
Introduction to

quantum algorithms

and introduction to

code-based cryptography

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Data (“state”) stored in n bits:

an element of {0; 1}n,

often viewed as representing

an element of {0; 1; : : : ; 2n − 1}.

Introduction to

quantum algorithms

and introduction to

code-based cryptography

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Data (“state”) stored in n bits:

an element of {0; 1}n,

often viewed as representing

an element of {0; 1; : : : ; 2n − 1}.

State stored in n qubits:

a nonzero element of C2n .

Retrieving this vector is tough!

Introduction to

quantum algorithms

and introduction to

code-based cryptography

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Data (“state”) stored in n bits:

an element of {0; 1}n,

often viewed as representing

an element of {0; 1; : : : ; 2n − 1}.

State stored in n qubits:

a nonzero element of C2n .

Retrieving this vector is tough!

If n qubits have state

(a0; a1; : : : ; a2n−1) then

measuring the qubits produces

an element of {0; 1; : : : ; 2n − 1}
and destroys the state.

Measurement produces element q

with probability |aq |2=
P
r |ar |2.

Introduction to

quantum algorithms

and introduction to

code-based cryptography

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Data (“state”) stored in n bits:

an element of {0; 1}n,

often viewed as representing

an element of {0; 1; : : : ; 2n − 1}.

State stored in n qubits:

a nonzero element of C2n .

Retrieving this vector is tough!

If n qubits have state

(a0; a1; : : : ; a2n−1) then

measuring the qubits produces

an element of {0; 1; : : : ; 2n − 1}
and destroys the state.

Measurement produces element q

with probability |aq |2=
P
r |ar |2.

Some examples of 3-qubit states:

(1; 0; 0; 0; 0; 0; 0; 0) is

“|0〉” in standard notation.

Measurement produces 0.

Introduction to

quantum algorithms

and introduction to

code-based cryptography

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Data (“state”) stored in n bits:

an element of {0; 1}n,

often viewed as representing

an element of {0; 1; : : : ; 2n − 1}.

State stored in n qubits:

a nonzero element of C2n .

Retrieving this vector is tough!

If n qubits have state

(a0; a1; : : : ; a2n−1) then

measuring the qubits produces

an element of {0; 1; : : : ; 2n − 1}
and destroys the state.

Measurement produces element q

with probability |aq |2=
P
r |ar |2.

Some examples of 3-qubit states:

(1; 0; 0; 0; 0; 0; 0; 0) is

“|0〉” in standard notation.

Measurement produces 0.

Introduction to

quantum algorithms

and introduction to

code-based cryptography

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Data (“state”) stored in n bits:

an element of {0; 1}n,

often viewed as representing

an element of {0; 1; : : : ; 2n − 1}.

State stored in n qubits:

a nonzero element of C2n .

Retrieving this vector is tough!

If n qubits have state

(a0; a1; : : : ; a2n−1) then

measuring the qubits produces

an element of {0; 1; : : : ; 2n − 1}
and destroys the state.

Measurement produces element q

with probability |aq |2=
P
r |ar |2.

Some examples of 3-qubit states:

(1; 0; 0; 0; 0; 0; 0; 0) is

“|0〉” in standard notation.

Measurement produces 0.

Data (“state”) stored in n bits:

an element of {0; 1}n,

often viewed as representing

an element of {0; 1; : : : ; 2n − 1}.

State stored in n qubits:

a nonzero element of C2n .

Retrieving this vector is tough!

If n qubits have state

(a0; a1; : : : ; a2n−1) then

measuring the qubits produces

an element of {0; 1; : : : ; 2n − 1}
and destroys the state.

Measurement produces element q

with probability |aq |2=
P
r |ar |2.

Some examples of 3-qubit states:

(1; 0; 0; 0; 0; 0; 0; 0) is

“|0〉” in standard notation.

Measurement produces 0.

Data (“state”) stored in n bits:

an element of {0; 1}n,

often viewed as representing

an element of {0; 1; : : : ; 2n − 1}.

State stored in n qubits:

a nonzero element of C2n .

Retrieving this vector is tough!

If n qubits have state

(a0; a1; : : : ; a2n−1) then

measuring the qubits produces

an element of {0; 1; : : : ; 2n − 1}
and destroys the state.

Measurement produces element q

with probability |aq |2=
P
r |ar |2.

Some examples of 3-qubit states:

(1; 0; 0; 0; 0; 0; 0; 0) is

“|0〉” in standard notation.

Measurement produces 0.

(0; 0; 0; 0; 0; 0; 1; 0) is

“|6〉” in standard notation.

Measurement produces 6.

Data (“state”) stored in n bits:

an element of {0; 1}n,

often viewed as representing

an element of {0; 1; : : : ; 2n − 1}.

State stored in n qubits:

a nonzero element of C2n .

Retrieving this vector is tough!

If n qubits have state

(a0; a1; : : : ; a2n−1) then

measuring the qubits produces

an element of {0; 1; : : : ; 2n − 1}
and destroys the state.

Measurement produces element q

with probability |aq |2=
P
r |ar |2.

Some examples of 3-qubit states:

(1; 0; 0; 0; 0; 0; 0; 0) is

“|0〉” in standard notation.

Measurement produces 0.

(0; 0; 0; 0; 0; 0; 1; 0) is

“|6〉” in standard notation.

Measurement produces 6.

(0; 0; 0; 0; 0; 0;−7i ; 0) = −7i |6〉:
Measurement produces 6.

Data (“state”) stored in n bits:

an element of {0; 1}n,

often viewed as representing

an element of {0; 1; : : : ; 2n − 1}.

State stored in n qubits:

a nonzero element of C2n .

Retrieving this vector is tough!

If n qubits have state

(a0; a1; : : : ; a2n−1) then

measuring the qubits produces

an element of {0; 1; : : : ; 2n − 1}
and destroys the state.

Measurement produces element q

with probability |aq |2=
P
r |ar |2.

Some examples of 3-qubit states:

(1; 0; 0; 0; 0; 0; 0; 0) is

“|0〉” in standard notation.

Measurement produces 0.

(0; 0; 0; 0; 0; 0; 1; 0) is

“|6〉” in standard notation.

Measurement produces 6.

(0; 0; 0; 0; 0; 0;−7i ; 0) = −7i |6〉:
Measurement produces 6.

(0; 0; 4; 0; 0; 0; 8; 0) = 4|2〉+ 8|6〉:
Measurement produces

2 with probability 20%,

6 with probability 80%.

Data (“state”) stored in n bits:

an element of {0; 1}n,

often viewed as representing

an element of {0; 1; : : : ; 2n − 1}.

State stored in n qubits:

a nonzero element of C2n .

Retrieving this vector is tough!

If n qubits have state

(a0; a1; : : : ; a2n−1) then

measuring the qubits produces

an element of {0; 1; : : : ; 2n − 1}
and destroys the state.

Measurement produces element q

with probability |aq |2=
P
r |ar |2.

Some examples of 3-qubit states:

(1; 0; 0; 0; 0; 0; 0; 0) is

“|0〉” in standard notation.

Measurement produces 0.

(0; 0; 0; 0; 0; 0; 1; 0) is

“|6〉” in standard notation.

Measurement produces 6.

(0; 0; 0; 0; 0; 0;−7i ; 0) = −7i |6〉:
Measurement produces 6.

(0; 0; 4; 0; 0; 0; 8; 0) = 4|2〉+ 8|6〉:
Measurement produces

2 with probability 20%,

6 with probability 80%.

Fast quantum operations, part 1

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a1; a0; a3; a2; a5; a4; a7; a6)

is complementing index bit 0,

hence “complementing qubit 0”.

Data (“state”) stored in n bits:

an element of {0; 1}n,

often viewed as representing

an element of {0; 1; : : : ; 2n − 1}.

State stored in n qubits:

a nonzero element of C2n .

Retrieving this vector is tough!

If n qubits have state

(a0; a1; : : : ; a2n−1) then

measuring the qubits produces

an element of {0; 1; : : : ; 2n − 1}
and destroys the state.

Measurement produces element q

with probability |aq |2=
P
r |ar |2.

Some examples of 3-qubit states:

(1; 0; 0; 0; 0; 0; 0; 0) is

“|0〉” in standard notation.

Measurement produces 0.

(0; 0; 0; 0; 0; 0; 1; 0) is

“|6〉” in standard notation.

Measurement produces 6.

(0; 0; 0; 0; 0; 0;−7i ; 0) = −7i |6〉:
Measurement produces 6.

(0; 0; 4; 0; 0; 0; 8; 0) = 4|2〉+ 8|6〉:
Measurement produces

2 with probability 20%,

6 with probability 80%.

Fast quantum operations, part 1

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a1; a0; a3; a2; a5; a4; a7; a6)

is complementing index bit 0,

hence “complementing qubit 0”.

Data (“state”) stored in n bits:

an element of {0; 1}n,

often viewed as representing

an element of {0; 1; : : : ; 2n − 1}.

State stored in n qubits:

a nonzero element of C2n .

Retrieving this vector is tough!

If n qubits have state

(a0; a1; : : : ; a2n−1) then

measuring the qubits produces

an element of {0; 1; : : : ; 2n − 1}
and destroys the state.

Measurement produces element q

with probability |aq |2=
P
r |ar |2.

Some examples of 3-qubit states:

(1; 0; 0; 0; 0; 0; 0; 0) is

“|0〉” in standard notation.

Measurement produces 0.

(0; 0; 0; 0; 0; 0; 1; 0) is

“|6〉” in standard notation.

Measurement produces 6.

(0; 0; 0; 0; 0; 0;−7i ; 0) = −7i |6〉:
Measurement produces 6.

(0; 0; 4; 0; 0; 0; 8; 0) = 4|2〉+ 8|6〉:
Measurement produces

2 with probability 20%,

6 with probability 80%.

Fast quantum operations, part 1

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a1; a0; a3; a2; a5; a4; a7; a6)

is complementing index bit 0,

hence “complementing qubit 0”.

Some examples of 3-qubit states:

(1; 0; 0; 0; 0; 0; 0; 0) is

“|0〉” in standard notation.

Measurement produces 0.

(0; 0; 0; 0; 0; 0; 1; 0) is

“|6〉” in standard notation.

Measurement produces 6.

(0; 0; 0; 0; 0; 0;−7i ; 0) = −7i |6〉:
Measurement produces 6.

(0; 0; 4; 0; 0; 0; 8; 0) = 4|2〉+ 8|6〉:
Measurement produces

2 with probability 20%,

6 with probability 80%.

Fast quantum operations, part 1

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a1; a0; a3; a2; a5; a4; a7; a6)

is complementing index bit 0,

hence “complementing qubit 0”.

Some examples of 3-qubit states:

(1; 0; 0; 0; 0; 0; 0; 0) is

“|0〉” in standard notation.

Measurement produces 0.

(0; 0; 0; 0; 0; 0; 1; 0) is

“|6〉” in standard notation.

Measurement produces 6.

(0; 0; 0; 0; 0; 0;−7i ; 0) = −7i |6〉:
Measurement produces 6.

(0; 0; 4; 0; 0; 0; 8; 0) = 4|2〉+ 8|6〉:
Measurement produces

2 with probability 20%,

6 with probability 80%.

Fast quantum operations, part 1

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a1; a0; a3; a2; a5; a4; a7; a6)

is complementing index bit 0,

hence “complementing qubit 0”.

(a0; a1; a2; a3; a4; a5; a6; a7)

is measured as (q0; q1; q2),

representing q = q0 + 2q1 + 4q2,

with probability |aq |2=
P
r |ar |2.

(a1; a0; a3; a2; a5; a4; a7; a6)

is measured as (q0 ⊕ 1; q1; q2),

representing q ⊕ 1,

with probability |aq |2=
P
r |ar |2.

Some examples of 3-qubit states:

(1; 0; 0; 0; 0; 0; 0; 0) is

“|0〉” in standard notation.

Measurement produces 0.

(0; 0; 0; 0; 0; 0; 1; 0) is

“|6〉” in standard notation.

Measurement produces 6.

(0; 0; 0; 0; 0; 0;−7i ; 0) = −7i |6〉:
Measurement produces 6.

(0; 0; 4; 0; 0; 0; 8; 0) = 4|2〉+ 8|6〉:
Measurement produces

2 with probability 20%,

6 with probability 80%.

Fast quantum operations, part 1

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a1; a0; a3; a2; a5; a4; a7; a6)

is complementing index bit 0,

hence “complementing qubit 0”.

(a0; a1; a2; a3; a4; a5; a6; a7)

is measured as (q0; q1; q2),

representing q = q0 + 2q1 + 4q2,

with probability |aq |2=
P
r |ar |2.

(a1; a0; a3; a2; a5; a4; a7; a6)

is measured as (q0 ⊕ 1; q1; q2),

representing q ⊕ 1,

with probability |aq |2=
P
r |ar |2.

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a4; a5; a6; a7; a0; a1; a2; a3)

is “complementing qubit 2”:

(q0; q1; q2) 7→ (q0; q1; q2 ⊕ 1).

Some examples of 3-qubit states:

(1; 0; 0; 0; 0; 0; 0; 0) is

“|0〉” in standard notation.

Measurement produces 0.

(0; 0; 0; 0; 0; 0; 1; 0) is

“|6〉” in standard notation.

Measurement produces 6.

(0; 0; 0; 0; 0; 0;−7i ; 0) = −7i |6〉:
Measurement produces 6.

(0; 0; 4; 0; 0; 0; 8; 0) = 4|2〉+ 8|6〉:
Measurement produces

2 with probability 20%,

6 with probability 80%.

Fast quantum operations, part 1

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a1; a0; a3; a2; a5; a4; a7; a6)

is complementing index bit 0,

hence “complementing qubit 0”.

(a0; a1; a2; a3; a4; a5; a6; a7)

is measured as (q0; q1; q2),

representing q = q0 + 2q1 + 4q2,

with probability |aq |2=
P
r |ar |2.

(a1; a0; a3; a2; a5; a4; a7; a6)

is measured as (q0 ⊕ 1; q1; q2),

representing q ⊕ 1,

with probability |aq |2=
P
r |ar |2.

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a4; a5; a6; a7; a0; a1; a2; a3)

is “complementing qubit 2”:

(q0; q1; q2) 7→ (q0; q1; q2 ⊕ 1).

Some examples of 3-qubit states:

(1; 0; 0; 0; 0; 0; 0; 0) is

“|0〉” in standard notation.

Measurement produces 0.

(0; 0; 0; 0; 0; 0; 1; 0) is

“|6〉” in standard notation.

Measurement produces 6.

(0; 0; 0; 0; 0; 0;−7i ; 0) = −7i |6〉:
Measurement produces 6.

(0; 0; 4; 0; 0; 0; 8; 0) = 4|2〉+ 8|6〉:
Measurement produces

2 with probability 20%,

6 with probability 80%.

Fast quantum operations, part 1

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a1; a0; a3; a2; a5; a4; a7; a6)

is complementing index bit 0,

hence “complementing qubit 0”.

(a0; a1; a2; a3; a4; a5; a6; a7)

is measured as (q0; q1; q2),

representing q = q0 + 2q1 + 4q2,

with probability |aq |2=
P
r |ar |2.

(a1; a0; a3; a2; a5; a4; a7; a6)

is measured as (q0 ⊕ 1; q1; q2),

representing q ⊕ 1,

with probability |aq |2=
P
r |ar |2.

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a4; a5; a6; a7; a0; a1; a2; a3)

is “complementing qubit 2”:

(q0; q1; q2) 7→ (q0; q1; q2 ⊕ 1).

Fast quantum operations, part 1

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a1; a0; a3; a2; a5; a4; a7; a6)

is complementing index bit 0,

hence “complementing qubit 0”.

(a0; a1; a2; a3; a4; a5; a6; a7)

is measured as (q0; q1; q2),

representing q = q0 + 2q1 + 4q2,

with probability |aq |2=
P
r |ar |2.

(a1; a0; a3; a2; a5; a4; a7; a6)

is measured as (q0 ⊕ 1; q1; q2),

representing q ⊕ 1,

with probability |aq |2=
P
r |ar |2.

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a4; a5; a6; a7; a0; a1; a2; a3)

is “complementing qubit 2”:

(q0; q1; q2) 7→ (q0; q1; q2 ⊕ 1).

Fast quantum operations, part 1

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a1; a0; a3; a2; a5; a4; a7; a6)

is complementing index bit 0,

hence “complementing qubit 0”.

(a0; a1; a2; a3; a4; a5; a6; a7)

is measured as (q0; q1; q2),

representing q = q0 + 2q1 + 4q2,

with probability |aq |2=
P
r |ar |2.

(a1; a0; a3; a2; a5; a4; a7; a6)

is measured as (q0 ⊕ 1; q1; q2),

representing q ⊕ 1,

with probability |aq |2=
P
r |ar |2.

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a4; a5; a6; a7; a0; a1; a2; a3)

is “complementing qubit 2”:

(q0; q1; q2) 7→ (q0; q1; q2 ⊕ 1).

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a4; a2; a6; a1; a5; a3; a7)

is “swapping qubits 0 and 2”:

(q0; q1; q2) 7→ (q2; q1; q0).

Fast quantum operations, part 1

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a1; a0; a3; a2; a5; a4; a7; a6)

is complementing index bit 0,

hence “complementing qubit 0”.

(a0; a1; a2; a3; a4; a5; a6; a7)

is measured as (q0; q1; q2),

representing q = q0 + 2q1 + 4q2,

with probability |aq |2=
P
r |ar |2.

(a1; a0; a3; a2; a5; a4; a7; a6)

is measured as (q0 ⊕ 1; q1; q2),

representing q ⊕ 1,

with probability |aq |2=
P
r |ar |2.

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a4; a5; a6; a7; a0; a1; a2; a3)

is “complementing qubit 2”:

(q0; q1; q2) 7→ (q0; q1; q2 ⊕ 1).

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a4; a2; a6; a1; a5; a3; a7)

is “swapping qubits 0 and 2”:

(q0; q1; q2) 7→ (q2; q1; q0).

Complementing qubit 2

= swapping qubits 0 and 2

◦ complementing qubit 0

◦ swapping qubits 0 and 2.

Similarly: swapping qubits i ; j .

Fast quantum operations, part 1

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a1; a0; a3; a2; a5; a4; a7; a6)

is complementing index bit 0,

hence “complementing qubit 0”.

(a0; a1; a2; a3; a4; a5; a6; a7)

is measured as (q0; q1; q2),

representing q = q0 + 2q1 + 4q2,

with probability |aq |2=
P
r |ar |2.

(a1; a0; a3; a2; a5; a4; a7; a6)

is measured as (q0 ⊕ 1; q1; q2),

representing q ⊕ 1,

with probability |aq |2=
P
r |ar |2.

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a4; a5; a6; a7; a0; a1; a2; a3)

is “complementing qubit 2”:

(q0; q1; q2) 7→ (q0; q1; q2 ⊕ 1).

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a4; a2; a6; a1; a5; a3; a7)

is “swapping qubits 0 and 2”:

(q0; q1; q2) 7→ (q2; q1; q0).

Complementing qubit 2

= swapping qubits 0 and 2

◦ complementing qubit 0

◦ swapping qubits 0 and 2.

Similarly: swapping qubits i ; j .

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a3; a2; a4; a5; a7; a6)

is a “reversible XOR gate” =

“controlled NOT gate”:

(q0; q1; q2) 7→ (q0 ⊕ q1; q1; q2).

Fast quantum operations, part 1

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a1; a0; a3; a2; a5; a4; a7; a6)

is complementing index bit 0,

hence “complementing qubit 0”.

(a0; a1; a2; a3; a4; a5; a6; a7)

is measured as (q0; q1; q2),

representing q = q0 + 2q1 + 4q2,

with probability |aq |2=
P
r |ar |2.

(a1; a0; a3; a2; a5; a4; a7; a6)

is measured as (q0 ⊕ 1; q1; q2),

representing q ⊕ 1,

with probability |aq |2=
P
r |ar |2.

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a4; a5; a6; a7; a0; a1; a2; a3)

is “complementing qubit 2”:

(q0; q1; q2) 7→ (q0; q1; q2 ⊕ 1).

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a4; a2; a6; a1; a5; a3; a7)

is “swapping qubits 0 and 2”:

(q0; q1; q2) 7→ (q2; q1; q0).

Complementing qubit 2

= swapping qubits 0 and 2

◦ complementing qubit 0

◦ swapping qubits 0 and 2.

Similarly: swapping qubits i ; j .

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a3; a2; a4; a5; a7; a6)

is a “reversible XOR gate” =

“controlled NOT gate”:

(q0; q1; q2) 7→ (q0 ⊕ q1; q1; q2).

Fast quantum operations, part 1

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a1; a0; a3; a2; a5; a4; a7; a6)

is complementing index bit 0,

hence “complementing qubit 0”.

(a0; a1; a2; a3; a4; a5; a6; a7)

is measured as (q0; q1; q2),

representing q = q0 + 2q1 + 4q2,

with probability |aq |2=
P
r |ar |2.

(a1; a0; a3; a2; a5; a4; a7; a6)

is measured as (q0 ⊕ 1; q1; q2),

representing q ⊕ 1,

with probability |aq |2=
P
r |ar |2.

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a4; a5; a6; a7; a0; a1; a2; a3)

is “complementing qubit 2”:

(q0; q1; q2) 7→ (q0; q1; q2 ⊕ 1).

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a4; a2; a6; a1; a5; a3; a7)

is “swapping qubits 0 and 2”:

(q0; q1; q2) 7→ (q2; q1; q0).

Complementing qubit 2

= swapping qubits 0 and 2

◦ complementing qubit 0

◦ swapping qubits 0 and 2.

Similarly: swapping qubits i ; j .

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a3; a2; a4; a5; a7; a6)

is a “reversible XOR gate” =

“controlled NOT gate”:

(q0; q1; q2) 7→ (q0 ⊕ q1; q1; q2).

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a4; a5; a6; a7; a0; a1; a2; a3)

is “complementing qubit 2”:

(q0; q1; q2) 7→ (q0; q1; q2 ⊕ 1).

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a4; a2; a6; a1; a5; a3; a7)

is “swapping qubits 0 and 2”:

(q0; q1; q2) 7→ (q2; q1; q0).

Complementing qubit 2

= swapping qubits 0 and 2

◦ complementing qubit 0

◦ swapping qubits 0 and 2.

Similarly: swapping qubits i ; j .

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a3; a2; a4; a5; a7; a6)

is a “reversible XOR gate” =

“controlled NOT gate”:

(q0; q1; q2) 7→ (q0 ⊕ q1; q1; q2).

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a4; a5; a6; a7; a0; a1; a2; a3)

is “complementing qubit 2”:

(q0; q1; q2) 7→ (q0; q1; q2 ⊕ 1).

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a4; a2; a6; a1; a5; a3; a7)

is “swapping qubits 0 and 2”:

(q0; q1; q2) 7→ (q2; q1; q0).

Complementing qubit 2

= swapping qubits 0 and 2

◦ complementing qubit 0

◦ swapping qubits 0 and 2.

Similarly: swapping qubits i ; j .

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a3; a2; a4; a5; a7; a6)

is a “reversible XOR gate” =

“controlled NOT gate”:

(q0; q1; q2) 7→ (q0 ⊕ q1; q1; q2).

