊕ q1; q1; q2).

Example with more qubits:

(a0; a1; a2; a3; a4; a5; a6; a7;

a8; a9; a10; a11; a12; a13; a14; a15;

a16; a17; a18; a19; a20; a21; a22; a23;

a24; a25; a26; a27; a28; a29; a30; a31)

7→ (a0; a1; a3; a2; a4; a5; a7; a6;

a8; a9; a11; a10; a12; a13; a15; a14;

a16; a17; a19; a18; a20; a21; a23; a22;

a24; a25; a27; a26; a28; a29; a31; a30).

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a2; a3; a4; a5; a7; a6)

is a “Toffoli gate” =

“controlled controlled NOT gate”:

(q0; q1; q2) 7→ (q0 ⊕ q1q2; q1; q2).



(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a4; a5; a6; a7; a0; a1; a2; a3)

is “complementing qubit 2”:

(q0; q1; q2) 7→ (q0; q1; q2 ⊕ 1).

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a4; a2; a6; a1; a5; a3; a7)

is “swapping qubits 0 and 2”:

(q0; q1; q2) 7→ (q2; q1; q0).

Complementing qubit 2

= swapping qubits 0 and 2

◦ complementing qubit 0

◦ swapping qubits 0 and 2.

Similarly: swapping qubits i ; j .

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a3; a2; a4; a5; a7; a6)

is a “reversible XOR gate” =

“controlled NOT gate”:

(q0; q1; q2) 7→ (q0 ⊕ q1; q1; q2).

Example with more qubits:

(a0; a1; a2; a3; a4; a5; a6; a7;

a8; a9; a10; a11; a12; a13; a14; a15;

a16; a17; a18; a19; a20; a21; a22; a23;

a24; a25; a26; a27; a28; a29; a30; a31)

7→ (a0; a1; a3; a2; a4; a5; a7; a6;

a8; a9; a11; a10; a12; a13; a15; a14;

a16; a17; a19; a18; a20; a21; a23; a22;

a24; a25; a27; a26; a28; a29; a31; a30).

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a2; a3; a4; a5; a7; a6)

is a “Toffoli gate” =

“controlled controlled NOT gate”:

(q0; q1; q2) 7→ (q0 ⊕ q1q2; q1; q2).



(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a4; a5; a6; a7; a0; a1; a2; a3)

is “complementing qubit 2”:

(q0; q1; q2) 7→ (q0; q1; q2 ⊕ 1).

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a4; a2; a6; a1; a5; a3; a7)

is “swapping qubits 0 and 2”:

(q0; q1; q2) 7→ (q2; q1; q0).

Complementing qubit 2

= swapping qubits 0 and 2

◦ complementing qubit 0

◦ swapping qubits 0 and 2.

Similarly: swapping qubits i ; j .

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a3; a2; a4; a5; a7; a6)

is a “reversible XOR gate” =

“controlled NOT gate”:

(q0; q1; q2) 7→ (q0 ⊕ q1; q1; q2).

Example with more qubits:

(a0; a1; a2; a3; a4; a5; a6; a7;

a8; a9; a10; a11; a12; a13; a14; a15;

a16; a17; a18; a19; a20; a21; a22; a23;

a24; a25; a26; a27; a28; a29; a30; a31)

7→ (a0; a1; a3; a2; a4; a5; a7; a6;

a8; a9; a11; a10; a12; a13; a15; a14;

a16; a17; a19; a18; a20; a21; a23; a22;

a24; a25; a27; a26; a28; a29; a31; a30).

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a2; a3; a4; a5; a7; a6)

is a “Toffoli gate” =

“controlled controlled NOT gate”:

(q0; q1; q2) 7→ (q0 ⊕ q1q2; q1; q2).



(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a3; a2; a4; a5; a7; a6)

is a “reversible XOR gate” =

“controlled NOT gate”:

(q0; q1; q2) 7→ (q0 ⊕ q1; q1; q2).

Example with more qubits:

(a0; a1; a2; a3; a4; a5; a6; a7;

a8; a9; a10; a11; a12; a13; a14; a15;

a16; a17; a18; a19; a20; a21; a22; a23;

a24; a25; a26; a27; a28; a29; a30; a31)

7→ (a0; a1; a3; a2; a4; a5; a7; a6;

a8; a9; a11; a10; a12; a13; a15; a14;

a16; a17; a19; a18; a20; a21; a23; a22;

a24; a25; a27; a26; a28; a29; a31; a30).

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a2; a3; a4; a5; a7; a6)

is a “Toffoli gate” =

“controlled controlled NOT gate”:

(q0; q1; q2) 7→ (q0 ⊕ q1q2; q1; q2).



