Computational algebraic number theory tackles lattice-based cryptography

Daniel J. Bernstein
University of Illinois at Chicago &
Technische Universiteit Eindhoven

Moving to the left

Moving to the right

Big generator

Moving through the night

—Yes, "Big Generator", 1987

2013.07 talk slide online:

"I think NTRU should switch to random prime-degree extensions with big Galois groups."

2014.02 blog post:

"Here's a concrete suggestion, which I'll call NTRU Prime, for eliminating the structures that I find worrisome in existing ideal-lattice-based encryption systems."

NTRU Prime uses primes p, q with field $(\mathbf{Z}/q)[x]/(x^p-x-1)$.

Extra advantage often claimed: some "security reductions".

Extra advantage often claimed: some "security reductions".
But is this really an advantage?
Lange and I conjecture that security is *negatively* correlated with strength of reductions.

Extra advantage often claimed: some "security reductions".
But is this really an advantage?
Lange and I conjecture that security is *negatively* correlated with strength of reductions.

Disadvantage of cyclotomics: many more symmetries feed a scary attack strategy.
Already serious damage to some lattice-based systems, concerns about other systems.

Typical lattice advertisement:

"Because finding short vectors
in high-dimensional lattices
has been a notoriously hard
algorithmic question for hundreds
of years . . . we have solid and
unique evidence that lattice-based
cryptoschemes are secure."

Typical lattice advertisement:

"Because finding short vectors
in high-dimensional lattices
has been a notoriously hard
algorithmic question for hundreds
of years . . . we have solid and
unique evidence that lattice-based
cryptoschemes are secure."

No. Dangerous exaggeration!
There are many obvious gaps
between lattice-based systems
and the classic lattice problems:
e.g., the systems use ideals.
Important to study these gaps.

2009 Smart-Vercauteren "Fully homomorphic encryption with relatively small key and ciphertext sizes": "Recovering the private key given the public key is therefore an instance of the small principal ideal problem: ... Given a principal ideal . . . compute a 'small' generator of the ideal. This is one of the core problems in computational number theory and has formed the basis of previous cryptographic proposals, see for example [3]."

Smart-Vercauteren, continued: "There are currently two approaches to the problem. . . . In conclusion determining the private key given only the public key is an instance of a classical and well studied problem in algorithmic number theory. In particular there are no efficient solutions for this problem, and the only sub-exponential method does not find a solution which is equivalent to our private key."

In fact, the classical studies focus on small dimensions: e.g., make table of class numbers for many quadratic fields, make table of class numbers for many cubic fields.

Highlights multiplicative issues. Low-dim lattice issues are easy.

Far fewer papers consider scalability of the algorithmic ideas to much larger dimensions.

Take degree-n number field K. i.e. field $K \subseteq \mathbf{C}$ with len $\mathbf{Q} K = n$.

(Weaker specification: field K with $\mathbf{Q} \subseteq K$ and $\text{len}_{\mathbf{Q}} K = n$.)

Take degree-n number field K. i.e. field $K \subseteq \mathbf{C}$ with len $\mathbf{Q} K = n$.

(Weaker specification: field K with $\mathbf{Q} \subseteq K$ and $\text{len}_{\mathbf{Q}} K = n$.)

e.g.
$$n = 2$$
; $K = \mathbf{Q}(i) = \mathbf{Q}(i) = \mathbf{Q}(i) + \mathbf{Q}(i) = \mathbf{Q}(i) + \mathbf{Q}(i) = \mathbf{Q}(i) + \mathbf{Q}(i) + \mathbf{Q}(i) + \mathbf{Q}(i) + \mathbf{Q}(i) = \mathbf{Q}(i) + \mathbf{Q}(i$

Take degree-n number field K. i.e. field $K \subseteq \mathbf{C}$ with len $\mathbf{Q} K = n$.

(Weaker specification: field K with $\mathbf{Q} \subseteq K$ and $len_{\mathbf{Q}} K = n$.)

e.g.
$$n = 2$$
; $K = \mathbf{Q}(i) = \mathbf{Q} \oplus \mathbf{Q} = \mathbf{Q} =$

Take degree-n number field K. i.e. field $K \subseteq \mathbf{C}$ with len $\mathbf{Q} K = n$.

