Introduction to Data (“state”) stored in n bits:

quantum algorithms an element of {0, 1}",
and introduction to often viewed as representing
code-based cryptography an element of {0,1,...,2"7 —1}.

Daniel J. Bernstein
University of lllinois at Chicago &
Technische Universiteit Eindhoven

Introduction to Data (“state”) stored in n bits:

quantum algorithms an element of {0, 1}",

and introduction to often viewed as representing
code-based cryptography an element of {0,1,...,2"7 —1}.
Daniel J. Bernstein State stored in n qubits:
University of lllinois at Chicago & a nonzero element of C2".
Technische Universiteit Eindhoven Retrieving this vector Is tough!

Introduction to

quantum algorithms

and introduction to
code-based cryptography

Daniel J. Bernstein
University of lllinois at Chicago &
Technische Universiteit Eindhoven

Data (“state”) stored in n bits:
an element of {0,1}",

often viewed as representing
an element of {0,1,...,2"7 —1}.

State stored in n qubits:
a nonzero element of C2".

Retrieving this vector Is tough!

If n qubits have state

(aog, a1, ..
measuring the qubits produces

an element of {0,1,...,2"7 — 1}
and destroys the state.

Y aQn_l) then

Measurement produces element g
with probability |ag|?/ Y, |ar|?.

tion to

1 algorithms
oduction to

sed cryptography

. Bernstein
ty of lllinois at Chicago &
he Universiteit Eindhoven

Data (“state”) stored in n bits:
an element of {0,1}",

often viewed as representing
an element of {0,1,...,2"7 — 1}

State stored in n qubits:
a nonzero element of C2".

Retrieving this vector Is tough!

If n qubits have state

(ag, a1,...,a»_1) then
measuring the qubits produces
an element of {0,1,...,2"7 — 1}
and destroys the state.
Measurement produces element g

with probability |ag|?/ Y, |ar|?.

Some ex

(1,0,0,(
“10)" in
Measure

NS
O

graphy
N

is at Chicago &
siteit Eindhoven

Data (“state”) stored in n bits:
an element of {0,1}",

often viewed as representing
an element of {0,1,...,2"7 — 1}

State stored in n qubits:
a nonzero element of C2".

Retrieving this vector Is tough!

If n qubits have state

(ag, a1,...,a»_1) then
measuring the qubits produces
an element of {0,1,...,2"7 — 1}
and destroys the state.
Measurement produces element g

with probability |ag|?/ Y, |ar|?.

Some examples of

(1,0,0,0,0,0,0,0
“10)" in standard
Measurement proc

g0 &
hoven

Data (“state”) stored in n bits:
an element of {0,1}",

often viewed as representing
an element of {0,1,...,2"7 — 1}

State stored in n qubits:
a nonzero element of C2".

Retrieving this vector Is tough!

If n qubits have state

(ag, a1,...,a»_1) then
measuring the qubits produces
an element of {0,1,...,2"7 — 1}
and destroys the state.
Measurement produces element g

with probability |ag|?/ Y, |ar|?.

Some examples of 3-qubit si

(1,0,0,0,0,0,0,0) is
“|0)" in standard notation.

Measurement produces O.

Data (“state”) stored in n bits:
an element of {0,1}",

often viewed as representing
an element of {0,1,...,2"7 — 1}

State stored in n qubits:
a nonzero element of C2".

Retrieving this vector Is tough!

If n qubits have state

(ag, a1,...,a»_1) then
measuring the qubits produces
an element of {0,1,...,2"7 — 1}
and destroys the state.
Measurement produces element g

with probability |ag|?/ Y, |ar|?.

Some examples of 3-qubit states:

(1,0,0,0,0,0,0,0) is
“I0)" in standard notation.

Measurement produces O.

Data (“state”) stored in n bits:
an element of {0, 1}",
often viewed as representing

an element of {0,1,...,2"7 — 1}

State stored in n qubits:
a nonzero element of C2".

Retrieving this vector Is tough!

If n qubits have state
(ao, a, ..., aQn_l) then
measuring the qubits produces

an element of {0,1,...,2"7 — 1}
and destroys the state.

Measurement produces element g

with probability |ag|?/ Y, |ar|?.

Some examples of 3-qubit states:

(1,0,0,0,0,0,0,0) is
“I0)" in standard notation.

Measurement produces O.

(OOOOOOlO)ls
“|6)" in standard notation.

Measurement produces 6.

Data (“state”) stored in n bits:

an element of {0, 1}",
often viewed as representing

an element of {0,1,...,2"7 — 1}

State stored in n qubits:
a nonzero element of C2".

Retrieving this vector Is tough!

If n qubits have state
(ao, a, ..., aQn_l) then
measuring the qubits produces

an element of {0,1,...,2"7 — 1}
and destroys the state.

Measurement produces element g

with probability |ag|?/ Y, |ar|?.

Some examples of 3-qubit states:

(1,0,0,0,0,0,0,0) is
“I0)" in standard notation.

Measurement produces O.

(OOOOOOlO)ls
“|6)" in standard notation.

Measurement produces 6.

(0,0,0,0,0,0,—7i,0) = —7i|6):
Measurement produces 6.

Data (“state”) stored in n bits:

an element of {0, 1}",
often viewed as representing

an element of {0,1, ..., 2" — 1},

State stored in n qubits:
a nonzero element of C2".

Retrieving this vector Is tough!

If n qubits have state

and destroys the state.

Measurement produces element g

with probability |ag|?/ Y, |ar|?.

Some examples of 3-qubit states:

(1,0,0,0,0,0,0,0) is
“I0)" in standard notation.

Measurement produces O.

(OOOOOOlO)ls
“|6)" in standard notation.

Measurement produces 6.

(0,0,0,0,0,0,—7i,0) = —7i|6):
Measurement produces 6.

(0,0,4,0,0,0,8,0) = 4|2) + 8|6):
Measurement produces
2 with probability 20%,
6 with probability 80%.

state”) stored in n bits:
nt of {0, 1},
wed as representing

nt of {0,1,..., 2" — 1},

ored In n qubits:
n
o element of C? .

g this vector Is tough!

ts have state

.., aon_1) then

ng the qubits produces
nt of {0,1, ..., 2" — 1}
roys the state.

ment produces element g

bability |aq|?/S_, |ar|?.

Some examples of 3-qubit states:

(1,0,0,0,0,0,0,0) is
“|0)" in standard notation.

Measurement produces O.

(0,0,0,0,0,0,1,0) is
“|6)" in standard notation.

Measurement produces 6.

(0,0,0,0,0,0,—7i,0) = —7i|6):
Measurement produces 6.

(0,0,4,0,0,0,8,0) = 4]2) + 8/6):

Measurement produces
2 with probability 20%,

6 with probability 80%.

Fast quc

(ag, a1,
(a1, ag,
is compl

hence

“(

red In n bits:
1}7,

presenting

Jubits:
of C%".
tor 1s tough!

ate
then
bits produces

tate.

luces element g

Q‘Q/Zr ‘al’|2'

Some examples of 3-qubit states:

(1,0,0,0,0,0,0,0) is
“I0)" in standard notation.

Measurement produces O.

(O 0,0,0,0,0,1,0) is
“|6)" in standard notation.

Measurement produces 6.

(0,0,0,0,0,0,—7i,0) = —7i|6):
Measurement produces 6.

(0,0,4,0,0,0,8,0) = 4|2) + 8|6):

Measurement produces
2 with probability 20%,
6 with probability 80%.

Fast quantum ope

(ag, a1, a2, a3, ag, ¢

(a1, ag, a3, a2, as, ¢
Is complementing

hence “complemel

Its:

Some examples of 3-qubit states:

(1,0,0,0,0,0,0,0) is
“|0)" in standard notation.

Measurement produces O.

(0,0,0,0,0,0,1,0) is
“|6)" in standard notation.

Measurement produces 6.

(0,0,0,0,0,0,—7i,0) = —7i|6):
Measurement produces 6.

(0,0,4,0,0,0,8,0) = 4]2) + 8/6):

Measurement produces
2 with probability 20%,
6 with probability 80%.

Fast quantum operations, p:

(301 a]_v 321 331 341 351 36' 37) |

(a1, ag, a3, ao, as, a4, a7, ag)
Is complementing index bit |

hence “complementing qubr

Some examples of 3-qubit states:

(1,0,0,0,0,0,0,0) is
“I0)" in standard notation.

Measurement produces O.

(O 0,0,0,0,0,1,0) is
“|6)" in standard notation.

Measurement produces 6.

(0,0,0,0,0,0,—7i,0) = —7i|6):
Measurement produces 6.

(0,0,4,0,0,0,8,0) = 4|2) + 8|6):

Measurement produces
2 with probability 20%,
6 with probability 80%.

Fast quantum operations, part 1

(ag, a1, a2, a3, a4, as, ag, a7) —

(a1, ag, a3, ao, as, a4, a7, ag)
Is complementing index bit O,

hence “complementing qubit 0.

Some examples of 3-qubit states:

(1,0,0,0,0,0,0,0) is
“I0)" in standard notation.

Measurement produces O.

(OOOOOOlO)ls
“|6)" in standard notation.

Measurement produces 6.

(0,0,0,0,0,0,—7i,0) = —7i|6):
Measurement produces 6.

(0,0,4,0,0,0,8,0) = 4|2) + 8|6):

Measurement produces
2 with probability 20%,
6 with probability 80%.

Fast quantum operations, part 1

(ag, a1, a2, a3, a4, as, ag, a7) —

(a1, ag, a3, ao, as, a4, a7, ag)
Is complementing index bit O,

hence “complementing qubit 0.

(ag, a1, a2, a3, aa, as, ae, a7)

is measured as (qg, g1, q2),
representing g = qg + 291 + 49>,
with probability |ag|?/ Y, |ar|?.

(a1, ag, a3, ao, as, a4, a7, ap)
is measured as (qo @ 1, g1, q2),
representing g @ 1,

with probability |ag|?/ Y, |ar|?.

amples of 3-qubit states:

),0,0,0,0) is
standard notation.
ment produces 0.

),0,0,1,0) is
standard notation.
ment produces 6.

),0,0,—=7i,0) = —7il|6):
ment produces 6.

),0,0,8,0) = 4[2) + 8/6):

ment produces
robability 20%,
robability 80%.

Fast quantum operations, part 1

(ag, a1, a2, a3, a4, as, ag, ay) —
(a1, ag, a3, ao, as, a4, a7, ag)

Is complementing index

nit 0,

hence “complementing qubit 0" .

(ag, a1, a2, a3, aa, as, ae, a7)

is measured as (qg, g1, q2),
representing g = qg + 291 + 49>,
with probability |ag|?/ Y, |ar|?.

(a1, ag, a3, ao, as, a4, a7, ag)
is measured as (qo @ 1, g1, q2),

representing g @ 1,

with probability |ag|?/ Y, |ar|?.

(ag, a1, ¢
(34, dg, c
IS “‘com|

(g0, g1,

3-qubit states:

) is
notation.
luces O.

) is
notation.
luces 0.

,0) = —7i|6):
luces 0.

) = 4|2) 4 8|6):

luces
20%,
80%.

Fast quantum operations, part 1

(ag, a1, a2, a3, a4, as, ag, a7) —

(a1, ag, a3, ao, as, a4, a7, ag)
Is complementing index bit 0,

hence “complementing qubit 0.

(ag, a1, a2, a3, aa, as, ae, a7)

is measured as (qg, g1, q2),
representing g = qg + 291 + 49>,
with probability |ag|?/ Y, |ar|?.

(a1, ag, a3, ao, as, a4, ay, ap)

is measured as (qo @ 1, g1, q2),
representing g @ 1,

with probability |ag|?/ Y, |ar|?.

(ag, a1, a2, a3, aa, ¢
(a4, as, ag, ay, ag,
Is “‘complementing

(90, 91, 92) — (qo

ates:

16):

-8(6):

Fast quantum operations, part 1

(ag, a1, a2, a3, a4, as, ag, ay) —
(a1, ag, a3, ao, as, a4, a7, ag)

Is complementing index

nit O,

hence “complementing qubit 0.

(ag, a1, a2, a3, aa, as, ae, a7)

is measured as (qg, g1, q2),
representing g = qg + 291 + 4q»,
with probability |ag|?/ Y, |ar|?.

(a1, ag, a3, ao, as, a4, a7, ag)
is measured as (qo @ 1, g1, q2),

representing g @ 1,

with probability |ag|?/ Y, |ar|?.

(a0, a1, a2, a3, aa, as, ag, az)
(a4, as, ag, a7, ag, a1, a2, az)
is “complementing qubit 2"

(90,91.92) — (90,91, G2 D

Fast quantum operations, part 1 (ag, a1, a2, a3, aa, as, @, a7) —

(a4, as, ag, a7, ag, a1, a2, az)
is ‘complementing qubit 2" :

(90,91, G2) — (g0, 91, G2 B 1).

(ag, a1, a2, a3, a4, as, ag, a7) —

(a1, ag, a3, ao, as, a4, a7, ap)
Is complementing index bit O,

hence “complementing qubit 0.

(ag, a1, a2, a3, aa, as, ae, a7)

is measured as (qg, g1, q2),
representing g = qg + 291 + 49>,
with probability |ag|?/ Y, |ar|?.

(a1, ag, a3, ao, as, a4, a7, ap)
is measured as (qo @ 1, 91, q2),
representing g @ 1,

with probability |ag|?/ Y, |ar|?.

Fast quantum operations, part 1 (ag, a1, a2, a3, aa, as, @, a7) —
(a4, as, ag, a7, ag, a1, a2, az)
is ‘complementing qubit 2" :

(90,91, G2) — (g0, 91, G2 B 1).

(ag, a1, a2, a3, a4, as, ag, a7) —

(a1, ag, a3, ao, as, a4, a7, ap)
Is complementing index bit O,

hence “complementing qubit 0". (ag, a1, a2, a3, aa, as, a6, a7) —
(a0, a4, a2, a6, a1, as, a3, ar)
Is “swapping qubits 0 and 2" :

(0. g1, q2) = (92,91, q0).

(ag, a1, a2, a3, aa, as, ae, a7)

is measured as (qg, g1, q2),
representing g = qg + 291 + 49>,
with probability |ag|?/ Y, |ar|?.

(a1, ag, a3, ao, as, a4, a7, ap)

is measured as (qo @ 1, 91, q2),
representing g @ 1,

with probability |ag|?/ Y, |ar|?.

Fast quantum operations, part 1

(ag, a1, a2, a3, a4, as, ag, a7) —

(a1, ag, a3, ao, as, a4, a7, ap)
Is complementing index bit O,

hence “complementing qubit 0.

(ag, a1, a2, a3, aa, as, ae, a7)

is measured as (qg, g1, q2),
representing g = qg + 291 + 49>,
with probability |ag|?/ Y, |ar|?.

(a1, ag, a3, ao, as, a4, a7, ap)

is measured as (qo @ 1, 91, q2),
representing g @ 1,

with probability |ag|?/ Y, |ar|?.

(ag, a1, a2, a3, aa, as, @, a7) —
(a4, as, ag, a7, ag, a1, a2, az)
is ‘complementing qubit 2" :

(90,91, G2) — (g0, 91, G2 B 1).

(ag, a1, a2, a3, aa, as, a6, a7) —
(a0, a4, a2, a6, a1, as, a3, ar)
Is “swapping qubits 0 and 2" :

(90, 91, 92) — (92, 91, q0).
Complementing qubit 2
= swapping qubits 0 and 2

o complementing qubit O
o swapping qubits 0 and 2.

Similarly: swapping qubits 7, J.

intum operations, part 1

10, a3, a4, as, ap, A7) —

13, a2, as, a4, a7, a)
ementing index bit 0,

omplementing qubit 0.

2, a3, a4, as, ae, ar)

red as (qo, 91, 92),

ting g = qo + 291 + 4q2,
bability [ag|*/ Y, |ar|*.

33132135134137736)
red as (qo ® 1, q1, qz),
ting g @ 1,

bability |aq|?/S_, |ar|?.

(ag, a1, a2, a3, aa, as, ap, a7) —

(a4, as, ag, a7, ag, a1, a2, az)
is “complementing qubit 2" :

(90,91, G2) — (g0, 91, G2 ® 1).

(ag, a1, a2, a3, aa, as, ap, a7) —
(a0, a4, a2, a6, a1, as, a3, ar)
Is “swapping qubits O and 2":

(0. g1, 92) = (92,91, q0).

Complementing qubit 2

= swapping qubits 0 and 2
o complementing qubit O
o swapping qubits 0 and 2.

Similarly: swapping qubits 7, J.

(ag, a1, ¢
(ag, a1, ¢
IS a ‘rev
“control

(g0, g1, ¢

rations, part 1

)5, 3, a7)

4, a7, ap)
index bit O,

1ting qubit 0.

5, A6, a7)
, g1, G2),
0 + 291 + 4q2,

Q‘Q/Zr ‘al"z'

)4,37,36)
D 1,q1,92),

Q‘z/Zr ‘al’|2'

(ag, a1, a2, a3, aa, as, a6, a7) —

(a4, as, ag, a7, ag, a1, a2, az)
Is “complementing qubit 2" :

(90,91, G2) — (g0, 91, G2 B 1).

(ag, a1, a2, a3, aa, as, a6, a7) —
(a0, a4, a2, a6, a1, as, a3, ar)
Is “swapping qubits O and 2" :

(0. g1, q2) = (92,91, q0).

Complementing qubit 2

= swapping qubits 0 and 2
o complementing qubit O
o swapping qubits 0 and 2.

Similarly: swapping qubits 7, J.

(ag, a1, a2, a3, aa, ¢

(ag, a1, a3, a2, aa, ¢
IS a "reversible XC

“controlled NOT |
(90, 91, g2) — (q0

(ag, a1, a», a3, aa, as, ap, a7) —

(a4, as, ag, a7, ag, a1, a2, az)
is “complementing qubit 2" :

(90,91, G2) — (g0, 91, G2 ® 1).

(ag, a1, a2, a3, aa, as, ap, a7) —
(a0, a4, a2, a6, a1, as, a3, ar)
Is “swapping qubits O and 2":

(0. g1, 92) = (92,91, q0).

Complementing qubit 2

= swapping qubits 0 and 2
o complementing qubit O
o swapping qubits 0 and 2.

Similarly: swapping qubits /, J.

(30, di, d2, d3, d4, d5, 46, 37) |

(a0, a1, a3, a2, a4, as, a7, ag)
is a “reversible XOR gate” -

“controlled NOT gate”:
(90,91, 92) — (G0 ® g1, g1,

(ag, a1, a2, a3, aa, as, @, a7) —

(a4, as, ag, a7, ag, a1, a2, az)
Is “complementing qubit 2" :

(90,91, G2) — (g0, 91, G2 B 1).

(ag, a1, a2, a3, aa, as, a6, a7) —
(a0, a4, a2, a6, a1, as, a3, ar)
Is “swapping qubits 0 and 2" :

(0. g1, 92) = (92,91, q0).

Complementing qubit 2

= swapping qubits 0 and 2
o complementing qubit O
o swapping qubits 0 and 2.

Similarly: swapping qubits 7, J.

(ag, a1, a2, a3, aa, as, @, a7) —

(a0, a1, a3, a2, a4, as, a7, ag)
is a “reversible XOR gate” =

“controlled NOT gate”:
(g0, 91, 92) — (90 © g1, 91, 92).

(ag, a1, a2, a3, aa, as, @, a7) —

(a4, as, ag, a7, ag, a1, a2, az)
Is “complementing qubit 2" :

(90,91, G2) — (g0, 91, G2 B 1).

(ag, a1, a2, a3, aa, as, a6, a7) —
(a0, a4, a2, a6, a1, as, a3, ar)
Is “swapping qubits 0 and 2" :

(0. g1, 92) = (92,91, q0).