(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a3; a2; a4; a5; a7; a6)

is a “reversible XOR gate” =

“controlled NOT gate”:

(q0; q1; q2) 7→ (q0 ⊕ q1; q1; q2).

Example with more qubits:

(a0; a1; a2; a3; a4; a5; a6; a7;

a8; a9; a10; a11; a12; a13; a14; a15;

a16; a17; a18; a19; a20; a21; a22; a23;

a24; a25; a26; a27; a28; a29; a30; a31)

7→ (a0; a1; a3; a2; a4; a5; a7; a6;

a8; a9; a11; a10; a12; a13; a15; a14;

a16; a17; a19; a18; a20; a21; a23; a22;

a24; a25; a27; a26; a28; a29; a31; a30).

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a2; a3; a4; a5; a7; a6)

is a “Toffoli gate” =

“controlled controlled NOT gate”:

(q0; q1; q2) 7→ (q0 ⊕ q1q2; q1; q2).

Example with more qubits:

(a0; a1; a2; a3; a4; a5; a6; a7;

a8; a9; a10; a11; a12; a13; a14; a15;

a16; a17; a18; a19; a20; a21; a22; a23;

a24; a25; a26; a27; a28; a29; a30; a31)

7→ (a0; a1; a2; a3; a4; a5; a7; a6;

a8; a9; a10; a11; a12; a13; a15; a14;

a16; a17; a18; a19; a20; a21; a23; a22;

a24; a25; a26; a27; a28; a29; a31; a30).



(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a3; a2; a4; a5; a7; a6)

is a “reversible XOR gate” =

“controlled NOT gate”:

(q0; q1; q2) 7→ (q0 ⊕ q1; q1; q2).

Example with more qubits:

(a0; a1; a2; a3; a4; a5; a6; a7;

a8; a9; a10; a11; a12; a13; a14; a15;

a16; a17; a18; a19; a20; a21; a22; a23;

a24; a25; a26; a27; a28; a29; a30; a31)

7→ (a0; a1; a3; a2; a4; a5; a7; a6;

a8; a9; a11; a10; a12; a13; a15; a14;

a16; a17; a19; a18; a20; a21; a23; a22;

a24; a25; a27; a26; a28; a29; a31; a30).

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a2; a3; a4; a5; a7; a6)

is a “Toffoli gate” =

“controlled controlled NOT gate”:

(q0; q1; q2) 7→ (q0 ⊕ q1q2; q1; q2).

Example with more qubits:

(a0; a1; a2; a3; a4; a5; a6; a7;

a8; a9; a10; a11; a12; a13; a14; a15;

a16; a17; a18; a19; a20; a21; a22; a23;

a24; a25; a26; a27; a28; a29; a30; a31)

7→ (a0; a1; a2; a3; a4; a5; a7; a6;

a8; a9; a10; a11; a12; a13; a15; a14;

a16; a17; a18; a19; a20; a21; a23; a22;

a24; a25; a26; a27; a28; a29; a31; a30).

Reversible computation

Say p is a permutation

of {0; 1; : : : ; 2n − 1}.

General strategy to compose

these fast quantum operations

to obtain index permutation

(a0; a1; : : : ; a2n−1) 7→
(ap−1(0); ap−1(1); : : : ; ap−1(2n−1)):



(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a3; a2; a4; a5; a7; a6)

is a “reversible XOR gate” =

“controlled NOT gate”:

(q0; q1; q2) 7→ (q0 ⊕ q1; q1; q2).

Example with more qubits:

(a0; a1; a2; a3; a4; a5; a6; a7;

a8; a9; a10; a11; a12; a13; a14; a15;

a16; a17; a18; a19; a20; a21; a22; a23;

a24; a25; a26; a27; a28; a29; a30; a31)

7→ (a0; a1; a3; a2; a4; a5; a7; a6;

a8; a9; a11; a10; a12; a13; a15; a14;

a16; a17; a19; a18; a20; a21; a23; a22;

a24; a25; a27; a26; a28; a29; a31; a30).

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a2; a3; a4; a5; a7; a6)

is a “Toffoli gate” =

“controlled controlled NOT gate”:

(q0; q1; q2) 7→ (q0 ⊕ q1q2; q1; q2).

Example with more qubits:

(a0; a1; a2; a3; a4; a5; a6; a7;

a8; a9; a10; a11; a12; a13; a14; a15;

a16; a17; a18; a19; a20; a21; a22; a23;

a24; a25; a26; a27; a28; a29; a30; a31)

7→ (a0; a1; a2; a3; a4; a5; a7; a6;

a8; a9; a10; a11; a12; a13; a15; a14;

a16; a17; a18; a19; a20; a21; a23; a22;

a24; a25; a26; a27; a28; a29; a31; a30).

Reversible computation

Say p is a permutation

of {0; 1; : : : ; 2n − 1}.