Example with more qubits:

(a0; a1; a2; a3; a4; a5; a6; a7;

a8; a9; a10; a11; a12; a13; a14; a15;

a16; a17; a18; a19; a20; a21; a22; a23;

a24; a25; a26; a27; a28; a29; a30; a31)

7→ (a0; a1; a3; a2; a4; a5; a7; a6;

a8; a9; a11; a10; a12; a13; a15; a14;

a16; a17; a19; a18; a20; a21; a23; a22;

a24; a25; a27; a26; a28; a29; a31; a30).

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a4; a5; a6; a7; a0; a1; a2; a3)

is “complementing qubit 2”:

(q0; q1; q2) 7→ (q0; q1; q2 ⊕ 1).

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a4; a2; a6; a1; a5; a3; a7)

is “swapping qubits 0 and 2”:

(q0; q1; q2) 7→ (q2; q1; q0).

Complementing qubit 2

= swapping qubits 0 and 2

◦ complementing qubit 0

◦ swapping qubits 0 and 2.

Similarly: swapping qubits i ; j .

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a3; a2; a4; a5; a7; a6)

is a “reversible XOR gate” =

“controlled NOT gate”:

(q0; q1; q2) 7→ (q0 ⊕ q1; q1; q2).

Example with more qubits:

(a0; a1; a2; a3; a4; a5; a6; a7;

a8; a9; a10; a11; a12; a13; a14; a15;

a16; a17; a18; a19; a20; a21; a22; a23;

a24; a25; a26; a27; a28; a29; a30; a31)

7→ (a0; a1; a3; a2; a4; a5; a7; a6;

a8; a9; a11; a10; a12; a13; a15; a14;

a16; a17; a19; a18; a20; a21; a23; a22;

a24; a25; a27; a26; a28; a29; a31; a30).

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a2; a3; a4; a5; a7; a6)

is a “Toffoli gate” =

“controlled controlled NOT gate”:

(q0; q1; q2) 7→ (q0 ⊕ q1q2; q1; q2).

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a4; a5; a6; a7; a0; a1; a2; a3)

is “complementing qubit 2”:

(q0; q1; q2) 7→ (q0; q1; q2 ⊕ 1).

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a4; a2; a6; a1; a5; a3; a7)

is “swapping qubits 0 and 2”:

(q0; q1; q2) 7→ (q2; q1; q0).

Complementing qubit 2

= swapping qubits 0 and 2

◦ complementing qubit 0

◦ swapping qubits 0 and 2.

Similarly: swapping qubits i ; j .

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a3; a2; a4; a5; a7; a6)

is a “reversible XOR gate” =

“controlled NOT gate”:

(q0; q1; q2) 7→ (q0 ⊕ q1; q1; q2).

Example with more qubits:

(a0; a1; a2; a3; a4; a5; a6; a7;

a8; a9; a10; a11; a12; a13; a14; a15;

a16; a17; a18; a19; a20; a21; a22; a23;

a24; a25; a26; a27; a28; a29; a30; a31)

7→ (a0; a1; a3; a2; a4; a5; a7; a6;

a8; a9; a11; a10; a12; a13; a15; a14;

a16; a17; a19; a18; a20; a21; a23; a22;

a24; a25; a27; a26; a28; a29; a31; a30).

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a2; a3; a4; a5; a7; a6)

is a “Toffoli gate” =

“controlled controlled NOT gate”:

(q0; q1; q2) 7→ (q0 ⊕ q1q2; q1; q2).

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a4; a5; a6; a7; a0; a1; a2; a3)

is “complementing qubit 2”:

(q0; q1; q2) 7→ (q0; q1; q2 ⊕ 1).

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a4; a2; a6; a1; a5; a3; a7)

is “swapping qubits 0 and 2”:

(q0; q1; q2) 7→ (q2; q1; q0).

Complementing qubit 2

= swapping qubits 0 and 2

◦ complementing qubit 0

◦ swapping qubits 0 and 2.

Similarly: swapping qubits i ; j .

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a3; a2; a4; a5; a7; a6)

is a “reversible XOR gate” =

“controlled NOT gate”:

(q0; q1; q2) 7→ (q0 ⊕ q1; q1; q2).

Example with more qubits:

(a0; a1; a2; a3; a4; a5; a6; a7;

a8; a9; a10; a11; a12; a13; a14; a15;

a16; a17; a18; a19; a20; a21; a22; a23;

a24; a25; a26; a27; a28; a29; a30; a31)

7→ (a0; a1; a3; a2; a4; a5; a7; a6;

a8; a9; a11; a10; a12; a13; a15; a14;

a16; a17; a19; a18; a20; a21; a23; a22;

a24; a25; a27; a26; a28; a29; a31; a30).

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a2; a3; a4; a5; a7; a6)

is a “Toffoli gate” =

“controlled controlled NOT gate”:

(q0; q1; q2) 7→ (q0 ⊕ q1q2; q1; q2).

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a3; a2; a4; a5; a7; a6)

is a “reversible XOR gate” =

“controlled NOT gate”:

(q0; q1; q2) 7→ (q0 ⊕ q1; q1; q2).

Example with more qubits:

(a0; a1; a2; a3; a4; a5; a6; a7;

a8; a9; a10; a11; a12; a13; a14; a15;

a16; a17; a18; a19; a20; a21; a22; a23;

a24; a25; a26; a27; a28; a29; a30; a31)

7→ (a0; a1; a3; a2; a4; a5; a7; a6;

a8; a9; a11; a10; a12; a13; a15; a14;

a16; a17; a19; a18; a20; a21; a23; a22;

a24; a25; a27; a26; a28; a29; a31; a30).

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a2; a3; a4; a5; a7; a6)

is a “Toffoli gate” =

“controlled controlled NOT gate”:

(q0; q1; q2) 7→ (q0 ⊕ q1q2; q1; q2).

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a3; a2; a4; a5; a7; a6)

is a “reversible XOR gate” =

“controlled NOT gate”:

(q0; q1; q2) 7→ (q0 ⊕ q1; q1; q2).

Example with more qubits:

(a0; a1; a2; a3; a4; a5; a6; a7;

a8; a9; a10; a11; a12; a13; a14; a15;

a16; a17; a18; a19; a20; a21; a22; a23;

a24; a25; a26; a27; a28; a29; a30; a31)

7→ (a0; a1; a3; a2; a4; a5; a7; a6;

a8; a9; a11; a10; a12; a13; a15; a14;

a16; a17; a19; a18; a20; a21; a23; a22;

a24; a25; a27; a26; a28; a29; a31; a30).

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a2; a3; a4; a5; a7; a6)

is a “Toffoli gate” =

“controlled controlled NOT gate”:

(q0; q1; q2) 7→ (q0 ⊕ q1q2; q1; q2).

Example with more qubits:

(a0; a1; a2; a3; a4; a5; a6; a7;

a8; a9; a10; a11; a12; a13; a14; a15;

a16; a17; a18; a19; a20; a21; a22; a23;

a24; a25; a26; a27; a28; a29; a30; a31)

7→ (a0; a1; a2; a3; a4; a5; a7; a6;

a8; a9; a10; a11; a12; a13; a15; a14;

a16; a17; a18; a19; a20; a21; a23; a22;

a24; a25; a26; a27; a28; a29; a31; a30).

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a3; a2; a4; a5; a7; a6)

is a “reversible XOR gate” =

“controlled NOT gate”:

(q0; q1; q2) 7→ (q0 ⊕ q1; q1; q2).

Example with more qubits:

(a0; a1; a2; a3; a4; a5; a6; a7;

a8; a9; a10; a11; a12; a13; a14; a15;

a16; a17; a18; a19; a20; a21; a22; a23;

a24; a25; a26; a27; a28; a29; a30; a31)

7→ (a0; a1; a3; a2; a4; a5; a7; a6;

a8; a9; a11; a10; a12; a13; a15; a14;

a16; a17; a19; a18; a20; a21; a23; a22;

a24; a25; a27; a26; a28; a29; a31; a30).

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a2; a3; a4; a5; a7; a6)

is a “Toffoli gate” =

“controlled controlled NOT gate”:

(q0; q1; q2) 7→ (q0 ⊕ q1q2; q1; q2).

Example with more qubits:

(a0; a1; a2; a3; a4; a5; a6; a7;

a8; a9; a10; a11; a12; a13; a14; a15;

a16; a17; a18; a19; a20; a21; a22; a23;

a24; a25; a26; a27; a28; a29; a30; a31)

7→ (a0; a1; a2; a3; a4; a5; a7; a6;

a8; a9; a10; a11; a12; a13; a15; a14;

a16; a17; a18; a19; a20; a21; a23; a22;

a24; a25; a26; a27; a28; a29; a31; a30).

Reversible computation

Say p is a permutation

of {0; 1; : : : ; 2n − 1}.

General strategy to compose

these fast quantum operations

to obtain index permutation

(a0; a1; : : : ; a2n−1) 7→
(ap−1(0); ap−1(1); : : : ; ap−1(2n−1)):

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a3; a2; a4; a5; a7; a6)

is a “reversible XOR gate” =

“controlled NOT gate”:

(q0; q1; q2) 7→ (q0 ⊕ q1; q1; q2).

Example with more qubits:

(a0; a1; a2; a3; a4; a5; a6; a7;

a8; a9; a10; a11; a12; a13; a14; a15;

a16; a17; a18; a19; a20; a21; a22; a23;

a24; a25; a26; a27; a28; a29; a30; a31)

7→ (a0; a1; a3; a2; a4; a5; a7; a6;

a8; a9; a11; a10; a12; a13; a15; a14;

a16; a17; a19; a18; a20; a21; a23; a22;

a24; a25; a27; a26; a28; a29; a31; a30).

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a2; a3; a4; a5; a7; a6)

is a “Toffoli gate” =

“controlled controlled NOT gate”:

(q0; q1; q2) 7→ (q0 ⊕ q1q2; q1; q2).

Example with more qubits:

(a0; a1; a2; a3; a4; a5; a6; a7;

a8; a9; a10; a11; a12; a13; a14; a15;

a16; a17; a18; a19; a20; a21; a22; a23;

a24; a25; a26; a27; a28; a29; a30; a31)

7→ (a0; a1; a2; a3; a4; a5; a7; a6;

a8; a9; a10; a11; a12; a13; a15; a14;

a16; a17; a18; a19; a20; a21; a23; a22;

a24; a25; a26; a27; a28; a29; a31; a30).

Reversible computation

Say p is a permutation

of {0; 1; : : : ; 2n − 1}.

General strategy to compose

these fast quantum operations

to obtain index permutation

(a0; a1; : : : ; a2n−1) 7→
(ap−1(0); ap−1(1); : : : ; ap−1(2n−1)):

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a3; a2; a4; a5; a7; a6)

is a “reversible XOR gate” =

“controlled NOT gate”:

(q0; q1; q2) 7→ (q0 ⊕ q1; q1; q2).

Example with more qubits:

(a0; a1; a2; a3; a4; a5; a6; a7;

a8; a9; a10; a11; a12; a13; a14; a15;

a16; a17; a18; a19; a20; a21; a22; a23;

a24; a25; a26; a27; a28; a29; a30; a31)

7→ (a0; a1; a3; a2; a4; a5; a7; a6;

a8; a9; a11; a10; a12; a13; a15; a14;

a16; a17; a19; a18; a20; a21; a23; a22;

a24; a25; a27; a26; a28; a29; a31; a30).

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a2; a3; a4; a5; a7; a6)

is a “Toffoli gate” =

“controlled controlled NOT gate”:

(q0; q1; q2) 7→ (q0 ⊕ q1q2; q1; q2).

Example with more qubits:

(a0; a1; a2; a3; a4; a5; a6; a7;

a8; a9; a10; a11; a12; a13; a14; a15;

a16; a17; a18; a19; a20; a21; a22; a23;

a24; a25; a26; a27; a28; a29; a30; a31)

7→ (a0; a1; a2; a3; a4; a5; a7; a6;

a8; a9; a10; a11; a12; a13; a15; a14;

a16; a17; a18; a19; a20; a21; a23; a22;

a24; a25; a26; a27; a28; a29; a31; a30).

Reversible computation

Say p is a permutation

of {0; 1; : : : ; 2n − 1}.

General strategy to compose

these fast quantum operations

to obtain index permutation

(a0; a1; : : : ; a2n−1) 7→
(ap−1(0); ap−1(1); : : : ; ap−1(2n−1)):

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a2; a3; a4; a5; a7; a6)

is a “Toffoli gate” =

“controlled controlled NOT gate”:

(q0; q1; q2) 7→ (q0 ⊕ q1q2; q1; q2).

Example with more qubits:

(a0; a1; a2; a3; a4; a5; a6; a7;

a8; a9; a10; a11; a12; a13; a14; a15;

a16; a17; a18; a19; a20; a21; a22; a23;

a24; a25; a26; a27; a28; a29; a30; a31)

7→ (a0; a1; a2; a3; a4; a5; a7; a6;

a8; a9; a10; a11; a12; a13; a15; a14;

a16; a17; a18; a19; a20; a21; a23; a22;

a24; a25; a26; a27; a28; a29; a31; a30).

Reversible computation

Say p is a permutation

of {0; 1; : : : ; 2n − 1}.

General strategy to compose

these fast quantum operations

to obtain index permutation

(a0; a1; : : : ; a2n−1) 7→
(ap−1(0); ap−1(1); : : : ; ap−1(2n−1)):

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a2; a3; a4; a5; a7; a6)

is a “Toffoli gate” =

“controlled controlled NOT gate”:

(q0; q1; q2) 7→ (q0 ⊕ q1q2; q1; q2).

Example with more qubits:

(a0; a1; a2; a3; a4; a5; a6; a7;

a8; a9; a10; a11; a12; a13; a14; a15;

a16; a17; a18; a19; a20; a21; a22; a23;

a24; a25; a26; a27; a28; a29; a30; a31)

7→ (a0; a1; a2; a3; a4; a5; a7; a6;

a8; a9; a10; a11; a12; a13; a15; a14;

a16; a17; a18; a19; a20; a21; a23; a22;

a24; a25; a26; a27; a28; a29; a31; a30).

Reversible computation

Say p is a permutation

of {0; 1; : : : ; 2n − 1}.

General strategy to compose

these fast quantum operations

to obtain index permutation

(a0; a1; : : : ; a2n−1) 7→
(ap−1(0); ap−1(1); : : : ; ap−1(2n−1)):

1. Build a traditional circuit

to compute j 7→ p(j)

using NOT/XOR/AND gates.

2. Convert into reversible gates:

e.g., convert AND into Toffoli.

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a2; a3; a4; a5; a7; a6)

is a “Toffoli gate” =

“controlled controlled NOT gate”:

(q0; q1; q2) 7→ (q0 ⊕ q1q2; q1; q2).

Example with more qubits:

(a0; a1; a2; a3; a4; a5; a6; a7;

a8; a9; a10; a11; a12; a13; a14; a15;

a16; a17; a18; a19; a20; a21; a22; a23;

a24; a25; a26; a27; a28; a29; a30; a31)

7→ (a0; a1; a2; a3; a4; a5; a7; a6;

a8; a9; a10; a11; a12; a13; a15; a14;

a16; a17; a18; a19; a20; a21; a23; a22;

a24; a25; a26; a27; a28; a29; a31; a30).

Reversible computation

Say p is a permutation

of {0; 1; : : : ; 2n − 1}.

General strategy to compose

these fast quantum operations

to obtain index permutation

(a0; a1; : : : ; a2n−1) 7→
(ap−1(0); ap−1(1); : : : ; ap−1(2n−1)):

1. Build a traditional circuit

to compute j 7→ p(j)

using NOT/XOR/AND gates.

2. Convert into reversible gates:

e.g., convert AND into Toffoli.

Example: Let’s compute

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a7; a0; a1; a2; a3; a4; a5; a6);

permutation q 7→ q + 1 mod 8.

1. Build a traditional circuit

to compute q 7→ q + 1 mod 8.

q0

�� ��2
22

22
22

22
22

22
22

22

!!D
DD

DD
DD

DD
D q1

��

��

q2

��

c1 = q1q0

!!D
DD

DD
DD

DD
D

q0 ⊕ 1 q1 ⊕ q0 q2 ⊕ c1

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a2; a3; a4; a5; a7; a6)

is a “Toffoli gate” =

“controlled controlled NOT gate”:

(q0; q1; q2) 7→ (q0 ⊕ q1q2; q1; q2).

Example with more qubits:

(a0; a1; a2; a3; a4; a5; a6; a7;

a8; a9; a10; a11; a12; a13; a14; a15;

a16; a17; a18; a19; a20; a21; a22; a23;

a24; a25; a26; a27; a28; a29; a30; a31)

7→ (a0; a1; a2; a3; a4; a5; a7; a6;

a8; a9; a10; a11; a12; a13; a15; a14;

a16; a17; a18; a19; a20; a21; a23; a22;

a24; a25; a26; a27; a28; a29; a31; a30).

Reversible computation

Say p is a permutation

of {0; 1; : : : ; 2n − 1}.

General strategy to compose

these fast quantum operations

to obtain index permutation

(a0; a1; : : : ; a2n−1) 7→
(ap−1(0); ap−1(1); : : : ; ap−1(2n−1)):

1. Build a traditional circuit

to compute j 7→ p(j)

using NOT/XOR/AND gates.

2. Convert into reversible gates:

e.g., convert AND into Toffoli.

Example: Let’s compute

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a7; a0; a1; a2; a3; a4; a5; a6);

permutation q 7→ q + 1 mod 8.

1. Build a traditional circuit

to compute q 7→ q + 1 mod 8.

q0

�� ��2
22

22
22

22
22

22
22

22

!!D
DD

DD
DD

DD
D q1

��

��

q2

��

c1 = q1q0

!!D
DD

DD
DD

DD
D

q0 ⊕ 1 q1 ⊕ q0 q2 ⊕ c1

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a2; a3; a4; a5; a7; a6)

is a “Toffoli gate” =

“controlled controlled NOT gate”:

(q0; q1; q2) 7→ (q0 ⊕ q1q2; q1; q2).

Example with more qubits:

(a0; a1; a2; a3; a4; a5; a6; a7;

a8; a9; a10; a11; a12; a13; a14; a15;

a16; a17; a18; a19; a20; a21; a22; a23;

a24; a25; a26; a27; a28; a29; a30; a31)

7→ (a0; a1; a2; a3; a4; a5; a7; a6;

a8; a9; a10; a11; a12; a13; a15; a14;

a16; a17; a18; a19; a20; a21; a23; a22;

a24; a25; a26; a27; a28; a29; a31; a30).

Reversible computation

Say p is a permutation

of {0; 1; : : : ; 2n − 1}.

General strategy to compose

these fast quantum operations

to obtain index permutation

(a0; a1; : : : ; a2n−1) 7→
(ap−1(0); ap−1(1); : : : ; ap−1(2n−1)):

1. Build a traditional circuit

to compute j 7→ p(j)

using NOT/XOR/AND gates.

2. Convert into reversible gates:

e.g., convert AND into Toffoli.

Example: Let’s compute

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a7; a0; a1; a2; a3; a4; a5; a6);

permutation q 7→ q + 1 mod 8.

1. Build a traditional circuit

to compute q 7→ q + 1 mod 8.

q0

�� ��2
22

22
22

22
22

22
22

22

!!D
DD

DD
DD

DD
D q1

��

��

q2

��

c1 = q1q0

!!D
DD

DD
DD

DD
D

q0 ⊕ 1 q1 ⊕ q0 q2 ⊕ c1

Reversible computation

Say p is a permutation

of {0; 1; : : : ; 2n − 1}.

General strategy to compose

these fast quantum operations

to obtain index permutation

(a0; a1; : : : ; a2n−1) 7→
(ap−1(0); ap−1(1); : : : ; ap−1(2n−1)):

1. Build a traditional circuit

to compute j 7→ p(j)

using NOT/XOR/AND gates.

2. Convert into reversible gates:

e.g., convert AND into Toffoli.

Example: Let’s compute

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a7; a0; a1; a2; a3; a4; a5; a6);

permutation q 7→ q + 1 mod 8.

1. Build a traditional circuit

to compute q 7→ q + 1 mod 8.

q0

�� ��2
22

22
22

22
22

22
22

22

!!D
DD

DD
DD

DD
D q1

��

��

q2

��

c1 = q1q0

!!D
DD

DD
DD

DD
D

q0 ⊕ 1 q1 ⊕ q0 q2 ⊕ c1

Reversible computation

Say p is a permutation

of {0; 1; : : : ; 2n − 1}.

General strategy to compose

these fast quantum operations

to obtain index permutation

(a0; a1; : : : ; a2n−1) 7→
(ap−1(0); ap−1(1); : : : ; ap−1(2n−1)):

1. Build a traditional circuit

to compute j 7→ p(j)

using NOT/XOR/AND gates.

2. Convert into reversible gates:

e.g., convert AND into Toffoli.

Example: Let’s compute

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a7; a0; a1; a2; a3; a4; a5; a6);

permutation q 7→ q + 1 mod 8.

1. Build a traditional circuit

to compute q 7→ q + 1 mod 8.

q0

�� ��2
22

22
22

22
22

22
22

22

!!D
DD

DD
DD

DD
D q1

��

��

q2

��

c1 = q1q0

!!D
DD

DD
DD

DD
D

q0 ⊕ 1 q1 ⊕ q0 q2 ⊕ c1

2. Convert into reversible gates.

Toffoli for q2 ← q2 ⊕ q1q0:

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a2; a7; a4; a5; a6; a3).

Reversible computation

Say p is a permutation

of {0; 1; : : : ; 2n − 1}.

General strategy to compose

these fast quantum operations

to obtain index permutation

(a0; a1; : : : ; a2n−1) 7→
(ap−1(0); ap−1(1); : : : ; ap−1(2n−1)):

1. Build a traditional circuit

to compute j 7→ p(j)

using NOT/XOR/AND gates.

2. Convert into reversible gates:

e.g., convert AND into Toffoli.

Example: Let’s compute

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a7; a0; a1; a2; a3; a4; a5; a6);

permutation q 7→ q + 1 mod 8.

1. Build a traditional circuit

to compute q 7→ q + 1 mod 8.

q0

�� ��2
22

22
22

22
22

22
22

22

!!D
DD

DD
DD

DD
D q1

��

��

q2

��

c1 = q1q0

!!D
DD

DD
DD

DD
D

q0 ⊕ 1 q1 ⊕ q0 q2 ⊕ c1

2. Convert into reversible gates.

Toffoli for q2 ← q2 ⊕ q1q0:

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a2; a7; a4; a5; a6; a3).

Reversible computation

Say p is a permutation

of {0; 1; : : : ; 2n − 1}.

General strategy to compose

these fast quantum operations

to obtain index permutation

(a0; a1; : : : ; a2n−1) 7→
(ap−1(0); ap−1(1); : : : ; ap−1(2n−1)):

1. Build a traditional circuit

to compute j 7→ p(j)

using NOT/XOR/AND gates.

2. Convert into reversible gates:

e.g., convert AND into Toffoli.

Example: Let’s compute

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a7; a0; a1; a2; a3; a4; a5; a6);

permutation q 7→ q + 1 mod 8.

1. Build a traditional circuit

to compute q 7→ q + 1 mod 8.

q0

�� ��2
22

22
22

22
22

22
22

22

!!D
DD

DD
DD

DD
D q1

��

��

q2

��

c1 = q1q0

!!D
DD

DD
DD

DD
D

q0 ⊕ 1 q1 ⊕ q0 q2 ⊕ c1

2. Convert into reversible gates.

Toffoli for q2 ← q2 ⊕ q1q0:

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a2; a7; a4; a5; a6; a3).