Complementing qubit 2

= swapping qubits 0 and 2
o complementing qubit O
o swapping qubits 0 and 2.

Similarly: swapping qubits 7, J.

(ag, a1, a2, a3, aa, as, @, a7) —
(a0, a1, a3, a2, a4, as, a7, ag)

is a “reversible XOR gate” =
“controlled NOT gate”:

(g0, g1, 92) — (g0 @ q1. 91, 2).

Example with more qubits:

(a0, a1, @2, a3, as, as, ae, ar,

ag, a9, a10, 411, @12, 413, 14, a15,
16, a17, 18, @19, 20, 421, a22, a3,
a4, axs, e, a27, a2, a9, a0, as1)
— (ag, a1, a3, a2, a4, as, ay, ag,

ag, ag, a11, a10, @12, 413, a15, a4,
a16, a17, 419, @18, 20, 421, a23, a2,
aga, azs, 27, a6, A28, 29, @31, a3).-

1, a3, a4, as, ag, a7) —

6, a7, A0, a1, a2, a3)
blementing qubit 2:

12) — (g0, g1, g2 D 1).

10, a3, a4, as, ag, a7) —
2, a6, a1, a5, a3, ay)
ping qubits 0 and 2":

1) — (g2, 91, q0).

nenting qubit 2

ing qubits 0 and 2
iplementing qubit O
pping qubits 0 and 2.

. swapping qubits 1, J.

(ag, a1, a2, a3, aa, as, ap, a7) —
(a0, a1, a3, a2, a4, as, a7, ag)

is a “reversible XOR gate” =
“controlled NOT gate”:

(90, g1, 92) — (g0 @ g1. 91, §2).

Example with more qubits:

(a0, a1, a2, a3, as, as, ae, ar,

ag, a9, a10, 11, @12, 413, 14, a1s,
16, a17, 18, @19, a20, 421, a22, a3,
a4, axs, a6, A27, A28, @29, a0, a3l)
— (ao, a1, a3, a2, as, as, ar, ae,

ag, a9, a11, 410, @12, 413, a15, a4,
a16, a17, 419, a18, a20, 421, a23, a2,

(ag, a1, ¢
(ag, a1, ¢
sa To
“control
(90, g1,

5, g, a7)

1, a2, a3)
- qubit 27 :

g1, g2 D 1).

5, a6, a7) —

5, a3, a7)
s 0 and 2"

;qquO)
1bit 2
5 0 and 2

g qubit O
its 0 and 2.

g qubits 1, J.

(ag, a1, a2, a3, aa, as, a6, a7) —
(a0, a1, a3, a2, a4, as, a7, ag)

is a “reversible XOR gate” =
“controlled NOT gate”:

(90,91, 92) — (g0 @ q91. 91, q2).

Example with more qubits:

(a0, a1, @2, a3, as, as, ae, ar,

ag, a9, a10, 411, @12, 413, 14, a15s,
a16, a17, 18, @19, 20, 421, a22, a3,
a4, axs, axe, a27, a2, a9, a0, as1)
— (ao, a1, a3, a2, as, as, ar, ae,

ag, a9, a11, a10, @12, 413, a15, a4,
a16, a17, 419, @18, 20, 421, a23, a2,

(ag, a1, a2, a3, aa, ¢

(ag, a1, a2, a3, aa, ¢
is a "Toffoli gate”

“controlled contro
(g0, 91, 92) — (qo

(ag, a1, a», a3, aa, as, ap, a7) —
(a0, a1, a3, a2, a4, as, a7, ag)

is a “reversible XOR gate” =
“controlled NOT gate”:

(90, g1, 92) — (g0 @ g1. 91, G2).

Example with more qubits:

(a0, a1, a2, a3, as, as, ae, ar,

ag, a9, a10, 11, @12, 413, 14, a1s,
a16, a17, 18, @19, a20, 421, a22, a3,
a4, axs, a6, A27, A28, @29, a0, a3l)
— (ao, a1, a3, a2, as, as, ar, ae,

ag, a9, a11, 410, @12, 413, a15, a4,
a16, a17, 419, a18, a20, 421, a23, a2,

(30, di, d2, d3, d4, d5, 46, 37) |

(a0, a1, a2, a3, a4, as, a7, ag)
is a “Toffoli gate” =

“controlled controlled NOT
(g0, 91, 92) — (q0 ® q192, q

(ag, a1, a2, a3, aa, as, @, a7) —
(a0, a1, a3, a2, a4, as, a7, ag)

is a “reversible XOR gate” =
“controlled NOT gate”:

(90,91, 92) — (g0 @ q91. 91, §2).

Example with more qubits:

(a0, a1, @2, a3, as, as, ae, ar,

ag, a9, a10, 411, @12, 413, 14, a15s,
16, a17, 18, @19, 20, a1, a22, a3,
a4, axs, axe, a27, a2, a9, a0, as1)
— (ao, a1, a3, a2, as, as, ar, as,

ag, a9, a11, a10, @12, 413, a15, a4,
a16, a17, 419, @18, 20, 421, a23, a2,

(ag, a1, a2, a3, aa, as, @, a7) —

(a0, a1, a2, a3, a4, as, a7, ag)
is a “Toffoli gate” =

“controlled controlled NOT gate”:
(90, g1, q2) — (90 © q1G2, 91, G2).

(ag, a1, a2, a3, aa, as, @, a7) —
(a0, a1, a3, a2, a4, as, a7, ag)

is a “reversible XOR gate” =
“controlled NOT gate”:

(90,91, 92) — (g0 @ q91. 91, §2).

Example with more qubits:

(a0, a1, @2, a3, as, as, ae, ar,

ag, a9, a10, 411, @12, 413, 14, a15s,
16, a17, 18, @19, 20, a1, a22, a3,
a4, axs, axe, a27, a2, a9, a0, as1)
— (ao, a1, a3, a2, as, as, ar, as,

ag, a9, a11, a10, @12, 413, a15, a4,
a16, a17, 419, @18, 20, 421, a23, a2,

(ag, a1, a2, a3, aa, as, @, a7) —
(a0, a1, a2, a3, a4, as, a7, ag)

is a “Toffoli gate” =
“controlled controlled NOT gate”:

(90,91, q2) — (g0 @ 9192, 91, G2).

Example with more qubits:

(a0, a1, @2, a3, as, as, ae, ar,

ag, a9, a10, a11, 12, 13, a4, 315,
a16, a17, a1g, 419, a0, a21, a22, a3,
a4, azs, axe, a27, a8, a29, asQ, asl)
— (ao, a1, a2, a3, as, as, ar, as,

ag, a9, a10, a11, 12, 13, a15, 314,
a16, a17, a1, 419, a0, a21, a23, a2,
aga, axs, axe, @27, a8, @29, @31, a30)-

1, a3, a4, as, ag, a7) —
13, a2, a4, as, ar, a6)
ersible XOR gate” =
led NOT gate":

12) — (g0 ® g1, 91, G2)-

- with more qubits:

12, d3, d4, d5, d6, d7,

0, a11, d12, @13, 314, a15,
a1g, a19, 20, a1, a22, a3,
ae, a27, 28, a29, a3, a31)
1, a3, a2, a4, as, a7, a6,

1, d10, @12, 313, a15, 314,
a19, a1g, 20, 421, a23, a2,

(ag, a1, a2, a3, aa, as, ap, a7) —
(a0, a1, a2, a3, a4, as, a7, ag)

is a “Toffoli gate” =

“controlled controlled NOT gate”:

(90,91, g2) — (g0 @ 9192, 91, G2)-

Example with more qubits:

(a0, a1, a2, a3, as, as, ae, ar,

ag, a9, a10, 11, @12, 413, 14, a1s,
16, a17, 18, @19, a20, 421, a22, a3,
a4, azs, axe, a27, a8, a29, a0, asl)
— (ao, a1, a2, a3, as, as, ar, ae,

ag, a9, a10, 11, @12, 413, a1, a4,
a16, a17, 18, @19, a20, 421, a23, a2,
an4, a5, aze, a27, @28, a29, a1, a30).-

Reversib

Say p is
of {0, 1,

General
these fa:
to obtai

(ag, a1, -
(ap-1(0)

e qubits:

5, d6, 47,

, 313, 314, a15,
20, @21, 422, a3,
28, 329, 430, a31)
4, as, ay, ae,

, 313, 315, 14,
20, @21, 423, @22,

(ag, a1, a2, a3, aa, as, a6, a7) —

(a0, a1, a2, a3, a4, as, a7, ag)
is a “Toffoli gate” =

“controlled controlled NOT gate”:

(90,91, q2) — (g0 @ 9192, 91, G2).

Example with more qubits:

(20, a1, a2, a3, a4, as, a6, a7,

dg, d9, d10, 411, 412, d13, 414, 415,
d16, d17, 418, 419, 420, d21, d22, d23,
a4, s, axe, a7, a8, a9, 330, a31)
— (ag, a1, a2, a3, a4, as, ay, ag,

ag, ag, a10, @11, 412, 413, a15, 14,
a16, 417, 418, 419, @20, 421, a23, 422,

Reversible comput

Say p is a permut.
of {0,1,...,2" —

General strategy t
these fast quantur
to obtain Index pe

(30, dl,..., aQn_l)
(3p-10) 3p1(1)"

12).

d15,

), 323,
), a31)
.
314,

3, 322,

1, 330).

(ag, a1, a», a3, aa, as, ap, a7) —

(a0, a1, a2, a3, a4, as, a7, ag)
is a “Toffoli gate” =

“controlled controlled NOT gate”:

(90,91, g2) — (g0 @ 9192, 91, G2).

Example with more qubits:

(a0, a1, a2, a3, as, as, ae, ar,

ag, a9, a10, 11, @12, 413, 14, a1s,
a16, a17, 18, @19, a20, 421, a22, a3,
a4, azs, axe, a27, a8, a29, a0, asl)
— (ao, a1, a2, a3, as, as, ar, ae,

ag, a9, a10, 11, @12, 413, a1, a14,
a16, a17, 18, @19, a20, 421, a23, a2,

Reversible computation

Say p is a permutation
of {0,1,...,2" —1}.

General strategy to compose
these fast quantum operatio
to obtain index permutation
(ao, al, ..., 32”—1) —>

(3p-1(0) 3p-1(2)r - 312

(ag, a1, a2, a3, aa, as, @, a7) —

(a0, a1, a2, a3, a4, as, a7, ag)
is a “Toffoli gate” =

“controlled controlled NOT gate”:

(90,91, q2) — (g0 @ 9142, 91, G2).

Example with more qubits:

(a0, a1, @2, a3, as, as, ae, ar,

ag, a9, a10, 411, @12, 413, 14, a15s,
16, a17, 18, @19, 20, a1, a22, a3,
a4, azs, axe, a27, a8, a29, asQ, asl)
— (ao, a1, a2, a3, as, as, ar, as,

ag, a9, a10, 411, @12, 413, a15, a4,
a16, a17, 18, @19, a20, 421, a23, a2,

Reversible computation

Say p is a permutation
of {0,1,...,2" —1}.

General strategy to compose
these fast quantum operations
to obtain index permutation
(ao, al, ..., 32n_1) >

(3p-1(0) 3p-1(1)r -+ 3p-L(2n-1))

(ag, a1, a2, a3, aa, as, @, a7) —

(a0, a1, a2, a3, a4, as, a7, ag)
is a “Toffoli gate” =

“controlled controlled NOT gate”:

(90,91, q2) — (g0 @ 9142, 91, G2).

Example with more qubits:

(a0, a1, @2, a3, as, as, ae, ar,

ag, a9, a10, 411, @12, 413, 14, a15s,
16, a17, 18, @19, 20, a1, a22, a3,
a4, axs, axe, a27, a2, a9, a0, as1)
— (ao, a1, a2, a3, as, as, ar, as,

ag, a9, a10, 411, @12, 413, a15, a4,
a16, a17, 18, @19, a20, 421, a23, a2,

Reversible computation

Say p is a permutation
of {0,1,...,2" —1}.

General strategy to compose
these fast quantum operations
to obtain index permutation

(30, al, ..., aQn_l) >
(3p-1(0) 3p-1(1)r -+ 3p-L(2n-1))
1. Build a traditional circuit

to compute j — p(j)
using NOT /XOR/AND gates.

2. Convert into reversible gates:
e.g., convert AND into Toffoli.

1, a3, a4, as, ag, a7) —

1, a3, a4, as, ar, ag)
ffoll gate” =

led controlled NOT gate”:

12) — (g0 ® q192, 91, g2).

- with more qubits:

12, d3, d4, d5, d6, d7,

0, a11, d12, @13, 314, a15,
a1g, a19, 20, a1, a22, a3,
ae, a27, 28, a29, a3, a31)
1,a2, a3, a4, as, a7, a6,

0, d11, @12, 313, d15, a14,
a1g, a19, 20, a21, a23, a2,

Reversible computation

Say p is a permutation
of {0,1,...,2" —1}.

General strategy to compose
these fast quantum operations
to obtain index permutation

(ao, al, ..., azn_l) —>

(3p-1(0) 3p-1(1) -+ 3p-1(20-1))

1. Build a traditional circuit
to compute j — p(J)
using NOT /XOR/AND gates.

2. Convert into reversible gates:
e.g., convert AND into Toffoli.

Example
(ag, a1,

(a7, ag,
permuta

1. Build
to comp

\

q0

go b 1

5, g, a7)
5, a7, a6)

lled NOT gate”:

e qubits:

5, d6, 47,

, 313, 314, a15,
20, @21, 422, a3,
28, 329, 430, a31)
4, as, ay, ae,

, 313, 315, 14,
20, @21, 423, @22,

Reversible computation

Say p is a permutation
of {0,1,...,2" —1}.

General strategy to compose
these fast quantum operations
to obtain index permutation

(30, al, ..., aQn_l) >

(3p-1(0) 3p-1(1) - 3p-L(2n-1))

1. Build a traditional circuit
to compute j — p(j)
using NOT /XOR/AND gates.

2. Convert into reversible gates:
e.g., convert AND into Toffoli.

Example: Let's co

(ag, a1, a2, a3, aa, ¢

(a7, ag, a1, a2, a3, ¢
permutation g —

1. Build a traditio
to compute g +— ¢

gate” :

a5,
), @23,
), 331)

14,
3, d22,

1, 330).

Reversible computation

Say p is a permutation
of {0,1,...,2" —1}.

General strategy to compose
these fast quantum operations
to obtain index permutation

(30,31,...,32n_1)l—%

(3p-1(0) 3p-1(1) -+ -+ 3p-1(20-1))

1. Build a traditional circuit
to compute j — p(J)
using NOT /XOR/AND gates.

2. Convert into reversible gates:
e.g., convert AND into Toffoli.

Example: Let's compute

(ao, ai, a2, as, a4, as, ae, 37) |

(a7, ag, a1, a2, a3, a4, as, ag);
permutation g — g + 1 moc

1. Build a traditional circuit
to compute g — g+ 1 mod

qo0 qi1 G

N

€1 = 4190

qo @1 g1 © qo g ¢

Reversible computation

Say p is a permutation
of {0,1,...,2" —1}.

General strategy to compose
these fast quantum operations
to obtain index permutation

(30, al, ..., aQn_l) >

(3p-1(0) 3p-1(1) - 3p-L(2n-1))

1. Build a traditional circuit
to compute j — p(j)
using NOT /XOR/AND gates.

2. Convert into reversible gates:
e.g., convert AND into Toffoli.

Example: Let's compute
(ag, a1, a2, a3, aa, as, ap, a7) —

(a7, ag, a1, a2, a3, a4, as, agp);
permutation g — g + 1 mod 8.

1. Build a traditional circuit
to compute g — g + 1 mod 8.

q2

le computation

a permutation
"1}

strategy to compose
st quantum operations
1 index permutation

L, aon_1) —

Ap-1(1) -+ 3p-1(2n-1)):

a traditional circuit

ute j — p(j)
DT /XOR/AND gates.

ert into reversible gates:
vert AND into Toffoli.

Example: Let's compute
(ag, a1, a2, a3, aa, as, ap, a7) —

(a7, ag, a1, a2, a3, a4, as, ag);
permutation g — g + 1 mod 8.

1. Build a traditional circuit
to compute g — g + 1 mod 8.

q0 di1 q2

N

€1 = 4190

qo @1 g1 © qo g2 D ¢y

2. Conv

Toffoli fi

(ag, a1, ¢
(ag, a1,

ation

ation
1}

0O COMPOSE
n operations
rmutation
>

C ap_1(2n_1)):

nal circuit
()
AND gates.

versible gates:
into Toffoll.

Example: Let's compute
(ag, a1, a2, a3, aa, as, ap, a7) —

(a7, ag, a1, a2, a3, a4, as, agp);
permutation g — g + 1 mod 8.

1. Build a traditional circuit
to compute g — g + 1 mod 8.

q2

2. Convert into re

Toffoli for go < g

(ag, a1, a2, a3, aa, ¢
(ag, a1, a2, a7, aa, ¢

7_1)):

S.

1tes:
ol

Example: Let's compute
(ag, a1, a2, a3, aa, as, ap, a7) —

(a7, ag, a1, a2, a3, a4, as, ag);
permutation g — g + 1 mod 8.

1. Build a traditional circuit
to compute g — g + 1 mod 8.

q0 di1 q2

N

€1 = 4190

qo @1 g1 © qo g2 D ¢y

2. Convert into reversible g:

Toffoli for gy < g> & g19p:

(ag, a1, a2, a3, aa, as, ag, a7)
(ag, a1, a2, a7, aa, as, ae, a3).

Example: Let's compute
(ag, a1, a2, a3, aa, as, ap, a7) —

(a7, ag, a1, a2, a3, a4, as, agp);
permutation g — g + 1 mod 8.

1. Build a traditional circuit
to compute g — g + 1 mod 8.

q2

2. Convert into reversible gates.

Toffoli for g» < g> D g190p:
(ao, a1, a2, a3, aa, as, a6, a7) —
(ag, a1, a2, a7, aa, as, ae, a3).

Example: Let's compute
(ag, a1, a2, a3, aa, as, ap, a7) —

(a7, ag, a1, a2, a3, a4, as, agp);
permutation g — g + 1 mod 8.

1. Build a traditional circuit
to compute g — g + 1 mod 8.

q2

2. Convert into reversible gates.

Toffoli for g» < g> D g190p:
(ao, a1, a2, a3, aa, as, a6, a7) —
(ag, a1, a2, a7, aa, as, ae, a3).

Controlled NOT for g1 < g1 P qp:
(ag, a1, a2, a7, aa, as, a6, a3) —
(ag, a7, a», a1, aa, a3, ae, as).

Example: Let's compute
(ag, a1, a2, a3, aa, as, ap, a7) —

(a7, ag, a1, a2, a3, a4, as, agp);
permutation g — g + 1 mod 8.

1. Build a traditional circuit
to compute g — g + 1 mod 8.

q2

2. Convert into reversible gates.

Toffoli for g» < g> D g190p:
(ao, a1, a2, a3, aa, as, a6, a7) —
(ag, a1, a2, a7, aa, as, ae, a3).

Controlled NOT for g1 < g1 P qp:
(ag, a1, a2, a7, aa, as, a6, a3) —
(ag, a7, a», a1, aa, a3, ae, as).

NOT for gy + qgp @ 1
(ag, a7, a2, a1, a4, a3, ag, as) —
(a7, ag, a1, a2, a3, a4, as, ag).

: Let's compute

10, a3, a4, as, ag, a7) —
11, a2, a3, a4, as, 3g);
tion g — g+ 1 mod 8.

a traditional circuit
ute g — g+ 1 mod 8.

di1 q2

O\

€1 = 4190

d1 D qo g> D 1

2. Convert into reversible gates.

Toffoli for gy < g> & g19p:
(ag, a1, a2, a3, aa, as, ap, a7) —
(ag, a1, a2, a7, aa, as, ae, a3).