General strategy to compose

these fast quantum operations

to obtain index permutation

(a0; a1; : : : ; a2n−1) 7→
(ap−1(0); ap−1(1); : : : ; ap−1(2n−1)):



(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a3; a2; a4; a5; a7; a6)

is a “reversible XOR gate” =

“controlled NOT gate”:

(q0; q1; q2) 7→ (q0 ⊕ q1; q1; q2).

Example with more qubits:

(a0; a1; a2; a3; a4; a5; a6; a7;

a8; a9; a10; a11; a12; a13; a14; a15;

a16; a17; a18; a19; a20; a21; a22; a23;

a24; a25; a26; a27; a28; a29; a30; a31)

7→ (a0; a1; a3; a2; a4; a5; a7; a6;

a8; a9; a11; a10; a12; a13; a15; a14;

a16; a17; a19; a18; a20; a21; a23; a22;

a24; a25; a27; a26; a28; a29; a31; a30).

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a2; a3; a4; a5; a7; a6)

is a “Toffoli gate” =

“controlled controlled NOT gate”:

(q0; q1; q2) 7→ (q0 ⊕ q1q2; q1; q2).

Example with more qubits:

(a0; a1; a2; a3; a4; a5; a6; a7;

a8; a9; a10; a11; a12; a13; a14; a15;

a16; a17; a18; a19; a20; a21; a22; a23;

a24; a25; a26; a27; a28; a29; a30; a31)

7→ (a0; a1; a2; a3; a4; a5; a7; a6;

a8; a9; a10; a11; a12; a13; a15; a14;

a16; a17; a18; a19; a20; a21; a23; a22;

a24; a25; a26; a27; a28; a29; a31; a30).

Reversible computation

Say p is a permutation

of {0; 1; : : : ; 2n − 1}.

General strategy to compose

these fast quantum operations

to obtain index permutation

(a0; a1; : : : ; a2n−1) 7→
(ap−1(0); ap−1(1); : : : ; ap−1(2n−1)):



(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a2; a3; a4; a5; a7; a6)

is a “Toffoli gate” =

“controlled controlled NOT gate”:

(q0; q1; q2) 7→ (q0 ⊕ q1q2; q1; q2).

Example with more qubits:

(a0; a1; a2; a3; a4; a5; a6; a7;

a8; a9; a10; a11; a12; a13; a14; a15;

a16; a17; a18; a19; a20; a21; a22; a23;

a24; a25; a26; a27; a28; a29; a30; a31)

7→ (a0; a1; a2; a3; a4; a5; a7; a6;

a8; a9; a10; a11; a12; a13; a15; a14;

a16; a17; a18; a19; a20; a21; a23; a22;

a24; a25; a26; a27; a28; a29; a31; a30).

Reversible computation

Say p is a permutation

of {0; 1; : : : ; 2n − 1}.

General strategy to compose

these fast quantum operations

to obtain index permutation

(a0; a1; : : : ; a2n−1) 7→
(ap−1(0); ap−1(1); : : : ; ap−1(2n−1)):



(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a2; a3; a4; a5; a7; a6)

is a “Toffoli gate” =

“controlled controlled NOT gate”:

(q0; q1; q2) 7→ (q0 ⊕ q1q2; q1; q2).

Example with more qubits:

(a0; a1; a2; a3; a4; a5; a6; a7;

a8; a9; a10; a11; a12; a13; a14; a15;

a16; a17; a18; a19; a20; a21; a22; a23;

a24; a25; a26; a27; a28; a29; a30; a31)

7→ (a0; a1; a2; a3; a4; a5; a7; a6;

a8; a9; a10; a11; a12; a13; a15; a14;

a16; a17; a18; a19; a20; a21; a23; a22;

a24; a25; a26; a27; a28; a29; a31; a30).

Reversible computation

Say p is a permutation

of {0; 1; : : : ; 2n − 1}.

General strategy to compose

these fast quantum operations

to obtain index permutation

(a0; a1; : : : ; a2n−1) 7→
(ap−1(0); ap−1(1); : : : ; ap−1(2n−1)):

1. Build a traditional circuit

to compute j 7→ p(j)

using NOT/XOR/AND gates.

2. Convert into reversible gates:

e.g., convert AND into Toffoli.



(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a2; a3; a4; a5; a7; a6)

is a “Toffoli gate” =

“controlled controlled NOT gate”:

(q0; q1; q2) 7→ (q0 ⊕ q1q2; q1; q2).