Example: Let’s compute

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a7; a0; a1; a2; a3; a4; a5; a6);

permutation q 7→ q + 1 mod 8.

1. Build a traditional circuit

to compute q 7→ q + 1 mod 8.

q0

�� ��2
22

22
22

22
22

22
22

22

!!D
DD

DD
DD

DD
D q1

��

��

q2

��

c1 = q1q0

!!D
DD

DD
DD

DD
D

q0 ⊕ 1 q1 ⊕ q0 q2 ⊕ c1

2. Convert into reversible gates.

Toffoli for q2 ← q2 ⊕ q1q0:

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a2; a7; a4; a5; a6; a3).

Example: Let’s compute

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a7; a0; a1; a2; a3; a4; a5; a6);

permutation q 7→ q + 1 mod 8.

1. Build a traditional circuit

to compute q 7→ q + 1 mod 8.

q0

�� ��2
22

22
22

22
22

22
22

22

!!D
DD

DD
DD

DD
D q1

��

��

q2

��

c1 = q1q0

!!D
DD

DD
DD

DD
D

q0 ⊕ 1 q1 ⊕ q0 q2 ⊕ c1

2. Convert into reversible gates.

Toffoli for q2 ← q2 ⊕ q1q0:

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a2; a7; a4; a5; a6; a3).

Controlled NOT for q1 ← q1 ⊕ q0:

(a0; a1; a2; a7; a4; a5; a6; a3) 7→
(a0; a7; a2; a1; a4; a3; a6; a5).

Example: Let’s compute

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a7; a0; a1; a2; a3; a4; a5; a6);

permutation q 7→ q + 1 mod 8.

1. Build a traditional circuit

to compute q 7→ q + 1 mod 8.

q0

�� ��2
22

22
22

22
22

22
22

22

!!D
DD

DD
DD

DD
D q1

��

��

q2

��

c1 = q1q0

!!D
DD

DD
DD

DD
D

q0 ⊕ 1 q1 ⊕ q0 q2 ⊕ c1

2. Convert into reversible gates.

Toffoli for q2 ← q2 ⊕ q1q0:

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a2; a7; a4; a5; a6; a3).

Controlled NOT for q1 ← q1 ⊕ q0:

(a0; a1; a2; a7; a4; a5; a6; a3) 7→
(a0; a7; a2; a1; a4; a3; a6; a5).

NOT for q0 ← q0 ⊕ 1:

(a0; a7; a2; a1; a4; a3; a6; a5) 7→
(a7; a0; a1; a2; a3; a4; a5; a6).

Example: Let’s compute

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a7; a0; a1; a2; a3; a4; a5; a6);

permutation q 7→ q + 1 mod 8.

1. Build a traditional circuit

to compute q 7→ q + 1 mod 8.

q0

�� ��2
22

22
22

22
22

22
22

22

!!D
DD

DD
DD

DD
D q1

��

��

q2

��

c1 = q1q0

!!D
DD

DD
DD

DD
D

q0 ⊕ 1 q1 ⊕ q0 q2 ⊕ c1

2. Convert into reversible gates.

Toffoli for q2 ← q2 ⊕ q1q0:

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a2; a7; a4; a5; a6; a3).

Controlled NOT for q1 ← q1 ⊕ q0:

(a0; a1; a2; a7; a4; a5; a6; a3) 7→
(a0; a7; a2; a1; a4; a3; a6; a5).

NOT for q0 ← q0 ⊕ 1:

(a0; a7; a2; a1; a4; a3; a6; a5) 7→
(a7; a0; a1; a2; a3; a4; a5; a6).

This permutation example

was deceptively easy.

It didn’t need many operations.

For large n, most permutations p

need many operations ⇒ slow.

Really want fast circuits.

Example: Let’s compute

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a7; a0; a1; a2; a3; a4; a5; a6);

permutation q 7→ q + 1 mod 8.

1. Build a traditional circuit

to compute q 7→ q + 1 mod 8.

q0

�� ��2
22

22
22

22
22

22
22

22

!!D
DD

DD
DD

DD
D q1

��

��

q2

��

c1 = q1q0

!!D
DD

DD
DD

DD
D

q0 ⊕ 1 q1 ⊕ q0 q2 ⊕ c1

2. Convert into reversible gates.

Toffoli for q2 ← q2 ⊕ q1q0:

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a2; a7; a4; a5; a6; a3).

Controlled NOT for q1 ← q1 ⊕ q0:

(a0; a1; a2; a7; a4; a5; a6; a3) 7→
(a0; a7; a2; a1; a4; a3; a6; a5).

NOT for q0 ← q0 ⊕ 1:

(a0; a7; a2; a1; a4; a3; a6; a5) 7→
(a7; a0; a1; a2; a3; a4; a5; a6).

This permutation example

was deceptively easy.

It didn’t need many operations.

For large n, most permutations p

need many operations ⇒ slow.

Really want fast circuits.

Example: Let’s compute

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a7; a0; a1; a2; a3; a4; a5; a6);

permutation q 7→ q + 1 mod 8.

1. Build a traditional circuit

to compute q 7→ q + 1 mod 8.

q0

�� ��2
22

22
22

22
22

22
22

22

!!D
DD

DD
DD

DD
D q1

��

��

q2

��

c1 = q1q0

!!D
DD

DD
DD

DD
D

q0 ⊕ 1 q1 ⊕ q0 q2 ⊕ c1

2. Convert into reversible gates.

Toffoli for q2 ← q2 ⊕ q1q0:

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a2; a7; a4; a5; a6; a3).

Controlled NOT for q1 ← q1 ⊕ q0:

(a0; a1; a2; a7; a4; a5; a6; a3) 7→
(a0; a7; a2; a1; a4; a3; a6; a5).

NOT for q0 ← q0 ⊕ 1:

(a0; a7; a2; a1; a4; a3; a6; a5) 7→
(a7; a0; a1; a2; a3; a4; a5; a6).

This permutation example

was deceptively easy.

It didn’t need many operations.

For large n, most permutations p

need many operations ⇒ slow.

Really want fast circuits.

2. Convert into reversible gates.

Toffoli for q2 ← q2 ⊕ q1q0:

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a2; a7; a4; a5; a6; a3).

Controlled NOT for q1 ← q1 ⊕ q0:

(a0; a1; a2; a7; a4; a5; a6; a3) 7→
(a0; a7; a2; a1; a4; a3; a6; a5).

NOT for q0 ← q0 ⊕ 1:

(a0; a7; a2; a1; a4; a3; a6; a5) 7→
(a7; a0; a1; a2; a3; a4; a5; a6).

This permutation example

was deceptively easy.

It didn’t need many operations.

For large n, most permutations p

need many operations ⇒ slow.

Really want fast circuits.

2. Convert into reversible gates.

Toffoli for q2 ← q2 ⊕ q1q0:

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a2; a7; a4; a5; a6; a3).

Controlled NOT for q1 ← q1 ⊕ q0:

(a0; a1; a2; a7; a4; a5; a6; a3) 7→
(a0; a7; a2; a1; a4; a3; a6; a5).

NOT for q0 ← q0 ⊕ 1:

(a0; a7; a2; a1; a4; a3; a6; a5) 7→
(a7; a0; a1; a2; a3; a4; a5; a6).

This permutation example

was deceptively easy.

It didn’t need many operations.

For large n, most permutations p

need many operations ⇒ slow.

Really want fast circuits.

Also, it didn’t need extra storage:

circuit operated “in place” after

computation c1 ← q1q0 was

merged into q2 ← q2 ⊕ c1.

Typical circuits aren’t in-place.

2. Convert into reversible gates.

Toffoli for q2 ← q2 ⊕ q1q0:

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a2; a7; a4; a5; a6; a3).

Controlled NOT for q1 ← q1 ⊕ q0:

(a0; a1; a2; a7; a4; a5; a6; a3) 7→
(a0; a7; a2; a1; a4; a3; a6; a5).

NOT for q0 ← q0 ⊕ 1:

(a0; a7; a2; a1; a4; a3; a6; a5) 7→
(a7; a0; a1; a2; a3; a4; a5; a6).

This permutation example

was deceptively easy.

It didn’t need many operations.

For large n, most permutations p

need many operations ⇒ slow.

Really want fast circuits.

Also, it didn’t need extra storage:

circuit operated “in place” after

computation c1 ← q1q0 was

merged into q2 ← q2 ⊕ c1.

Typical circuits aren’t in-place.

Start from any circuit:

inputs b1; b2; : : : ; bi ;

bi+1 = 1⊕ bf (i+1)bg(i+1);

bi+2 = 1⊕ bf (i+2)bg(i+2);

: : :

bT = 1⊕ bf (T)bg(T);

specified outputs.

2. Convert into reversible gates.

Toffoli for q2 ← q2 ⊕ q1q0:

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a2; a7; a4; a5; a6; a3).

Controlled NOT for q1 ← q1 ⊕ q0:

(a0; a1; a2; a7; a4; a5; a6; a3) 7→
(a0; a7; a2; a1; a4; a3; a6; a5).

NOT for q0 ← q0 ⊕ 1:

(a0; a7; a2; a1; a4; a3; a6; a5) 7→
(a7; a0; a1; a2; a3; a4; a5; a6).

This permutation example

was deceptively easy.

It didn’t need many operations.

For large n, most permutations p

need many operations ⇒ slow.

Really want fast circuits.

Also, it didn’t need extra storage:

circuit operated “in place” after

computation c1 ← q1q0 was

merged into q2 ← q2 ⊕ c1.

Typical circuits aren’t in-place.

Start from any circuit:

inputs b1; b2; : : : ; bi ;

bi+1 = 1⊕ bf (i+1)bg(i+1);

bi+2 = 1⊕ bf (i+2)bg(i+2);

: : :

bT = 1⊕ bf (T)bg(T);

specified outputs.

2. Convert into reversible gates.

Toffoli for q2 ← q2 ⊕ q1q0:

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a2; a7; a4; a5; a6; a3).

Controlled NOT for q1 ← q1 ⊕ q0:

(a0; a1; a2; a7; a4; a5; a6; a3) 7→
(a0; a7; a2; a1; a4; a3; a6; a5).

NOT for q0 ← q0 ⊕ 1:

(a0; a7; a2; a1; a4; a3; a6; a5) 7→
(a7; a0; a1; a2; a3; a4; a5; a6).

This permutation example

was deceptively easy.

It didn’t need many operations.

For large n, most permutations p

need many operations ⇒ slow.

Really want fast circuits.

Also, it didn’t need extra storage:

circuit operated “in place” after

computation c1 ← q1q0 was

merged into q2 ← q2 ⊕ c1.

Typical circuits aren’t in-place.

Start from any circuit:

inputs b1; b2; : : : ; bi ;

bi+1 = 1⊕ bf (i+1)bg(i+1);

bi+2 = 1⊕ bf (i+2)bg(i+2);

: : :

bT = 1⊕ bf (T)bg(T);

specified outputs.

This permutation example

was deceptively easy.

It didn’t need many operations.

For large n, most permutations p

need many operations ⇒ slow.

Really want fast circuits.

Also, it didn’t need extra storage:

circuit operated “in place” after

computation c1 ← q1q0 was

merged into q2 ← q2 ⊕ c1.

Typical circuits aren’t in-place.

Start from any circuit:

inputs b1; b2; : : : ; bi ;

bi+1 = 1⊕ bf (i+1)bg(i+1);

bi+2 = 1⊕ bf (i+2)bg(i+2);

: : :

bT = 1⊕ bf (T)bg(T);

specified outputs.

This permutation example

was deceptively easy.

It didn’t need many operations.

For large n, most permutations p

need many operations ⇒ slow.

Really want fast circuits.

Also, it didn’t need extra storage:

circuit operated “in place” after

computation c1 ← q1q0 was

merged into q2 ← q2 ⊕ c1.

Typical circuits aren’t in-place.

Start from any circuit:

inputs b1; b2; : : : ; bi ;

bi+1 = 1⊕ bf (i+1)bg(i+1);

bi+2 = 1⊕ bf (i+2)bg(i+2);

: : :

bT = 1⊕ bf (T)bg(T);

specified outputs.

Reversible but dirty:

inputs b1; b2; : : : ; bT ;

bi+1 ← 1⊕ bi+1 ⊕ bf (i+1)bg(i+1);

bi+2 ← 1⊕ bi+2 ⊕ bf (i+2)bg(i+2);

: : :

bT ← 1⊕ bT ⊕ bf (T)bg(T).

Same outputs if all of

bi+1; : : : ; bT started as 0.

This permutation example

was deceptively easy.

It didn’t need many operations.

For large n, most permutations p

need many operations ⇒ slow.

Really want fast circuits.

Also, it didn’t need extra storage:

circuit operated “in place” after

computation c1 ← q1q0 was

merged into q2 ← q2 ⊕ c1.

Typical circuits aren’t in-place.

Start from any circuit:

inputs b1; b2; : : : ; bi ;

bi+1 = 1⊕ bf (i+1)bg(i+1);

bi+2 = 1⊕ bf (i+2)bg(i+2);

: : :

bT = 1⊕ bf (T)bg(T);

specified outputs.

Reversible but dirty:

inputs b1; b2; : : : ; bT ;

bi+1 ← 1⊕ bi+1 ⊕ bf (i+1)bg(i+1);

bi+2 ← 1⊕ bi+2 ⊕ bf (i+2)bg(i+2);

: : :

bT ← 1⊕ bT ⊕ bf (T)bg(T).

Same outputs if all of

bi+1; : : : ; bT started as 0.

Reversible and clean:

after finishing dirty computation,

set non-outputs back to 0,

by repeating same operations

on non-outputs in reverse order.

Original computation:

(inputs) 7→
(inputs; dirt; outputs).

Dirty reversible computation:

(inputs; zeros; zeros) 7→
(inputs; dirt; outputs).

Clean reversible computation:

(inputs; zeros; zeros) 7→
(inputs; zeros; outputs).

This permutation example

was deceptively easy.

It didn’t need many operations.

For large n, most permutations p

need many operations ⇒ slow.

Really want fast circuits.

Also, it didn’t need extra storage:

circuit operated “in place” after

computation c1 ← q1q0 was

merged into q2 ← q2 ⊕ c1.

Typical circuits aren’t in-place.

Start from any circuit:

inputs b1; b2; : : : ; bi ;

bi+1 = 1⊕ bf (i+1)bg(i+1);

bi+2 = 1⊕ bf (i+2)bg(i+2);

: : :

bT = 1⊕ bf (T)bg(T);

specified outputs.

Reversible but dirty:

inputs b1; b2; : : : ; bT ;

bi+1 ← 1⊕ bi+1 ⊕ bf (i+1)bg(i+1);

bi+2 ← 1⊕ bi+2 ⊕ bf (i+2)bg(i+2);

: : :

bT ← 1⊕ bT ⊕ bf (T)bg(T).

Same outputs if all of

bi+1; : : : ; bT started as 0.

Reversible and clean:

after finishing dirty computation,

set non-outputs back to 0,

by repeating same operations

on non-outputs in reverse order.

Original computation:

(inputs) 7→
(inputs; dirt; outputs).

Dirty reversible computation:

(inputs; zeros; zeros) 7→
(inputs; dirt; outputs).

Clean reversible computation:

(inputs; zeros; zeros) 7→
(inputs; zeros; outputs).

This permutation example

was deceptively easy.

It didn’t need many operations.

For large n, most permutations p

need many operations ⇒ slow.

Really want fast circuits.

Also, it didn’t need extra storage:

circuit operated “in place” after

computation c1 ← q1q0 was

merged into q2 ← q2 ⊕ c1.

Typical circuits aren’t in-place.

Start from any circuit:

inputs b1; b2; : : : ; bi ;

bi+1 = 1⊕ bf (i+1)bg(i+1);

bi+2 = 1⊕ bf (i+2)bg(i+2);

: : :

bT = 1⊕ bf (T)bg(T);

specified outputs.

Reversible but dirty:

inputs b1; b2; : : : ; bT ;

bi+1 ← 1⊕ bi+1 ⊕ bf (i+1)bg(i+1);

bi+2 ← 1⊕ bi+2 ⊕ bf (i+2)bg(i+2);

: : :

bT ← 1⊕ bT ⊕ bf (T)bg(T).

Same outputs if all of

bi+1; : : : ; bT started as 0.

Reversible and clean:

after finishing dirty computation,

set non-outputs back to 0,

by repeating same operations

on non-outputs in reverse order.

Original computation:

(inputs) 7→
(inputs; dirt; outputs).

Dirty reversible computation:

(inputs; zeros; zeros) 7→
(inputs; dirt; outputs).

Clean reversible computation:

(inputs; zeros; zeros) 7→
(inputs; zeros; outputs).

Start from any circuit:

inputs b1; b2; : : : ; bi ;

bi+1 = 1⊕ bf (i+1)bg(i+1);

bi+2 = 1⊕ bf (i+2)bg(i+2);

: : :

bT = 1⊕ bf (T)bg(T);

specified outputs.

Reversible but dirty:

inputs b1; b2; : : : ; bT ;

bi+1 ← 1⊕ bi+1 ⊕ bf (i+1)bg(i+1);

bi+2 ← 1⊕ bi+2 ⊕ bf (i+2)bg(i+2);

: : :

bT ← 1⊕ bT ⊕ bf (T)bg(T).

Same outputs if all of

bi+1; : : : ; bT started as 0.

Reversible and clean:

after finishing dirty computation,

set non-outputs back to 0,

by repeating same operations

on non-outputs in reverse order.

Original computation:

(inputs) 7→
(inputs; dirt; outputs).

Dirty reversible computation:

(inputs; zeros; zeros) 7→
(inputs; dirt; outputs).

Clean reversible computation:

(inputs; zeros; zeros) 7→
(inputs; zeros; outputs).

Start from any circuit:

inputs b1; b2; : : : ; bi ;

bi+1 = 1⊕ bf (i+1)bg(i+1);

bi+2 = 1⊕ bf (i+2)bg(i+2);

: : :

bT = 1⊕ bf (T)bg(T);

specified outputs.

Reversible but dirty:

inputs b1; b2; : : : ; bT ;

bi+1 ← 1⊕ bi+1 ⊕ bf (i+1)bg(i+1);

bi+2 ← 1⊕ bi+2 ⊕ bf (i+2)bg(i+2);

: : :

bT ← 1⊕ bT ⊕ bf (T)bg(T).

Same outputs if all of

bi+1; : : : ; bT started as 0.

Reversible and clean:

after finishing dirty computation,

set non-outputs back to 0,

by repeating same operations

on non-outputs in reverse order.

Original computation:

(inputs) 7→
(inputs; dirt; outputs).

Dirty reversible computation:

(inputs; zeros; zeros) 7→
(inputs; dirt; outputs).

Clean reversible computation:

(inputs; zeros; zeros) 7→
(inputs; zeros; outputs).

Given fast circuit for p

and fast circuit for p−1,

build fast reversible circuit for

(x; zeros) 7→ (p(x); zeros).

Start from any circuit:

inputs b1; b2; : : : ; bi ;

bi+1 = 1⊕ bf (i+1)bg(i+1);

bi+2 = 1⊕ bf (i+2)bg(i+2);

: : :

bT = 1⊕ bf (T)bg(T);

specified outputs.

Reversible but dirty:

inputs b1; b2; : : : ; bT ;

bi+1 ← 1⊕ bi+1 ⊕ bf (i+1)bg(i+1);

bi+2 ← 1⊕ bi+2 ⊕ bf (i+2)bg(i+2);

: : :

bT ← 1⊕ bT ⊕ bf (T)bg(T).

Same outputs if all of

bi+1; : : : ; bT started as 0.

Reversible and clean:

after finishing dirty computation,

set non-outputs back to 0,

by repeating same operations

on non-outputs in reverse order.

Original computation:

(inputs) 7→
(inputs; dirt; outputs).

Dirty reversible computation:

(inputs; zeros; zeros) 7→
(inputs; dirt; outputs).

Clean reversible computation:

(inputs; zeros; zeros) 7→
(inputs; zeros; outputs).

Given fast circuit for p

and fast circuit for p−1,

build fast reversible circuit for

(x; zeros) 7→ (p(x); zeros).

Start from any circuit:

inputs b1; b2; : : : ; bi ;

bi+1 = 1⊕ bf (i+1)bg(i+1);

bi+2 = 1⊕ bf (i+2)bg(i+2);

: : :

bT = 1⊕ bf (T)bg(T);

specified outputs.

Reversible but dirty:

inputs b1; b2; : : : ; bT ;

bi+1 ← 1⊕ bi+1 ⊕ bf (i+1)bg(i+1);

bi+2 ← 1⊕ bi+2 ⊕ bf (i+2)bg(i+2);

: : :

bT ← 1⊕ bT ⊕ bf (T)bg(T).

Same outputs if all of

bi+1; : : : ; bT started as 0.

Reversible and clean:

after finishing dirty computation,

set non-outputs back to 0,

by repeating same operations

on non-outputs in reverse order.

Original computation:

(inputs) 7→
(inputs; dirt; outputs).

Dirty reversible computation:

(inputs; zeros; zeros) 7→
(inputs; dirt; outputs).

Clean reversible computation:

(inputs; zeros; zeros) 7→
(inputs; zeros; outputs).

Given fast circuit for p

and fast circuit for p−1,

build fast reversible circuit for

(x; zeros) 7→ (p(x); zeros).

Reversible and clean:

after finishing dirty computation,

set non-outputs back to 0,

by repeating same operations

on non-outputs in reverse order.

Original computation:

(inputs) 7→
(inputs; dirt; outputs).

Dirty reversible computation:

(inputs; zeros; zeros) 7→
(inputs; dirt; outputs).

Clean reversible computation:

(inputs; zeros; zeros) 7→
(inputs; zeros; outputs).

Given fast circuit for p

and fast circuit for p−1,

build fast reversible circuit for

(x; zeros) 7→ (p(x); zeros).

Reversible and clean:

after finishing dirty computation,

set non-outputs back to 0,

by repeating same operations

on non-outputs in reverse order.

Original computation:

(inputs) 7→
(inputs; dirt; outputs).

Dirty reversible computation:

(inputs; zeros; zeros) 7→
(inputs; dirt; outputs).

Clean reversible computation:

(inputs; zeros; zeros) 7→
(inputs; zeros; outputs).

Given fast circuit for p

and fast circuit for p−1,

build fast reversible circuit for

(x; zeros) 7→ (p(x); zeros).

Replace reversible bit operations

with Toffoli gates etc.

permuting C2n+z → C2n+z
.

Permutation on first 2n entries is

(a0; a1; : : : ; a2n−1) 7→
(ap−1(0); ap−1(1); : : : ; ap−1(2n−1)).

Typically prepare vectors

supported on first 2n entries

so don’t care how permutation

acts on last 2n+z − 2n entries.

Reversible and clean:

after finishing dirty computation,

set non-outputs back to 0,

by repeating same operations

on non-outputs in reverse order.

Original computation:

(inputs) 7→
(inputs; dirt; outputs).

Dirty reversible computation:

(inputs; zeros; zeros) 7→
(inputs; dirt; outputs).

Clean reversible computation:

(inputs; zeros; zeros) 7→
(inputs; zeros; outputs).