Controlled NOT for g1 + g1 @ qp:

(ag, a1, a2, a7, aa, as, ag, a3) —
(ag, a7, a», a1, aa, a3, ae, as).

NOT for gy + qgp @ 1
(ag, a7, a2, a1, a4, a3, ag, as) —
(a7, ag, a1, a2, a3, a4, as, ag).

This per
was dec

It didn't

For largse
need ma
Really w

mpute
5, a6, a7)

)4,35,36);
qg+ 1 mod 8.

nal circuit
1 + 1 mod 8.

q2

q> D 1

2. Convert into reversible gates.

Toffoli for g» < g2 D g190p:
(ao, a1, a2, a3, aa, as, a6, a7) —
(ag, a1, a2, a7, aa, as, ae, a3).

Controlled NOT for g1 + g1 @ qp:

(ag, a1, a2, a7, aa, as, a6, a3) —
(ag, a7, a», a1, aa, a3, ae, as).

NOT for gy + qgp @ 1
(ag, a7, a2, a1, a4, a3, ag, as) —
(a7, ag, a1, a2, a3, a4, as, ag).

This permutation
was deceptively ea

It didn't need mar

For large n, most
need many operat
Really want fast c

| 3.

2. Convert into reversible gates.

Toffoli for g» < g> & g19p:
(ag, a1, a2, a3, aa, as, ap, a7) —
(ag, a1, a2, a7, aa, as, ae, a3).

Controlled NOT for g1 + g1 @ qp:

(ag, a1, a2, a7, aa, as, ag, a3) —
(ag, a7, a», a1, aa, a3, ae, as).

NOT for gy + qgp @ 1
(ag, a7, a2, a1, a4, a3, ag, as) —
(a7, ag, a1, a2, a3, a4, as, ag).

This permutation example
was deceptively easy.

It didn't need many operatic

For large n, most permutati
need many operations = slc
Really want fast circuits.

2. Convert into reversible gates.

Toffoli for g» < g2 D g190p:
(ag, a1, a2, a3, aa, as, @, a7) —
(ag, a1, a2, a7, aa, as, ae, a3).

Controlled NOT for g1 < g1 @ qp:

(ag, a1, a2, a7, aa, as, a6, a3) —
(ag, a7, a», a1, aa, a3, ae, as).

NOT for gy + qgp @ 1
(ag, a7, a2, a1, a4, a3, ag, as) —
(a7, ag, a1, a2, a3, a4, as, ag).

This permutation example
was deceptively easy.

It didn't need many operations.

For large n, most permutations p
need many operations = slow.
Really want fast circuits.

2. Convert into reversible gates.

Toffoli for g» < g2 D g190p:
(ag, a1, a2, a3, aa, as, @, a7) —
(ag, a1, a2, a7, aa, as, ae, a3).

Controlled NOT for g1 < g1 @ qp:

(ag, a1, a2, a7, aa, as, a6, a3) —
(ag, a7, a», a1, aa, a3, ae, as).

NOT for gy + qgp @ 1
(ag, a7, a2, a1, a4, a3, ag, as) —
(a7, ag, a1, a2, a3, a4, as, ag).

This permutation example
was deceptively easy.

It didn't need many operations.

For large n, most permutations p
need many operations = slow.
Really want fast circuits.

Also, 1t didn't need extra storage:
circuit operated “in place” after
computation ¢ < g1gg was
merged Into gy < go P ¢y.

Typical circuits aren't in-place.

ert into reversible gates.

Or @2 <= g2 © 41490:
10, a3, a4, as, ag, a7y) —

12, d7, d4, dy, d6, 33).

ed NOT for g1 < g1 D qp:

10, a7, a4, as, ag, a3) —
10, a1, a4, a3, ag, as).

" qo < qo & 1:

10, a1, a4, a3, a6, a5) —
11, 2, a3, a4, as, ag).

This permutation example
was deceptively easy.

It didn't need many operations.

For large n, most permutations p
need many operations = slow.
Really want fast circuits.

Also, it didn't need extra storage:

circuit operated “in place” after
computation ¢; < g1gg was
merged Into gy < g» D ¢y.

Typical circuits aren't in-place.

Start frc
inputs b
b1 ="
bjio =

b = 1¢
specified

versible gates.

> D 4190
5, a6, A7)

5, 36, a3).

r g1 < q1 D qo:

5, a6, a3)
3, 36, a5).
P 1:

3, 36, d5)
4, as, 6).

This permutation example
was deceptively easy.

It didn't need many operations.

For large n, most permutations p
need many operations = slow.
Really want fast circuits.

Also, 1t didn't need extra storage:

circuit operated “in place” after
computation ¢; < g1gg was
merged Into gy < g2 P ¢y.

Typical circuits aren't in-place.

Start from any cir
inputs by, by, ...,
biy1 =1 bf(j1
bit2 =1 br(jyp

br = 1@ br(1)bgy
specified outputs.

1tes.

This permutation example
was deceptively easy.

It didn't need many operations.

For large n, most permutations p
need many operations = slow.
Really want fast circuits.

Also, it didn't need extra storage:

circuit operated “in place” after
computation ¢; < g1gg was
merged Into gy < g» D ¢y.

Typical circuits aren't in-place.

Start from any circuit:
inputs by, by, ..., b;;

bi+1 =1 bf(j11)bg(it1);
bjy2 =1 br(jy2)bg(it2);

br = 1 br(1) bg(7);
specified outputs.

This permutation example
was deceptively easy.

It didn't need many operations.

For large n, most permutations p
need many operations = slow.
Really want fast circuits.

Also, 1t didn't need extra storage:

circuit operated “in place” after
computation ¢; < g1gg was
merged Into gy < go P ¢y.

Typical circuits aren't in-place.

Start from any circuit:
inputs b1, by, ..., b,';

bit1 =1 br(j1)bg(it1);
bi2 = 1@ br(i12)bg(i12);

br = 1 ® (1) bg(7);
specified outputs.

This permutation example
was deceptively easy.

It didn't need many operations.

For large n, most permutations p
need many operations = slow.
Really want fast circuits.

Also, 1t didn't need extra storage:

circuit operated “in place” after
computation ¢; < g1gg was
merged Into gy < go P ¢y.

Typical circuits aren't in-place.

Start from any circuit:
inputs b1, by, ..., b,';

bit1 =1 br(j1)bg(it1);
bi2 = 1@ br(i12)bg(i12);

br = 1 ® (1) bg(7);
specified outputs.

Reversible but dirty:

inputs by, by, ..., bT;

bit1 < 1@ bit1 @ br(i11)bg(it1);
bit2 < 1@ bj12 @ br(i12)bg(i+2);

br <~ 1@ br & bf(T) bg(T)-
Same outputs if all of
bji1,..., by started as 0.

mutation example
ptively easy.

need many operations.

> n, most permutations p
ny operations = slow.
ant fast circuits.

didn’'t need extra storage:

perated “in place” after
ition ¢ < gi1qgp was

Into go < go» P 1.

circuits aren't in-place.

Start from any circuit:
inputs by, by, ..., b;;

bit1 =1 br(j1)bg(it1):
biy2 =1 br(jy2)bg(it2);

br = 1 ® br(1) bg(7);
specified outputs.

Reversible but dirty:

inputs by, by, ..., bT;

bit1 < 1 ® bit1 ® br(i11)bg(it1);
bit2 < 1@ bj12 @ br(i12)bg(it2);

br <~ 1® br @ bf(T) bg(T)-
Same outputs if all of
bji1,..., by started as 0.

Reversib

after fin

set non-

by
on

repea

NON-(

Original

(inputs)
(inputs,

Dirty rey

(in
(in

outs,

DUts,

Clean re

(in
(in

Outs,

Duts,

example

Sy.

1y operations.
permutations p

ions = slow.
IrCults.

d extra storage:

n place’ after

- d14o Was
g2 © C1.

2n't in-place.

Start from any circuit:

inputs by, by, ...

biy1 =1 by

, bj;
1) Dg (i

br = 1 ® (1) bg(7);
specified outputs.

Reversible but dirty:

inputs by, by, ..

. br;

bio1 4 1®bj1® bf(,-
b,'__2 — 16 b,'__2 D bf(,'_

1)

bit2 = 1@ br(jy2)bg(it2);

1) bg(it1)

2) bg(i+2)

br <~ 1@ br & bf(T) bg(T)-
Same outputs if all of

b,'_|_1, ..

., by started as 0.

Reversible and cle
after finishing dirt
set non-outputs b:
by repeating same
on non-outputs In

Original computat
(inputs) —
(inputs, dirt, outpu

Dirty reversible co
(inputs, zeros, zero

(inputs, dirt, outpu

Clean reversible cc
(inputs, zeros, zero

(inputs, zeros, outj

NS.

oNns p

W.

rage:

fter

CE.

Start from any circuit:

inputs by, by, ...

b:.

1= 1O br(iy1)bg(;

b:.

, bj;

2 = 1@ br(jy2)bg(iv

br = 1 ® br(1)bg(7);
specified outputs.

Reversible but dirty:

inputs by, by, ..

b:.

1 < 16 b,

b:.

., br;

> < 16 b,

+1) bg (i

+2) bg (i-

br <~ 1® br @ bf(T) bg(T)-
Same outputs if all of

bii1, ..

., bt started as 0.

Reversible and clean:

after finishing dirty computa

set non-outputs back to 0,

by
on

repeating same operation
non-outputs In reverse or

Original computation:

(inputs) —

(inputs, dirt, outputs).

Dirty reversible computation

(in
(in

outs, zeros, zeros) —

outs, dirt, outputs).

Clean reversible computatiol

(in
(in

outs, zeros, zeros) —

outs, zeros, outputs).

Start from any circuit: Reversible and clean:

inputs by, by, ..., b;; after finishing dirty computation,
bi+1 = 1@ bf(i1+1)bg(i+1); set non-outputs back to 0,
bit2 = 1@ br(iy2)bg(it2); by repeating same operations

on non-outputs in reverse order.

br = 1 ® (1) bg(7);

- Original computation:
specified outputs.

(inputs) —

Reversible but dirty: (inputs, dirt, outputs).
nputs by, by, ..., br; Dirty reversible computation:
bit1 < 1@ bj11 @ br(ir1)bg(it1); (in

bit2 < 1@ bj12 @ br(i10)bg(i+2); (in

outs, zeros, zeros) —

outs, dirt, outputs).

br < 1@ by & b(1yby(7). C.Iean reversible computation:
Same outputs if all of (inputs, zeros, zeros) —
bji1,..., by started as 0. (inputs, zeros, outputs).

m any Circuit:

1, by, ..., b;;

L@ br(j11)bg(i+1);
LD br(i12)bg(i+2);

B br(1)bg(T);
| outputs.

le but dirty:

1,b2,...,b7';

1@ bit1 ® br(ir1)bg(it1);
1 @ b2 @ br(j2)bg(i12);

® br & bf(T) bg(T)-
itputs if all of
, bt started as 0.

Reversible and clean:

after finishing dirty computation,

set non-outputs back to 0,

by
on

repeating same operations
non-outputs in reverse order.

Original computation:

(inputs) —

(inputs, dirt, outputs).

Dirty reversible computation:

(in
(in

outs, zeros, zeros) —

outs, dirt, outputs).

Clean reversible computation:

(in
(in

outs, zeros, zeros) —

outs, zeros, outputs).

Given fa
and fast

build fas
(x, zeros

Reversible and clean:

after finishing dirty computation,
set non-outputs back to 0,

by repeating same operations

on non-outputs in reverse order.

Original computation:
(inputs) —
(inputs, dirt, outputs).

Dirty reversible computation:
(inputs, zeros, zeros) +—

(inputs, dirt, outputs).

Clean reversible computation:
(inputs, zeros, zeros) —

(inputs, zeros, outputs).

Given fast circuit

dNdG

bui

fast circuit for
d fast reversibl

(x, zeros) — (p(x)

g (i

g (-

Reversible and clean:

after finishing dirty computation,
set non-outputs back to 0,

by repeating same operations

on non-outputs in reverse order.

Original computation:
(inputs) —
(inputs, dirt, outputs).

Dirty reversible computation:
(inputs, zeros, zeros) +—

(inputs, dirt, outputs).

Clean reversible computation:
(inputs, zeros, zeros) —

(inputs, zeros, outputs).

Given fast circuit for p

and fast circuit for p_l,

build fast reversible circuit f
(x, zeros) — (p(x), zeros).

Reversible and clean:

after finishing dirty computation,
set non-outputs back to 0,

by repeating same operations

on non-outputs in reverse order.

Original computation:
(inputs) —
(inputs, dirt, outputs).

Dirty reversible computation:
(inputs, zeros, zeros) +—

(inputs, dirt, outputs).

Clean reversible computation:
(inputs, zeros, zeros) —

(inputs, zeros, outputs).

Given fast circuit for p

and fast circuit for p_l,

build fast reversible circuit for
(x, zeros) — (p(x), zeros).

Reversible and clean:

after finishing dirty computation,
set non-outputs back to 0,

by repeating same operations

on non-outputs in reverse order.

Original computation:
(inputs) —
(inputs, dirt, outputs).

Dirty reversible computation:
(inputs, zeros, zeros) +—

(inputs, dirt, outputs).

Clean reversible computation:
(inputs, zeros, zeros) —

(inputs, zeros, outputs).

Given fast circuit for p

and fast circuit for p_l,

build fast reversible circuit for
(x, zeros) — (p(x), zeros).

Replace reversible bit operations

with Toffoli gates etc.

2n—|—z 2n—|—z

permuting C — C .

Permutation on first 2" entries is
(ag, a1,...,am_1) —

(3p-1(0) 3p-1(2)r -+ Fp-1(20-1))

Typically prepare vectors
supported on first 2" entries
so don't care how permutation
acts on last 27172 — 2" entries.

le and clean:

shing dirty computation,

outputs back to 0,
ting same operations
utputs In reverse order.

computation:
—
dirt, outputs).

/ersible computation:
ZEros, Zeros)
dirt, outputs).

versible computation:
ZEeros, Zeros) —
zeros, outputs).

Given fast circuit for p

and fast circuit for p_l,

build fast reversible circuit for
(x, zeros) — (p(x), zeros).

Replace reversible bit operations

with Toffoli gates etc.

2n—|—z 2n—|—z

permuting C — C

Permutation on first 2”7 entries is
(ag, a1,...,am_1) —

(3p-1(0) 3p-1(1) -+ Fp-1(2n-1));

Typically prepare vectors
supported on first 2" entries
so don't care how permutation
acts on last 27172 — 2" entries.

Warning
~ numb

In origin

This car
than nut

In the ot

an:
y computation,
ack to 0,
operations
reverse order.

lon:

ts).

mputation:
s) —
ts).

ymputation:
S) —
uts).

Given fast circuit for p

and fast circuit for p_l,

build fast reversible circuit for
(x, zeros) — (p(x), zeros).

Replace reversible bit operations

with Toffoli gates etc.

2n—|—z 2n—|—z

permuting C — C .

Permutation on first 2" entries is

(ag, a1,...,am_1) —

(3p-1(0) 3p-1(2)r -+ Fp-1(20-1))

Typically prepare vectors
supported on first 2" entries
so don't care how permutation
acts on last 27172 — 2" entries.

Warning: Number
~ number of bit ¢

in original p, p~1

This can be much
than number of bi
in the original circ

tion,

der.

Given fast circuit for p

and fast circuit for p_l,

build fast reversible circuit for
(x, zeros) — (p(x), zeros).

Replace reversible bit operations

with Toffoli gates etc.

2n—|—z 2n—|—z

permuting C — C

Permutation on first 2”7 entries is
(ag, a1,...,am_1) —

(3p-1(0) 3p-1(1) -+ Fp-1(2n-1));

Typically prepare vectors
supported on first 2" entries
so don't care how permutation
acts on last 27172 — 2" entries.

Warning: Number of qubits
~ number of bit operation

—1

in original p, p~ " circuits.

This can be much larger
than number of bits stored
in the original circuits.

Given fast circuit for p

and fast circuit for p_l,

build fast reversible circuit for
(x, zeros) — (p(x), zeros).

Replace reversible bit operations

with Toffoli gates etc.

2n—|—z 2n—|—z

permuting C — C .

Permutation on first 2" entries is
(ag, a1,...,am_1) —

(3p-1(0) 3p-1(2)r -+ Fp-1(2-1))

Typically prepare vectors
supported on first 2" entries
so don't care how permutation
acts on last 27172 — 2" entries.

Warning: Number of qubits
~ number of bit operations

—1

in original p, p~* circuits.

This can be much larger
than number of bits stored
in the original circuits.

Given fast circuit for p

and fast circuit for p_l,

build fast reversible circuit for
(x, zeros) — (p(x), zeros).

Replace reversible bit operations

with Toffoli gates etc.

2n—|—z 2n—|—z

permuting C — C .

Permutation on first 2" entries is
(ag, a1,...,am_1) —

(3p-1(0) 3p-1(2)r -+ Fp-1(2-1))

Typically prepare vectors
supported on first 2" entries
so don't care how permutation
acts on last 27172 — 2" entries.

Warning: Number of qubits
~ number of bit operations

—1

in original p, p~* circuits.

This can be much larger
than number of bits stored
in the original circuits.

Many useful techniques

to compress into fewer qubits,
but often these lose time.
Many subtle tradeoffs.

Given fast circuit for p

and fast circuit for p_l,

build fast reversible circuit for
(x, zeros) — (p(x), zeros).

Replace reversible bit operations

with Toffoli gates etc.

2n—|—z 2n—|—z

permuting C — C .

Permutation on first 2" entries is
(ag, a1,...,am_1) —

(3p-1(0) 3p-1(2)r -+ Fp-1(2-1))

Typically prepare vectors
supported on first 2" entries
so don't care how permutation
acts on last 27172 — 2" entries.

Warning: Number of qubits
~ number of bit operations

—1

in original p, p~* circuits.

This can be much larger
than number of bits stored
in the original circuits.

Many useful techniques

to compress into fewer qubits,
but often these lose time.
Many subtle tradeoffs.

Crude “poly-time” analyses
don't care about this,

but serious cryptanalysis

IS much more precise.

st circuit for p
circuit for p_l,

t reversible circuit for
) — (p(x), zeros).

reversible bit operations

foli gates etc.

n—+z n-+z
g C277° — C?

tion on first 2" entries is
, 32”—1) —>

Ap-1(1) -+ p-1(2n-1))

/ prepare vectors

d on first 2" entries
care how permutation
last 277Z — 2" entries.

Warning: Number of qubits
~ number of bit operations

—1

in original p, p~ " circuits.

This can be much larger
than number of bits stored
in the original circuits.

Many useful techniques

to compress into fewer qubits,

but often these lose time.
Many subtle tradeoftfs.

Crude “poly-time” analyses
don't care about this,

but serious cryptanalysis

IS much more precise.

Fast quc

“Hadam
(20, a1)

for p Warning: Number of qubits Fast quantum ope

, pfl, | ~ number of bit1 operations adamard”
e circuit for in original p, p~* circuits. (a0, 21) > (20 + 2
, zeros). This can be much larger
bit operations than number of bits stored
etc. . in the original circuits.
n—+—~2z

- C Many useful techniques
st 2" entries is to compress into fewer qubits,
B but often these lose time.

ap_l(Z”—l))' Many subtle tradeoffs.
1ectors Crude “poly-time” analyses
2N antries don't care about this,
permutation but serious cryptanalysis

_ 2N antries. IS much more precise.

or

l1ons

1es 1S

1),

on

Warning: Number of qubits
~ number of bit operations

—1

in original p, p~ " circuits.