(Weaker specification: field K with $\mathbf{Q} \subseteq K$ and $\text{len}_{\mathbf{Q}} K = n$.)

e.g.
$$n = 2$$
; $K = \mathbf{Q}(i) = \mathbf{Q} \oplus \mathbf{Q}i \hookrightarrow \mathbf{Q}[x]/(x^2 + 1)$.
e.g. $n = 256$; $\zeta = \exp(\pi i/n)$; $K = \mathbf{Q}(\zeta) \hookrightarrow \mathbf{Q}[x]/(x^n + 1)$.
e.g. $n = 660$; $\zeta = \exp(2\pi i/661)$; $K = \mathbf{Q}(\zeta) \hookrightarrow \mathbf{Q}[x]/(x^n + \cdots + 1)$.

Take degree-n number field K. i.e. field $K \subseteq \mathbf{C}$ with len $\mathbf{Q} K = n$.

(Weaker specification: field K with $\mathbf{Q} \subseteq K$ and $len_{\mathbf{Q}} K = n$.)

e.g.
$$n = 2$$
; $K = \mathbf{Q}(i) = \mathbf{Q} \oplus \mathbf{Q} = \mathbf{Q} =$

$$K = \mathbf{Q}(\zeta) \hookrightarrow \mathbf{Q}[x]/(x^n+1).$$

e.g. n = 660; $\zeta = \exp(2\pi i/661)$;

$$K = \mathbf{Q}(\zeta) \hookrightarrow \mathbf{Q}[x]/(x^n + \cdots + 1).$$

e.g.
$$K = \mathbf{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}, \dots, \sqrt{29})$$
.

e.g.
$$K = \mathbf{Q}(i) \hookrightarrow \mathbf{Q}[x]/(x^2 + 1)$$

 $\Rightarrow \mathcal{O} = \mathbf{Z}[i] \hookrightarrow \mathbf{Z}[x]/(x^2 + 1).$

e.g.
$$K = \mathbf{Q}(i) \hookrightarrow \mathbf{Q}[x]/(x^2 + 1)$$

 $\Rightarrow \mathcal{O} = \mathbf{Z}[i] \hookrightarrow \mathbf{Z}[x]/(x^2 + 1).$
e.g. $\zeta = \exp(\pi i/256)$, $K = \mathbf{Q}(\zeta)$
 $\Rightarrow \mathcal{O} = \mathbf{Z}[\zeta] \hookrightarrow \mathbf{Z}[x]/(x^{256} + 1).$

e.g.
$$K = \mathbf{Q}(i) \hookrightarrow \mathbf{Q}[x]/(x^2 + 1)$$

 $\Rightarrow \mathcal{O} = \mathbf{Z}[i] \hookrightarrow \mathbf{Z}[x]/(x^2 + 1).$
e.g. $\zeta = \exp(\pi i/256)$, $K = \mathbf{Q}(\zeta)$
 $\Rightarrow \mathcal{O} = \mathbf{Z}[\zeta] \hookrightarrow \mathbf{Z}[x]/(x^{256} + 1).$
e.g. $\zeta = \exp(2\pi i/661)$, $K = \mathbf{Q}(\zeta)$
 $\Rightarrow \mathcal{O} = \mathbf{Z}[\zeta] \hookrightarrow \cdots.$

e.g.
$$K = \mathbf{Q}(i) \hookrightarrow \mathbf{Q}[x]/(x^2 + 1)$$

 $\Rightarrow \mathcal{O} = \mathbf{Z}[i] \hookrightarrow \mathbf{Z}[x]/(x^2 + 1)$.
e.g. $\zeta = \exp(\pi i/256)$, $K = \mathbf{Q}(\zeta)$
 $\Rightarrow \mathcal{O} = \mathbf{Z}[\zeta] \hookrightarrow \mathbf{Z}[x]/(x^{256} + 1)$.
e.g. $\zeta = \exp(2\pi i/661)$, $K = \mathbf{Q}(\zeta)$
 $\Rightarrow \mathcal{O} = \mathbf{Z}[\zeta] \hookrightarrow \cdots$.
e.g. $K = \mathbf{Q}(\sqrt{5}) \Rightarrow \mathcal{O} = \mathbf{Z}[(1+\sqrt{5})/2] \hookrightarrow \mathbf{Z}[x]/(x^2-x-1)$.