Given fast circuit for p

and fast circuit for p−1,

build fast reversible circuit for

(x; zeros) 7→ (p(x); zeros).

Replace reversible bit operations

with Toffoli gates etc.

permuting C2n+z → C2n+z
.

Permutation on first 2n entries is

(a0; a1; : : : ; a2n−1) 7→
(ap−1(0); ap−1(1); : : : ; ap−1(2n−1)).

Typically prepare vectors

supported on first 2n entries

so don’t care how permutation

acts on last 2n+z − 2n entries.

Warning: Number of qubits

≈ number of bit operations

in original p; p−1 circuits.

This can be much larger

than number of bits stored

in the original circuits.

Reversible and clean:

after finishing dirty computation,

set non-outputs back to 0,

by repeating same operations

on non-outputs in reverse order.

Original computation:

(inputs) 7→
(inputs; dirt; outputs).

Dirty reversible computation:

(inputs; zeros; zeros) 7→
(inputs; dirt; outputs).

Clean reversible computation:

(inputs; zeros; zeros) 7→
(inputs; zeros; outputs).

Given fast circuit for p

and fast circuit for p−1,

build fast reversible circuit for

(x; zeros) 7→ (p(x); zeros).

Replace reversible bit operations

with Toffoli gates etc.

permuting C2n+z → C2n+z
.

Permutation on first 2n entries is

(a0; a1; : : : ; a2n−1) 7→
(ap−1(0); ap−1(1); : : : ; ap−1(2n−1)).

Typically prepare vectors

supported on first 2n entries

so don’t care how permutation

acts on last 2n+z − 2n entries.

Warning: Number of qubits

≈ number of bit operations

in original p; p−1 circuits.

This can be much larger

than number of bits stored

in the original circuits.

Reversible and clean:

after finishing dirty computation,

set non-outputs back to 0,

by repeating same operations

on non-outputs in reverse order.

Original computation:

(inputs) 7→
(inputs; dirt; outputs).

Dirty reversible computation:

(inputs; zeros; zeros) 7→
(inputs; dirt; outputs).

Clean reversible computation:

(inputs; zeros; zeros) 7→
(inputs; zeros; outputs).

Given fast circuit for p

and fast circuit for p−1,

build fast reversible circuit for

(x; zeros) 7→ (p(x); zeros).

Replace reversible bit operations

with Toffoli gates etc.

permuting C2n+z → C2n+z
.

Permutation on first 2n entries is

(a0; a1; : : : ; a2n−1) 7→
(ap−1(0); ap−1(1); : : : ; ap−1(2n−1)).

Typically prepare vectors

supported on first 2n entries

so don’t care how permutation

acts on last 2n+z − 2n entries.

Warning: Number of qubits

≈ number of bit operations

in original p; p−1 circuits.

This can be much larger

than number of bits stored

in the original circuits.

Given fast circuit for p

and fast circuit for p−1,

build fast reversible circuit for

(x; zeros) 7→ (p(x); zeros).

Replace reversible bit operations

with Toffoli gates etc.

permuting C2n+z → C2n+z
.

Permutation on first 2n entries is

(a0; a1; : : : ; a2n−1) 7→
(ap−1(0); ap−1(1); : : : ; ap−1(2n−1)).

Typically prepare vectors

supported on first 2n entries

so don’t care how permutation

acts on last 2n+z − 2n entries.

Warning: Number of qubits

≈ number of bit operations

in original p; p−1 circuits.

This can be much larger

than number of bits stored

in the original circuits.

Given fast circuit for p

and fast circuit for p−1,

build fast reversible circuit for

(x; zeros) 7→ (p(x); zeros).

Replace reversible bit operations

with Toffoli gates etc.

permuting C2n+z → C2n+z
.

Permutation on first 2n entries is

(a0; a1; : : : ; a2n−1) 7→
(ap−1(0); ap−1(1); : : : ; ap−1(2n−1)).

Typically prepare vectors

supported on first 2n entries

so don’t care how permutation

acts on last 2n+z − 2n entries.

Warning: Number of qubits

≈ number of bit operations

in original p; p−1 circuits.

This can be much larger

than number of bits stored

in the original circuits.

Many useful techniques

to compress into fewer qubits,

but often these lose time.

Many subtle tradeoffs.

Given fast circuit for p

and fast circuit for p−1,

build fast reversible circuit for

(x; zeros) 7→ (p(x); zeros).

Replace reversible bit operations

with Toffoli gates etc.

permuting C2n+z → C2n+z
.

Permutation on first 2n entries is

(a0; a1; : : : ; a2n−1) 7→
(ap−1(0); ap−1(1); : : : ; ap−1(2n−1)).

Typically prepare vectors

supported on first 2n entries

so don’t care how permutation

acts on last 2n+z − 2n entries.

Warning: Number of qubits

≈ number of bit operations

in original p; p−1 circuits.

This can be much larger

than number of bits stored

in the original circuits.

Many useful techniques

to compress into fewer qubits,

but often these lose time.

Many subtle tradeoffs.

Crude “poly-time” analyses

don’t care about this,

but serious cryptanalysis

is much more precise.

Given fast circuit for p

and fast circuit for p−1,

build fast reversible circuit for

(x; zeros) 7→ (p(x); zeros).

Replace reversible bit operations

with Toffoli gates etc.

permuting C2n+z → C2n+z
.

Permutation on first 2n entries is

(a0; a1; : : : ; a2n−1) 7→
(ap−1(0); ap−1(1); : : : ; ap−1(2n−1)).

Typically prepare vectors

supported on first 2n entries

so don’t care how permutation

acts on last 2n+z − 2n entries.

Warning: Number of qubits

≈ number of bit operations

in original p; p−1 circuits.

This can be much larger

than number of bits stored

in the original circuits.

Many useful techniques

to compress into fewer qubits,

but often these lose time.

Many subtle tradeoffs.

Crude “poly-time” analyses

don’t care about this,

but serious cryptanalysis

is much more precise.

Fast quantum operations, part 2

“Hadamard”:

(a0; a1) 7→ (a0 + a1; a0 − a1).

Given fast circuit for p

and fast circuit for p−1,

build fast reversible circuit for

(x; zeros) 7→ (p(x); zeros).

Replace reversible bit operations

with Toffoli gates etc.

permuting C2n+z → C2n+z
.

Permutation on first 2n entries is

(a0; a1; : : : ; a2n−1) 7→
(ap−1(0); ap−1(1); : : : ; ap−1(2n−1)).

Typically prepare vectors

supported on first 2n entries

so don’t care how permutation

acts on last 2n+z − 2n entries.

Warning: Number of qubits

≈ number of bit operations

in original p; p−1 circuits.

This can be much larger

than number of bits stored

in the original circuits.

Many useful techniques

to compress into fewer qubits,

but often these lose time.

Many subtle tradeoffs.

Crude “poly-time” analyses

don’t care about this,

but serious cryptanalysis

is much more precise.

Fast quantum operations, part 2

“Hadamard”:

(a0; a1) 7→ (a0 + a1; a0 − a1).

Given fast circuit for p

and fast circuit for p−1,

build fast reversible circuit for

(x; zeros) 7→ (p(x); zeros).

Replace reversible bit operations

with Toffoli gates etc.

permuting C2n+z → C2n+z
.

Permutation on first 2n entries is

(a0; a1; : : : ; a2n−1) 7→
(ap−1(0); ap−1(1); : : : ; ap−1(2n−1)).

Typically prepare vectors

supported on first 2n entries

so don’t care how permutation

acts on last 2n+z − 2n entries.

Warning: Number of qubits

≈ number of bit operations

in original p; p−1 circuits.

This can be much larger

than number of bits stored

in the original circuits.

Many useful techniques

to compress into fewer qubits,

but often these lose time.

Many subtle tradeoffs.

Crude “poly-time” analyses

don’t care about this,

but serious cryptanalysis

is much more precise.

Fast quantum operations, part 2

“Hadamard”:

(a0; a1) 7→ (a0 + a1; a0 − a1).

Warning: Number of qubits

≈ number of bit operations

in original p; p−1 circuits.

This can be much larger

than number of bits stored

in the original circuits.

Many useful techniques

to compress into fewer qubits,

but often these lose time.

Many subtle tradeoffs.

Crude “poly-time” analyses

don’t care about this,

but serious cryptanalysis

is much more precise.

Fast quantum operations, part 2

“Hadamard”:

(a0; a1) 7→ (a0 + a1; a0 − a1).

Warning: Number of qubits

≈ number of bit operations

in original p; p−1 circuits.

This can be much larger

than number of bits stored

in the original circuits.

Many useful techniques

to compress into fewer qubits,

but often these lose time.

Many subtle tradeoffs.

Crude “poly-time” analyses

don’t care about this,

but serious cryptanalysis

is much more precise.

Fast quantum operations, part 2

“Hadamard”:

(a0; a1) 7→ (a0 + a1; a0 − a1).

(a0; a1; a2; a3) 7→
(a0 + a1; a0 − a1; a2 + a3; a2 − a3).

Warning: Number of qubits

≈ number of bit operations

in original p; p−1 circuits.

This can be much larger

than number of bits stored

in the original circuits.

Many useful techniques

to compress into fewer qubits,

but often these lose time.

Many subtle tradeoffs.

Crude “poly-time” analyses

don’t care about this,

but serious cryptanalysis

is much more precise.

Fast quantum operations, part 2

“Hadamard”:

(a0; a1) 7→ (a0 + a1; a0 − a1).

(a0; a1; a2; a3) 7→
(a0 + a1; a0 − a1; a2 + a3; a2 − a3).

Same for qubit 1:

(a0; a1; a2; a3) 7→
(a0 + a2; a1 + a3; a0 − a2; a1 − a3).

Warning: Number of qubits

≈ number of bit operations

in original p; p−1 circuits.

This can be much larger

than number of bits stored

in the original circuits.

Many useful techniques

to compress into fewer qubits,

but often these lose time.

Many subtle tradeoffs.

Crude “poly-time” analyses

don’t care about this,

but serious cryptanalysis

is much more precise.

Fast quantum operations, part 2

“Hadamard”:

(a0; a1) 7→ (a0 + a1; a0 − a1).

(a0; a1; a2; a3) 7→
(a0 + a1; a0 − a1; a2 + a3; a2 − a3).

Same for qubit 1:

(a0; a1; a2; a3) 7→
(a0 + a2; a1 + a3; a0 − a2; a1 − a3).

Qubit 0 and then qubit 1:

(a0; a1; a2; a3) 7→
(a0 +a1; a0−a1; a2 +a3; a2−a3) 7→
(a0 +a1 +a2 +a3; a0−a1 +a2−a3,

a0 +a1−a2−a3; a0−a1−a2 +a3).

Warning: Number of qubits

≈ number of bit operations

in original p; p−1 circuits.

This can be much larger

than number of bits stored

in the original circuits.

Many useful techniques

to compress into fewer qubits,

but often these lose time.

Many subtle tradeoffs.

Crude “poly-time” analyses

don’t care about this,

but serious cryptanalysis

is much more precise.

Fast quantum operations, part 2

“Hadamard”:

(a0; a1) 7→ (a0 + a1; a0 − a1).

(a0; a1; a2; a3) 7→
(a0 + a1; a0 − a1; a2 + a3; a2 − a3).

Same for qubit 1:

(a0; a1; a2; a3) 7→
(a0 + a2; a1 + a3; a0 − a2; a1 − a3).

Qubit 0 and then qubit 1:

(a0; a1; a2; a3) 7→
(a0 +a1; a0−a1; a2 +a3; a2−a3) 7→
(a0 +a1 +a2 +a3; a0−a1 +a2−a3,

a0 +a1−a2−a3; a0−a1−a2 +a3).

Repeat n times: e.g.,

(1; 0; 0; : : : ; 0) 7→ (1; 1; 1; : : : ; 1).

Measuring (1; 0; 0; : : : ; 0)

always produces 0.

Measuring (1; 1; 1; : : : ; 1)

can produce any output:

Pr[output = q] = 1=2n.

Warning: Number of qubits

≈ number of bit operations

in original p; p−1 circuits.

This can be much larger

than number of bits stored

in the original circuits.

Many useful techniques

to compress into fewer qubits,

but often these lose time.

Many subtle tradeoffs.

Crude “poly-time” analyses

don’t care about this,

but serious cryptanalysis

is much more precise.

Fast quantum operations, part 2

“Hadamard”:

(a0; a1) 7→ (a0 + a1; a0 − a1).

(a0; a1; a2; a3) 7→
(a0 + a1; a0 − a1; a2 + a3; a2 − a3).

Same for qubit 1:

(a0; a1; a2; a3) 7→
(a0 + a2; a1 + a3; a0 − a2; a1 − a3).

Qubit 0 and then qubit 1:

(a0; a1; a2; a3) 7→
(a0 +a1; a0−a1; a2 +a3; a2−a3) 7→
(a0 +a1 +a2 +a3; a0−a1 +a2−a3,

a0 +a1−a2−a3; a0−a1−a2 +a3).

Repeat n times: e.g.,

(1; 0; 0; : : : ; 0) 7→ (1; 1; 1; : : : ; 1).

Measuring (1; 0; 0; : : : ; 0)

always produces 0.

Measuring (1; 1; 1; : : : ; 1)

can produce any output:

Pr[output = q] = 1=2n.

Warning: Number of qubits

≈ number of bit operations

in original p; p−1 circuits.

This can be much larger

than number of bits stored

in the original circuits.

Many useful techniques

to compress into fewer qubits,

but often these lose time.

Many subtle tradeoffs.

Crude “poly-time” analyses

don’t care about this,

but serious cryptanalysis

is much more precise.

Fast quantum operations, part 2

“Hadamard”:

(a0; a1) 7→ (a0 + a1; a0 − a1).

(a0; a1; a2; a3) 7→
(a0 + a1; a0 − a1; a2 + a3; a2 − a3).

Same for qubit 1:

(a0; a1; a2; a3) 7→
(a0 + a2; a1 + a3; a0 − a2; a1 − a3).

Qubit 0 and then qubit 1:

(a0; a1; a2; a3) 7→
(a0 +a1; a0−a1; a2 +a3; a2−a3) 7→
(a0 +a1 +a2 +a3; a0−a1 +a2−a3,

a0 +a1−a2−a3; a0−a1−a2 +a3).

Repeat n times: e.g.,

(1; 0; 0; : : : ; 0) 7→ (1; 1; 1; : : : ; 1).

Measuring (1; 0; 0; : : : ; 0)

always produces 0.

Measuring (1; 1; 1; : : : ; 1)

can produce any output:

Pr[output = q] = 1=2n.

Fast quantum operations, part 2

“Hadamard”:

(a0; a1) 7→ (a0 + a1; a0 − a1).

(a0; a1; a2; a3) 7→
(a0 + a1; a0 − a1; a2 + a3; a2 − a3).

Same for qubit 1:

(a0; a1; a2; a3) 7→
(a0 + a2; a1 + a3; a0 − a2; a1 − a3).

Qubit 0 and then qubit 1:

(a0; a1; a2; a3) 7→
(a0 +a1; a0−a1; a2 +a3; a2−a3) 7→
(a0 +a1 +a2 +a3; a0−a1 +a2−a3,

a0 +a1−a2−a3; a0−a1−a2 +a3).

Repeat n times: e.g.,

(1; 0; 0; : : : ; 0) 7→ (1; 1; 1; : : : ; 1).

Measuring (1; 0; 0; : : : ; 0)

always produces 0.

Measuring (1; 1; 1; : : : ; 1)

can produce any output:

Pr[output = q] = 1=2n.

Fast quantum operations, part 2

“Hadamard”:

(a0; a1) 7→ (a0 + a1; a0 − a1).

(a0; a1; a2; a3) 7→
(a0 + a1; a0 − a1; a2 + a3; a2 − a3).

Same for qubit 1:

(a0; a1; a2; a3) 7→
(a0 + a2; a1 + a3; a0 − a2; a1 − a3).

Qubit 0 and then qubit 1:

(a0; a1; a2; a3) 7→
(a0 +a1; a0−a1; a2 +a3; a2−a3) 7→
(a0 +a1 +a2 +a3; a0−a1 +a2−a3,

a0 +a1−a2−a3; a0−a1−a2 +a3).

Repeat n times: e.g.,

(1; 0; 0; : : : ; 0) 7→ (1; 1; 1; : : : ; 1).

Measuring (1; 0; 0; : : : ; 0)

always produces 0.

Measuring (1; 1; 1; : : : ; 1)

can produce any output:

Pr[output = q] = 1=2n.

Aside from “normalization”

(irrelevant to measurement),

have Hadamard = Hadamard−1,

so easily work backwards

from “uniform superposition”

(1; 1; 1; : : : ; 1) to “pure state”

(1; 0; 0; : : : ; 0).

Fast quantum operations, part 2

“Hadamard”:

(a0; a1) 7→ (a0 + a1; a0 − a1).

(a0; a1; a2; a3) 7→
(a0 + a1; a0 − a1; a2 + a3; a2 − a3).

Same for qubit 1:

(a0; a1; a2; a3) 7→
(a0 + a2; a1 + a3; a0 − a2; a1 − a3).

Qubit 0 and then qubit 1:

(a0; a1; a2; a3) 7→
(a0 +a1; a0−a1; a2 +a3; a2−a3) 7→
(a0 +a1 +a2 +a3; a0−a1 +a2−a3,

a0 +a1−a2−a3; a0−a1−a2 +a3).

Repeat n times: e.g.,

(1; 0; 0; : : : ; 0) 7→ (1; 1; 1; : : : ; 1).

Measuring (1; 0; 0; : : : ; 0)

always produces 0.

Measuring (1; 1; 1; : : : ; 1)

can produce any output:

Pr[output = q] = 1=2n.

Aside from “normalization”

(irrelevant to measurement),

have Hadamard = Hadamard−1,

so easily work backwards

from “uniform superposition”

(1; 1; 1; : : : ; 1) to “pure state”

(1; 0; 0; : : : ; 0).

Simon’s algorithm

Assume: nonzero s ∈ {0; 1}n

satisfies f (x) = f (x ⊕ s)
for every x ∈ {0; 1}n.

Can we find this period s,

given a fast circuit for f ?

Fast quantum operations, part 2

“Hadamard”:

(a0; a1) 7→ (a0 + a1; a0 − a1).

(a0; a1; a2; a3) 7→
(a0 + a1; a0 − a1; a2 + a3; a2 − a3).

Same for qubit 1:

(a0; a1; a2; a3) 7→
(a0 + a2; a1 + a3; a0 − a2; a1 − a3).

Qubit 0 and then qubit 1:

(a0; a1; a2; a3) 7→
(a0 +a1; a0−a1; a2 +a3; a2−a3) 7→
(a0 +a1 +a2 +a3; a0−a1 +a2−a3,

a0 +a1−a2−a3; a0−a1−a2 +a3).

Repeat n times: e.g.,

(1; 0; 0; : : : ; 0) 7→ (1; 1; 1; : : : ; 1).

Measuring (1; 0; 0; : : : ; 0)

always produces 0.

Measuring (1; 1; 1; : : : ; 1)

can produce any output:

Pr[output = q] = 1=2n.

Aside from “normalization”

(irrelevant to measurement),

have Hadamard = Hadamard−1,

so easily work backwards

from “uniform superposition”

(1; 1; 1; : : : ; 1) to “pure state”

(1; 0; 0; : : : ; 0).

Simon’s algorithm

Assume: nonzero s ∈ {0; 1}n

satisfies f (x) = f (x ⊕ s)
for every x ∈ {0; 1}n.

Can we find this period s,

given a fast circuit for f ?

Fast quantum operations, part 2

“Hadamard”:

(a0; a1) 7→ (a0 + a1; a0 − a1).

(a0; a1; a2; a3) 7→
(a0 + a1; a0 − a1; a2 + a3; a2 − a3).

Same for qubit 1:

(a0; a1; a2; a3) 7→
(a0 + a2; a1 + a3; a0 − a2; a1 − a3).

Qubit 0 and then qubit 1:

(a0; a1; a2; a3) 7→
(a0 +a1; a0−a1; a2 +a3; a2−a3) 7→
(a0 +a1 +a2 +a3; a0−a1 +a2−a3,

a0 +a1−a2−a3; a0−a1−a2 +a3).

Repeat n times: e.g.,

(1; 0; 0; : : : ; 0) 7→ (1; 1; 1; : : : ; 1).

Measuring (1; 0; 0; : : : ; 0)

always produces 0.

Measuring (1; 1; 1; : : : ; 1)

can produce any output:

Pr[output = q] = 1=2n.

Aside from “normalization”

(irrelevant to measurement),

have Hadamard = Hadamard−1,

so easily work backwards

from “uniform superposition”

(1; 1; 1; : : : ; 1) to “pure state”

(1; 0; 0; : : : ; 0).

Simon’s algorithm

Assume: nonzero s ∈ {0; 1}n

satisfies f (x) = f (x ⊕ s)
for every x ∈ {0; 1}n.

Can we find this period s,

given a fast circuit for f ?

Repeat n times: e.g.,

(1; 0; 0; : : : ; 0) 7→ (1; 1; 1; : : : ; 1).

Measuring (1; 0; 0; : : : ; 0)

always produces 0.

Measuring (1; 1; 1; : : : ; 1)

can produce any output:

Pr[output = q] = 1=2n.

Aside from “normalization”

(irrelevant to measurement),

have Hadamard = Hadamard−1,

so easily work backwards

from “uniform superposition”

(1; 1; 1; : : : ; 1) to “pure state”

(1; 0; 0; : : : ; 0).

Simon’s algorithm

Assume: nonzero s ∈ {0; 1}n

satisfies f (x) = f (x ⊕ s)
for every x ∈ {0; 1}n.

Can we find this period s,

given a fast circuit for f ?

Repeat n times: e.g.,

(1; 0; 0; : : : ; 0) 7→ (1; 1; 1; : : : ; 1).

Measuring (1; 0; 0; : : : ; 0)

always produces 0.

Measuring (1; 1; 1; : : : ; 1)

can produce any output:

Pr[output = q] = 1=2n.

Aside from “normalization”

(irrelevant to measurement),

have Hadamard = Hadamard−1,

so easily work backwards

from “uniform superposition”

(1; 1; 1; : : : ; 1) to “pure state”

(1; 0; 0; : : : ; 0).

Simon’s algorithm

Assume: nonzero s ∈ {0; 1}n

satisfies f (x) = f (x ⊕ s)
for every x ∈ {0; 1}n.

Can we find this period s,

given a fast circuit for f ?

We don’t have enough data

if f has many periods.

Assume: {periods} = {0; s}.

Repeat n times: e.g.,

(1; 0; 0; : : : ; 0) 7→ (1; 1; 1; : : : ; 1).

Measuring (1; 0; 0; : : : ; 0)

always produces 0.

Measuring (1; 1; 1; : : : ; 1)

can produce any output:

Pr[output = q] = 1=2n.

Aside from “normalization”

(irrelevant to measurement),

have Hadamard = Hadamard−1,

so easily work backwards

from “uniform superposition”

(1; 1; 1; : : : ; 1) to “pure state”

(1; 0; 0; : : : ; 0).

Simon’s algorithm

Assume: nonzero s ∈ {0; 1}n

satisfies f (x) = f (x ⊕ s)
for every x ∈ {0; 1}n.

Can we find this period s,

given a fast circuit for f ?

We don’t have enough data

if f has many periods.