This can be much larger
than number of bits stored
in the original circuits.

Many useful techniques

to compress into fewer qubits,
but often these lose time.
Many subtle tradeoftfs.

Crude “poly-time” analyses
don't care about this,

but serious cryptanalysis

IS much more precise.

Fast quantum operations, p:

"Hadamard' :

(ao, 31) — (a() + ad1,dg — 31:

Warning: Number of qubits Fast quantum operations, part 2

~ number of bit operations
—1

"Hadamard' :

circuits.
(ao, 31) — (ao + a1,a0 — 31).

in original p, p

This can be much larger
than number of bits stored
in the original circuits.

Many useful techniques

to compress into fewer qubits,
but often these lose time.
Many subtle tradeoffs.

Crude “poly-time” analyses
don't care about this,

but serious cryptanalysis

IS much more precise.

Warning: Number of qubits Fast quantum operations, part 2

~ number of bit operations
—1

"Hadamard' :

circuits.
(ao, 31) — (ao + a1,a0 — 31).

in original p, p
This can be much larger
(a0, a1, a2, a3) —

than number of bits stored
(a() +a1,a0 — 31,32 + a3, ay — 33).

In the original circuits.

Many useful techniques

to compress into fewer qubits,
but often these lose time.
Many subtle tradeoffs.

Crude “poly-time” analyses
don't care about this,

but serious cryptanalysis

IS much more precise.

Warning: Number of qubits Fast quantum operations, part 2

~ number of bit operations
—1

"Hadamard' :

circuits.
(ao, 31) — (ao + a1,a0 — 31).

in original p, p
This can be much larger
(a0, a1, a2, a3) —

than number of bits stored
(a() +a1,a0 — 31,32 + a3, ay — 33).

In the original circuits.
Same for qubit 1:
(ag, a1, a2, az) —
(a() +a2,d] +az3,ap — an,al — 33).

Many useful techniques

to compress into fewer qubits,
but often these lose time.
Many subtle tradeoffs.

Crude “poly-time” analyses
don't care about this,

but serious cryptanalysis

IS much more precise.

Warning: Number of qubits
~ number of bit operations

—1

in original p, p~* circuits.

This can be much larger
than number of bits stored
in the original circuits.

Many useful techniques

to compress into fewer qubits,
but often these lose time.
Many subtle tradeoffs.

Crude “poly-time” analyses
don't care about this,

but serious cryptanalysis

IS much more precise.

Fast quantum operations, part 2

"Hadamard' :

(ao, 31) —> (ao + a1,d0 — 31).

(a0, a1, a2, a3)
(a() +a1,a0 — 31,32 + a3, ay — 33).

Same for qubit 1:
(a0, a1, a2, a3) —
(a() +a2,a1 +a3,d9 — a,al — 33).

Qubit 0 and then qubit 1:
(ag, a1, a2, a3) —
(ao+al,ao—al,ag+33,ag—ag) —>
(ag+a1+ax+az, a0 —a1+apx—as,
ao——al—ag—ag,ao—al—ag+33).

: Number of qubits
er of bit operations

al p, p~ 1 circuits.

' be much larger
mber of bits stored
Iginal circuits.

eful techniques

ress into fewer qubits,
n these lose time.
btle tradeoffs.

noly-time” analyses
re about this,

us cryptanalysis
more precise.

Fast quantum operations, part 2

"Hadamard' :

(ao, 31) — (a() + a1,a0 — 31).

(a0, a1, a2, a3) +
(ao +a1,a90 — 31,32 +a3,ay — 33).

Same for qubit 1:

(ag, a1, a», a3) —
(ag + ap, a1 + a3, ag — ap, a1 — a3).

Qubit 0 and then qubit 1:

(ag, a1, a2, a3) —
(ag+a1,ap—a1, ax+a3, a»—az) —
(ag+a1+ax+a3, ap—ay+ap—as,

ao——al—ag—ag,ao—al—ag+a3).

Repeat |
(1,0,0,.

Measurii
always

Measuri
can proc
Prloutpt

of qubits
yperations
Ircults.

larger
ts stored
uits.

ques
ewer qubits,

e time.
offs.

analyses
his,
nalysis
1Se.

Fast

quantum operations, part 2

"Hadamard' :

(ao, 31) —> (ao + a1,da0 — 31).

(a0, a1, a2, a3)
(a() +a1,a0 — 31,32 + a3, ay — 33).

Sam

e for qubit 1:

(ag, a1, a2, a3) —
(ag + ap, a1 + a3, ag — ap, a1 — a3).

Qub

it 0 and then qubit 1:

(ag, a1, a2, a3) —
(ap+a1,ap—a1, ax+az, ap—az) —

(a0 -

-d] +dp+as,ag—ai+ax — as,

d(

—31—32—33,30—31—32+a3).

Repeat n times: e
(1,0,0,...,0) — 1

Measuring (1, 0, 0,
always produces 0

Measuring (1,1, 1,
can produce any
Prloutput = q] =

S,

Fast

quantum operations, part 2

"Hadamard' :

(ao, 31) — (a() + a1,d0 — 31).

(a0, a1, a2, a3) +
(ao +a1,a90 — 31,32 +a3,ay — 33).

Sam

e for qubit 1:

(a0, a1, a2, a3) —
(ao +a2,a1 +a3,agp — a,al — 33).

Qub

it 0 and then qubit 1:

(ag, a1, a2, a3) —
(ap+a1,ap—a1, ax+a3z, ap—az) —

(a0 -

-d] +dp+az,dp—ai+a— as,

d(

—31—32—33,30—31—32+33).

Repeat n times: e.g.,

(1,0,0,...,0) — (1,1,1,...

Measuring (1,0,0,...,0)
always produces 0.

Measuring (1,1,1,...,1)
can produce any output:
Prloutput = g = 1/2".

Fast

quantum operations, part 2

"Hadamard' :

(ao, 31) —> (ao + a1,d0 — 31).

(a0, a1, a2, a3)
(a() +a1,a0 — 31,32 + a3, ay — 33).

Sam

e for qubit 1:

(a0, a1, a2, a3) —
(a() +a2,a1 +a3,d9 — a2, al — 33).

Qub

it 0 and then qubit 1:

(ag, a1, a2, a3) —
(ap+a1,ap—a1, ax+az, ap—az) —

(a0 -

-d] +dp+as,ag—ai+ax — as,

d(

—31—32—33,30—31—32+a3).

Repeat n times: e.g.,
(1,0,0,...,0) — (1,1,1,...,1).

Measuring (1,0,0,...,0)
always produces 0.

Measuring (1,1,1,...,1)
can produce any output:
Prloutput = q] = 1/2".

Fast quantum operations, part 2

"Hadamard' :

(ao, 31) —> (ao + 31,49 — 31).

(ag, a1, a2, a3) —

(a() +a1,a0 — 31,32 + a3, ay — 33).

Same for qubit 1:
(ag, a1, a2, az) —

(a() +adp,a1 +a3,ap — az, a1 — 33).

Qubit 0 and then qubit 1:
(ag, a1, a2, a3) —

(ag+a1,ap—a1, ax+a3, a»—az) —
(ag+a1+ax+az, ap—ar +ap—as,
ap +ai; — ap — as, ao—al—az—l—ag).

Repeat n times: e.g.,
(1,0,0,...,0) — (1,1,1,...,1).

Measuring (1,0,0,...,0)
always produces 0.

Measuring (1,1,1,...,1)
can produce any output:
Prloutput = q] = 1/2".

Aside from “normalization”
(irrelevant to measurement),
have Hadamard = Hadamard !,
so easily work backwards

from “uniform superposition”
(1,1,1,...,1) to “pure state”
(1,0,0,...,0).

intum operations, part 2

ard” :

— (ag + a1, a0 — a1).

92,33) —
,d) — d1,4d2 + a3, ay — 33).

r qubit 1:
92,33) —
,a1 +as, ap — a2, a1 — az).

and then qubit 1:

92,33) —>
ao—al,ag+ag,ag—33) —
+a+as,dg—ai+az— as,
—32—33,80—81—32—|—33).

Repeat n times: e.g.,

(1,0,0,...,0) — (1,1,1,...,1).

Measuring (1,0,0,...,0)
always produces 0.

Measuring (1,1,1,...,1)
can produce any output:
Prloutput = g = 1/2".

Aside from “normalization”
(irrelevant to measurement),
have Hadamard = Hadamard !,
so easily work backwards

from “uniform superposition”
(1,1,1,...,1) to “pure state”
(1,0,0,...,0).

Simon's

Assume:
satisfies
for every
Can we
given a -

rations, part 2

1,40 — a].)

1+ a3, ap — az).

0 — a», 31 — a3).

qubit 1:

+az, ap—az) —
ap —ai +az — as,
ag — a1 —32—|—33).

Repeat n times: e.g.,

(1,0,0,...,0)— (1,1,1,...,1).

Measuring (1,0,0,...,0)
always produces 0.

Measuring (1,1,1,...,1)
can produce any output:
Prloutput = q] = 1/2".

Aside from “normalization”
(irrelevant to measurement),
have Hadamard = Hadamard 1,
so easily work backwards

from “uniform superposition”
(1,1,1,...,1) to “pure state”
(1,0,0,...,0).

Simon’s algorithm

Assume: nonzero
satisfies f(x) = f(
for every x € {0, 1
Can we find this p
given a fast circuif

33) —

42 — a3,

2 + a3).

Repeat n times: e.g.,

(1,0,0,...,0) — (1,1,1,..

Measuring (1,0,0, ..., 0)
always produces 0.

Measuring (1,1,1,...,1)
can produce any output:
Prloutput = g = 1/2".

Aside from “normalization”
(irrelevant to measurement),
have Hadamard = Hadamard_l,

so easily work backwards

from “uniform superposition”
(1,1,1,...,1) to “pure state”

(1,0,0,...,0).

Simon’s algorithm

Assume: nonzero s € {0, 1}
satisfies f(x) = f(x @ s)
for every x € {0, 1}".

Can we find this period s,
given a fast circuit for 7

Repeat n times: e.g.,

(1,0,0,...,0)— (1,1,1,...,1).

Measuring (1,0,0, ..., 0)
always produces 0.

Measuring (1,1,1,...,1)
can produce any output:
Prloutput = q] = 1/2".

Aside from “normalization”
(irrelevant to measurement),

have Hadamard = Hadamard_l,

so easily work backwards
from “uniform superposition”
(1,1,1,...,1) to “pure state”
(1,0,0,...,0).

Simon’s algorithm

Assume: nonzero s € {0,1}"
satisfies f(x) = f(x @ s)

for every x € {0,1}".

Can we find this period s,
given a fast circuit for 7

Repeat n times: e.g.,

(1,0,0,...,0)— (1,1,1,...,1).

Measuring (1,0,0, ..., 0)
always produces 0.

Measuring (1,1,1,...,1)
can produce any output:
Prloutput = q] = 1/2".

Aside from “normalization”
(irrelevant to measurement),

have Hadamard = Hadamard_l,

so easily work backwards
from “uniform superposition”
(1,1,1,...,1) to “pure state”
(1,0,0,...,0).

Simon’s algorithm

Assume: nonzero s € {0,1}"
satisfies f(x) = f(x @ s)

for every x € {0,1}".

Can we find this period s,
given a fast circuit for 7

We don't have enough data
if £ has many periods.

Assume: {periods} = {0, s}.

Repeat n times: e.g.,

(1,0,0,...,0)— (1,1,1,...,1).

Measuring (1,0,0, ..., 0)
always produces 0.

Measuring (1,1,1,...,1)
can produce any output:
Prloutput = q] = 1/2".

Aside from “normalization”
(irrelevant to measurement),

have Hadamard = Hadamard_l,

so easily work backwards
from “uniform superposition”
(1,1,1,...,1) to “pure state”
(1,0,0,...,0).

Simon’s algorithm

Assume: nonzero s € {0,1}"
satisfies f(x) = f(x @ s)

for every x € {0,1}".

Can we find this period s,
given a fast circuit for 7

We don't have enough data
if £ has many periods.

Assume: {periods} = {0, s}.

Traditional solution:

Compute f for many inputs,
sort, analyze collisions.
Success probability is very low
until #inputs approaches 2"/2.

n times: e.g.,

., 0)—(1,1,1,...,1).

g (1,0,0,...,0)
roduces 0.

g (1,1,1,...,1)
luce any output:
t=gq|=1/2".

om ‘normalization”

nt to measurement),
damard = Hadamard 1,
~work backwards

niform superposition”
.., 1) to “pure state”

.,0).

Simon’s algorithm

Assume: nonzero s € {0, 1}"
satisfies f(x) = f(x @ s)

for every x € {0, 1}".

Can we find this period s,
given a fast circuit for 7

We don't have enough data
if £ has many periods.

Assume: {periods} = {0, s}.

Traditional solution:

Compute f for many inputs,
sort, analyze collisions.
Success probability is very low

until #inputs approaches 2"/2.

Simon'’s
far fewel
if nis la
reversibi

utput:
1/2"

alization”
surement),
Hadamard 1,
kwards
erposition”
“pure state”

Simon’s algorithm

Assume: nonzero s € {0,1}"
satisfies f(x) = f(x @ s)

for every x € {0,1}".

Can we find this period s,
given a fast circuit for f7

We don't have enough data

if £ has many periods.
Assume: {periods} = {0, s}.

Traditional solution:

Compute f for many inputs,
sort, analyze collisions.
Success probability is very low
until #inputs approaches 2"/2.

Simon’s algorithm
far fewer qubit op
if nis large and

reversibility overhe

Simon’s algorithm

Assume: nonzero s € {0, 1}"
satisfies f(x) = f(x @ s)

for every x € {0, 1}".

Can we find this period s,
given a fast circuit for 7

We don't have enough data
if £ has many periods.

Assume: {periods} = {0, s}.

Traditional solution:

Compute f for many inputs,
sort, analyze collisions.
Success probability is very low
until #inputs approaches 2"/2.

Simon’s algorithm uses

far fewer qubit operations
if nis large and

reversibility overhead is low.

Simon’s algorithm

Assume: nonzero s € {0,1}"
satisfies f(x) = f(x @ s)

for every x € {0,1}".

Can we find this period s,
given a fast circuit for f7

We don't have enough data
if f has many periods.

Assume: {periods} = {0, s}.

Traditional solution:

Compute f for many inputs,
sort, analyze collisions.
Success probability is very low
until #inputs approaches 2"/2.

Simon’s algorithm uses

far fewer qubit operations
if nis large and

reversibility overhead is low.

Simon’s algorithm

Assume: nonzero s € {0,1}"
satisfies f(x) = f(x @ s)

for every x € {0,1}".

Can we find this period s,
given a fast circuit for f7

We don't have enough data
if f has many periods.

Assume: {periods} = {0, s}.

Traditional solution:

Compute f for many inputs,
sort, analyze collisions.
Success probability is very low
until #inputs approaches 2"/2.

Simon’s algorithm uses

far fewer qubit operations
if nis large and

reversibility overhead is low.

Say f maps n bits to m bits using
z “ancilla” bits for reversibility.

Prepare n+ m + z qubits

In pure zero state:
vector (1,0,0,...).

Simon’s algorithm

Assume: nonzero s € {0,1}"
satisfies f(x) = f(x @ s)

for every x € {0,1}".

Can we find this period s,
given a fast circuit for f7

We don't have enough data
if f has many periods.

Assume: {periods} = {0, s}.

Traditional solution:

Compute f for many inputs,
sort, analyze collisions.
Success probability is very low
until #inputs approaches 2"/2.

Simon’s algorithm uses

far fewer qubit operations
if nis large and

reversibility overhead is low.

Say f maps n bits to m bits using
z “ancilla” bits for reversibility.

Prepare n+ m + z qubits
In pure zero state:

vector (1,0,0,...).

Use n-fold Hadamard
to move first n qubits

into uniform superposition:
(1,1,1,...,1,0,0,...)
with 2" entries 1, others 0.

algorithm

nonzero s € {0,1}"
f(x)=f(x®s)
rx €40,1}".
find this period s,
fast circuit for f7

t have enough data
many periods.

{periods} = {0, s}.

1al solution:

e f for many inputs,
lyze collisions.
probability Is very low
1puts approaches on/2.

Simon’s algorithm uses

far fewer qubit operations
if nis large and

reversibility overhead is low.

Say f maps n bits to m bits using
z “ancilla” bits for reversibility.

Prepare n+ m + z qubits
In pure zero state:

vector (1,0,0,...).

Use n-fold Hadamard

to move first n qubits

into uniform superposition:
(1,1,1,...,1,0,0,...)
with 2" entries 1, others 0.

Apply fa
for rever
1 in pos
moves T«

Note syr
1 at (q,
1 at (g ¢

s € {0,1}"
X @ s)

1.

eriod s,

- for 7

bugh data
ods

L — {0}

n:
ny inputs,
lons.

/ 1S very low
-oaches 21/2.

Simon’s algorithm uses

far fewer qubit operations
if nis large and

reversibility overhead is low.

Say f maps n bits to m bits using
z “ancilla” bits for reversibility.

Prepare n+ m + z qubits
In pure zero state:

vector (1,0,0,...).

Use n-fold Hadamard
to move first n qubits

into uniform superposition:
(1,1,1,...,1,0,0,...)
with 2" entries 1, others 0.

Apply fast vector |
for reversible f col
1 in position (g, 0,
moves to position

Note symmetry be

1 at (q,f(q),0) ai
1 at (g® s, f(q),!

W

Simon’s algorithm uses

far fewer qubit operations
if nis large and

reversibility overhead is low.

Say f maps n bits to m bits using
z “ancilla” bits for reversibility.

Prepare n+ m + z qubits

In pure zero state:
vector (1,0,0,...).

Use n-fold Hadamard

to move first n qubits

into uniform superposition:
(1,1,1,...,1,0,0,...)
with 2" entries 1, others 0.

Apply fast vector permutatic
for reversible f computation
1 in position (g, 0, 0)

moves to position (q, f(q), (

Note symmetry between
1 at (q,f(qg),0) and
1 at (g® s, f(q),0).

Simon’s algorithm uses

far fewer qubit operations
if nis large and

reversibility overhead is low.

Say f maps n bits to m bits using
z “ancilla” bits for reversibility.

Prepare n+ m + z qubits
In pure zero state:

vector (1,0,0,...).

Use n-fold Hadamard
to move first n qubits

into uniform superposition:
(1,1,1,...,1,0,0,...)
with 2" entries 1, others 0.

Apply fast vector permutation
for reversible f computation:
1 in position (g, 0, 0)

moves to position (g, f(q),0).

Note symmetry between
1 at (q,f(qg),0) and
1 at (g®s,f(q),0).

Simon’s algorithm uses

far fewer qubit operations
if nis large and

reversibility overhead is low.

Say f maps n bits to m bits using
z “ancilla” bits for reversibility.

Prepare n+ m + z qubits
In pure zero state:

vector (1,0,0,...).

Use n-fold Hadamard

to move first n qubits

into uniform superposition:
(1,1,1,...,1,0,0,...)
with 2" entries 1, others 0.

Apply fast vector permutation
for reversible f computation:
1 in position (g, 0, 0)

moves to position (g, f(q),0).

Note symmetry between
1 at (q,f(qg),0) and
1 at (g®s,f(q),0).

Apply n-fold Hadamard.

Simon’s algorithm uses

far fewer qubit operations
if nis large and

reversibility overhead is low.

Say f maps n bits to m bits using
z “ancilla” bits for reversibility.

Prepare n+ m + z qubits
In pure zero state:

vector (1,0,0,...).

Use n-fold Hadamard
to move first n qubits

into uniform superposition:
(1,1,1,...,1,0,0,...)
with 2" entries 1, others 0.