Example with more qubits:

(a0; a1; a2; a3; a4; a5; a6; a7;

a8; a9; a10; a11; a12; a13; a14; a15;

a16; a17; a18; a19; a20; a21; a22; a23;

a24; a25; a26; a27; a28; a29; a30; a31)

7→ (a0; a1; a2; a3; a4; a5; a7; a6;

a8; a9; a10; a11; a12; a13; a15; a14;

a16; a17; a18; a19; a20; a21; a23; a22;

a24; a25; a26; a27; a28; a29; a31; a30).

Reversible computation

Say p is a permutation

of {0; 1; : : : ; 2n − 1}.

General strategy to compose

these fast quantum operations

to obtain index permutation
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for f , using 6 qubits.
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Grover’s algorithm
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has f (s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #inputs approaches 2n.
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is small enough that this

easily beats traditional algorithm.
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easily beats traditional algorithm.

Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.
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reversible computations of f .

Typically: reversibility overhead

is small enough that this

easily beats traditional algorithm.

Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.



Step 8. Hadamard on qubit 2:

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

2; 0; 2; 0; 0; 2; 0; 2;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2:

Step 9. Measure.

First 3 qubits are uniform random

vector orthogonal to 101: i.e.,

000, 010, 101, or 111.

Grover’s algorithm

Assume: unique s ∈ {0; 1}n

has f (s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #inputs approaches 2n.

Grover’s algorithm takes only 2n=2

reversible computations of f .

Typically: reversibility overhead

is small enough that this

easily beats traditional algorithm.

Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.



Grover’s algorithm

Assume: unique s ∈ {0; 1}n

has f (s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #inputs approaches 2n.

Grover’s algorithm takes only 2n=2

reversible computations of f .

Typically: reversibility overhead

is small enough that this

easily beats traditional algorithm.

Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.



Grover’s algorithm

Assume: unique s ∈ {0; 1}n

has f (s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #inputs approaches 2n.

Grover’s algorithm takes only 2n=2

reversible computations of f .

Typically: reversibility overhead

is small enough that this

easily beats traditional algorithm.

Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 0 steps:

−1.0

−0.5

0.0

0.5

1.0



Grover’s algorithm

Assume: unique s ∈ {0; 1}n

has f (s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #inputs approaches 2n.

Grover’s algorithm takes only 2n=2

reversible computations of f .

Typically: reversibility overhead

is small enough that this

easily beats traditional algorithm.

Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 0 steps:

−1.0

−0.5

0.0

0.5

1.0



Grover’s algorithm

Assume: unique s ∈ {0; 1}n

has f (s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #inputs approaches 2n.

Grover’s algorithm takes only 2n=2

reversible computations of f .

Typically: reversibility overhead

is small enough that this

easily beats traditional algorithm.

Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 0 steps:

−1.0

−0.5

0.0

0.5

1.0



Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 0 steps:

−1.0

−0.5

0.0

0.5

1.0



Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after Step 1:

−1.0

−0.5

0.0

0.5

1.0



Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after Step 1 + Step 2:

−1.0

−0.5

0.0

0.5

1.0



Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after Step 1 + Step 2 + Step 1:

−1.0

−0.5

0.0

0.5

1.0



Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 2× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0



Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 3× (Step 1 + Step 2):
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−0.5

0.0

0.5

1.0



Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 4× (Step 1 + Step 2):
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−0.5

0.0

0.5

1.0



Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 5× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0



Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 6× (Step 1 + Step 2):
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−0.5

0.0

0.5

1.0



Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 7× (Step 1 + Step 2):
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−0.5

0.0

0.5

1.0



Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 8× (Step 1 + Step 2):
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−0.5

0.0

0.5

1.0



Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 9× (Step 1 + Step 2):
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−0.5
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1.0



Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 10× (Step 1 + Step 2):
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1.0



Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 11× (Step 1 + Step 2):
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Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 12× (Step 1 + Step 2):
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1.0



Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 13× (Step 1 + Step 2):
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1.0



Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 14× (Step 1 + Step 2):
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Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 15× (Step 1 + Step 2):
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Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 16× (Step 1 + Step 2):
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Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 17× (Step 1 + Step 2):
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−0.5
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1.0



Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 18× (Step 1 + Step 2):
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−0.5
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1.0



Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 19× (Step 1 + Step 2):
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1.0



Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 20× (Step 1 + Step 2):
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Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 25× (Step 1 + Step 2):
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Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 30× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0



Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 35× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Good moment to stop, measure.



Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 40× (Step 1 + Step 2):
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Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 45× (Step 1 + Step 2):
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Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 50× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Traditional stopping point.



Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 60× (Step 1 + Step 2):
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−0.5

0.0

0.5

1.0



Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 70× (Step 1 + Step 2):

−1.0

−0.5

0.0
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1.0



Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 80× (Step 1 + Step 2):
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Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 90× (Step 1 + Step 2):
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Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 100× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Very bad stopping point.



Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12
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Post-quantum: 2(0:5+o(1))w .

e.g. ≈226 Grover iterations

to search 253 choices of S.