Assume: {periods} = {0; s}.

Traditional solution:

Compute f for many inputs,

sort, analyze collisions.

Success probability is very low

until #inputs approaches 2n=2.

Repeat n times: e.g.,

(1; 0; 0; : : : ; 0) 7→ (1; 1; 1; : : : ; 1).

Measuring (1; 0; 0; : : : ; 0)

always produces 0.

Measuring (1; 1; 1; : : : ; 1)

can produce any output:

Pr[output = q] = 1=2n.

Aside from “normalization”

(irrelevant to measurement),

have Hadamard = Hadamard−1,

so easily work backwards

from “uniform superposition”

(1; 1; 1; : : : ; 1) to “pure state”

(1; 0; 0; : : : ; 0).

Simon’s algorithm

Assume: nonzero s ∈ {0; 1}n

satisfies f (x) = f (x ⊕ s)
for every x ∈ {0; 1}n.

Can we find this period s,

given a fast circuit for f ?

We don’t have enough data

if f has many periods.

Assume: {periods} = {0; s}.

Traditional solution:

Compute f for many inputs,

sort, analyze collisions.

Success probability is very low

until #inputs approaches 2n=2.

Simon’s algorithm uses

far fewer qubit operations

if n is large and

reversibility overhead is low.

Repeat n times: e.g.,

(1; 0; 0; : : : ; 0) 7→ (1; 1; 1; : : : ; 1).

Measuring (1; 0; 0; : : : ; 0)

always produces 0.

Measuring (1; 1; 1; : : : ; 1)

can produce any output:

Pr[output = q] = 1=2n.

Aside from “normalization”

(irrelevant to measurement),

have Hadamard = Hadamard−1,

so easily work backwards

from “uniform superposition”

(1; 1; 1; : : : ; 1) to “pure state”

(1; 0; 0; : : : ; 0).

Simon’s algorithm

Assume: nonzero s ∈ {0; 1}n

satisfies f (x) = f (x ⊕ s)
for every x ∈ {0; 1}n.

Can we find this period s,

given a fast circuit for f ?

We don’t have enough data

if f has many periods.

Assume: {periods} = {0; s}.

Traditional solution:

Compute f for many inputs,

sort, analyze collisions.

Success probability is very low

until #inputs approaches 2n=2.

Simon’s algorithm uses

far fewer qubit operations

if n is large and

reversibility overhead is low.

Repeat n times: e.g.,

(1; 0; 0; : : : ; 0) 7→ (1; 1; 1; : : : ; 1).

Measuring (1; 0; 0; : : : ; 0)

always produces 0.

Measuring (1; 1; 1; : : : ; 1)

can produce any output:

Pr[output = q] = 1=2n.

Aside from “normalization”

(irrelevant to measurement),

have Hadamard = Hadamard−1,

so easily work backwards

from “uniform superposition”

(1; 1; 1; : : : ; 1) to “pure state”

(1; 0; 0; : : : ; 0).

Simon’s algorithm

Assume: nonzero s ∈ {0; 1}n

satisfies f (x) = f (x ⊕ s)
for every x ∈ {0; 1}n.

Can we find this period s,

given a fast circuit for f ?

We don’t have enough data

if f has many periods.

Assume: {periods} = {0; s}.

Traditional solution:

Compute f for many inputs,

sort, analyze collisions.

Success probability is very low

until #inputs approaches 2n=2.

Simon’s algorithm uses

far fewer qubit operations

if n is large and

reversibility overhead is low.

Simon’s algorithm

Assume: nonzero s ∈ {0; 1}n

satisfies f (x) = f (x ⊕ s)
for every x ∈ {0; 1}n.

Can we find this period s,

given a fast circuit for f ?

We don’t have enough data

if f has many periods.

Assume: {periods} = {0; s}.

Traditional solution:

Compute f for many inputs,

sort, analyze collisions.

Success probability is very low

until #inputs approaches 2n=2.

Simon’s algorithm uses

far fewer qubit operations

if n is large and

reversibility overhead is low.

Simon’s algorithm

Assume: nonzero s ∈ {0; 1}n

satisfies f (x) = f (x ⊕ s)
for every x ∈ {0; 1}n.

Can we find this period s,

given a fast circuit for f ?

We don’t have enough data

if f has many periods.

Assume: {periods} = {0; s}.

Traditional solution:

Compute f for many inputs,

sort, analyze collisions.

Success probability is very low

until #inputs approaches 2n=2.

Simon’s algorithm uses

far fewer qubit operations

if n is large and

reversibility overhead is low.

Say f maps n bits to m bits using

z “ancilla” bits for reversibility.

Prepare n +m + z qubits

in pure zero state:

vector (1; 0; 0; : : :).

Simon’s algorithm

Assume: nonzero s ∈ {0; 1}n

satisfies f (x) = f (x ⊕ s)
for every x ∈ {0; 1}n.

Can we find this period s,

given a fast circuit for f ?

We don’t have enough data

if f has many periods.

Assume: {periods} = {0; s}.

Traditional solution:

Compute f for many inputs,

sort, analyze collisions.

Success probability is very low

until #inputs approaches 2n=2.

Simon’s algorithm uses

far fewer qubit operations

if n is large and

reversibility overhead is low.

Say f maps n bits to m bits using

z “ancilla” bits for reversibility.

Prepare n +m + z qubits

in pure zero state:

vector (1; 0; 0; : : :).

Use n-fold Hadamard

to move first n qubits

into uniform superposition:

(1; 1; 1; : : : ; 1; 0; 0; : : :)

with 2n entries 1, others 0.

Simon’s algorithm

Assume: nonzero s ∈ {0; 1}n

satisfies f (x) = f (x ⊕ s)
for every x ∈ {0; 1}n.

Can we find this period s,

given a fast circuit for f ?

We don’t have enough data

if f has many periods.

Assume: {periods} = {0; s}.

Traditional solution:

Compute f for many inputs,

sort, analyze collisions.

Success probability is very low

until #inputs approaches 2n=2.

Simon’s algorithm uses

far fewer qubit operations

if n is large and

reversibility overhead is low.

Say f maps n bits to m bits using

z “ancilla” bits for reversibility.

Prepare n +m + z qubits

in pure zero state:

vector (1; 0; 0; : : :).

Use n-fold Hadamard

to move first n qubits

into uniform superposition:

(1; 1; 1; : : : ; 1; 0; 0; : : :)

with 2n entries 1, others 0.

Apply fast vector permutation

for reversible f computation:

1 in position (q; 0; 0)

moves to position (q; f (q); 0).

Note symmetry between

1 at (q; f (q); 0) and

1 at (q ⊕ s; f (q); 0).

Simon’s algorithm

Assume: nonzero s ∈ {0; 1}n

satisfies f (x) = f (x ⊕ s)
for every x ∈ {0; 1}n.

Can we find this period s,

given a fast circuit for f ?

We don’t have enough data

if f has many periods.

Assume: {periods} = {0; s}.

Traditional solution:

Compute f for many inputs,

sort, analyze collisions.

Success probability is very low

until #inputs approaches 2n=2.

Simon’s algorithm uses

far fewer qubit operations

if n is large and

reversibility overhead is low.

Say f maps n bits to m bits using

z “ancilla” bits for reversibility.

Prepare n +m + z qubits

in pure zero state:

vector (1; 0; 0; : : :).

Use n-fold Hadamard

to move first n qubits

into uniform superposition:

(1; 1; 1; : : : ; 1; 0; 0; : : :)

with 2n entries 1, others 0.

Apply fast vector permutation

for reversible f computation:

1 in position (q; 0; 0)

moves to position (q; f (q); 0).

Note symmetry between

1 at (q; f (q); 0) and

1 at (q ⊕ s; f (q); 0).

Simon’s algorithm

Assume: nonzero s ∈ {0; 1}n

satisfies f (x) = f (x ⊕ s)
for every x ∈ {0; 1}n.

Can we find this period s,

given a fast circuit for f ?

We don’t have enough data

if f has many periods.

Assume: {periods} = {0; s}.

Traditional solution:

Compute f for many inputs,

sort, analyze collisions.

Success probability is very low

until #inputs approaches 2n=2.

Simon’s algorithm uses

far fewer qubit operations

if n is large and

reversibility overhead is low.

Say f maps n bits to m bits using

z “ancilla” bits for reversibility.

Prepare n +m + z qubits

in pure zero state:

vector (1; 0; 0; : : :).

Use n-fold Hadamard

to move first n qubits

into uniform superposition:

(1; 1; 1; : : : ; 1; 0; 0; : : :)

with 2n entries 1, others 0.

Apply fast vector permutation

for reversible f computation:

1 in position (q; 0; 0)

moves to position (q; f (q); 0).

Note symmetry between

1 at (q; f (q); 0) and

1 at (q ⊕ s; f (q); 0).

Simon’s algorithm uses

far fewer qubit operations

if n is large and

reversibility overhead is low.

Say f maps n bits to m bits using

z “ancilla” bits for reversibility.

Prepare n +m + z qubits

in pure zero state:

vector (1; 0; 0; : : :).

Use n-fold Hadamard

to move first n qubits

into uniform superposition:

(1; 1; 1; : : : ; 1; 0; 0; : : :)

with 2n entries 1, others 0.

Apply fast vector permutation

for reversible f computation:

1 in position (q; 0; 0)

moves to position (q; f (q); 0).

Note symmetry between

1 at (q; f (q); 0) and

1 at (q ⊕ s; f (q); 0).

Simon’s algorithm uses

far fewer qubit operations

if n is large and

reversibility overhead is low.

Say f maps n bits to m bits using

z “ancilla” bits for reversibility.

Prepare n +m + z qubits

in pure zero state:

vector (1; 0; 0; : : :).

Use n-fold Hadamard

to move first n qubits

into uniform superposition:

(1; 1; 1; : : : ; 1; 0; 0; : : :)

with 2n entries 1, others 0.

Apply fast vector permutation

for reversible f computation:

1 in position (q; 0; 0)

moves to position (q; f (q); 0).

Note symmetry between

1 at (q; f (q); 0) and

1 at (q ⊕ s; f (q); 0).

Apply n-fold Hadamard.

Simon’s algorithm uses

far fewer qubit operations

if n is large and

reversibility overhead is low.

Say f maps n bits to m bits using

z “ancilla” bits for reversibility.

Prepare n +m + z qubits

in pure zero state:

vector (1; 0; 0; : : :).

Use n-fold Hadamard

to move first n qubits

into uniform superposition:

(1; 1; 1; : : : ; 1; 0; 0; : : :)

with 2n entries 1, others 0.

Apply fast vector permutation

for reversible f computation:

1 in position (q; 0; 0)

moves to position (q; f (q); 0).

Note symmetry between

1 at (q; f (q); 0) and

1 at (q ⊕ s; f (q); 0).

Apply n-fold Hadamard.

Measure. By symmetry,

output is orthogonal to s.

Simon’s algorithm uses

far fewer qubit operations

if n is large and

reversibility overhead is low.

Say f maps n bits to m bits using

z “ancilla” bits for reversibility.

Prepare n +m + z qubits

in pure zero state:

vector (1; 0; 0; : : :).

Use n-fold Hadamard

to move first n qubits

into uniform superposition:

(1; 1; 1; : : : ; 1; 0; 0; : : :)

with 2n entries 1, others 0.

Apply fast vector permutation

for reversible f computation:

1 in position (q; 0; 0)

moves to position (q; f (q); 0).

Note symmetry between

1 at (q; f (q); 0) and

1 at (q ⊕ s; f (q); 0).

Apply n-fold Hadamard.

Measure. By symmetry,

output is orthogonal to s.

Repeat n + 10 times.

Use Gaussian elimination

to (probably) find s.

Simon’s algorithm uses

far fewer qubit operations

if n is large and

reversibility overhead is low.

Say f maps n bits to m bits using

z “ancilla” bits for reversibility.

Prepare n +m + z qubits

in pure zero state:

vector (1; 0; 0; : : :).

Use n-fold Hadamard

to move first n qubits

into uniform superposition:

(1; 1; 1; : : : ; 1; 0; 0; : : :)

with 2n entries 1, others 0.

Apply fast vector permutation

for reversible f computation:

1 in position (q; 0; 0)

moves to position (q; f (q); 0).

Note symmetry between

1 at (q; f (q); 0) and

1 at (q ⊕ s; f (q); 0).

Apply n-fold Hadamard.

Measure. By symmetry,

output is orthogonal to s.

Repeat n + 10 times.

Use Gaussian elimination

to (probably) find s.

Example, 3 bits to 3 bits:

f (0) = 4.

f (1) = 7.

f (2) = 2.

f (3) = 3.

f (4) = 7.

f (5) = 4.

f (6) = 3.

f (7) = 2.

Simon’s algorithm uses

far fewer qubit operations

if n is large and

reversibility overhead is low.

Say f maps n bits to m bits using

z “ancilla” bits for reversibility.

Prepare n +m + z qubits

in pure zero state:

vector (1; 0; 0; : : :).

Use n-fold Hadamard

to move first n qubits

into uniform superposition:

(1; 1; 1; : : : ; 1; 0; 0; : : :)

with 2n entries 1, others 0.

Apply fast vector permutation

for reversible f computation:

1 in position (q; 0; 0)

moves to position (q; f (q); 0).

Note symmetry between

1 at (q; f (q); 0) and

1 at (q ⊕ s; f (q); 0).

Apply n-fold Hadamard.

Measure. By symmetry,

output is orthogonal to s.

Repeat n + 10 times.

Use Gaussian elimination

to (probably) find s.

Example, 3 bits to 3 bits:

f (0) = 4.

f (1) = 7.

f (2) = 2.

f (3) = 3.

f (4) = 7.

f (5) = 4.

f (6) = 3.

f (7) = 2.

Simon’s algorithm uses

far fewer qubit operations

if n is large and

reversibility overhead is low.

Say f maps n bits to m bits using

z “ancilla” bits for reversibility.

Prepare n +m + z qubits

in pure zero state:

vector (1; 0; 0; : : :).

Use n-fold Hadamard

to move first n qubits

into uniform superposition:

(1; 1; 1; : : : ; 1; 0; 0; : : :)

with 2n entries 1, others 0.

Apply fast vector permutation

for reversible f computation:

1 in position (q; 0; 0)

moves to position (q; f (q); 0).

Note symmetry between

1 at (q; f (q); 0) and

1 at (q ⊕ s; f (q); 0).

Apply n-fold Hadamard.

Measure. By symmetry,

output is orthogonal to s.

Repeat n + 10 times.

Use Gaussian elimination

to (probably) find s.

Example, 3 bits to 3 bits:

f (0) = 4.

f (1) = 7.

f (2) = 2.

f (3) = 3.

f (4) = 7.

f (5) = 4.

f (6) = 3.

f (7) = 2.

Apply fast vector permutation

for reversible f computation:

1 in position (q; 0; 0)

moves to position (q; f (q); 0).

Note symmetry between

1 at (q; f (q); 0) and

1 at (q ⊕ s; f (q); 0).

Apply n-fold Hadamard.

Measure. By symmetry,

output is orthogonal to s.

Repeat n + 10 times.

Use Gaussian elimination

to (probably) find s.

Example, 3 bits to 3 bits:

f (0) = 4.

f (1) = 7.

f (2) = 2.

f (3) = 3.

f (4) = 7.

f (5) = 4.

f (6) = 3.

f (7) = 2.

Apply fast vector permutation

for reversible f computation:

1 in position (q; 0; 0)

moves to position (q; f (q); 0).

Note symmetry between

1 at (q; f (q); 0) and

1 at (q ⊕ s; f (q); 0).

Apply n-fold Hadamard.

Measure. By symmetry,

output is orthogonal to s.

Repeat n + 10 times.

Use Gaussian elimination

to (probably) find s.

Example, 3 bits to 3 bits:

f (0) = 4.

f (1) = 7. 4
<<

7
<<

2 3

7
<<

4
<<

3 2

f (2) = 2.

f (3) = 3.

f (4) = 7.

f (5) = 4.

f (6) = 3.

f (7) = 2.

Apply fast vector permutation

for reversible f computation:

1 in position (q; 0; 0)

moves to position (q; f (q); 0).

Note symmetry between

1 at (q; f (q); 0) and

1 at (q ⊕ s; f (q); 0).

Apply n-fold Hadamard.

Measure. By symmetry,

output is orthogonal to s.

Repeat n + 10 times.

Use Gaussian elimination

to (probably) find s.

Example, 3 bits to 3 bits:

f (0) = 4.

f (1) = 7. 4
<<

7
<<

2 3

7
<<

4
<<

3 2

f (2) = 2.

f (3) = 3.

f (4) = 7.

f (5) = 4.

f (6) = 3.

f (7) = 2.

Complete table shows that

f (x) = f (x ⊕ 5) for all x .

Let’s watch Simon’s algorithm

for f , using 6 qubits.

Apply fast vector permutation

for reversible f computation:

1 in position (q; 0; 0)

moves to position (q; f (q); 0).

Note symmetry between

1 at (q; f (q); 0) and

1 at (q ⊕ s; f (q); 0).

Apply n-fold Hadamard.

Measure. By symmetry,

output is orthogonal to s.

Repeat n + 10 times.

Use Gaussian elimination

to (probably) find s.

Example, 3 bits to 3 bits:

f (0) = 4.

f (1) = 7. 4
<<

7
<<

2 3

7
<<

4
<<

3 2

f (2) = 2.

f (3) = 3.

f (4) = 7.

f (5) = 4.

f (6) = 3.

f (7) = 2.

Complete table shows that

f (x) = f (x ⊕ 5) for all x .

Let’s watch Simon’s algorithm

for f , using 6 qubits.

Step 1. Set up pure zero state:

1; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0:

Apply fast vector permutation

for reversible f computation:

1 in position (q; 0; 0)

moves to position (q; f (q); 0).

Note symmetry between

1 at (q; f (q); 0) and

1 at (q ⊕ s; f (q); 0).

Apply n-fold Hadamard.

Measure. By symmetry,

output is orthogonal to s.

Repeat n + 10 times.

Use Gaussian elimination

to (probably) find s.

Example, 3 bits to 3 bits:

f (0) = 4.

f (1) = 7. 4
<<

7
<<

2 3

7
<<

4
<<

3 2

f (2) = 2.

f (3) = 3.

f (4) = 7.

f (5) = 4.

f (6) = 3.

f (7) = 2.

Complete table shows that

f (x) = f (x ⊕ 5) for all x .

Let’s watch Simon’s algorithm

for f , using 6 qubits.

Step 1. Set up pure zero state:

1; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0:

Apply fast vector permutation

for reversible f computation:

1 in position (q; 0; 0)

moves to position (q; f (q); 0).

Note symmetry between

1 at (q; f (q); 0) and

1 at (q ⊕ s; f (q); 0).

Apply n-fold Hadamard.

Measure. By symmetry,

output is orthogonal to s.

Repeat n + 10 times.

Use Gaussian elimination

to (probably) find s.

Example, 3 bits to 3 bits:

f (0) = 4.

f (1) = 7. 4
<<

7
<<

2 3

7
<<

4
<<

3 2

f (2) = 2.

f (3) = 3.

f (4) = 7.

f (5) = 4.

f (6) = 3.

f (7) = 2.

Complete table shows that

f (x) = f (x ⊕ 5) for all x .

Let’s watch Simon’s algorithm

for f , using 6 qubits.

Step 1. Set up pure zero state:

1; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0:

Example, 3 bits to 3 bits:

f (0) = 4.

f (1) = 7. 4
<<

7
<<

2 3

7
<<

4
<<

3 2

f (2) = 2.

f (3) = 3.

f (4) = 7.

f (5) = 4.

f (6) = 3.

f (7) = 2.

Complete table shows that

f (x) = f (x ⊕ 5) for all x .

Let’s watch Simon’s algorithm

for f , using 6 qubits.

Step 1. Set up pure zero state:

1; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0:

Example, 3 bits to 3 bits:

f (0) = 4.

f (1) = 7. 4
<<

7
<<

2 3

7
<<

4
<<

3 2

f (2) = 2.

f (3) = 3.

f (4) = 7.

f (5) = 4.

f (6) = 3.

f (7) = 2.

Complete table shows that

f (x) = f (x ⊕ 5) for all x .

Let’s watch Simon’s algorithm

for f , using 6 qubits.

Step 2. Hadamard on qubit 0:

1; 1; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0:

Example, 3 bits to 3 bits:

f (0) = 4.

f (1) = 7. 4
<<

7
<<

2 3

7
<<

4
<<

3 2

f (2) = 2.

f (3) = 3.

f (4) = 7.

f (5) = 4.

f (6) = 3.

f (7) = 2.

Complete table shows that

f (x) = f (x ⊕ 5) for all x .

Let’s watch Simon’s algorithm

for f , using 6 qubits.

Step 3. Hadamard on qubit 1:

1; 1; 1; 1; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0:

Example, 3 bits to 3 bits:

f (0) = 4.

f (1) = 7. 4
<<

7
<<

2 3

7
<<

4
<<

3 2

f (2) = 2.

f (3) = 3.

f (4) = 7.

f (5) = 4.

f (6) = 3.

f (7) = 2.

Complete table shows that

f (x) = f (x ⊕ 5) for all x .

Let’s watch Simon’s algorithm

for f , using 6 qubits.

Step 4. Hadamard on qubit 2:

1; 1; 1; 1; 1; 1; 1; 1;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0:

Example, 3 bits to 3 bits:

f (0) = 4.

f (1) = 7. 4
<<

7
<<

2 3

7
<<

4
<<

3 2

f (2) = 2.

f (3) = 3.

f (4) = 7.

f (5) = 4.

f (6) = 3.

f (7) = 2.

Complete table shows that

f (x) = f (x ⊕ 5) for all x .

Let’s watch Simon’s algorithm

for f , using 6 qubits.

Step 5. (q; 0) 7→ (q; f (q)):

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 1; 0; 0; 0; 0; 1;

0; 0; 0; 1; 0; 0; 1; 0;

1; 0; 0; 0; 0; 1; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 1; 0; 0; 1; 0; 0; 0:

Example, 3 bits to 3 bits:

f (0) = 4.

f (1) = 7. 4
<<

7
<<

2 3

7
<<

4
<<

3 2

f (2) = 2.

f (3) = 3.

f (4) = 7.

f (5) = 4.

f (6) = 3.

f (7) = 2.

Complete table shows that

f (x) = f (x ⊕ 5) for all x .

Let’s watch Simon’s algorithm

for f , using 6 qubits.

Step 6. Hadamard on qubit 0:

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 1; 1; 0; 0; 1; 1;

0; 0; 1; 1; 0; 0; 1; 1;

1; 1; 0; 0; 1; 1; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

1; 1; 0; 0; 1; 1; 0; 0:

Notation: 1 = −1.

Example, 3 bits to 3 bits:

f (0) = 4.

f (1) = 7. 4
<<

7
<<

2 3

7
<<

4
<<

3 2

f (2) = 2.

f (3) = 3.

f (4) = 7.

f (5) = 4.

f (6) = 3.

f (7) = 2.

Complete table shows that

f (x) = f (x ⊕ 5) for all x .

Let’s watch Simon’s algorithm

for f , using 6 qubits.