Apply fast vector permutation
for reversible f computation:
1 in position (g, 0, 0)

moves to position (g, f(q),0).

Note symmetry between
1 at (q,f(qg),0) and
1 at (g®s,f(q),0).

Apply n-fold Hadamard.

Measure. By symmetry,
output Is orthogonal to s.

Simon’s algorithm uses

far fewer qubit operations
if nis large and

reversibility overhead is low.

Say f maps n bits to m bits using
z “ancilla” bits for reversibility.

Prepare n+ m + z qubits
In pure zero state:

vector (1,0,0,...).

Use n-fold Hadamard
to move first n qubits

into uniform superposition:
(1,1,1,...,1,0,0,...)
with 2" entries 1, others 0.

Apply fast vector permutation
for reversible f computation:
1 in position (g, 0, 0)

moves to position (g, f(q),0).

Note symmetry between
1 at (q,f(qg),0) and
1 at (g®s,f(q),0).

Apply n-fold Hadamard.

Measure. By symmetry,
output Is orthogonal to s.

Repeat n + 10 times.
Use Gaussian elimination
to (probably) find s.

algorithm uses

- qubit operations
rge and

lity overhead is low.

aps n bits to m bits using
a" bits for reversibility.

n+ m+ z qubits

7ero state:
1,0,0,...).

ld Hadamard

first n qubits

orm superposition:
..,1,0,0,...)
entries 1, others O.

Apply fast vector permutation
for reversible f computation:
1 in position (g, 0, 0)

moves to position (g, f(q),0).

Note symmetry between
1 at (q,f(qg),0) and
1 at (g®s,f(q),0).

Apply n-fold Hadamard.

Measure. By symmetry,
output Is orthogonal to s.

Repeat n + 10 times.
Use Gaussian elimination
to (probably) find s.

Example

|
N

a
-

g
p—t

a)
N

a)
o

N - | (: \ N DY - |

a

AN TN N N N N N N
(@ 2 NN

B
(@)

N Y (

—H
~

uses Apply fast vector permutation Example, 3 bits tc
erations for reversible f computation:

o f(0) =4
1 in position (g, 0, 0) F(1) =7
ad is low. moves to position (g, f(q),0). F(2) = 2
to m bits using Note symmetry between f(3) =3.
- reversibility. 1 at (q,f(q),0) and f(4)=T1.
, qubits 1 at (g@s,f(q),0). f(5) =4
Apply n-fold Hadamard. f(6) =3
f(7) =2
Measure. By symmetry,
ard output is orthogonal to s.
bits

o Repeat n + 10 times.
‘posSItioNn: . . .
P Use Gaussian elimination

to (probably) find s.
others 0. (p y)

Apply fast vector permutation Example, 3 bits to 3 bits:
for reversible f computation:

. . f(0) =4

1 in position (g, 0, 0) F(1) =7

moves to position (g, f(q),0). F(2) = 2'

using Note symmetry between f(3) = 3.
ity. 1 at (q,f(qg),0) and f(4)=T1.
1 at (g®s,f(q),0). f(5) =4

Apply n-fold Hadamard. f(6) =3.

fF(7) = 2.

Measure. By symmetry,
output Is orthogonal to s.

Repeat n + 10 times.
Use Gaussian elimination
to (probably) find s.

Apply fast vector permutation Example, 3 bits to 3 bits:
for reversible f computation:

o f(0) =4

1 in position (g, 0, 0) F(1) =7
moves to position (g, f(q),0). F(2) = 2
Note symmetry between f(3) =3.
1 at (q,f(qg),0) and f(4) =7
1 at (g@s,f(q),0). f(5) =4
Apply n-fold Hadamard. 7(6) =3
f(7) =2

Measure. By symmetry,
output Is orthogonal to s.

Repeat n + 10 times.
Use Gaussian elimination
to (probably) find s.

Apply fast vector permutation Example, 3 bits to 3 bits:
for reversible f computation:

o f(0) =4
1 in position (g, 0, 0) F(1) =7
moves to position (q, f(qg),0). F(2) = 2 4\
B 2
Note symmetry between f(3) =3.
1 at (q,f(qg),0) and f(4) =17 7\
1 at (g s, f(q),0). f(5) =4 3
Apply n-fold Hadamard. 7(6) =3
f(7) =2

Measure. By symmetry,
output Is orthogonal to s.

Repeat n + 10 times.
Use Gaussian elimination
to (probably) find s.

Apply fast vector permutation
for reversible f computation:
1 in position (g, 0, 0)

moves to position (g, f(q),0).

Note symmetry between
1 at (q,f(qg),0) and
1 at (g®s,f(q),0).

Apply n-fold Hadamard.

Measure. By symmetry,
output Is orthogonal to s.

Repeat n + 10 times.
Use Gaussian elimination
to (probably) find s.

Example, 3 bits to 3 bits:

Complete table shows that
f(x) = f(x & 5) for all x.

Let's watch Simon's algorithm
for f, using 6 qubits.

st vector permutation
sible f computation:

tion (g, 0,0)

> position (q, f(g), 0).

nmetry between
f(q),0) and
b s, f(q),0).

fold Hadamard.

. By symmetry,
s orthogonal to s.

n + 10 times.
ssian elimination

ably) find s.

Example, 3 bits to 3 bits:

a
-

g
p—t

a)
N

a)
o

a)

AN TN N N N N N N
(@ 2 NN

B
(@)

|
W AN w D Ne

—
~

Complete table shows that
f(x) = f(x & 5) for all x.

Let's watch Simon's algorithm
for f, using 6 qubits.

Step 1.

1,0,0,0
0,0,0,0
0,0,0,0
0,0,0,0
0,0,0,0
0,0,0,0
0,0,0,0
0,0,0,0

permutation Example, 3 bits to 3 bits: Step 1. Set up pu
“z)p“tat"’”: £(0) = 4 1,0,0,0,0,0,0,0,
')f) f(l)=7 A 7 0,0,0,0,0,0,0,0,
(9.7(a). 0). f(2) = 2. NN, 0,0,0,0,0,0,0,0,
tween f(3) =3. 0,0,0,0,0,0,0,0,
1d f(4) =7 7\ 4\ 0,0,0,0,0,0,0,0,
). f(5) =4 3 2 0,0,0,0,0,0,0,0,

f(6) =3 0,0,0,0,0,0,0,0,
mard.

f(7) =2 0,0,0,0,0,0,0,0.
metry,

Complete table shows that
1al to s.

f(x) = f(x & 5) for all x.
€s.
L Let's watch Simon’'s algorithm
Ination
. for f, using 6 qubits.

Example, 3 bits to 3 bits: Step 1. Set up pure zero st:

f(0) = 4. 1,0,0,0,0,0,0,0,
f(1)=7. 4 v 0,0,0,0,0,0,0,0,
f(2) = 2. N\ , N\] 0,0,0,0,0,0,0,0,
f(3) = 3. 0,0,0,0,0,0,0,0,
f(4)=T. 7\ 4\ 0,0,0,0,0,0,0,0,
f(5) = 4. 3 y, 0,0,0,0,0,0,0,0,
f(6) = 3. 0,0,0,0,0,0,0,0,
f(7) = 2. 0,0,0,0,0,0,0,0.

Complete table shows that
f(x) = f(x & 5) for all x.

Let's watch Simon's algorithm
for f, using 6 qubits.

Example, 3 bits to 3 bits: Step 1. Set up pure zero state:

f(0) = 4. 1,0,0,0,0,0,0,0,
f(1)=7. 4 v 0,0,0,0,0,0,0,0,
f(2) = 2. N\ , N\ ; 0,0,0,0,0,0,0,0,
f(3) =3. 0,0,0,0,0,0,0,0,
f(4)=7. 7\ 4\ 0,0,0,0,0,0,0,0,
f(5) = 4. 3 y 0,0,0,0,0,0,0,0,
f(6) = 3. 0,0,0,0,0,0,0,0,
f(7) = 2. 0,0,0,0,0,0,0,0.

Complete table shows that
f(x) = f(x & 5) for all x.

Let's watch Simon's algorithm
for f, using 6 qubits.

Example, 3 bits to 3 bits: Step 2. Hadamard on qubit O:

f(0) = 4. 1,1,0,0,0,0,0,0,
f(1)=7. 4 v 0,0,0,0,0,0,0,0,
f(2) = 2. N\ , N\ ; 0,0,0,0,0,0,0,0,
f(3) =3. 0,0,0,0,0,0,0,0,
f(4)=7. 7\ 4\ 0,0,0,0,0,0,0,0,
f(5) = 4. 3 y 0,0,0,0,0,0,0,0,
f(6) = 3. 0,0,0,0,0,0,0,0,
f(7) = 2. 0,0,0,0,0,0,0,0.

Complete table shows that
f(x) = f(x & 5) for all x.

Let's watch Simon's algorithm
for f, using 6 qubits.

Example, 3 bits to 3 bits: Step 3. Hadamard on qubit 1:

f(0) = 4. 1,1,1,1,0,0,0,0,
f(1)=7. 4 v 0,0,0,0,0,0,0,0,
f(2) = 2. N\ , N\ ; 0,0,0,0,0,0,0,0,
f(3) =3. 0,0,0,0,0,0,0,0,
f(4)=7. 7\ 4\ 0,0,0,0,0,0,0,0,
f(5) = 4. 3 y 0,0,0,0,0,0,0,0,
f(6) = 3. 0,0,0,0,0,0,0,0,
f(7) = 2. 0,0,0,0,0,0,0,0.

Complete table shows that
f(x) = f(x & 5) for all x.

Let's watch Simon's algorithm
for f, using 6 qubits.

Example, 3 bits to 3 bits: Step 4. Hadamard on qubit 2:

f(0) = 4 1,1,1,1,1,1,1, 1,
f(1) =7 4 v 0,0,0,0,0,0,0,0,
f(2) =2 \2 \3 0,0,0,0,0,0,0,0,
f(3) =3 0,0,0,0,0,0,0,0,
f(4) =7 7\ 4\ 0,0,0,0,0,0,0,0,
f(5) =4 3 y 0,0,0,0,0,0,0,0,
f(6) =3 0,0,0,0,0,0,0,0,
f(7) =2 0,0,0,0,0,0,0,0.

Complete table shows that
f(x) = f(x & 5) for all x.

Let's watch Simon's algorithm
for f, using 6 qubits.

Example, 3 bits to 3 bits: Step 5. (q9,0) — (q,f(q)):

f(0) = 4. 0,0,0,0,0,0,0,0,
f(1)=T7. 4 v 0,0,0,0,0,0,0,0,
f(2) = 2. N\ , N\ ; 0,0,1,0,0,0,0,1,
f(3) = 3. 0,0,0,1,0,0,1,0,
f(4)=T1. 7\ 4\ 1,0,0,0,0,1,0,0,
f(5) = 4. 3 y, 0,0,0,0,0,0,0,0,
f(6) = 3. 0,0,0,0,0,0,0,0,
f(7) = 2. 0,1,0,0,1,0,0,0.

Complete table shows that
f(x) = f(x & 5) for all x.

Let's watch Simon's algorithm
for f, using 6 qubits.

Example, 3 bits to 3 bits: Step 6. Hadamard on qubit O:

£(0) = 4 0,0,0,0,0,0,0,0,
(1) =7 . . 0,0,0,0,0,0,0,0,
f(2) = 2. \2 \3 0,0,1,1,0,0,1,1,
£(3) = 3. 0,0,1,1,0,0,1, 1,
f(4) =7 7\ 4\ 1,1,0,0,1,1,0,0,
£(5) = 4 3 ; 0,0,0,0,0,0,0,0,
£(6) = 3 0,0,0,0,0,0,0,0,
£(7) = 2 1,1,0,0,1,1,0,0.
Complete table shows that Notation: 1 = —1.

f(x) = f(x & 5) for all x.

Let's watch Simon's algorithm
for f, using 6 qubits.

Example, 3 bits to 3 bits: Step 7. Hadamard on qubit 1:

f(0) =4 0,0,0,0,0,0,0,0,
f(1)=7 4 7 0,0,0,0,0,0,0,0,
f(2) =2 \2 \3 1,1,1,1,1,1,1,1,
f(3) = 3. 1,1,1,1,1,1,1,1,
f(4) =7 7\ 4\ 1,1,1,1,1,1,1,1,
f(5) =4 3 . 0,0,0,0,0,0,0,0,
f(6) =3 0,0,0,0,0,0,0,0,
f(7) =2 1,1,1,1,1,1,1,1.

Complete table shows that
f(x) = f(x & 5) for all x.

Let's watch Simon's algorithm
for f, using 6 qubits.

Example, 3 bits to 3 bits: Step 8. Hadamard on qubit 2:

f(0) = 4. 0,0,0,0,0,0,0,0,
f(1)=7. A 7 0,0,0,0,0,0,0,0,
f(2) =2 \2 \3 2,0,2,0,0,2,0,2,
f(3) = 3. 2,0,2,0,0,2,0,2,
f(4)=T1. 7\ 4\ 2,0,2,0,0,2,0,2,
f(5) = 4. 3 D 0,0,0,0,0,0,0,0,
f(6) = 3. 0,0,0,0,0,0,0,0,
f(7) =2 2,0,2,0,0,2,0,2.

Complete table shows that
f(x) = f(x & 5) for all x.

Let's watch Simon's algorithm
for f, using 6 qubits.

Example, 3 bits to 3 bits: Step 8. Hadamard on qubit 2:
f(0) = 4. 0,0,0,0,0,0,0,0,
f(l)=T7. A 7 0,0,0,0,0,0,0,0,
f(2) = 2. \2 \3 2,0,2,0,0,2,0,2,
f(3) =3. 2,0,2,0,0,2,0, 2,
f(4)=T1. 7\ 4\ 2,0,2,0,0,2,0,2,
f(5) =4 3 2 0,0,0,0,0,0,0,0,
f(6) =3. 0,0,0,0,0,0,0,0,
f(7) =2 2,0,2,0,0,2,0,2.
Complete table shows that Step 9. Measure.

f(x) = f(x & 5) for all x. First 3 qubits are uniform random
Let's watch Simon’s algorithm vector orthogonal to 101: 1.e.,
. . 000, 010, 101, or 111.

for f, using 6 qubits.

3 bits to 3 bits:

- 4 7
). N N\
2
.
7 7 4
\ \
; 3

e table shows that
“(x @ 5) for all x.

tch Simon’s algorithm
Ing 6 qubits.

Step 8. Hadamard on qubit 2:

0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
2,0,2,0,0,2,0,2,

2,0,2,0,0,2,0,2,
2,0,2,0,0,2,0,2,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,

2,0,2,0,0,2,0,2.

Step 9. Measure.
First 3 qubits are uniform random
vector orthogonal to 101: I1.e.,

000, 010, 101, or 111.

Grover's

Assume:
has f(s)

Traditio
compute
hope to

Success
until 1

3 bits:

ows that
or all x.

's algorithm
ts.

Step 8. Hadamard on qubit 2:

0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
2,0,2,0,0,2,0,2,
2,0,2,0,0,2,0,2,
2,0,2,0,0,2,0,2,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
2,0,2,0,0,2,0,2.

Step 9. Measure.
First 3 qubits are uniform random
vector orthogonal to 101: 1.e.,

000, 010, 101, or 111.

Grover's algorithm

Assume: unique s
has f(s) = 0.

Traditional algorit

compute f for ma

hope to find outpt

Success pro

pabilit

until #£inputs appl

| M

Step 8. Hadamard on qubit 2:

0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
2,0,2,0,0,2,0,2,

2,0,2,0,0,2,0,2,
2,0,2,0,0,2,0,2,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,

2,0,2,0,0,2,0,2.

Step 9. Measure.
First 3 qubits are uniform random

vector orthogonal to 101: I1.e.,
000, 010, 101, or 111.

Grover's algorithm

Assume: un

ique s € {0,1}"

has f(s) = 0.

Traditional algorithm to finc

compute f
hope to finc

o~
=

or many Iinputs,
output 0.

Success pro

nability Is very Ic

until #inputs approaches 2"

Step 8. Hadamard on qubit 2:

0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,

2,0,2,0,0,2,0,2,
2,0,2,0,0,2,0,2,
2,0,2,0,0,2,0,2,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
2,0,2,0,0,2,0,2.

Step 9. Measure.
First 3 qubits are uniform random
vector orthogonal to 101: 1.e.,

000, 010, 101, or 111.

Grover's algorithm

Assume: unique s € {0, 1}"
has f(s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output O.

Success pro

nability 1s very low

until #inputs approaches 2",

Step 8. Hadamard on qubit 2:

0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
2,0,2,0,0,2,0,2,
2,0,2,0,0,2,0,2,
2,0,2,0,0,2,0,2,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,

2,0,2,0,0,2,0,2.

Step 9. Measure.
First 3 qubits are uniform random

vector orthogonal to 101: 1.e.,
000, 010, 101, or 111.

Grover's algorithm

Assume: unique s € {0, 1}"
has f(s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output O.
Success pro

nability 1s very low

until #inputs approaches 2",

Grover's algorithm takes only on/2

reversi
Typica
IS Sma
easily

ly: reversibility
| enough that t

heats traditiona

ole computations of f.

overhead

IS

algorithm.

Hadamard on qubit 2: Grover's algorithm Start frc
0,0,0,0, Assume: unique s € {0, 1}” over al
.0,0,0,0, has f(s) = 0. Step 1:
O% 0.2 Traditional algorithm to find s: bg = =
1012,0,2, - . bq:aq
compute f for many inputs, |
0,2,0,2, . This is f
hope to find output O.
.0,0,0,0, e
0000 Success probability is very low Step 2:
'0'5’ 0’5’ until #inputs approaches 2". Negate .
Grover's algorithm takes only n/2 This s 2
Measure. . .
| | reversible computations of f. Repeat !
ubits are uniform random . .
| Typically: reversibility overhead about O.
rthogonal to 101: 1.e., . .
Is small enough that this
. 101, or 111, easily beats traditional algorithm Veasure
Y & | With hig

| on qubit 2:

uniform random
to 101: 1.e.,
111.

Grover's algorithm

Assume: unique s € {0, 1}"
has f(s) = 0.

Traditional algorithm to find s:
compute f for many inputs,
hope to find output O.

Success probability is very low
until #inputs approaches 2",

Grover's algorithm takes only on/2
reversible computations of f.

Typically: reversibility overhead
Is small enough that this

easily beats traditional algorithm.

Start from uniforn
over all n-bit strin

Step 1: Set a «+ I

bg = —aq if f(q)
bg = aq otherwise
This i1s fast.

Step 2: “Grover d
Negate a around |
This is also fast.

Repeat Step 1 +
about 0.58 - 2057

Measure the n qul
With high probabi

ndom

Grover's algorithm

Assume: unique s € {0, 1}"
has f(s) = 0.

Traditional algorithm to find s:
compute f for many inputs,
hope to find output O.

Success probability is very low
until #inputs approaches 2",

Grover's algorithm takes only on/2
reversible computations of f.
Typically: reversibility overhead

Is small enough that this

easily beats traditional algorithm.

Start from uniform superpos
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this fii

Grover's algorithm Start from uniform superposition

Assume: unique s € {0, 1} over all n-bit strings q.

has f(s) = 0. Step 1: Set a < b where
bg = —aq if f(q) =0,

Traditional algorithm to find s: |
by = aq otherwise.

compute f for many inputs,

. This is fast.
hope to find output O. S 15 Tast
Success probability is very low Step 2: “Grover diffusion”.
until #inputs approaches 2". Negate a around Its average.

Grover's algorithm takes only on/2 This is also fast.

reversible computations of f. Repeat Step 1 + Step 2

Typically: reversibility overhead about 0.58 - 2927 times.

Is small enough that this .
& Measure the n qubits.

With high probability this finds s.

easily beats traditional algorithm.

“algorithm

unique s € {0, 1}"
= 0.

1al algorithm to find s:
 f for many inputs,
find output O.

probability is very low
1puts approaches 2"

algorithm takes only 2//2
e computations of f.

/. reversibility overhead
enough that this

ats traditional algorithm.

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —aq if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

Normali;
for an e
after O s

1.0—

—0.5+

-1.0—

'_ Start from uniform superposition Normalized graph
c {0,117 over all n-bit strings q. for an example wi

Step 1: Set a < b where after O steps:

A _ 1.0
hm to find s: bg = —aq 1t f(q) 0 |
. by = aq otherwise.
Ny INputs, o
0. This is fast. 05l
/ 1S very low Step 2: “Grover diffusion”.
-0oaches 2", Negate a around Its average. 00

' takes only n/2 This is also fast.

itions of f. Repeat Step 1 4+ Step 2 05
ility overhead about 0.58 - 2927 times.

at this | Measure the n qubits. 10!
onal algorithm.

With high probability this finds s.

| s:

W

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — a,

for an example with n = 12

after O steps:

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — ag

for an example with n = 12

after O steps:

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — ag

for an example with n = 12
after Step 1:

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — ag

for an example with n = 12
after Step 1 + Step 2:

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — ag

for an example with n = 12
after Step 1 + Step 2 + Step 1:

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — ag
for an example with n = 12
after 2 x (Step 1 + Step 2):

1.0

0.5+

OO T

-0.5+

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — ag
for an example with n = 12
after 3 x (Step 1 + Step 2):

1.0

0.5+

OO s

-0.5+

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — ag
for an example with n = 12
after 4 x (Step 1 + Step 2):

1.0

0.5+

OO S FE

-0.5+

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — ag
for an example with n = 12
after 5 x (Step 1 + Step 2):

1.0

0.5+

OO i

-0.5+

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — ag
for an example with n = 12
after 6 x (Step 1 + Step 2):

1.0

0.5+

OO T FEFE

-0.5+

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — ag
for an example with n = 12
after 7 x (Step 1 + Step 2):

1.0

0.5+

OO s

-0.5+

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — ag
for an example with n = 12
after 8 x (Step 1 + Step 2):

1.0

0.5+

OO e

-0.5+

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — ag
for an example with n = 12
after 9 x (Step 1 + Step 2):

1.0

0.5+

OO — e

-0.5+

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — ag
for an example with n = 12
after 10 x (Step 1 + Step 2):

1.0

0.5+

OO e

-0.5+

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — ag
for an example with n = 12
after 11 x (Step 1 + Step 2):

1.0

0.5+

OO — e

-0.5+

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — ag
for an example with n = 12
after 12 x (Step 1 + Step 2):

1.0

0.5+

OO — e

-0.5+

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — ag
for an example with n = 12
after 13 x (Step 1 + Step 2):

1.0

0.5+

OO —

-0.5+

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — ag
for an example with n = 12
after 14 x (Step 1 + Step 2):

1.0

0.5+

OO -

-0.5+

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — ag
for an example with n = 12
after 15 x (Step 1 + Step 2):

1.0

0.5+

OO -

-0.5+

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — ag
for an example with n = 12
after 16 x (Step 1 + Step 2):

1.0

0.5+

OO -

-0.5+

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — ag
for an example with n = 12
after 17 x (Step 1 + Step 2):

1.0

0.5+

OO -

-0.5+

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — ag
for an example with n = 12
after 18 x (Step 1 + Step 2):

1.0

0.5+

OO -

-0.5+

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — ag
for an example with n = 12
after 19 x (Step 1 + Step 2):

1.0

0.5+

OO -

-0.5+

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — ag
for an example with n = 12
after 20 x (Step 1 + Step 2):

1.0

0.5+

OO -

-0.5+

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — ag
for an example with n = 12
after 25 x (Step 1 + Step 2):

1.0

0.5+

OO -

-0.5+

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — ag
for an example with n = 12
after 30 x (Step 1 + Step 2):

1.0

0.5+

OO O

-0.5+

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — ag
for an example with n = 12
after 35 x (Step 1 + Step 2):

1.0

0.5+

OO N E——————————

-0.5+

-1.0

Good moment to stop, measure.

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — ag
for an example with n = 12
after 40 x (Step 1 + Step 2):

1.0

0.5+

OO R EH———————

-0.5+

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — ag
for an example with n = 12
after 45 x (Step 1 + Step 2):

1.0

0.5+

0.0

-0.5+

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — ag
for an example with n = 12
after 50 x (Step 1 + Step 2):

1.0

0.5+

0.0

-0.5+

-1.0

Traditional stopping point.

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — ag
for an example with n = 12
after 60 x (Step 1 + Step 2):

1.0

0.5+

OO U IO

-0.5+

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — ag
for an example with n = 12
after 70 x (Step 1 + Step 2):

1.0

0.5+

OO OO U U U ST SO U OO OOV OO OO U USUSUSSUUUSUTUN: IUSUSUUTUSUSUSUIUIUSTIUUUOOI

-0.5+

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — ag
for an example with n = 12
after 80 x (Step 1 + Step 2):

1.0

0.5+

OO OO OO PO OO OO U P PO PO OO OO U US PO PO O OO OO PSP PO U UUSUIUN: EPSEUTUUUSUIUIPSPRUUUUOO

-0.5+

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — ag
for an example with n = 12
after 90 x (Step 1 + Step 2):

1.0

0.5+

OO OO OO U U U OO PO PO U U OO PSP PO U UUSUTUN FOUUUUUUUUPPRUUUUOO

-0.5+

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — ag
for an example with n = 12

after 100 x (Step 1 + Step 2):

1.0

0.5+

0.0 b o

-0.5+

-1.0

Very bad stopping point.

m uniform superposition
n-bit strings g.

Set a «+ b where

g if f(q) =0,
otherwise.
ast.

“Grover diffusion” .
7 around Its average.
Iso fast.

Step 1 + Step 2
58 - 2097 times.

' the n qubits.

rh probability this finds s.

Normalized graph of g — aq
for an example with n = 12

after 100 x (Step 1 + Step 2):

1.0

0.5+

0.0 b o

—0.5+

-1.0

Very bad stopping point.

g — aq
by a vec
(with fix
(1) ag f
(2) aq f

Step 1 -
act linea

Easily cc
and pow
to under
of state
= Prob.
after ~(

1 superposition
gs g.

) where
— O,

iffusion” .
LS average.

Step 2
times.

JItS.

lity this finds s.

Normalized graph of g — ag
for an example with n = 12

after 100 x (Step 1 + Step 2):

1.0

0.0 b o

-0.5+

-1.0

Very bad stopping point.

g — aq Is complet
by a vector of two
(with fixed multip
(1) ag for roots g;
(2) ag for non-roo

Step 1 + Step 2
act linearly on this

Easily compute eig
and powers of this
to understand evo
of state of Grover’
= Probability Is =
after ~(m/4)20->"

1tion

1ds s.

Normalized graph of g — aq
for an example with n = 12

after 100 x (Step 1 + Step 2):

1.0

0.0 b o

—0.5+

-1.0

Very bad stopping point.

g — aq Is completely descril
by a vector of two numbers
(with fixed multiplicities):
(1) ag for roots g;

(2) ag for non-roots q.

Step 1 + Step 2
act linearly on this vector.

Easily compute eigenvalues
and powers of this linear ma

to understand evolution

of state of Grover's algorithi
= Probability 1s ~1

after ~(7/4)2°°" iterations

Normalized graph of g — ag
for an example with n = 12

after 100 x (Step 1 + Step 2):

1.0

0.0 b o

-0.5+

-1.0

Very bad stopping point.

g — aq Is completely described
by a vector of two numbers
(with fixed multiplicities):

(1) ag for roots g;

(2) ag for non-roots q.

Step 1 + Step 2
act linearly on this vector.

Easily compute eigenvalues
and powers of this linear map
to understand evolution

of state of Grover's algorithm.
= Probability i1s =1

after ~(7/4)2%°>" iterations.

zed graph of g — aq
<ample with n = 12
) X (Step 1 + Step 2):

1 stopping point.

g — aq Is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) ag for roots g;

2) ag for non-roots q.
q

Step 1 + Step 2
act linearly on this vector.

Easily compute eigenvalues

and powers o

- this linear map

to understand

evolution

of state of Grover's algorithm.
= Probability i1s =1
after ~(7/4)2%°" iterations.

Notes ol

Textboo

Proof o

New

Proof I

Mislead
that bes
best pro

of g — aq
th n=12
1 4 Step 2):

“point.

g — aq Is completely described
by a vector of two numbers
(with fixed multiplicities):

(1) ag for roots g;

(2) ag for non-roots q.

Step 1 + Step 2
act linearly on this vector.

Easily compute eigenvalues
and powers of this linear map
to understand evolution

of state of Grover's algorithm.
= Probability i1s =1

after ~(7/4)2%°>" iterations.

Notes on provabili

Textbook algorithi

Proof of correctn:

J\

New algorithm

Y .
Proof of run tim

Mislead students |
that best algorithr
best proven algori

I\J
v

g — aq Is completely described
by a vector of two numbers
(with fixed multiplicities):

(1) ag for roots g;

(2) ag for non-roots q.

Step 1 + Step 2
act linearly on this vector.

Easily compute eigenvalues
and powers of this linear map

to understand evolution

of state of Grover's algorithm.
= Probability i1s =1

after ~(7/4)2%°" iterations.

Notes on provability

Textbook algorithm analysis

Proof of correctness

A

New algorithm

Y
Proof of run time

Mislead students into thinki
that best algorithm =
best proven algorithm.

g — aq Is completely described
by a vector of two numbers
(with fixed multiplicities):

(1) ag for roots g;

(2) ag for non-roots q.

Step 1 + Step 2
act linearly on this vector.

Easily compute eigenvalues
and powers of this linear map
to understand evolution

of state of Grover's algorithm.
= Probability i1s =1

after ~(7/4)2%°>" iterations.

Notes on provability

Textbook algorithm analysis:

Proof of correctness

J\

New algorithm

Y
Proof of run time

Mislead students into thinking
that best algorithm =
best proven algorithm.

Is completely described
tor of two numbers

ed multiplicities):

I roots q;

DI NON-roots q.

- Step 2
rly on this vector.

ympute eigenvalues
ers of this linear map

stand evolution

of Grover's algorithm.
ability I1s =1

7 /4)29-°" iterations.

Notes on provability

Textbook algorithm analysis:

Proof of correctness

A

New algorithm

Y
Proof of run time

Mislead students into thinking
that best algorithm =
best proven algorithm.

Reality:
cryptanc
are almc

ely described
numbers

licities):

ts q.

, vector.

renvalues

- linear map
lution

s algorithm.
-1
iterations.

Notes on provability

Textbook algorithm analysis:

Proof of correctness

I\

New algorithm

Y
Proof of run time

Mislead students into thinking
that best algorithm =
best proven algorithm.

Reality: state-of-t
cryptanalytic algol
are almost never r

yed

Notes on provability

Textbook algorithm analysis:

Proof of correctness

A

New algorithm

Y
Proof of run time

Mislead students into thinking
that best algorithm =
best proven algorithm.

Reality: state-of-the-art
cryptanalytic algorithms
are almost never proven.

Notes on provability

Textbook algorithm analysis:

Proof of correctness
A

New algorithm

Y
Proof of run time

Mislead students into thinking
that best algorithm =
best proven algorithm.

Reality: state-of-the-art
cryptanalytic algorithms
are almost never proven.

Notes on provability

Textbook algorithm analysis:

Proof of correctness
A

New algorithm

Y
Proof of run time

Mislead students into thinking
that best algorithm =
best proven algorithm.

Reality: state-of-the-art
cryptanalytic algorithms
are almost never proven.

lgnorant response:
“Work harder, find proofs!”

Notes on provability

Textbook algorithm analysis:

Proof of correctness
A

New algorithm

Y
Proof of run time

Mislead students into thinking
that best algorithm =
best proven algorithm.

Reality: state-of-the-art
cryptanalytic algorithms
are almost never proven.

lgnorant response:
“Work harder, find proofs!”

Consensus of the experts:

proofs probably do not exist
for most of these algorithms.
So demanding proofs is silly.

Notes on provability

Textbook algorithm analysis:

Proof of correctness
A

New algorithm

Y
Proof of run time

Mislead students into thinking
that best algorithm =
best proven algorithm.

Reality: state-of-the-art
cryptanalytic algorithms
are almost never proven.

lgnorant response:
“Work harder, find proofs!”

Consensus of the experts:

proofs probably do not exist
for most of these algorithms.
So demanding proofs is silly.

Without proofs, how do we

analyze correctness+speed?
Answer: Real algorithm analysis
relies critically on heuristics and
computer experiments.

1 _provability

k algorithm analysis:

f correctness
A

algorithm

Y
of run time

students into thinking
t algorithm =
ven algorithm.

Reality: state-of-the-art
cryptanalytic algorithms
are almost never proven.

lgnorant response:
“Work harder, find proofs!”

Consensus of the experts:

proofs probably do not exist
for most of these algorithms.
So demanding proofs is silly.

Without proofs, how do we

analyze correctness+speed?
Answer: Real algorithm analysis
relies critically on heuristics and
computer experiments.

What ak
Want to
quantun
to figure
against

Ly

M analysis:

=SS

€

nto thinking
N =
thm.

Reality: state-of-the-art
cryptanalytic algorithms
are almost never proven.

lgnorant response:
“Work harder, find proofs!”

Consensus of the experts:

proofs probably do not exist
for most of these algorithms.
So demanding proofs is silly.

Without proofs, how do we

analyze correctness+speed?
Answer: Real algorithm analysis
relies critically on heuristics and
computer experiments.

What about quan
Want to analyze,
quantum algorithn
to figure out safe
against future qua

ng

Reality: state-of-the-art
cryptanalytic algorithms
are almost never proven.

lgnorant response:
“Work harder, find proofs!”

Consensus of the experts:
proofs probably do not exist

for most of these algorithms.

So demanding proofs is silly.

Without proofs, how do we

analyze correctness+speed?

Answer: Real algorithm analysis
relies critically on heuristics and

computer experiments.

What about quantum algori
Want to analyze, optimize
quantum algorithms today
to figure out safe crypto
against future quantum atts

Reality: state-of-the-art
cryptanalytic algorithms
are almost never proven.

lgnorant response:
“Work harder, find proofs!”

Consensus of the experts:

proofs probably do not exist
for most of these algorithms.
So demanding proofs is silly.

Without proofs, how do we

analyze correctness+speed?
Answer: Real algorithm analysis
relies critically on heuristics and
computer experiments.

What about quantum algorithms?
Want to analyze, optimize
quantum algorithms today

to figure out safe crypto

against future quantum attack.

Reality: state-of-the-art
cryptanalytic algorithms
are almost never proven.

lgnorant response:
“Work harder, find proofs!”

Consensus of the experts:

proofs probably do not exist
for most of these algorithms.
So demanding proofs is silly.

Without proofs, how do we

analyze correctness+speed?
Answer: Real algorithm analysis
relies critically on heuristics and
computer experiments.

What about quantum algorithms?
Want to analyze, optimize
quantum algorithms today

to figure out safe crypto

against future quantum attack.

1. Simulate tiny gq. computer?
= Huge extrapolation errors.

Reality: state-of-the-art
cryptanalytic algorithms
are almost never proven.

lgnorant response:
“Work harder, find proofs!”

Consensus of the experts:

proofs probably do not exist
for most of these algorithms.
So demanding proofs is silly.

Without proofs, how do we

analyze correctness+speed?
Answer: Real algorithm analysis
relies critically on heuristics and
computer experiments.

What about quantum algorithms?
Want to analyze, optimize
quantum algorithms today

to figure out safe crypto

against future quantum attack.

1. Simulate tiny gq. computer?
= Huge extrapolation errors.

2. Faster algorithm-specific
simulation? Yes, sometimes.

Reality: state-of-the-art
cryptanalytic algorithms
are almost never proven.

lgnorant response:
“Work harder, find proofs!”

Consensus of the experts:

proofs probably do not exist
for most of these algorithms.
So demanding proofs is silly.

Without proofs, how do we

analyze correctness+speed?
Answer: Real algorithm analysis
relies critically on heuristics and
computer experiments.

What about quantum algorithms?
Want to analyze, optimize
quantum algorithms today

to figure out safe crypto

against future quantum attack.

1. Simulate tiny gq. computer?
= Huge extrapolation errors.

2. Faster algorithm-specific
simulation? Yes, sometimes.

3. Fast trapdoor simulation.
Simulator (like prover) knows
more than the algorithm does.

Tung Chou has implemented this,

found errors in two publications.

state-of-the-art
lytic algorithms
St never proven.

response:
arder, find proofs!”

us of the experts:

robably do not exist
- of these algorithms.
inding proofs is silly.

proofs, how do we
correctness+speed?

Real algorithm analysis
tically on heuristics and
er experiments.

What about quantum algorithms?
Want to analyze, optimize
quantum algorithms today

to figure out safe crypto

against future quantum attack.

1. Simulate tiny gq. computer?
= Huge extrapolation errors.

2. Faster algorithm-specific
simulation? Yes, sometimes.

3. Fast trapdoor simulation.
Simulator (like prover) knows
more than the algorithm does.

Tung Chou has implemented this,

found errors in two publications.

Post-qu:

Grover's
128-bit |
D04 quat

he-art
1thms

roven.

] proofs!”

2 XPeErts:

) not exist
algorithms.
ofs is silly.

ow do we
s+speed?
rithm analysis
heuristics and
ments.

What about quantum algorithms?
Want to analyze, optimize
quantum algorithms today

to figure out safe crypto

against future quantum attack.

1. Simulate tiny gq. computer?
= Huge extrapolation errors.

2. Faster algorithm-specific
simulation? Yes, sometimes.

3. Fast trapdoor simulation.
Simulator (like prover) knows
more than the algorithm does.

Tung Chou has implemented this,
found errors in two publications.

Post-quantum cry

Grover's algorithm
128-bit AES key u
204 quantum AES

lysis
and

What about quantum algorithms?
Want to analyze, optimize
quantum algorithms today

to figure out safe crypto

against future quantum attack.

1. Simulate tiny gq. computer?
= Huge extrapolation errors.

2. Faster algorithm-specific
simulation? Yes, sometimes.

3. Fast trapdoor simulation.
Simulator (like prover) knows
more than the algorithm does.

Tung Chou has implemented this,
found errors in two publications.

Post-quantum cryptography

Grover's algorithm finds
128-bit AES key using
204 quantum AES evaluatiol

What about quantum algorithms?
Want to analyze, optimize
quantum algorithms today

to figure out safe crypto

against future quantum attack.

1. Simulate tiny gq. computer?
= Huge extrapolation errors.

2. Faster algorithm-specific
simulation? Yes, sometimes.

3. Fast trapdoor simulation.
Simulator (like prover) knows
more than the algorithm does.

Tung Chou has implemented this,
found errors in two publications.

Post-quantum cryptography

Grover's algorithm finds
128-bit AES key using
204 quantum AES evaluations.

What about quantum algorithms?
Want to analyze, optimize
quantum algorithms today

to figure out safe crypto

against future quantum attack.

1. Simulate tiny gq. computer?
= Huge extrapolation errors.

2. Faster algorithm-specific
simulation? Yes, sometimes.

3. Fast trapdoor simulation.
Simulator (like prover) knows
more than the algorithm does.

Tung Chou has implemented this,
found errors in two publications.

Post-quantum cryptography

Grover's algorithm finds
128-bit AES key using
204 quantum AES evaluations.

Sensible risk management:
Assume that this is feasible—
or will be feasible in, e.g., 2025.