Step 7. Hadamard on qubit 1:

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

1; 1; 1; 1; 1; 1; 1; 1;

1; 1; 1; 1; 1; 1; 1; 1;

1; 1; 1; 1; 1; 1; 1; 1;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

1; 1; 1; 1; 1; 1; 1; 1:

Example, 3 bits to 3 bits:

f (0) = 4.

f (1) = 7. 4
<<

7
<<

2 3

7
<<

4
<<

3 2

f (2) = 2.

f (3) = 3.

f (4) = 7.

f (5) = 4.

f (6) = 3.

f (7) = 2.

Complete table shows that

f (x) = f (x ⊕ 5) for all x .

Let’s watch Simon’s algorithm

for f , using 6 qubits.

Step 8. Hadamard on qubit 2:

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

2; 0; 2; 0; 0; 2; 0; 2;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2:

Example, 3 bits to 3 bits:

f (0) = 4.

f (1) = 7. 4
<<

7
<<

2 3

7
<<

4
<<

3 2

f (2) = 2.

f (3) = 3.

f (4) = 7.

f (5) = 4.

f (6) = 3.

f (7) = 2.

Complete table shows that

f (x) = f (x ⊕ 5) for all x .

Let’s watch Simon’s algorithm

for f , using 6 qubits.

Step 8. Hadamard on qubit 2:

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

2; 0; 2; 0; 0; 2; 0; 2;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2:

Step 9. Measure.

First 3 qubits are uniform random

vector orthogonal to 101: i.e.,

000, 010, 101, or 111.

Example, 3 bits to 3 bits:

f (0) = 4.

f (1) = 7. 4
<<

7
<<

2 3

7
<<

4
<<

3 2

f (2) = 2.

f (3) = 3.

f (4) = 7.

f (5) = 4.

f (6) = 3.

f (7) = 2.

Complete table shows that

f (x) = f (x ⊕ 5) for all x .

Let’s watch Simon’s algorithm

for f , using 6 qubits.

Step 8. Hadamard on qubit 2:

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

2; 0; 2; 0; 0; 2; 0; 2;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2:

Step 9. Measure.

First 3 qubits are uniform random

vector orthogonal to 101: i.e.,

000, 010, 101, or 111.

Grover’s algorithm

Assume: unique s ∈ {0; 1}n

has f (s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #inputs approaches 2n.

Example, 3 bits to 3 bits:

f (0) = 4.

f (1) = 7. 4
<<

7
<<

2 3

7
<<

4
<<

3 2

f (2) = 2.

f (3) = 3.

f (4) = 7.

f (5) = 4.

f (6) = 3.

f (7) = 2.

Complete table shows that

f (x) = f (x ⊕ 5) for all x .

Let’s watch Simon’s algorithm

for f , using 6 qubits.

Step 8. Hadamard on qubit 2:

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

2; 0; 2; 0; 0; 2; 0; 2;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2:

Step 9. Measure.

First 3 qubits are uniform random

vector orthogonal to 101: i.e.,

000, 010, 101, or 111.

Grover’s algorithm

Assume: unique s ∈ {0; 1}n

has f (s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #inputs approaches 2n.

Example, 3 bits to 3 bits:

f (0) = 4.

f (1) = 7. 4
<<

7
<<

2 3

7
<<

4
<<

3 2

f (2) = 2.

f (3) = 3.

f (4) = 7.

f (5) = 4.

f (6) = 3.

f (7) = 2.

Complete table shows that

f (x) = f (x ⊕ 5) for all x .

Let’s watch Simon’s algorithm

for f , using 6 qubits.

Step 8. Hadamard on qubit 2:

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

2; 0; 2; 0; 0; 2; 0; 2;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2:

Step 9. Measure.

First 3 qubits are uniform random

vector orthogonal to 101: i.e.,

000, 010, 101, or 111.

Grover’s algorithm

Assume: unique s ∈ {0; 1}n

has f (s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #inputs approaches 2n.

Step 8. Hadamard on qubit 2:

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

2; 0; 2; 0; 0; 2; 0; 2;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2:

Step 9. Measure.

First 3 qubits are uniform random

vector orthogonal to 101: i.e.,

000, 010, 101, or 111.

Grover’s algorithm

Assume: unique s ∈ {0; 1}n

has f (s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #inputs approaches 2n.

Step 8. Hadamard on qubit 2:

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

2; 0; 2; 0; 0; 2; 0; 2;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2:

Step 9. Measure.

First 3 qubits are uniform random

vector orthogonal to 101: i.e.,

000, 010, 101, or 111.

Grover’s algorithm

Assume: unique s ∈ {0; 1}n

has f (s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #inputs approaches 2n.

Grover’s algorithm takes only 2n=2

reversible computations of f .

Typically: reversibility overhead

is small enough that this

easily beats traditional algorithm.

Step 8. Hadamard on qubit 2:

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

2; 0; 2; 0; 0; 2; 0; 2;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2:

Step 9. Measure.

First 3 qubits are uniform random

vector orthogonal to 101: i.e.,

000, 010, 101, or 111.

Grover’s algorithm

Assume: unique s ∈ {0; 1}n

has f (s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #inputs approaches 2n.

Grover’s algorithm takes only 2n=2

reversible computations of f .

Typically: reversibility overhead

is small enough that this

easily beats traditional algorithm.

Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Step 8. Hadamard on qubit 2:

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

2; 0; 2; 0; 0; 2; 0; 2;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2:

Step 9. Measure.

First 3 qubits are uniform random

vector orthogonal to 101: i.e.,

000, 010, 101, or 111.

Grover’s algorithm

Assume: unique s ∈ {0; 1}n

has f (s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #inputs approaches 2n.

Grover’s algorithm takes only 2n=2

reversible computations of f .

Typically: reversibility overhead

is small enough that this

easily beats traditional algorithm.

Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Step 8. Hadamard on qubit 2:

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

2; 0; 2; 0; 0; 2; 0; 2;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2:

Step 9. Measure.

First 3 qubits are uniform random

vector orthogonal to 101: i.e.,

000, 010, 101, or 111.

Grover’s algorithm

Assume: unique s ∈ {0; 1}n

has f (s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #inputs approaches 2n.

Grover’s algorithm takes only 2n=2

reversible computations of f .

Typically: reversibility overhead

is small enough that this

easily beats traditional algorithm.

Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Grover’s algorithm

Assume: unique s ∈ {0; 1}n

has f (s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #inputs approaches 2n.

Grover’s algorithm takes only 2n=2

reversible computations of f .

Typically: reversibility overhead

is small enough that this

easily beats traditional algorithm.

Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Grover’s algorithm

Assume: unique s ∈ {0; 1}n

has f (s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #inputs approaches 2n.

Grover’s algorithm takes only 2n=2

reversible computations of f .

Typically: reversibility overhead

is small enough that this

easily beats traditional algorithm.

Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 0 steps:

−1.0

−0.5

0.0

0.5

1.0

Grover’s algorithm

Assume: unique s ∈ {0; 1}n

has f (s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #inputs approaches 2n.

Grover’s algorithm takes only 2n=2

reversible computations of f .

Typically: reversibility overhead

is small enough that this

easily beats traditional algorithm.

Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 0 steps:

−1.0

−0.5

0.0

0.5

1.0

Grover’s algorithm

Assume: unique s ∈ {0; 1}n

has f (s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #inputs approaches 2n.

Grover’s algorithm takes only 2n=2

reversible computations of f .

Typically: reversibility overhead

is small enough that this

easily beats traditional algorithm.

Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 0 steps:

−1.0

−0.5

0.0

0.5

1.0

Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 0 steps:

−1.0

−0.5

0.0

0.5

1.0

Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after Step 1:

−1.0

−0.5

0.0

0.5

1.0

Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after Step 1 + Step 2:

−1.0

−0.5

0.0

0.5

1.0

Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after Step 1 + Step 2 + Step 1:

−1.0

−0.5

0.0

0.5

1.0

Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 2× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 3× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 4× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 5× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 6× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 7× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 8× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 9× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 10× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 11× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 12× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 13× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 14× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 15× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 16× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 17× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 18× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 19× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 20× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 25× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 30× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 35× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Good moment to stop, measure.

Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 40× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 45× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 50× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Traditional stopping point.

Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 60× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 70× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 80× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 90× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 100× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Very bad stopping point.

Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 100× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Very bad stopping point.

q 7→ aq is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) aq for roots q;

(2) aq for non-roots q.

Step 1 + Step 2

act linearly on this vector.

Easily compute eigenvalues

and powers of this linear map

to understand evolution

of state of Grover’s algorithm.

⇒ Probability is ≈1

after ≈(ı=4)20:5n iterations.

Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 100× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Very bad stopping point.

q 7→ aq is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) aq for roots q;

(2) aq for non-roots q.

Step 1 + Step 2

act linearly on this vector.

Easily compute eigenvalues

and powers of this linear map

to understand evolution

of state of Grover’s algorithm.

⇒ Probability is ≈1

after ≈(ı=4)20:5n iterations.

Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 100× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Very bad stopping point.

q 7→ aq is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) aq for roots q;

(2) aq for non-roots q.

Step 1 + Step 2

act linearly on this vector.

Easily compute eigenvalues

and powers of this linear map

to understand evolution

of state of Grover’s algorithm.

⇒ Probability is ≈1

after ≈(ı=4)20:5n iterations.

Normalized graph of q 7→ aq
for an example with n = 12

after 100× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Very bad stopping point.

q 7→ aq is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) aq for roots q;

(2) aq for non-roots q.

Step 1 + Step 2

act linearly on this vector.

Easily compute eigenvalues

and powers of this linear map

to understand evolution

of state of Grover’s algorithm.

⇒ Probability is ≈1

after ≈(ı=4)20:5n iterations.

Normalized graph of q 7→ aq
for an example with n = 12

after 100× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Very bad stopping point.

q 7→ aq is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) aq for roots q;

(2) aq for non-roots q.

Step 1 + Step 2

act linearly on this vector.

Easily compute eigenvalues

and powers of this linear map

to understand evolution

of state of Grover’s algorithm.

⇒ Probability is ≈1

after ≈(ı=4)20:5n iterations.

Notes on provability

Textbook algorithm analysis:

Proof of correctness

New algorithm

OO

��
Proof of run time

Mislead students into thinking

that best algorithm =

best proven algorithm.

Normalized graph of q 7→ aq
for an example with n = 12

after 100× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Very bad stopping point.

q 7→ aq is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) aq for roots q;

(2) aq for non-roots q.

Step 1 + Step 2

act linearly on this vector.

Easily compute eigenvalues

and powers of this linear map

to understand evolution

of state of Grover’s algorithm.

⇒ Probability is ≈1

after ≈(ı=4)20:5n iterations.

Notes on provability

Textbook algorithm analysis:

Proof of correctness

New algorithm

OO

��
Proof of run time

Mislead students into thinking

that best algorithm =

best proven algorithm.

Normalized graph of q 7→ aq
for an example with n = 12

after 100× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Very bad stopping point.

q 7→ aq is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) aq for roots q;

(2) aq for non-roots q.

Step 1 + Step 2

act linearly on this vector.

Easily compute eigenvalues

and powers of this linear map

to understand evolution

of state of Grover’s algorithm.

⇒ Probability is ≈1

after ≈(ı=4)20:5n iterations.

Notes on provability

Textbook algorithm analysis:

Proof of correctness

New algorithm

OO

��
Proof of run time

Mislead students into thinking

that best algorithm =

best proven algorithm.

q 7→ aq is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) aq for roots q;

(2) aq for non-roots q.

Step 1 + Step 2

act linearly on this vector.

Easily compute eigenvalues

and powers of this linear map

to understand evolution

of state of Grover’s algorithm.

⇒ Probability is ≈1

after ≈(ı=4)20:5n iterations.

Notes on provability

Textbook algorithm analysis:

Proof of correctness

New algorithm

OO

��
Proof of run time

Mislead students into thinking

that best algorithm =

best proven algorithm.

q 7→ aq is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) aq for roots q;

(2) aq for non-roots q.

Step 1 + Step 2

act linearly on this vector.

Easily compute eigenvalues

and powers of this linear map

to understand evolution

of state of Grover’s algorithm.

⇒ Probability is ≈1

after ≈(ı=4)20:5n iterations.

Notes on provability

Textbook algorithm analysis:

Proof of correctness

New algorithm

OO

��
Proof of run time

Mislead students into thinking

that best algorithm =

best proven algorithm.

Reality: state-of-the-art

cryptanalytic algorithms

are almost never proven.

q 7→ aq is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) aq for roots q;

(2) aq for non-roots q.

Step 1 + Step 2

act linearly on this vector.

Easily compute eigenvalues

and powers of this linear map

to understand evolution

of state of Grover’s algorithm.

⇒ Probability is ≈1

after ≈(ı=4)20:5n iterations.

Notes on provability

Textbook algorithm analysis:

Proof of correctness

New algorithm

OO

��
Proof of run time

Mislead students into thinking

that best algorithm =

best proven algorithm.

Reality: state-of-the-art

cryptanalytic algorithms

are almost never proven.

q 7→ aq is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) aq for roots q;

(2) aq for non-roots q.

Step 1 + Step 2

act linearly on this vector.

Easily compute eigenvalues

and powers of this linear map

to understand evolution

of state of Grover’s algorithm.

⇒ Probability is ≈1

after ≈(ı=4)20:5n iterations.

Notes on provability

Textbook algorithm analysis:

Proof of correctness

New algorithm

OO

��
Proof of run time

Mislead students into thinking

that best algorithm =

best proven algorithm.

Reality: state-of-the-art

cryptanalytic algorithms

are almost never proven.

Notes on provability

Textbook algorithm analysis:

Proof of correctness

New algorithm

OO

��
Proof of run time

Mislead students into thinking

that best algorithm =

best proven algorithm.

Reality: state-of-the-art

cryptanalytic algorithms

are almost never proven.

Notes on provability

Textbook algorithm analysis:

Proof of correctness

New algorithm

OO

��
Proof of run time

Mislead students into thinking

that best algorithm =

best proven algorithm.

Reality: state-of-the-art

cryptanalytic algorithms

are almost never proven.

Ignorant response:

“Work harder, find proofs!”

Notes on provability

Textbook algorithm analysis:

Proof of correctness

New algorithm

OO

��
Proof of run time

Mislead students into thinking

that best algorithm =

best proven algorithm.

Reality: state-of-the-art

cryptanalytic algorithms

are almost never proven.

Ignorant response:

“Work harder, find proofs!”

Consensus of the experts:

proofs probably do not exist

for most of these algorithms.

So demanding proofs is silly.

Notes on provability

Textbook algorithm analysis:

Proof of correctness

New algorithm

OO

��
Proof of run time

Mislead students into thinking

that best algorithm =

best proven algorithm.

Reality: state-of-the-art

cryptanalytic algorithms

are almost never proven.

Ignorant response:

“Work harder, find proofs!”

Consensus of the experts:

proofs probably do not exist

for most of these algorithms.

So demanding proofs is silly.

Without proofs, how do we

analyze correctness+speed?

Answer: Real algorithm analysis

relies critically on heuristics and

computer experiments.

Notes on provability

Textbook algorithm analysis:

Proof of correctness

New algorithm

OO

��
Proof of run time

Mislead students into thinking

that best algorithm =

best proven algorithm.

Reality: state-of-the-art

cryptanalytic algorithms

are almost never proven.

Ignorant response:

“Work harder, find proofs!”

Consensus of the experts:

proofs probably do not exist

for most of these algorithms.

So demanding proofs is silly.

Without proofs, how do we

analyze correctness+speed?

Answer: Real algorithm analysis

relies critically on heuristics and

computer experiments.

What about quantum algorithms?

Want to analyze, optimize

quantum algorithms today

to figure out safe crypto

against future quantum attack.

Notes on provability

Textbook algorithm analysis:

Proof of correctness

New algorithm

OO

��
Proof of run time

Mislead students into thinking

that best algorithm =

best proven algorithm.

Reality: state-of-the-art

cryptanalytic algorithms

are almost never proven.

Ignorant response:

“Work harder, find proofs!”

Consensus of the experts:

proofs probably do not exist

for most of these algorithms.

So demanding proofs is silly.

Without proofs, how do we

analyze correctness+speed?

Answer: Real algorithm analysis

relies critically on heuristics and

computer experiments.

What about quantum algorithms?

Want to analyze, optimize

quantum algorithms today

to figure out safe crypto

against future quantum attack.

Notes on provability

Textbook algorithm analysis:

Proof of correctness

New algorithm

OO

��
Proof of run time

Mislead students into thinking

that best algorithm =

best proven algorithm.

Reality: state-of-the-art

cryptanalytic algorithms

are almost never proven.

Ignorant response:

“Work harder, find proofs!”

Consensus of the experts:

proofs probably do not exist

for most of these algorithms.

So demanding proofs is silly.

Without proofs, how do we

analyze correctness+speed?

Answer: Real algorithm analysis

relies critically on heuristics and

computer experiments.

What about quantum algorithms?

Want to analyze, optimize

quantum algorithms today

to figure out safe crypto

against future quantum attack.

Reality: state-of-the-art

cryptanalytic algorithms

are almost never proven.

Ignorant response:

“Work harder, find proofs!”

Consensus of the experts:

proofs probably do not exist

for most of these algorithms.

So demanding proofs is silly.

Without proofs, how do we

analyze correctness+speed?

Answer: Real algorithm analysis

relies critically on heuristics and

computer experiments.

What about quantum algorithms?

Want to analyze, optimize

quantum algorithms today

to figure out safe crypto

against future quantum attack.

Reality: state-of-the-art

cryptanalytic algorithms

are almost never proven.

Ignorant response:

“Work harder, find proofs!”

Consensus of the experts:

proofs probably do not exist

for most of these algorithms.

So demanding proofs is silly.

Without proofs, how do we

analyze correctness+speed?

Answer: Real algorithm analysis

relies critically on heuristics and

computer experiments.

What about quantum algorithms?

Want to analyze, optimize

quantum algorithms today

to figure out safe crypto

against future quantum attack.

1. Simulate tiny q. computer?

⇒ Huge extrapolation errors.

Reality: state-of-the-art

cryptanalytic algorithms

are almost never proven.

Ignorant response:

“Work harder, find proofs!”

Consensus of the experts:

proofs probably do not exist

for most of these algorithms.

So demanding proofs is silly.

Without proofs, how do we

analyze correctness+speed?

Answer: Real algorithm analysis

relies critically on heuristics and

computer experiments.

What about quantum algorithms?

Want to analyze, optimize

quantum algorithms today

to figure out safe crypto

against future quantum attack.

1. Simulate tiny q. computer?

⇒ Huge extrapolation errors.

2. Faster algorithm-specific

simulation? Yes, sometimes.

Reality: state-of-the-art

cryptanalytic algorithms

are almost never proven.

Ignorant response:

“Work harder, find proofs!”

Consensus of the experts:

proofs probably do not exist

for most of these algorithms.

So demanding proofs is silly.

Without proofs, how do we

analyze correctness+speed?

Answer: Real algorithm analysis

relies critically on heuristics and

computer experiments.

What about quantum algorithms?

Want to analyze, optimize

quantum algorithms today

to figure out safe crypto

against future quantum attack.

1. Simulate tiny q. computer?

⇒ Huge extrapolation errors.

2. Faster algorithm-specific

simulation? Yes, sometimes.

3. Fast trapdoor simulation.

Simulator (like prover) knows

more than the algorithm does.

Tung Chou has implemented this,

found errors in two publications.

Reality: state-of-the-art

cryptanalytic algorithms

are almost never proven.

Ignorant response:

“Work harder, find proofs!”

Consensus of the experts:

proofs probably do not exist

for most of these algorithms.

So demanding proofs is silly.

Without proofs, how do we

analyze correctness+speed?

Answer: Real algorithm analysis

relies critically on heuristics and

computer experiments.

What about quantum algorithms?

Want to analyze, optimize

quantum algorithms today

to figure out safe crypto

against future quantum attack.

1. Simulate tiny q. computer?

⇒ Huge extrapolation errors.

2. Faster algorithm-specific

simulation? Yes, sometimes.

3. Fast trapdoor simulation.

Simulator (like prover) knows

more than the algorithm does.

Tung Chou has implemented this,

found errors in two publications.

Post-quantum cryptography

Grover’s algorithm finds

128-bit AES key using

264 quantum AES evaluations.

Reality: state-of-the-art

cryptanalytic algorithms

are almost never proven.

Ignorant response:

“Work harder, find proofs!”

Consensus of the experts:

proofs probably do not exist

for most of these algorithms.

So demanding proofs is silly.

Without proofs, how do we

analyze correctness+speed?

Answer: Real algorithm analysis

relies critically on heuristics and

computer experiments.

What about quantum algorithms?

Want to analyze, optimize

quantum algorithms today

to figure out safe crypto

against future quantum attack.

1. Simulate tiny q. computer?

⇒ Huge extrapolation errors.

2. Faster algorithm-specific

simulation? Yes, sometimes.

3. Fast trapdoor simulation.

Simulator (like prover) knows

more than the algorithm does.

Tung Chou has implemented this,

found errors in two publications.

Post-quantum cryptography

Grover’s algorithm finds

128-bit AES key using

264 quantum AES evaluations.

Reality: state-of-the-art

cryptanalytic algorithms

are almost never proven.

Ignorant response:

“Work harder, find proofs!”

Consensus of the experts:

proofs probably do not exist

for most of these algorithms.

So demanding proofs is silly.

Without proofs, how do we

analyze correctness+speed?

Answer: Real algorithm analysis

relies critically on heuristics and

computer experiments.

What about quantum algorithms?

Want to analyze, optimize

quantum algorithms today

to figure out safe crypto

against future quantum attack.

1. Simulate tiny q. computer?

⇒ Huge extrapolation errors.

2. Faster algorithm-specific

simulation? Yes, sometimes.

3. Fast trapdoor simulation.

Simulator (like prover) knows

more than the algorithm does.

Tung Chou has implemented this,

found errors in two publications.

Post-quantum cryptography

Grover’s algorithm finds

128-bit AES key using

264 quantum AES evaluations.

What about quantum algorithms?

Want to analyze, optimize

quantum algorithms today

to figure out safe crypto

against future quantum attack.

1. Simulate tiny q. computer?

⇒ Huge extrapolation errors.

2. Faster algorithm-specific

simulation? Yes, sometimes.

3. Fast trapdoor simulation.

Simulator (like prover) knows

more than the algorithm does.

Tung Chou has implemented this,

found errors in two publications.

Post-quantum cryptography

Grover’s algorithm finds

128-bit AES key using

264 quantum AES evaluations.

What about quantum algorithms?

Want to analyze, optimize

quantum algorithms today

to figure out safe crypto

against future quantum attack.

1. Simulate tiny q. computer?

⇒ Huge extrapolation errors.

2. Faster algorithm-specific

simulation? Yes, sometimes.

3. Fast trapdoor simulation.

Simulator (like prover) knows

more than the algorithm does.

Tung Chou has implemented this,

found errors in two publications.

Post-quantum cryptography

Grover’s algorithm finds

128-bit AES key using

264 quantum AES evaluations.

Sensible risk management:

Assume that this is feasible—

or will be feasible in, e.g., 2025.

What about quantum algorithms?

Want to analyze, optimize

quantum algorithms today

to figure out safe crypto

against future quantum attack.

1. Simulate tiny q. computer?

⇒ Huge extrapolation errors.

2. Faster algorithm-specific

simulation? Yes, sometimes.

3. Fast trapdoor simulation.

Simulator (like prover) knows

more than the algorithm does.

Tung Chou has implemented this,

found errors in two publications.