What about quantum algorithms?
Want to analyze, optimize
quantum algorithms today

to figure out safe crypto

against future quantum attack.

1. Simulate tiny gq. computer?
= Huge extrapolation errors.

2. Faster algorithm-specific
simulation? Yes, sometimes.

3. Fast trapdoor simulation.
Simulator (like prover) knows
more than the algorithm does.

Tung Chou has implemented this,
found errors in two publications.

Post-quantum cryptography

Grover's algorithm finds
128-bit AES key using
204 quantum AES evaluations.

Sensible risk management:
Assume that this is feasible—

or will be feasible in, e.g., 2025.
“AES-128 is dead.”

What about quantum algorithms?
Want to analyze, optimize
quantum algorithms today

to figure out safe crypto

against future quantum attack.

1. Simulate tiny gq. computer?
= Huge extrapolation errors.

2. Faster algorithm-specific
simulation? Yes, sometimes.

3. Fast trapdoor simulation.
Simulator (like prover) knows
more than the algorithm does.

Tung Chou has implemented this,

found errors in two publications.

Post-quantum cryptography

Grover's algorithm finds
128-bit AES key using
204 quantum AES evaluations.

Sensible risk management:
Assume that this is feasible—

or will be feasible in, e.g., 2025.
“AES-128 is dead.”

Fix: Switch to AES-256.

What about quantum algorithms?
Want to analyze, optimize
quantum algorithms today

to figure out safe crypto

against future quantum attack.

1. Simulate tiny gq. computer?
= Huge extrapolation errors.

2. Faster algorithm-specific
simulation? Yes, sometimes.

3. Fast trapdoor simulation.
Simulator (like prover) knows
more than the algorithm does.

Tung Chou has implemented this,
found errors in two publications.

Post-quantum cryptography

Grover's algorithm finds
128-bit AES key using
204 quantum AES evaluations.

Sensible risk management:
Assume that this is feasible—

or will be feasible in, e.g., 2025.
“AES-128 is dead.”

Fix: Switch to AES-256.

AES-256 has 14 rounds.

Maybe 12 rounds are enough

2128

for post-quantum security?

Maybe 10 rounds are enough?

yout quantum algorithms?
“analyze, optimize

1 algorithms today

' out safe crypto

future quantum attack.

late tiny q. computer?
- extrapolation errors.

r algorithm-specific
on? Yes, sometimes.

trapdoor simulation.
or (like prover) knows
an the algorithm does.

lou has implemented this,
rors In two publications.

Post-quantum cryptography

Grover's algorithm finds
128-bit AES key using
204 quantum AES evaluations.

Sensible risk management:
Assume that this is feasible—
or will be feasible in, e.g., 2025.
“AES-128 is dead.”

Fix: Switch to AES-256.

AES-256 has 14 rounds.

Maybe 12 rounds are enough

2128

for post-quantum security?

Maybe 10 rounds are enough?

Shor's a
(similar
factors |
finding |

Number
~ numb

to comp

um algorithms?
optimize

ns today

crypto

ntum attack.

|. computer?
tion errors.

n-specific
ometimes.

simulation.
ver) knows
orithm does.
plemented this,
> publications.

Post-quantum cryptography

Grover's algorithm finds

128-bit AES key using

204 quantum AES evaluations.

Sensible risk management:
Assume that this is feasible—

or will be feasible in, e.g., 2025.
“AES-128 is dead.”

Fix: Switch to AES-256.

AES-256 has 14 rounds.

Maybe 12 rounds are enough
for 2128 post-quantum security?
Maybe 10 rounds are enough?

Shor’s algorithm

(similar to Simon’
factors RSA modu
finding period of »

Number of qubit «
~ number of bit c
to compute 2% mc

thms?

ck.

a4

/S
S

1 this,
ons.

Post-quantum cryptography

Grover's algorithm finds

128-bit AES key using
204 quantum AES evaluations.

Sensible risk management:
Assume that this is feasible—
or will be feasible in, e.g., 2025.
“AES-128 is dead.”

Fix: Switch to AES-256.

AES-256 has 14 rounds.

Maybe 12 rounds are enough
for 2128 post-quantum security?
Maybe 10 rounds are enough?

Shor’s algorithm
(similar to Simon'’s algorithr
factors RSA modulus N by

finding period of x — 2% mc

Number of qubit operations
~ number of bit operations
to compute 2% mod N.

Post-quantum cryptography

Grover's algorithm finds
128-bit AES key using
204 quantum AES evaluations.

Sensible risk management:
Assume that this is feasible—
or will be feasible in, e.g., 2025.
“"AES-128 is dead.”

Fix: Switch to AES-256.

AES-256 has 14 rounds.

Maybe 12 rounds are enough
for 2128 post-quantum security?
Maybe 10 rounds are enough?

Shor’s algorithm

(similar to Simon’s algorithm)
factors RSA modulus N by
finding period of x — 2* mod N.

Number of qubit operations
~ number of bit operations
to compute 2* mod N.

Post-quantum cryptography

Grover's algorithm finds

128-bit AES key using
204 quantum AES evaluations.

Sensible risk management:
Assume that this is feasible—
or will be feasible in, e.g., 2025.
“"AES-128 is dead.”

Fix: Switch to AES-256.

AES-256 has 14 rounds.

Maybe 12 rounds are enough
for 2128 post-quantum security?
Maybe 10 rounds are enough?

Shor’s algorithm
(similar to Simon’s algorithm)

factors RSA modulus N by
finding period of x — 2* mod N.

Number of qubit operations
~ number of bit operations
to compute 2* mod N.

~2%% qubit operations
when N is around 1 gigabyte.

Post-quantum cryptography

Grover's algorithm finds

128-bit AES key using
204 quantum AES evaluations.

Sensible risk management:
Assume that this is feasible—
or will be feasible in, e.g., 2025.
“"AES-128 is dead.”

Fix: Switch to AES-256.

AES-256 has 14 rounds.

Maybe 12 rounds are enough
for 2128 post-quantum security?
Maybe 10 rounds are enough?

Shor’s algorithm
(similar to Simon’s algorithm)

factors RSA modulus N by
finding period of x — 2* mod N.

Number of qubit operations
~ number of bit operations
to compute 2* mod N.

~2%% qubit operations
when N is around 1 gigabyte.

Shor also finds log, h by

finding period of (x,y) — g*h”.

Post-quantum cryptography

Grover's algorithm finds

128-bit AES key using
204 quantum AES evaluations.

Sensible risk management:
Assume that this is feasible—
or will be feasible in, e.g., 2025.
“"AES-128 is dead.”

Fix: Switch to AES-256.

AES-256 has 14 rounds.

Maybe 12 rounds are enough
for 2128 post-quantum security?
Maybe 10 rounds are enough?

Shor’s algorithm
(similar to Simon’s algorithm)

factors RSA modulus N by
finding period of x — 2* mod N.

Number of qubit operations
~ number of bit operations
to compute 2* mod N.

~2%% qubit operations
when N is around 1 gigabyte.

Shor also finds log, h by

finding period of (x,y) — g*h”.
“RSA i1s dead. ECC is dead.”

Post-quantum cryptography

Grover's algorithm finds

128-bit AES key using
204 quantum AES evaluations.

Sensible risk management:
Assume that this is feasible—
or will be feasible in, e.g., 2025.
“"AES-128 is dead.”

Fix: Switch to AES-256.

AES-256 has 14 rounds.

Maybe 12 rounds are enough
for 2128 post-quantum security?
Maybe 10 rounds are enough?

Shor’s algorithm
(similar to Simon’s algorithm)

factors RSA modulus N by
finding period of x — 2* mod N.

Number of qubit operations
~ number of bit operations
to compute 2* mod N.

~2%% qubit operations
when N is around 1 gigabyte.

Shor also finds log, h by

finding period of (x,y) — g*h”.

“RSA i1s dead. ECC is dead.”
But some systems seem safe.

antum cryptography

algorithm finds
AES key using
1tum AES evaluations.

risk management:

that this is feasible—

e feasible in, e.g., 2025.
8 Is dead.”

tch to AES-256.

) has 14 rounds.

2 rounds are enough
post-quantum security?
0 rounds are enough?

Shor’s algorithm
(similar to Simon's algorithm)

factors RSA modulus N by
finding period of x — 2* mod N.

Number of qubit operations
~ number of bit operations
to compute 2% mod N.

~2%% qubit operations
when N i1s around 1 gigabyte.

Shor also finds log, h by

finding period of (x, y) — g*h”.

“RSA is dead. ECC is dead.”
But some systems seem safe.

Hash-b:
Example

public-k

Code-b:
Example

hidden-(

public-k

Lattice-
Example

Multiva
equatio
Example

1996 Pa
public-ke

ptography

 finds
sing

evaluations.

gement:
s feasible—

in, e.g., 2025.

S5-256.

bunds.

are enough
tum security?
are enough?

Shor’s algorithm
(similar to Simon’s algorithm)

factors RSA modulus N by
finding period of x — 2* mod N.

Number of qubit operations
~ number of bit operations
to compute 2* mod N.

~2%% qubit operations
when N is around 1 gigabyte.

Shor also finds log, h by

finding period of (x,y) — g*h”.

“RSA i1s dead. ECC is dead.”
But some systems seem safe.

Hash-based sign:
Example: 1979 M
public-key signatu

Code-based cryp
Example: 1978 M

hic

C

pu

D

en-Goppa-cod
ic-key encrypt

Lattice-based cry
Example: 1998 |

Multivariate-qua

equations crypto

Example:
1996 Patarin "HF|
public-key signatu

1S.

)25.

ty?
N7

Shor’s algorithm

(similar to Simon’s algorithm)

factors RSA modulus N by

finding period of x — 2* mod N.

Number of qubit operations
~ number of bit operations
to compute 2% mod N.

~2%% qubit operations

when N i1s around 1 gigabyte.

Shor also finds log, h by

finding period of (x, y) — g*h”.

“RSA is dead. ECC is dead.”
But some systems seem safe.

Hash-based signhatures.
Example: 1979 Merkle hash
public-key signature system.

Code-based cryptography.
Example: 1978 McEliece
hidden-Goppa-code

public-key encryption systen

Lattice-based cryptograpkt
Example: 1998 "NTRU".

Multivariate-quadratic-
equations cryptography.
Example:

1996 Patarin “"HFEY™"

public-key signature system.

Shor’s algorithm
(similar to Simon’s algorithm)

factors RSA modulus N by
finding period of x — 2* mod N.

Number of qubit operations
~ number of bit operations
to compute 2* mod N.

~2%% qubit operations
when N iIs around 1 gigabyte.

Shor also finds log, h by

finding period of (x,y) — g*h”.

“RSA is dead. ECC is dead.”
But some systems seem safe.

Hash-based signhatures.
Example: 1979 Merkle hash-tree
public-key signature system.

Code-based cryptography.
Example: 1978 McEliece
hidden-Goppa-code

public-key encryption system.

Lattice-based cryptography.
Example: 1998 "NTRU".

Multivariate-quadratic-
equations cryptography.
Example:

1996 Patarin “"HFEY™"

public-key signature system.

lgorithm
to Simon’s algorithm)

RSA modulus N by
yeriod of x — 2% mod N.

of qubit operations

er of bit operations
ute 2 mod N.

bit operations
is around 1 gigabyte.

o tinds log, h by

veriod of (x,y) — g*hY.

dead. ECC is dead.”
e systems seem safe.

Hash-based signatures.
Example: 1979 Merkle hash-tree
public-key signature system.

Code-based cryptography.
Example: 1978 McEliece
hidden-Goppa-code

public-key encryption system.

Lattice-based cryptography.
Example: 1998 "NTRU".

Multivariate-quadratic-
equations cryptography.
Example:

1996 Patarin “"HFEY™"

public-key signature system.

s algorithm)

lus N by
¢« — 2 mod N.

perations

perations
d .

10Nns

1 gigabyte.

2 N by
x,y)— g h’.

C is dead.”
seem safe.

Hash-based signhatures.
Example: 1979 Merkle hash-tree
public-key signature system.

Code-based cryptography.
Example: 1978 McEliece
hidden-Goppa-code

public-key encryption system.

Lattice-based cryptography.
Example: 1998 "NTRU".

Multivariate-quadratic-
equations cryptography.
Example:

1996 Patarin “"HFEY™"

public-key signature system.

Post-Qu
Cryptoc

d .

(D

*h”.

Hash-based signatures.
Example: 1979 Merkle hash-tree
public-key signature system.

Code-based cryptography.
Example: 1978 McEliece
hidden-Goppa-code

public-key encryption system.

Lattice-based cryptography.
Example: 1998 "NTRU".

Multivariate-quadratic-
equations cryptography.
Example:

1996 Patarin “"HFEY™"

public-key signature system.

Daniel J. Bernsti

Johannes Buchma
Erik Dah
Edit

Post-Quantun
Cryptograph

‘@ Spring

Hash-based signhatures.
Example: 1979 Merkle hash-tree
public-key signature system.

Code-based cryptography.
Example: 1978 McEliece
hidden-Goppa-code

public-key encryption system.

Lattice-based cryptography.
Example: 1998 "NTRU".

Multivariate-quadratic-
equations cryptography.
Example:

1996 Patarin "HFEY™"

public-key signature system.

Daniel J. Bernstein

Johannes Buchmann
Erik Dahmen

Editors

Post-Quantum
Cryptography

@ Springer

1sed signatures.
. 1979 Merkle hash-tree
2y signature system.

ased cryptography.
: 1978 McEliece
;0ppa-code

2y encryption system.

based cryptography.
1998 "NTRU".

riate-quadratic-
ns cryptography.
tarin "HFEY™"

2y signature system.

Daniel J. Bernstein

Johannes Buchmann
Erik Dahmen

Editors

Post-Quantum
Cryptography

@ Springer

The 197

(with 19

Recelver
500 x 1f
Specifies

Atures.
erkle hash-tree
re system.

tography.
cEliece
e

lon system.

/ptography.
ITRU".

dratic-
graphy.

EV

re system.

Daniel J. Bernstein

Johannes Buchmann
Erik Dahmen

Editors

Post-Quantum
Cryptography

@ Springer

The 1978 McEliec

(with 1986 Nieder

Receiver's public k
500 x 1024 matriy
Specifies linear F}

-tree

Y.

Daniel J. Bernstein

Johannes Buchmann
Erik Dahmen

Editors

Post-Quantum
Cryptography

@ Springer

The 1978 McEliece cryptosy

(with 1986 Niederreiter spee

Receiver’s public key: “rand
500 x 1024 matrix K over F
Specifies linear F%OM > Fgo

Daniel J. Bernstein

Johannes Buchmann
Erik Dahmen

Editors

Post-Quantum
Cryptography

@ Springer

The 1978 McEliece cryptosystem

(with 1986 Niederreiter speedup)

Receiver's public key: “random”
500 x 1024 matrix K over F».
Specifies linear F%OM o Fgoo.

Daniel J. Bernstein

Johannes Buchmann
Erik Dahmen

Editors

Post-Quantum
Cryptography

@ Springer

The 1978 McEliece cryptosystem

(with 1986 Niederreiter speedup)

Receiver's public key: “random”
500 x 1024 matrix K over F».
Specifies linear F%OM o Fgoo.

Messages suitable for encryption:
1024-bit strings of weight 50.

{e € F}0%% . #0i: ¢; = 1} = 50}.

Daniel J. Bernstein

Johannes Buchmann
Erik Dahmen

Editors

Post-Quantum
Cryptography

@ Springer

The 1978 McEliece cryptosystem

(with 1986 Niederreiter speedup)

Receiver's public key: “random”
500 x 1024 matrix K over F».
Specifies linear F%OM o Fgoo.

Messages suitable for encryption:
1024-bit strings of weight 50.
{e € F}0%% . #0i: ¢; = 1} = 50}.

Encryption of e is Ke € Fgoo.

The 1978 McEliece cryptosystem

(with 1986 Niederreiter speedup)

Daniel J. Bernstein Receiver’s public key: “random”

Johannes Buchmann _
Erik Dahmen 500 x 1024 matrix K over F».

Editors . .
i Specifies linear F%OM — Fgoo.

Messages suitable for encryption:

Post-Quantum 1024-bit strings of weight 50.
Cryptography fe € FI0% 4fj e =1} =50}
Encryption of e is Ke € Fgoo.

"Padding’: Choose random e;
send Ke; use SHA-256(e, Ke) as
4 springer AES-256-GCM key to encrypt
actual message of any length.

Daniel J. Bernstein

Johannes Buchmann
Erik Dahmen

Editors

)st-Quantum
yptography

@ Springer

The 1978 McEliece cryptosystem

(with 1986 Niederreiter speedup)

Receiver’s public key: “random”
500 x 1024 matrix K over F».
Specifies linear F%OM > FSOO.

Messages suitable for encryption:
1024-bit strings of weight 50.

{e e F}0%% . 4{i: ¢; = 1} = 50}

Encryption of e is Ke & FSOO.

"Padding”: Choose random e;
send Ke; use SHA-256(e, Ke) as

AES-256-GCM key to encrypt
actual message of any length.

Attacker
easily we
from Ke
such tha

Daniel J. Bernstein

hannes Buchmann
Erik Dahmen

Editors

antum
jraphy

@ Springer

The 1978 McEliece cryptosystem

(with 1986 Niederreiter speedup)

Receiver's public key: “random”
500 x 1024 matrix K over F».
Specifies linear F%O% o FSOO.

Messages suitable for encryption:
1024-bit strings of weight 50.

{e € F}0%% . #0i: ¢ = 1} = 50}.

Encryption of e is Ke € Fgoo.

"Padding’: Choose random e;
send Ke; use SHA-256(e, Ke) as

AES-256-GCM key to encrypt
actual message of any length.

Attacker, by linear
easily works backv
from Ke to some

such that Kv = K

er

The 1978 McEliece cryptosystem
(with 1986 Niederreiter speedup)

Receiver’s public key: “random”
500 x 1024 matrix K over F».
Specifies linear F%OM > FSOO.

Messages suitable for encryption:
1024-bit strings of weight 50.

{e € F}0%% . #0i: ¢ = 1} = 50}.

Encryption of e is Ke & Fgoo.

"Padding”: Choose random e;
send Ke; use SHA-256(e, Ke) as

AES-256-GCM key to encrypt
actual message of any length.

Attacker, by linear algebra,

easily works backwards
from Ke to some v &€
such that Kv = Ke.

1024
|:2

The 1978 McEliece cryptosystem
(with 1986 Niederreiter speedup)

Receiver's public key: “random”
500 x 1024 matrix K over F».
Specifies linear F%OM o FSOO.

Messages suitable for encryption:
1024-bit strings of weight 50.

{e € F}0%% . #0i: ¢ = 1} = 50}.

Encryption of e is Ke & Fgoo.

"Padding’: Choose random e¢;
send Ke; use SHA-256(e, Ke) as

AES-256-GCM key to encrypt
actual message of any length.

Attacker, by linear algebra,

easily works backwards
from Ke to some v &€
such that Kv = Ke.

1024
F2

The 1978 McEliece cryptosystem

(with 1986 Niederreiter speedup)

Receiver's public key: “random”
500 x 1024 matrix K over F».
Specifies linear F%OM o FSOO.

Messages suitable for encryption:
1024-bit strings of weight 50.

{e € F}0%% . #0i: ¢ = 1} = 50}.

Encryption of e is Ke & Fgoo.

"Padding’: Choose random e¢;
send Ke; use SHA-256(e, Ke) as

AES-256-GCM key to encrypt
actual message of any length.

Attacker, by linear algebra,
easily works backwards
from Ke to some v &€ F%024
such that Kv = Ke.

I.e. Attacker finds some
element v € e 4+ Ker K.
Note that # Ker K > 2224,

Attacker wants to decode v:
to find element of Ker K

at distance only 50 from v.
Presumably unique, revealing e.