Post-quantum cryptography

Grover’s algorithm finds

128-bit AES key using

264 quantum AES evaluations.

Sensible risk management:

Assume that this is feasible—

or will be feasible in, e.g., 2025.

“AES-128 is dead.”

What about quantum algorithms?

Want to analyze, optimize

quantum algorithms today

to figure out safe crypto

against future quantum attack.

1. Simulate tiny q. computer?

⇒ Huge extrapolation errors.

2. Faster algorithm-specific

simulation? Yes, sometimes.

3. Fast trapdoor simulation.

Simulator (like prover) knows

more than the algorithm does.

Tung Chou has implemented this,

found errors in two publications.

Post-quantum cryptography

Grover’s algorithm finds

128-bit AES key using

264 quantum AES evaluations.

Sensible risk management:

Assume that this is feasible—

or will be feasible in, e.g., 2025.

“AES-128 is dead.”

Fix: Switch to AES-256.

What about quantum algorithms?

Want to analyze, optimize

quantum algorithms today

to figure out safe crypto

against future quantum attack.

1. Simulate tiny q. computer?

⇒ Huge extrapolation errors.

2. Faster algorithm-specific

simulation? Yes, sometimes.

3. Fast trapdoor simulation.

Simulator (like prover) knows

more than the algorithm does.

Tung Chou has implemented this,

found errors in two publications.

Post-quantum cryptography

Grover’s algorithm finds

128-bit AES key using

264 quantum AES evaluations.

Sensible risk management:

Assume that this is feasible—

or will be feasible in, e.g., 2025.

“AES-128 is dead.”

Fix: Switch to AES-256.

AES-256 has 14 rounds.

Maybe 12 rounds are enough

for 2128 post-quantum security?

Maybe 10 rounds are enough?

What about quantum algorithms?

Want to analyze, optimize

quantum algorithms today

to figure out safe crypto

against future quantum attack.

1. Simulate tiny q. computer?

⇒ Huge extrapolation errors.

2. Faster algorithm-specific

simulation? Yes, sometimes.

3. Fast trapdoor simulation.

Simulator (like prover) knows

more than the algorithm does.

Tung Chou has implemented this,

found errors in two publications.

Post-quantum cryptography

Grover’s algorithm finds

128-bit AES key using

264 quantum AES evaluations.

Sensible risk management:

Assume that this is feasible—

or will be feasible in, e.g., 2025.

“AES-128 is dead.”

Fix: Switch to AES-256.

AES-256 has 14 rounds.

Maybe 12 rounds are enough

for 2128 post-quantum security?

Maybe 10 rounds are enough?

Shor’s algorithm

(similar to Simon’s algorithm)

factors RSA modulus N by

finding period of x 7→ 2x mod N.

Number of qubit operations

≈ number of bit operations

to compute 2x mod N.

What about quantum algorithms?

Want to analyze, optimize

quantum algorithms today

to figure out safe crypto

against future quantum attack.

1. Simulate tiny q. computer?

⇒ Huge extrapolation errors.

2. Faster algorithm-specific

simulation? Yes, sometimes.

3. Fast trapdoor simulation.

Simulator (like prover) knows

more than the algorithm does.

Tung Chou has implemented this,

found errors in two publications.

Post-quantum cryptography

Grover’s algorithm finds

128-bit AES key using

264 quantum AES evaluations.

Sensible risk management:

Assume that this is feasible—

or will be feasible in, e.g., 2025.

“AES-128 is dead.”

Fix: Switch to AES-256.

AES-256 has 14 rounds.

Maybe 12 rounds are enough

for 2128 post-quantum security?

Maybe 10 rounds are enough?

Shor’s algorithm

(similar to Simon’s algorithm)

factors RSA modulus N by

finding period of x 7→ 2x mod N.

Number of qubit operations

≈ number of bit operations

to compute 2x mod N.

What about quantum algorithms?

Want to analyze, optimize

quantum algorithms today

to figure out safe crypto

against future quantum attack.

1. Simulate tiny q. computer?

⇒ Huge extrapolation errors.

2. Faster algorithm-specific

simulation? Yes, sometimes.

3. Fast trapdoor simulation.

Simulator (like prover) knows

more than the algorithm does.

Tung Chou has implemented this,

found errors in two publications.

Post-quantum cryptography

Grover’s algorithm finds

128-bit AES key using

264 quantum AES evaluations.

Sensible risk management:

Assume that this is feasible—

or will be feasible in, e.g., 2025.

“AES-128 is dead.”

Fix: Switch to AES-256.

AES-256 has 14 rounds.

Maybe 12 rounds are enough

for 2128 post-quantum security?

Maybe 10 rounds are enough?

Shor’s algorithm

(similar to Simon’s algorithm)

factors RSA modulus N by

finding period of x 7→ 2x mod N.

Number of qubit operations

≈ number of bit operations

to compute 2x mod N.

Post-quantum cryptography

Grover’s algorithm finds

128-bit AES key using

264 quantum AES evaluations.

Sensible risk management:

Assume that this is feasible—

or will be feasible in, e.g., 2025.

“AES-128 is dead.”

Fix: Switch to AES-256.

AES-256 has 14 rounds.

Maybe 12 rounds are enough

for 2128 post-quantum security?

Maybe 10 rounds are enough?

Shor’s algorithm

(similar to Simon’s algorithm)

factors RSA modulus N by

finding period of x 7→ 2x mod N.

Number of qubit operations

≈ number of bit operations

to compute 2x mod N.

Post-quantum cryptography

Grover’s algorithm finds

128-bit AES key using

264 quantum AES evaluations.

Sensible risk management:

Assume that this is feasible—

or will be feasible in, e.g., 2025.

“AES-128 is dead.”

Fix: Switch to AES-256.

AES-256 has 14 rounds.

Maybe 12 rounds are enough

for 2128 post-quantum security?

Maybe 10 rounds are enough?

Shor’s algorithm

(similar to Simon’s algorithm)

factors RSA modulus N by

finding period of x 7→ 2x mod N.

Number of qubit operations

≈ number of bit operations

to compute 2x mod N.

≈264 qubit operations

when N is around 1 gigabyte.

Post-quantum cryptography

Grover’s algorithm finds

128-bit AES key using

264 quantum AES evaluations.

Sensible risk management:

Assume that this is feasible—

or will be feasible in, e.g., 2025.

“AES-128 is dead.”

Fix: Switch to AES-256.

AES-256 has 14 rounds.

Maybe 12 rounds are enough

for 2128 post-quantum security?

Maybe 10 rounds are enough?

Shor’s algorithm

(similar to Simon’s algorithm)

factors RSA modulus N by

finding period of x 7→ 2x mod N.

Number of qubit operations

≈ number of bit operations

to compute 2x mod N.

≈264 qubit operations

when N is around 1 gigabyte.

Shor also finds logg h by

finding period of (x; y) 7→ gxhy .

Post-quantum cryptography

Grover’s algorithm finds

128-bit AES key using

264 quantum AES evaluations.

Sensible risk management:

Assume that this is feasible—

or will be feasible in, e.g., 2025.

“AES-128 is dead.”

Fix: Switch to AES-256.

AES-256 has 14 rounds.

Maybe 12 rounds are enough

for 2128 post-quantum security?

Maybe 10 rounds are enough?

Shor’s algorithm

(similar to Simon’s algorithm)

factors RSA modulus N by

finding period of x 7→ 2x mod N.

Number of qubit operations

≈ number of bit operations

to compute 2x mod N.

≈264 qubit operations

when N is around 1 gigabyte.

Shor also finds logg h by

finding period of (x; y) 7→ gxhy .

“RSA is dead. ECC is dead.”

Post-quantum cryptography

Grover’s algorithm finds

128-bit AES key using

264 quantum AES evaluations.

Sensible risk management:

Assume that this is feasible—

or will be feasible in, e.g., 2025.

“AES-128 is dead.”

Fix: Switch to AES-256.

AES-256 has 14 rounds.

Maybe 12 rounds are enough

for 2128 post-quantum security?

Maybe 10 rounds are enough?

Shor’s algorithm

(similar to Simon’s algorithm)

factors RSA modulus N by

finding period of x 7→ 2x mod N.

Number of qubit operations

≈ number of bit operations

to compute 2x mod N.

≈264 qubit operations

when N is around 1 gigabyte.

Shor also finds logg h by

finding period of (x; y) 7→ gxhy .

“RSA is dead. ECC is dead.”

But some systems seem safe.

Post-quantum cryptography

Grover’s algorithm finds

128-bit AES key using

264 quantum AES evaluations.

Sensible risk management:

Assume that this is feasible—

or will be feasible in, e.g., 2025.

“AES-128 is dead.”

Fix: Switch to AES-256.

AES-256 has 14 rounds.

Maybe 12 rounds are enough

for 2128 post-quantum security?

Maybe 10 rounds are enough?

Shor’s algorithm

(similar to Simon’s algorithm)

factors RSA modulus N by

finding period of x 7→ 2x mod N.

Number of qubit operations

≈ number of bit operations

to compute 2x mod N.

≈264 qubit operations

when N is around 1 gigabyte.

Shor also finds logg h by

finding period of (x; y) 7→ gxhy .

“RSA is dead. ECC is dead.”

But some systems seem safe.

Hash-based signatures.

Example: 1979 Merkle hash-tree

public-key signature system.

Code-based cryptography.

Example: 1978 McEliece

hidden-Goppa-code

public-key encryption system.

Lattice-based cryptography.

Example: 1998 “NTRU”.

Multivariate-quadratic-

equations cryptography.

Example:

1996 Patarin “HFEv−”

public-key signature system.

Post-quantum cryptography

Grover’s algorithm finds

128-bit AES key using

264 quantum AES evaluations.

Sensible risk management:

Assume that this is feasible—

or will be feasible in, e.g., 2025.

“AES-128 is dead.”

Fix: Switch to AES-256.

AES-256 has 14 rounds.

Maybe 12 rounds are enough

for 2128 post-quantum security?

Maybe 10 rounds are enough?

Shor’s algorithm

(similar to Simon’s algorithm)

factors RSA modulus N by

finding period of x 7→ 2x mod N.

Number of qubit operations

≈ number of bit operations

to compute 2x mod N.

≈264 qubit operations

when N is around 1 gigabyte.

Shor also finds logg h by

finding period of (x; y) 7→ gxhy .

“RSA is dead. ECC is dead.”

But some systems seem safe.

Hash-based signatures.

Example: 1979 Merkle hash-tree

public-key signature system.

Code-based cryptography.

Example: 1978 McEliece

hidden-Goppa-code

public-key encryption system.

Lattice-based cryptography.

Example: 1998 “NTRU”.

Multivariate-quadratic-

equations cryptography.

Example:

1996 Patarin “HFEv−”

public-key signature system.

Post-quantum cryptography

Grover’s algorithm finds

128-bit AES key using

264 quantum AES evaluations.

Sensible risk management:

Assume that this is feasible—

or will be feasible in, e.g., 2025.

“AES-128 is dead.”

Fix: Switch to AES-256.

AES-256 has 14 rounds.

Maybe 12 rounds are enough

for 2128 post-quantum security?

Maybe 10 rounds are enough?

Shor’s algorithm

(similar to Simon’s algorithm)

factors RSA modulus N by

finding period of x 7→ 2x mod N.

Number of qubit operations

≈ number of bit operations

to compute 2x mod N.

≈264 qubit operations

when N is around 1 gigabyte.

Shor also finds logg h by

finding period of (x; y) 7→ gxhy .

“RSA is dead. ECC is dead.”

But some systems seem safe.

Hash-based signatures.

Example: 1979 Merkle hash-tree

public-key signature system.

Code-based cryptography.

Example: 1978 McEliece

hidden-Goppa-code

public-key encryption system.

Lattice-based cryptography.

Example: 1998 “NTRU”.

Multivariate-quadratic-

equations cryptography.

Example:

1996 Patarin “HFEv−”

public-key signature system.

Shor’s algorithm

(similar to Simon’s algorithm)

factors RSA modulus N by

finding period of x 7→ 2x mod N.

Number of qubit operations

≈ number of bit operations

to compute 2x mod N.

≈264 qubit operations

when N is around 1 gigabyte.

Shor also finds logg h by

finding period of (x; y) 7→ gxhy .

“RSA is dead. ECC is dead.”

But some systems seem safe.

Hash-based signatures.

Example: 1979 Merkle hash-tree

public-key signature system.

Code-based cryptography.

Example: 1978 McEliece

hidden-Goppa-code

public-key encryption system.

Lattice-based cryptography.

Example: 1998 “NTRU”.

Multivariate-quadratic-

equations cryptography.

Example:

1996 Patarin “HFEv−”

public-key signature system.

Shor’s algorithm

(similar to Simon’s algorithm)

factors RSA modulus N by

finding period of x 7→ 2x mod N.

Number of qubit operations

≈ number of bit operations

to compute 2x mod N.

≈264 qubit operations

when N is around 1 gigabyte.

Shor also finds logg h by

finding period of (x; y) 7→ gxhy .

“RSA is dead. ECC is dead.”

But some systems seem safe.

Hash-based signatures.

Example: 1979 Merkle hash-tree

public-key signature system.

Code-based cryptography.

Example: 1978 McEliece

hidden-Goppa-code

public-key encryption system.

Lattice-based cryptography.

Example: 1998 “NTRU”.

Multivariate-quadratic-

equations cryptography.

Example:

1996 Patarin “HFEv−”

public-key signature system.

Shor’s algorithm

(similar to Simon’s algorithm)

factors RSA modulus N by

finding period of x 7→ 2x mod N.

Number of qubit operations

≈ number of bit operations

to compute 2x mod N.

≈264 qubit operations

when N is around 1 gigabyte.

Shor also finds logg h by

finding period of (x; y) 7→ gxhy .

“RSA is dead. ECC is dead.”

But some systems seem safe.

Hash-based signatures.

Example: 1979 Merkle hash-tree

public-key signature system.

Code-based cryptography.

Example: 1978 McEliece

hidden-Goppa-code

public-key encryption system.

Lattice-based cryptography.

Example: 1998 “NTRU”.

Multivariate-quadratic-

equations cryptography.

Example:

1996 Patarin “HFEv−”

public-key signature system.

Shor’s algorithm

(similar to Simon’s algorithm)

factors RSA modulus N by

finding period of x 7→ 2x mod N.

Number of qubit operations

≈ number of bit operations

to compute 2x mod N.

≈264 qubit operations

when N is around 1 gigabyte.

Shor also finds logg h by

finding period of (x; y) 7→ gxhy .

“RSA is dead. ECC is dead.”

But some systems seem safe.

Hash-based signatures.

Example: 1979 Merkle hash-tree

public-key signature system.

Code-based cryptography.

Example: 1978 McEliece

hidden-Goppa-code

public-key encryption system.

Lattice-based cryptography.

Example: 1998 “NTRU”.

Multivariate-quadratic-

equations cryptography.

Example:

1996 Patarin “HFEv−”

public-key signature system.

Hash-based signatures.

Example: 1979 Merkle hash-tree

public-key signature system.

Code-based cryptography.

Example: 1978 McEliece

hidden-Goppa-code

public-key encryption system.

Lattice-based cryptography.

Example: 1998 “NTRU”.

Multivariate-quadratic-

equations cryptography.

Example:

1996 Patarin “HFEv−”

public-key signature system.

Hash-based signatures.

Example: 1979 Merkle hash-tree

public-key signature system.

Code-based cryptography.

Example: 1978 McEliece

hidden-Goppa-code

public-key encryption system.

Lattice-based cryptography.

Example: 1998 “NTRU”.

Multivariate-quadratic-

equations cryptography.

Example:

1996 Patarin “HFEv−”

public-key signature system.

The 1978 McEliece cryptosystem

(with 1986 Niederreiter speedup)

Receiver’s public key: “random”

500× 1024 matrix K over F2.

Specifies linear F1024
2 → F500

2 .

Hash-based signatures.

Example: 1979 Merkle hash-tree

public-key signature system.

Code-based cryptography.

Example: 1978 McEliece

hidden-Goppa-code

public-key encryption system.

Lattice-based cryptography.

Example: 1998 “NTRU”.

Multivariate-quadratic-

equations cryptography.

Example:

1996 Patarin “HFEv−”

public-key signature system.

The 1978 McEliece cryptosystem

(with 1986 Niederreiter speedup)

Receiver’s public key: “random”

500× 1024 matrix K over F2.

Specifies linear F1024
2 → F500

2 .

Hash-based signatures.

Example: 1979 Merkle hash-tree

public-key signature system.

Code-based cryptography.

Example: 1978 McEliece

hidden-Goppa-code

public-key encryption system.

Lattice-based cryptography.

Example: 1998 “NTRU”.

Multivariate-quadratic-

equations cryptography.

Example:

1996 Patarin “HFEv−”

public-key signature system.

The 1978 McEliece cryptosystem

(with 1986 Niederreiter speedup)

Receiver’s public key: “random”

500× 1024 matrix K over F2.

Specifies linear F1024
2 → F500

2 .

The 1978 McEliece cryptosystem

(with 1986 Niederreiter speedup)

Receiver’s public key: “random”

500× 1024 matrix K over F2.

Specifies linear F1024
2 → F500

2 .

The 1978 McEliece cryptosystem

(with 1986 Niederreiter speedup)

Receiver’s public key: “random”

500× 1024 matrix K over F2.

Specifies linear F1024
2 → F500

2 .

Messages suitable for encryption:

1024-bit strings of weight 50.

{e ∈ F1024
2 : #{i : ei = 1} = 50}.

The 1978 McEliece cryptosystem

(with 1986 Niederreiter speedup)

Receiver’s public key: “random”

500× 1024 matrix K over F2.

Specifies linear F1024
2 → F500

2 .

Messages suitable for encryption:

1024-bit strings of weight 50.

{e ∈ F1024
2 : #{i : ei = 1} = 50}.

Encryption of e is Ke ∈ F500
2 .

The 1978 McEliece cryptosystem

(with 1986 Niederreiter speedup)

Receiver’s public key: “random”

500× 1024 matrix K over F2.

Specifies linear F1024
2 → F500

2 .

Messages suitable for encryption:

1024-bit strings of weight 50.

{e ∈ F1024
2 : #{i : ei = 1} = 50}.

Encryption of e is Ke ∈ F500
2 .

“Padding”: Choose random e;

send Ke; use SHA-256(e;Ke) as

AES-256-GCM key to encrypt

actual message of any length.

The 1978 McEliece cryptosystem

(with 1986 Niederreiter speedup)

Receiver’s public key: “random”

500× 1024 matrix K over F2.

Specifies linear F1024
2 → F500

2 .

Messages suitable for encryption:

1024-bit strings of weight 50.

{e ∈ F1024
2 : #{i : ei = 1} = 50}.

Encryption of e is Ke ∈ F500
2 .

“Padding”: Choose random e;

send Ke; use SHA-256(e;Ke) as

AES-256-GCM key to encrypt

actual message of any length.

Attacker, by linear algebra,

easily works backwards

from Ke to some v ∈ F1024
2

such that Kv = Ke.

The 1978 McEliece cryptosystem

(with 1986 Niederreiter speedup)

Receiver’s public key: “random”

500× 1024 matrix K over F2.

Specifies linear F1024
2 → F500

2 .

Messages suitable for encryption:

1024-bit strings of weight 50.

{e ∈ F1024
2 : #{i : ei = 1} = 50}.

Encryption of e is Ke ∈ F500
2 .

“Padding”: Choose random e;

send Ke; use SHA-256(e;Ke) as

AES-256-GCM key to encrypt

actual message of any length.

Attacker, by linear algebra,

easily works backwards

from Ke to some v ∈ F1024
2

such that Kv = Ke.

The 1978 McEliece cryptosystem

(with 1986 Niederreiter speedup)

Receiver’s public key: “random”

500× 1024 matrix K over F2.

Specifies linear F1024
2 → F500

2 .

Messages suitable for encryption:

1024-bit strings of weight 50.

{e ∈ F1024
2 : #{i : ei = 1} = 50}.

Encryption of e is Ke ∈ F500
2 .

“Padding”: Choose random e;

send Ke; use SHA-256(e;Ke) as

AES-256-GCM key to encrypt

actual message of any length.

Attacker, by linear algebra,

easily works backwards

from Ke to some v ∈ F1024
2

such that Kv = Ke.

The 1978 McEliece cryptosystem

(with 1986 Niederreiter speedup)

Receiver’s public key: “random”

500× 1024 matrix K over F2.

Specifies linear F1024
2 → F500

2 .

Messages suitable for encryption:

1024-bit strings of weight 50.

{e ∈ F1024
2 : #{i : ei = 1} = 50}.

Encryption of e is Ke ∈ F500
2 .

“Padding”: Choose random e;

send Ke; use SHA-256(e;Ke) as

AES-256-GCM key to encrypt

actual message of any length.

Attacker, by linear algebra,

easily works backwards

from Ke to some v ∈ F1024
2

such that Kv = Ke.

The 1978 McEliece cryptosystem

(with 1986 Niederreiter speedup)

Receiver’s public key: “random”

500× 1024 matrix K over F2.

Specifies linear F1024
2 → F500

2 .

Messages suitable for encryption:

1024-bit strings of weight 50.

{e ∈ F1024
2 : #{i : ei = 1} = 50}.

Encryption of e is Ke ∈ F500
2 .

“Padding”: Choose random e;

send Ke; use SHA-256(e;Ke) as

AES-256-GCM key to encrypt

actual message of any length.

Attacker, by linear algebra,

easily works backwards

from Ke to some v ∈ F1024
2

such that Kv = Ke.

i.e. Attacker finds some

element v ∈ e + KerK.

Note that # KerK ≥ 2524.

Attacker wants to decode v :

to find element of KerK

at distance only 50 from v .

Presumably unique, revealing e.

The 1978 McEliece cryptosystem

(with 1986 Niederreiter speedup)

Receiver’s public key: “random”

500× 1024 matrix K over F2.

Specifies linear F1024
2 → F500

2 .

Messages suitable for encryption:

1024-bit strings of weight 50.

{e ∈ F1024
2 : #{i : ei = 1} = 50}.

Encryption of e is Ke ∈ F500
2 .

“Padding”: Choose random e;

send Ke; use SHA-256(e;Ke) as

AES-256-GCM key to encrypt

actual message of any length.

Attacker, by linear algebra,

easily works backwards

from Ke to some v ∈ F1024
2

such that Kv = Ke.

i.e. Attacker finds some

element v ∈ e + KerK.

Note that # KerK ≥ 2524.

Attacker wants to decode v :

to find element of KerK

at distance only 50 from v .

Presumably unique, revealing e.

But decoding isn’t easy!

The 1978 McEliece cryptosystem

(with 1986 Niederreiter speedup)

Receiver’s public key: “random”

500× 1024 matrix K over F2.

Specifies linear F1024
2 → F500

2 .

Messages suitable for encryption:

1024-bit strings of weight 50.

{e ∈ F1024
2 : #{i : ei = 1} = 50}.

Encryption of e is Ke ∈ F500
2 .

“Padding”: Choose random e;

send Ke; use SHA-256(e;Ke) as

AES-256-GCM key to encrypt

actual message of any length.

Attacker, by linear algebra,

easily works backwards

from Ke to some v ∈ F1024
2

such that Kv = Ke.

i.e. Attacker finds some

element v ∈ e + KerK.

Note that # KerK ≥ 2524.

Attacker wants to decode v :

to find element of KerK

at distance only 50 from v .