The 1978 McEliece cryptosystem

(with 1986 Niederreiter speedup)

Receiver's public key: “random”
500 x 1024 matrix K over F».
Specifies linear F%OM o FSOO.

Messages suitable for encryption:
1024-bit strings of weight 50.

{e € F}0%% . #0i: ¢ = 1} = 50}.

Encryption of e is Ke & Fgoo.

"Padding’: Choose random e¢;
send Ke; use SHA-256(e, Ke) as

AES-256-GCM key to encrypt
actual message of any length.

Attacker, by linear algebra,
easily works backwards
from Ke to some v &€ F%024
such that Kv = Ke.

I.e. Attacker finds some
element v € e 4+ Ker K.
Note that # Ker K > 2224,

Attacker wants to decode v:
to find element of Ker K

at distance only 50 from v.
Presumably unique, revealing e.

But decoding isn't easy!

8 McEliece cryptosystem

86 Niederreiter speedup)

's public key: “random”
)24 matrix K over F».
> linear F%OM — Fgoo.

s suitable for encryption:
strings of weight 50.

24 4 li:ef =1} = 50}

on of eis Ke € Fgoo.

g . Choose random e¢;
; use SHA-256(e, Ke) as
-GCM key to encrypt
1essage of any length.

Attacker, by linear algebra,
easily works backwards
from Ke to some v € F%O%

such that Kv = Ke.

I.e. Attacker finds some
element v € e 4+ Ker K.
Note that # Ker K > 2224,

Attacker wants to decode v:
to find element of Ker K
at distance only 50 from v.

Presumably unique, revealing e.

But decoding isn't easy!

Informat

Choose

sc{1,

For typic
that F3

IS Invert

€ Cryptosystem

reiter speedup)

ey: “random”

« K over F».
024 BN FSOO_

for encryption:
~weight 50.

e — 1} — 50}.

Ke & FgOO.

e random e;
-256(¢e, Ke) as
/ tOo encrypt
any length.

Attacker, by linear algebra,
easily works backwards
from Ke to some v &€ F%024
such that Kv = Ke.

I.e. Attacker finds some
element v € e 4+ Ker K.
Note that # Ker K > 2224,

Attacker wants to decode v:

to find element of Ker K

at distance only 50 from v.
Presumably unique, revealing e.

But decoding isn't easy!

Information-set de

Choose random si
§C{1,23,...,1

For typical K: Go
that F3 — F30%%

Is invertible.

stem

dup)

tion:

Attacker, by linear algebra,
easily works backwards
from Ke to some v € F%O%

such that Kv = Ke.

I.e. Attacker finds some
element v € e 4+ Ker K.
Note that # Ker K > 2224,

Attacker wants to decode v:
to find element of Ker K
at distance only 50 from v.

Presumably unique, revealing e.

But decoding isn't easy!

Information-set decoding

Choose random size-500 sul
$CH{1,2,3,...,1024}.

For typical K: Good chance
that F3 — F3024 K, F300

Is invertible.

Attacker, by linear algebra,
easily works backwards
from Ke to some v &€ F%024

such that Kv = Ke.

I.e. Attacker finds some
element v € e 4+ Ker K.
Note that # Ker K > 2224,

Attacker wants to decode v:

to find element of Ker K

at distance only 50 from v.
Presumably unique, revealing e.

But decoding isn't easy!

Information-set decoding

Choose random size-500 subset
S$C{1,23,...,1024}.

For typical K: Good chance
that F3 — F302% K, F300

Is invertible.

Attacker, by linear algebra,
easily works backwards
from Ke to some v &€ F%024
such that Kv = Ke.

I.e. Attacker finds some
element v € e 4+ Ker K.
Note that # Ker K > 2224,

Attacker wants to decode v:

to find element of Ker K
at distance only 50 from v.

Presumably unique, revealing e.

But decoding isn't easy!

Information-set decoding

Choose random size-500 subset
S$C{1,23,...,1024}.

For typical K: Good chance
that F3 — F302% K, F300

Is invertible.

Hope e € FS; chance ~2—°3,
Apply Iinverse map to Ke,

revealing e it e € Ff.

Attacker, by linear algebra,
easily works backwards
from Ke to some v &€ F%024
such that Kv = Ke.

I.e. Attacker finds some
element v € e 4+ Ker K.
Note that # Ker K > 2224,

Attacker wants to decode v:
to find element of Ker K
at distance only 50 from v.

Presumably unique, revealing e.

But decoding isn't easy!

Information-set decoding

Choose random size-500 subset
S$C{1,23,...,1024}.

For typical K: Good chance
that F3 — F302% K, F300

Is invertible.

Hope e € FS; chance ~2—°3,
Apply Iinverse map to Ke,

revealing e it e € Ff.

If e ¢ Fg, try again.
~230 bit operations In total.

Attacker, by linear algebra,
easily works backwards
from Ke to some v &€ F%024
such that Kv = Ke.

I.e. Attacker finds some
element v € e 4+ Ker K.
Note that # Ker K > 2224,

Attacker wants to decode v:
to find element of Ker K
at distance only 50 from v.

Presumably unique, revealing e.

But decoding isn't easy!

Information-set decoding

Choose random size-500 subset
S$C{1,23,...,1024}.

For typical K: Good chance
that F3 — F302% K, F300

Is invertible.

Hope e € FS; chance ~2—°3,
Apply Iinverse map to Ke,

revealing e it e € Ff.
If e ¢ Fg, try again.
~230 bit operations In total.

Bad estimate by McEliece: a2%4.

, by linear algebra,
yrks backwards

» to some v € F%O%

t Kv = Ke.

cker finds some
v € e + Ker K.
1t 4 Ker K > 2224

- wants to decode v:
lement of Ker K
1ce only 50 from v.

bly unique, revealing e.

bding isn't easy!

Information-set decoding

Choose random size-500 subset
$§CH{1,2,3,..., 1024} .

For typical K: Good chance
that F3 — F302% K, F300

Is invertible.

Hope e € Fg; chance 2723
Apply Iinverse map to Ke,

revealing e it e € Fg.

If e ¢ Fg, try again.
~230 bit operations in total.

Bad estimate by McEliece: ~2%4.

Analyzin
1962 Pr.
1988 Le
1989 Kr
1989 Du
1990 Co
1990 val
1991 Co
1993 Ch
1993 Ch
1994 va
1994 Ca
1998 Ca
1998 Ca

~algebra,
vards

= F%O24
e.

some

er K.
(> 9924

decode v:
Ker K
) from v.

2, revealing e.

- easy!

Information-set decoding

Choose random size-500 subset

SC{1,2,3,...,1024}.

For typical K: Good chance
that F3 — F3024 £, F300

Is invertible.

Hope e € Fg; chance ~2—°3,

Apply Iinverse map to Ke,
revealing e if e € Ff.

If e ¢ Fg, try again.

~230 bit operations In total.

Bad estimate by McEliece:

~204

Analyzing and opt
1962 Prange. 198
1988 Lee—Brickell.
1989 Krouk. 1989
1989 Dumer.
1990 Coffey—Gooca
1990 van Tilburg.
1991 Coffey—Gooca
1993 Chabanne-C
1993 Chabaud.
1994 van Tilburg.
1994 Canteaut—Ct
1998 Canteaut—Ck
1998 Canteaut—Se

g €.

Information-set decoding

Choose random size-500 subset

SC{1,2,3,...,1024}.

For typical K: Good chance
that F3 — F3024 K, F300

Is invertible.

Hope e € Fg; chance ~2—°3

Apply Iinverse map to Ke,
revealing e if e € Fg.

If e ¢ Fg, try again.
~230 bit operations in total.

Bad estimate by McEliece: ~2%4.

Analyzing and optimizing at
1962 Prange. 1981 Omura.
1988 Lee—Brickell. 1988 Lec
1989 Krouk. 1989 Stern.
1989 Dumer.

1990 Coffey—Goodman.
1990 van Tilburg. 1991 Du
1991 Coffey—Goodman—Farr
1993 Chabanne—Courteau.
1993 Chabaud.

1994 van Tilburg.

1994 Canteaut—Chabanne.
1998 Canteaut—Chabaud.
1998 Canteaut—Sendrier.

Information-set decoding

Choose random size-500 subset
S$C{1,23,...,1024}.

For typical K: Good chance
that F3 — F3024 £, F300

Is invertible.

Ho
Ap

Ne e € Fg; chance ~2—°3,

oly Iinverse map to Ke,

revealing e it e € Ff.

If e ¢ Fg, try again.

~280

Bad estimate by McEliece:

bit operations in total.

~204

Analyzing and optimizing attacks:
1962 Prange. 1981 Omura.
1988 Lee—Brickell. 1988 Leon.
1989 Krouk. 1989 Stern.

1989 Dumer.

1990 Coffey—Goodman.

1990 van Tilburg. 1991 Dumer.
1991 Coffey—Goodman—Farrell.
1993 Chabanne—Courteau.

1993 Chabaud.

1994 van Tilburg.

1994 Canteaut—Chabanne.

1998 Canteaut—Chabaud.

1998 Canteaut—Sendrier.

1on-set decoding

random size-500 subset
2.3, ..., 1024} .

~al K: Good chance
N F%OM K . FSOO

ble.

S Fg; chance ~2—°3

verse map to Ke,
reifec Fg.
>ty |

, try again.

- operations In total.

mate by McEliece: ~~25%.

Analyzing and optimizing attacks:

1962 Prange. 1981 Omura.
1988 Lee—Brickell. 1988 Leon.
1989 Krouk. 1989 Stern.

1989 Dumer.

1990 Coffey—Goodman.

1990 van Tilburg. 1991 Dumer.
1991 Coffey—Goodman—Farrell.
1993 Chabanne—Courteau.
1993 Chabaud.

1994 van Tilburg.

1994 Canteaut—Chabanne.
1998 Canteaut—Chabaud.
1998 Canteaut—Sendrier.

2008 Be
mc
att

2009 Be
Pe

2009 Be

2009 Fir

2010 Be

2011 M:

2011 Be

2012 Be

2013 Be
Me

2015 M:

coding

7e-500 subset
024} .

od chance
K . 500
- ,F2

nce ~27 23
 to Ke,

S
F2.

n.

1S 1n total.

AcEliece: ~220%.

Analyzing and optimizing attacks:

1962 Prange. 1981 Omura.
1988 Lee—Brickell. 1988 Leon.
1989 Krouk. 1989 Stern.

1989 Dumer.

1990 Coffey—Goodman.

1990 van Tilburg. 1991 Dumer.
1991 Coffey—Goodman—Farrell.
1993 Chabanne—Courteau.
1993 Chabaud.

1994 van Tilburg.

1994 Canteaut—Chabanne.
1998 Canteaut—Chabaud.
1998 Canteaut—Sendrier.

2008 Bernstein—L:

more speedu
attack actuc
2009 Bernstein—Lz
Peters—van |
2009 Bernstein: p
2009 Finiasz—Senc
2010 Bernstein—Lz
2011 May—Meurer
2011 Becker—Coro
2012 Becker—Joux
2013 Bernstein—Je
Meurer: pos
2015 May—Ozerov

)set

N264_

Analyzing and optimizing attacks:

1962 Prange. 1981 Omura.
1988 Lee—Brickell. 1988 Leon.
1989 Krouk. 1989 Stern.

1989 Dumer.

1990 Coffey—Goodman.

1990 van Tilburg. 1991 Dumer.
1991 Coffey—Goodman—Farrell.
1993 Chabanne—Courteau.
1993 Chabaud.

1994 van Tilburg.

1994 Canteaut—Chabanne.
1998 Canteaut—Chabaud.
1998 Canteaut—Sendrier.

2008 Bernstein—Lange—Pete
more speedups; ~2%
attack actually carrie

2009 Bernstein—Lange—
Peters—van Tilborg.

2009 Bernstein: post-quanti

2009 Finiasz—Sendrier.

2010 Bernstein—Lange—Pete

2011 May—Meurer—Thomae.

2011 Becker—Coron—Joux.

2012 Becker—Joux—May—Me

2013 Bernstein—Jeffery—Lang

Meurer: post-quantun
2015 May—Ozerov.

Analyzing and optimizing attacks:

1962 Prange. 1981 Omura.
1988 Lee—Brickell. 1988 Leon.
1989 Krouk. 1989 Stern.

1989 Dumer.

1990 Coffey—Goodman.

1990 van Tilburg. 1991 Dumer.
1991 Coffey—Goodman—Farrell.
1993 Chabanne—Courteau.
1993 Chabaud.

1994 van Tilburg.

1994 Canteaut—Chabanne.
1998 Canteaut—Chabaud.
1998 Canteaut—Sendrier.

2008 Bernstein—Lange—Peters:
more speedups; ~200 cycles;
attack actually carried out.

2009 Bernstein—Lange—
Peters—van Tilborg.

2009 Bernstein: post-quantum.

2009 Finiasz—Sendrier.

2010 Bernstein—Lange—Peters.

2011 May—Meurer—Thomae.

2011 Becker—Coron—Joux.

2012 Becker—Joux—May—Meurer.

2013 Bernstein—Jeffery—Lange—

Meurer: post-quantum.
2015 May—Ozerov.

g and optimizing attacks:

ange. 1981 Omura.
e—Brickell. 1988 Leon.
ouk. 1989 Stern.

mer.

ffey—Goodman.

1 Tilburg. 1991 Dumer.
ffey—Goodman—Farrell.

abanne—Courteau.

abaud.
1 Tilburg.
nteaut—Chabanne.

nteaut—Chabaud.
nteaut—Sendrier.

2008 Bernstein—Lange—Peters:

more speedups; ~2%0 cycles;
attack actually carried out.

2009 Bernstein—Lange—
Peters—van Tilborg.

2009 Bernstein: post-quantum.

2009 Finiasz—Sendrier.

2010 Bernstein—Lange—Peters.

2011 May—Meurer—Thomae.

2011 Becker—Coron—Joux.

2012 Becker—Joux—May—Meurer.

2013 Bernstein—Jeffery—Lange—

Meurer: post-quantum.
2015 May—Ozerov.

Modern

Easily re
a larger

(n/2) x
e.g., 18(

imizing attacks:

1 Omura.

1988 Leon.
 Stern.

'man.
1991 Dumer.
'man—Farrell.

ourteaud.

1IaDaNne.

1abaud.
ndrier.

2008 Bernstein—Lange—Peters:

more speedups; ~2%

attack actually carried out.

2009 Bernstein—Lange—
Peters—van Tilborg.

2009 Bernstein: post-quantum.

2009 Finiasz—Sendrier.

2010 Bernstein—Lange—Peters.

2011 May—Meurer—Thomae.

2011 Becker—Coron—Joux.

2012 Becker—Joux—May—Meurer.

2013 Bernstein—Jeffery—Lange—
Meurer: post-quantum.

2015 May—Ozerov.

Modern McEliece

cycles;

Easily rescue syste
a larger public key
(n/2) X n matrix
e.g., 1800 x 3600.

tacks:

n.

ner.

al].

2008 Bernstein—Lange—Peters:

more speedups; ~2%0 cycles;
attack actually carried out.

2009 Bernstein—Lange—
Peters—van Tilborg.

2009 Bernstein: post-quantum.

2009 Finiasz—Sendrier.

2010 Bernstein—Lange—Peters.

2011 May—Meurer—Thomae.

2011 Becker—Coron—Joux.

2012 Becker—Joux—May—Meurer.

2013 Bernstein—Jeffery—Lange—
Meurer: post-quantum.

2015 May—QOzerov.

Modern McEliece

Easily rescue system by usin
a larger public key: “randon
(n/2) x n matrix K over F»
e.g., 1800 x 3600.

2008 Bernstein—Lange—Peters:

more speedups; ~2%0 cycles;
attack actually carried out.

2009 Bernstein—Lange—
Peters—van Tilborg.

2009 Bernstein: post-quantum.

2009 Finiasz—Sendrier.

2010 Bernstein—Lange—Peters.

2011 May—Meurer—Thomae.

2011 Becker—Coron—Joux.

2012 Becker—Joux—May—Meurer.

2013 Bernstein—Jeffery—Lange—
Meurer: post-quantum.

2015 May—Ozerov.

Modern McEliece

Easily rescue system by using
a larger public key: “random”
(n/2) x n matrix K over F».

e.g., 1800 x 3600.

2008 Bernstein—Lange—Peters:

more speedups; ~2%0 cycles;
attack actually carried out.

2009 Bernstein—Lange—
Peters—van Tilborg.

2009 Bernstein: post-quantum.

2009 Finiasz—Sendrier.

2010 Bernstein—Lange—Peters.

2011 May—Meurer—Thomae.

2011 Becker—Coron—Joux.

2012 Becker—Joux—May—Meurer.

2013 Bernstein—Jeffery—Lange—
Meurer: post-quantum.

2015 May—Ozerov.

Modern McEliece

Easily rescue system by using
a larger public key: “random”
(n/2) x n matrix K over F».
e.g., 1800 x 3600.

Larger weight w =~ n/(2lg n).
e.g. ec F§6OO of weight 150.

2008 Bernstein—Lange—Peters:

more speedups; ~2%0 cycles;
attack actually carried out.

2009 Bernstein—Lange—
Peters—van Tilborg.

2009 Bernstein: post-quantum.

2009 Finiasz—Sendrier.

2010 Bernstein—Lange—Peters.

2011 May—Meurer—Thomae.

2011 Becker—Coron—Joux.

2012 Becker—Joux—May—Meurer.

2013 Bernstein—Jeffery—Lange—
Meurer: post-quantum.

2015 May—Ozerov.

Modern McEliece

Easily rescue system by using
a larger public key: “random”
(n/2) x n matrix K over F».
e.g., 1800 x 3600.

Larger weight w =~ n/(2lg n).
e.g. ec F§6OO of weight 150.

1962 attack cost: 2(1t+o(1))w

2008 Bernstein—Lange—Peters:

more speedups; ~2%0 cycles;
attack actually carried out.

2009 Bernstein—Lange—
Peters—van Tilborg.

2009 Bernstein: post-quantum.

2009 Finiasz—Sendrier.

2010 Bernstein—Lange—Peters.

2011 May—Meurer—Thomae.

2011 Becker—Coron—Joux.

2012 Becker—Joux—May—Meurer.

2013 Bernstein—Jeffery—Lange—
Meurer: post-quantum.

2015 May—Ozerov.

Modern McEliece

Easily rescue system by using
a larger public key: “random”
(n/2) x n matrix K over F».
e.g., 1800 x 3600.

Larger weight w =~ n/(2lg n).
e.g. ec F§6OO of weight 150.

1962 attack cost: 2(1t+o(1))w

After extensive research,
2015 attack cost: 2(1+o(1))w.

2008 Bernstein—Lange—Peters:

more speedups; ~2%0 cycles;
attack actually carried out.

2009 Bernstein—Lange—
Peters—van Tilborg.

2009 Bernstein: post-quantum.

2009 Finiasz—Sendrier.

2010 Bernstein—Lange—Peters.

2011 May—Meurer—Thomae.

2011 Becker—Coron—Joux.

2012 Becker—Joux—May—Meurer.

2013 Bernstein—Jeffery—Lange—
Meurer: post-quantum.

2015 May—Ozerov.

Modern McEliece

Easily rescue system by using
a larger public key: “random”
(n/2) x n matrix K over F».
e.g., 1800 x 3600.

Larger weight w =~ n/(2lg n).
e.g. ec F§6OO of weight 150.

1962 attack cost: 2(1t+o(1))w

After extensive research,
2015 attack cost: 2(1+o(1))w.

Post-quantum: 2(0-5+o(1))w

226 Grover iterations

253

e.g. ~

to search choices of S.