Presumably unique, revealing e.

But decoding isn’t easy!

Information-set decoding

Choose random size-500 subset

S ⊆ {1; 2; 3; : : : ; 1024}.

For typical K: Good chance

that FS2 ,→ F1024
2

K−−→ F500
2

is invertible.

The 1978 McEliece cryptosystem

(with 1986 Niederreiter speedup)

Receiver’s public key: “random”

500× 1024 matrix K over F2.

Specifies linear F1024
2 → F500

2 .

Messages suitable for encryption:

1024-bit strings of weight 50.

{e ∈ F1024
2 : #{i : ei = 1} = 50}.

Encryption of e is Ke ∈ F500
2 .

“Padding”: Choose random e;

send Ke; use SHA-256(e;Ke) as

AES-256-GCM key to encrypt

actual message of any length.

Attacker, by linear algebra,

easily works backwards

from Ke to some v ∈ F1024
2

such that Kv = Ke.

i.e. Attacker finds some

element v ∈ e + KerK.

Note that # KerK ≥ 2524.

Attacker wants to decode v :

to find element of KerK

at distance only 50 from v .

Presumably unique, revealing e.

But decoding isn’t easy!

Information-set decoding

Choose random size-500 subset

S ⊆ {1; 2; 3; : : : ; 1024}.

For typical K: Good chance

that FS2 ,→ F1024
2

K−−→ F500
2

is invertible.

The 1978 McEliece cryptosystem

(with 1986 Niederreiter speedup)

Receiver’s public key: “random”

500× 1024 matrix K over F2.

Specifies linear F1024
2 → F500

2 .

Messages suitable for encryption:

1024-bit strings of weight 50.

{e ∈ F1024
2 : #{i : ei = 1} = 50}.

Encryption of e is Ke ∈ F500
2 .

“Padding”: Choose random e;

send Ke; use SHA-256(e;Ke) as

AES-256-GCM key to encrypt

actual message of any length.

Attacker, by linear algebra,

easily works backwards

from Ke to some v ∈ F1024
2

such that Kv = Ke.

i.e. Attacker finds some

element v ∈ e + KerK.

Note that # KerK ≥ 2524.

Attacker wants to decode v :

to find element of KerK

at distance only 50 from v .

Presumably unique, revealing e.

But decoding isn’t easy!

Information-set decoding

Choose random size-500 subset

S ⊆ {1; 2; 3; : : : ; 1024}.

For typical K: Good chance

that FS2 ,→ F1024
2

K−−→ F500
2

is invertible.

Attacker, by linear algebra,

easily works backwards

from Ke to some v ∈ F1024
2

such that Kv = Ke.

i.e. Attacker finds some

element v ∈ e + KerK.

Note that # KerK ≥ 2524.

Attacker wants to decode v :

to find element of KerK

at distance only 50 from v .

Presumably unique, revealing e.

But decoding isn’t easy!

Information-set decoding

Choose random size-500 subset

S ⊆ {1; 2; 3; : : : ; 1024}.

For typical K: Good chance

that FS2 ,→ F1024
2

K−−→ F500
2

is invertible.

Attacker, by linear algebra,

easily works backwards

from Ke to some v ∈ F1024
2

such that Kv = Ke.

i.e. Attacker finds some

element v ∈ e + KerK.

Note that # KerK ≥ 2524.

Attacker wants to decode v :

to find element of KerK

at distance only 50 from v .

Presumably unique, revealing e.

But decoding isn’t easy!

Information-set decoding

Choose random size-500 subset

S ⊆ {1; 2; 3; : : : ; 1024}.

For typical K: Good chance

that FS2 ,→ F1024
2

K−−→ F500
2

is invertible.

Hope e ∈ FS2 ; chance ≈2−53.

Apply inverse map to Ke,

revealing e if e ∈ FS2 .

Attacker, by linear algebra,

easily works backwards

from Ke to some v ∈ F1024
2

such that Kv = Ke.

i.e. Attacker finds some

element v ∈ e + KerK.

Note that # KerK ≥ 2524.

Attacker wants to decode v :

to find element of KerK

at distance only 50 from v .

Presumably unique, revealing e.

But decoding isn’t easy!

Information-set decoding

Choose random size-500 subset

S ⊆ {1; 2; 3; : : : ; 1024}.

For typical K: Good chance

that FS2 ,→ F1024
2

K−−→ F500
2

is invertible.

Hope e ∈ FS2 ; chance ≈2−53.

Apply inverse map to Ke,

revealing e if e ∈ FS2 .

If e =∈ FS2 , try again.

≈280 bit operations in total.

Attacker, by linear algebra,

easily works backwards

from Ke to some v ∈ F1024
2

such that Kv = Ke.

i.e. Attacker finds some

element v ∈ e + KerK.

Note that # KerK ≥ 2524.

Attacker wants to decode v :

to find element of KerK

at distance only 50 from v .

Presumably unique, revealing e.

But decoding isn’t easy!

Information-set decoding

Choose random size-500 subset

S ⊆ {1; 2; 3; : : : ; 1024}.

For typical K: Good chance

that FS2 ,→ F1024
2

K−−→ F500
2

is invertible.

Hope e ∈ FS2 ; chance ≈2−53.

Apply inverse map to Ke,

revealing e if e ∈ FS2 .

If e =∈ FS2 , try again.

≈280 bit operations in total.

Bad estimate by McEliece: ≈264.

Attacker, by linear algebra,

easily works backwards

from Ke to some v ∈ F1024
2

such that Kv = Ke.

i.e. Attacker finds some

element v ∈ e + KerK.

Note that # KerK ≥ 2524.

Attacker wants to decode v :

to find element of KerK

at distance only 50 from v .

Presumably unique, revealing e.

But decoding isn’t easy!

Information-set decoding

Choose random size-500 subset

S ⊆ {1; 2; 3; : : : ; 1024}.

For typical K: Good chance

that FS2 ,→ F1024
2

K−−→ F500
2

is invertible.

Hope e ∈ FS2 ; chance ≈2−53.

Apply inverse map to Ke,

revealing e if e ∈ FS2 .

If e =∈ FS2 , try again.

≈280 bit operations in total.

Bad estimate by McEliece: ≈264.

Analyzing and optimizing attacks:

1962 Prange. 1981 Omura.

1988 Lee–Brickell. 1988 Leon.

1989 Krouk. 1989 Stern.

1989 Dumer.

1990 Coffey–Goodman.

1990 van Tilburg. 1991 Dumer.

1991 Coffey–Goodman–Farrell.

1993 Chabanne–Courteau.

1993 Chabaud.

1994 van Tilburg.

1994 Canteaut–Chabanne.

1998 Canteaut–Chabaud.

1998 Canteaut–Sendrier.

Attacker, by linear algebra,

easily works backwards

from Ke to some v ∈ F1024
2

such that Kv = Ke.

i.e. Attacker finds some

element v ∈ e + KerK.

Note that # KerK ≥ 2524.

Attacker wants to decode v :

to find element of KerK

at distance only 50 from v .

Presumably unique, revealing e.

But decoding isn’t easy!

Information-set decoding

Choose random size-500 subset

S ⊆ {1; 2; 3; : : : ; 1024}.

For typical K: Good chance

that FS2 ,→ F1024
2

K−−→ F500
2

is invertible.

Hope e ∈ FS2 ; chance ≈2−53.

Apply inverse map to Ke,

revealing e if e ∈ FS2 .

If e =∈ FS2 , try again.

≈280 bit operations in total.

Bad estimate by McEliece: ≈264.

Analyzing and optimizing attacks:

1962 Prange. 1981 Omura.

1988 Lee–Brickell. 1988 Leon.

1989 Krouk. 1989 Stern.

1989 Dumer.

1990 Coffey–Goodman.

1990 van Tilburg. 1991 Dumer.

1991 Coffey–Goodman–Farrell.

1993 Chabanne–Courteau.

1993 Chabaud.

1994 van Tilburg.

1994 Canteaut–Chabanne.

1998 Canteaut–Chabaud.

1998 Canteaut–Sendrier.

Attacker, by linear algebra,

easily works backwards

from Ke to some v ∈ F1024
2

such that Kv = Ke.

i.e. Attacker finds some

element v ∈ e + KerK.

Note that # KerK ≥ 2524.

Attacker wants to decode v :

to find element of KerK

at distance only 50 from v .

Presumably unique, revealing e.

But decoding isn’t easy!

Information-set decoding

Choose random size-500 subset

S ⊆ {1; 2; 3; : : : ; 1024}.

For typical K: Good chance

that FS2 ,→ F1024
2

K−−→ F500
2

is invertible.

Hope e ∈ FS2 ; chance ≈2−53.

Apply inverse map to Ke,

revealing e if e ∈ FS2 .

If e =∈ FS2 , try again.

≈280 bit operations in total.

Bad estimate by McEliece: ≈264.

Analyzing and optimizing attacks:

1962 Prange. 1981 Omura.

1988 Lee–Brickell. 1988 Leon.

1989 Krouk. 1989 Stern.

1989 Dumer.

1990 Coffey–Goodman.

1990 van Tilburg. 1991 Dumer.

1991 Coffey–Goodman–Farrell.

1993 Chabanne–Courteau.

1993 Chabaud.

1994 van Tilburg.

1994 Canteaut–Chabanne.

1998 Canteaut–Chabaud.

1998 Canteaut–Sendrier.

Information-set decoding

Choose random size-500 subset

S ⊆ {1; 2; 3; : : : ; 1024}.

For typical K: Good chance

that FS2 ,→ F1024
2

K−−→ F500
2

is invertible.

Hope e ∈ FS2 ; chance ≈2−53.

Apply inverse map to Ke,

revealing e if e ∈ FS2 .

If e =∈ FS2 , try again.

≈280 bit operations in total.

Bad estimate by McEliece: ≈264.

Analyzing and optimizing attacks:

1962 Prange. 1981 Omura.

1988 Lee–Brickell. 1988 Leon.

1989 Krouk. 1989 Stern.

1989 Dumer.

1990 Coffey–Goodman.

1990 van Tilburg. 1991 Dumer.

1991 Coffey–Goodman–Farrell.

1993 Chabanne–Courteau.

1993 Chabaud.

1994 van Tilburg.

1994 Canteaut–Chabanne.

1998 Canteaut–Chabaud.

1998 Canteaut–Sendrier.

Information-set decoding

Choose random size-500 subset

S ⊆ {1; 2; 3; : : : ; 1024}.

For typical K: Good chance

that FS2 ,→ F1024
2

K−−→ F500
2

is invertible.

Hope e ∈ FS2 ; chance ≈2−53.

Apply inverse map to Ke,

revealing e if e ∈ FS2 .

If e =∈ FS2 , try again.

≈280 bit operations in total.

Bad estimate by McEliece: ≈264.

Analyzing and optimizing attacks:

1962 Prange. 1981 Omura.

1988 Lee–Brickell. 1988 Leon.

1989 Krouk. 1989 Stern.

1989 Dumer.

1990 Coffey–Goodman.

1990 van Tilburg. 1991 Dumer.

1991 Coffey–Goodman–Farrell.

1993 Chabanne–Courteau.

1993 Chabaud.

1994 van Tilburg.

1994 Canteaut–Chabanne.

1998 Canteaut–Chabaud.

1998 Canteaut–Sendrier.

2008 Bernstein–Lange–Peters:

more speedups; ≈260 cycles;

attack actually carried out.

2009 Bernstein–Lange–

Peters–van Tilborg.

2009 Bernstein: post-quantum.

2009 Finiasz–Sendrier.

2010 Bernstein–Lange–Peters.

2011 May–Meurer–Thomae.

2011 Becker–Coron–Joux.

2012 Becker–Joux–May–Meurer.

2013 Bernstein–Jeffery–Lange–

Meurer: post-quantum.

2015 May–Ozerov.

Information-set decoding

Choose random size-500 subset

S ⊆ {1; 2; 3; : : : ; 1024}.

For typical K: Good chance

that FS2 ,→ F1024
2

K−−→ F500
2

is invertible.

Hope e ∈ FS2 ; chance ≈2−53.

Apply inverse map to Ke,

revealing e if e ∈ FS2 .

If e =∈ FS2 , try again.

≈280 bit operations in total.

Bad estimate by McEliece: ≈264.

Analyzing and optimizing attacks:

1962 Prange. 1981 Omura.

1988 Lee–Brickell. 1988 Leon.

1989 Krouk. 1989 Stern.

1989 Dumer.

1990 Coffey–Goodman.

1990 van Tilburg. 1991 Dumer.

1991 Coffey–Goodman–Farrell.

1993 Chabanne–Courteau.

1993 Chabaud.

1994 van Tilburg.

1994 Canteaut–Chabanne.

1998 Canteaut–Chabaud.

1998 Canteaut–Sendrier.

2008 Bernstein–Lange–Peters:

more speedups; ≈260 cycles;

attack actually carried out.

2009 Bernstein–Lange–

Peters–van Tilborg.

2009 Bernstein: post-quantum.

2009 Finiasz–Sendrier.

2010 Bernstein–Lange–Peters.

2011 May–Meurer–Thomae.

2011 Becker–Coron–Joux.

2012 Becker–Joux–May–Meurer.

2013 Bernstein–Jeffery–Lange–

Meurer: post-quantum.

2015 May–Ozerov.

Information-set decoding

Choose random size-500 subset

S ⊆ {1; 2; 3; : : : ; 1024}.

For typical K: Good chance

that FS2 ,→ F1024
2

K−−→ F500
2

is invertible.

Hope e ∈ FS2 ; chance ≈2−53.

Apply inverse map to Ke,

revealing e if e ∈ FS2 .

If e =∈ FS2 , try again.

≈280 bit operations in total.

Bad estimate by McEliece: ≈264.

Analyzing and optimizing attacks:

1962 Prange. 1981 Omura.

1988 Lee–Brickell. 1988 Leon.

1989 Krouk. 1989 Stern.

1989 Dumer.

1990 Coffey–Goodman.

1990 van Tilburg. 1991 Dumer.

1991 Coffey–Goodman–Farrell.

1993 Chabanne–Courteau.

1993 Chabaud.

1994 van Tilburg.

1994 Canteaut–Chabanne.

1998 Canteaut–Chabaud.

1998 Canteaut–Sendrier.

2008 Bernstein–Lange–Peters:

more speedups; ≈260 cycles;

attack actually carried out.

2009 Bernstein–Lange–

Peters–van Tilborg.

2009 Bernstein: post-quantum.

2009 Finiasz–Sendrier.

2010 Bernstein–Lange–Peters.

2011 May–Meurer–Thomae.

2011 Becker–Coron–Joux.

2012 Becker–Joux–May–Meurer.

2013 Bernstein–Jeffery–Lange–

Meurer: post-quantum.

2015 May–Ozerov.

Analyzing and optimizing attacks:

1962 Prange. 1981 Omura.

1988 Lee–Brickell. 1988 Leon.

1989 Krouk. 1989 Stern.

1989 Dumer.

1990 Coffey–Goodman.

1990 van Tilburg. 1991 Dumer.

1991 Coffey–Goodman–Farrell.

1993 Chabanne–Courteau.

1993 Chabaud.

1994 van Tilburg.

1994 Canteaut–Chabanne.

1998 Canteaut–Chabaud.

1998 Canteaut–Sendrier.

2008 Bernstein–Lange–Peters:

more speedups; ≈260 cycles;

attack actually carried out.

2009 Bernstein–Lange–

Peters–van Tilborg.

2009 Bernstein: post-quantum.

2009 Finiasz–Sendrier.

2010 Bernstein–Lange–Peters.

2011 May–Meurer–Thomae.

2011 Becker–Coron–Joux.

2012 Becker–Joux–May–Meurer.

2013 Bernstein–Jeffery–Lange–

Meurer: post-quantum.

2015 May–Ozerov.

Analyzing and optimizing attacks:

1962 Prange. 1981 Omura.

1988 Lee–Brickell. 1988 Leon.

1989 Krouk. 1989 Stern.

1989 Dumer.

1990 Coffey–Goodman.

1990 van Tilburg. 1991 Dumer.

1991 Coffey–Goodman–Farrell.

1993 Chabanne–Courteau.

1993 Chabaud.

1994 van Tilburg.

1994 Canteaut–Chabanne.

1998 Canteaut–Chabaud.

1998 Canteaut–Sendrier.

2008 Bernstein–Lange–Peters:

more speedups; ≈260 cycles;

attack actually carried out.

2009 Bernstein–Lange–

Peters–van Tilborg.

2009 Bernstein: post-quantum.

2009 Finiasz–Sendrier.

2010 Bernstein–Lange–Peters.

2011 May–Meurer–Thomae.

2011 Becker–Coron–Joux.

2012 Becker–Joux–May–Meurer.

2013 Bernstein–Jeffery–Lange–

Meurer: post-quantum.

2015 May–Ozerov.

Modern McEliece

Easily rescue system by using

a larger public key: “random”

(n=2)× n matrix K over F2.

e.g., 1800× 3600.

Analyzing and optimizing attacks:

1962 Prange. 1981 Omura.

1988 Lee–Brickell. 1988 Leon.

1989 Krouk. 1989 Stern.

1989 Dumer.

1990 Coffey–Goodman.

1990 van Tilburg. 1991 Dumer.

1991 Coffey–Goodman–Farrell.

1993 Chabanne–Courteau.

1993 Chabaud.

1994 van Tilburg.

1994 Canteaut–Chabanne.

1998 Canteaut–Chabaud.

1998 Canteaut–Sendrier.

2008 Bernstein–Lange–Peters:

more speedups; ≈260 cycles;

attack actually carried out.

2009 Bernstein–Lange–

Peters–van Tilborg.

2009 Bernstein: post-quantum.

2009 Finiasz–Sendrier.

2010 Bernstein–Lange–Peters.

2011 May–Meurer–Thomae.

2011 Becker–Coron–Joux.

2012 Becker–Joux–May–Meurer.

2013 Bernstein–Jeffery–Lange–

Meurer: post-quantum.

2015 May–Ozerov.

Modern McEliece

Easily rescue system by using

a larger public key: “random”

(n=2)× n matrix K over F2.

e.g., 1800× 3600.

Analyzing and optimizing attacks:

1962 Prange. 1981 Omura.

1988 Lee–Brickell. 1988 Leon.

1989 Krouk. 1989 Stern.

1989 Dumer.

1990 Coffey–Goodman.

1990 van Tilburg. 1991 Dumer.

1991 Coffey–Goodman–Farrell.

1993 Chabanne–Courteau.

1993 Chabaud.

1994 van Tilburg.

1994 Canteaut–Chabanne.

1998 Canteaut–Chabaud.

1998 Canteaut–Sendrier.

2008 Bernstein–Lange–Peters:

more speedups; ≈260 cycles;

attack actually carried out.

2009 Bernstein–Lange–

Peters–van Tilborg.

2009 Bernstein: post-quantum.

2009 Finiasz–Sendrier.

2010 Bernstein–Lange–Peters.

2011 May–Meurer–Thomae.

2011 Becker–Coron–Joux.

2012 Becker–Joux–May–Meurer.

2013 Bernstein–Jeffery–Lange–

Meurer: post-quantum.

2015 May–Ozerov.

Modern McEliece

Easily rescue system by using

a larger public key: “random”

(n=2)× n matrix K over F2.

e.g., 1800× 3600.

2008 Bernstein–Lange–Peters:

more speedups; ≈260 cycles;

attack actually carried out.

2009 Bernstein–Lange–

Peters–van Tilborg.

2009 Bernstein: post-quantum.

2009 Finiasz–Sendrier.

2010 Bernstein–Lange–Peters.

2011 May–Meurer–Thomae.

2011 Becker–Coron–Joux.

2012 Becker–Joux–May–Meurer.

2013 Bernstein–Jeffery–Lange–

Meurer: post-quantum.

2015 May–Ozerov.

Modern McEliece

Easily rescue system by using

a larger public key: “random”

(n=2)× n matrix K over F2.

e.g., 1800× 3600.

2008 Bernstein–Lange–Peters:

more speedups; ≈260 cycles;

attack actually carried out.

2009 Bernstein–Lange–

Peters–van Tilborg.

2009 Bernstein: post-quantum.

2009 Finiasz–Sendrier.

2010 Bernstein–Lange–Peters.

2011 May–Meurer–Thomae.

2011 Becker–Coron–Joux.

2012 Becker–Joux–May–Meurer.

2013 Bernstein–Jeffery–Lange–

Meurer: post-quantum.

2015 May–Ozerov.

Modern McEliece

Easily rescue system by using

a larger public key: “random”

(n=2)× n matrix K over F2.

e.g., 1800× 3600.

Larger weight w ≈ n=(2 lg n).

e.g. e ∈ F3600
2 of weight 150.

2008 Bernstein–Lange–Peters:

more speedups; ≈260 cycles;

attack actually carried out.

2009 Bernstein–Lange–

Peters–van Tilborg.

2009 Bernstein: post-quantum.

2009 Finiasz–Sendrier.

2010 Bernstein–Lange–Peters.

2011 May–Meurer–Thomae.

2011 Becker–Coron–Joux.

2012 Becker–Joux–May–Meurer.

2013 Bernstein–Jeffery–Lange–

Meurer: post-quantum.

2015 May–Ozerov.

Modern McEliece

Easily rescue system by using

a larger public key: “random”

(n=2)× n matrix K over F2.

e.g., 1800× 3600.

Larger weight w ≈ n=(2 lg n).

e.g. e ∈ F3600
2 of weight 150.

1962 attack cost: 2(1+o(1))w .

2008 Bernstein–Lange–Peters:

more speedups; ≈260 cycles;

attack actually carried out.

2009 Bernstein–Lange–

Peters–van Tilborg.

2009 Bernstein: post-quantum.

2009 Finiasz–Sendrier.

2010 Bernstein–Lange–Peters.

2011 May–Meurer–Thomae.

2011 Becker–Coron–Joux.

2012 Becker–Joux–May–Meurer.

2013 Bernstein–Jeffery–Lange–

Meurer: post-quantum.

2015 May–Ozerov.

Modern McEliece

Easily rescue system by using

a larger public key: “random”

(n=2)× n matrix K over F2.

e.g., 1800× 3600.

Larger weight w ≈ n=(2 lg n).

e.g. e ∈ F3600
2 of weight 150.

1962 attack cost: 2(1+o(1))w .

After extensive research,

2015 attack cost: 2(1+o(1))w .

2008 Bernstein–Lange–Peters:

more speedups; ≈260 cycles;

attack actually carried out.

2009 Bernstein–Lange–

Peters–van Tilborg.

2009 Bernstein: post-quantum.

2009 Finiasz–Sendrier.

2010 Bernstein–Lange–Peters.

2011 May–Meurer–Thomae.

2011 Becker–Coron–Joux.

2012 Becker–Joux–May–Meurer.

2013 Bernstein–Jeffery–Lange–

Meurer: post-quantum.

2015 May–Ozerov.

Modern McEliece

Easily rescue system by using

a larger public key: “random”

(n=2)× n matrix K over F2.

e.g., 1800× 3600.

Larger weight w ≈ n=(2 lg n).

e.g. e ∈ F3600
2 of weight 150.

1962 attack cost: 2(1+o(1))w .

After extensive research,

2015 attack cost: 2(1+o(1))w .

Post-quantum: 2(0:5+o(1))w .

e.g. ≈226 Grover iterations

to search 253 choices of S.