The short-generator problem: Find "short" nonzero $g \in \mathcal{O}$ given the principal ideal $g\mathcal{O}$.

e.g.
$$\zeta = \exp(\pi i/4)$$
; $K = \mathbf{Q}(\zeta)$; $\mathcal{O} = \mathbf{Z}[\zeta] \hookrightarrow \mathbf{Z}[x]/(x^4 + 1)$. The **Z**-submodule of \mathcal{O} gen by $201 - 233\zeta - 430\zeta^2 - 712\zeta^3$, $935 - 1063\zeta - 1986\zeta^2 - 3299\zeta^3$, $979 - 1119\zeta - 2092\zeta^2 - 3470\zeta^3$, $718 - 829\zeta - 1537\zeta^2 - 2546\zeta^3$ is an ideal I of \mathcal{O} . Can you find a short $g \in \mathcal{O}$

such that $I = g\mathcal{O}$?

The lattice perspective

Use LLL to quickly find short elements of lattice

$$ZA + ZB + ZC + ZD$$
 where $A = (201, -233, -430, -712),$ $B = (935, -1063, -1986, -3299),$ $C = (979, -1119, -2092, -3470),$ $D = (718, -829, -1537, -2546).$

The lattice perspective

Use LLL to quickly find short elements of lattice

$$ZA + ZB + ZC + ZD$$
 where $A = (201, -233, -430, -712),$ $B = (935, -1063, -1986, -3299),$ $C = (979, -1119, -2092, -3470),$ $D = (718, -829, -1537, -2546).$

Find (3, 1, 4, 1) as -37A + 3B - 7C + 16D.

This was my original g.

The lattice perspective

Use LLL to quickly find short elements of lattice

$$ZA + ZB + ZC + ZD$$
 where

$$A = (201, -233, -430, -712),$$

$$B = (935, -1063, -1986, -3299),$$

$$C = (979, -1119, -2092, -3470),$$

$$D = (718, -829, -1537, -2546).$$

Find (3, 1, 4, 1) as

$$-37A + 3B - 7C + 16D$$
.

This was my original g.

Also find, e.g., (-4, -1, 3, 1).

Multiplying by root of unity

(here ζ^2) preserves shortness.

For much larger n:

LLL almost never finds g. Big gap between size of gand size of "short" vectors that LLL typically finds in I. For much larger n:

LLL almost never finds g. Big gap between size of gand size of "short" vectors that LLL typically finds in I.

Increased BKZ block size: reduced gap but slower.

For much larger n:

LLL almost never finds g. Big gap between size of gand size of "short" vectors that LLL typically finds in I.

Increased BKZ block size: reduced gap but slower.

Fancier lattice algorithms: Under reasonable assumptions, 2015 Laarhoven—de Weger finds g in time $\approx 1.23^n$. Big progress compared to, e.g., 2008 Nguyen—Vidick ($\approx 1.33^n$) but still exponential time.

Use LLL, BKZ, etc. to generate rather short $\alpha \in g\mathcal{O}$. What happens if $\alpha\mathcal{O} \neq g\mathcal{O}$?

Pure lattice approach: Discard α . Work much harder, find shorter α .

Use LLL, BKZ, etc. to generate rather short $\alpha \in g\mathcal{O}$. What happens if $\alpha\mathcal{O} \neq g\mathcal{O}$?

Pure lattice approach: Discard α . Work much harder, find shorter α .

Use LLL, BKZ, etc. to generate rather short $\alpha \in g\mathcal{O}$. What happens if $\alpha\mathcal{O} \neq g\mathcal{O}$?

Pure lattice approach: Discard α . Work much harder, find shorter α .

e.g. If
$$\alpha_1 \mathcal{O} = g\mathcal{O} \cdot P^2 \cdot Q^2$$

Use LLL, BKZ, etc. to generate rather short $\alpha \in g\mathcal{O}$. What happens if $\alpha\mathcal{O} \neq g\mathcal{O}$?

Pure lattice approach: Discard α . Work much harder, find shorter α .

e.g. If
$$\alpha_1 \mathcal{O} = g\mathcal{O} \cdot P^2 \cdot Q^2$$
 and $\alpha_2 \mathcal{O} = g\mathcal{O} \cdot P \cdot Q^3$

Use LLL, BKZ, etc. to generate rather short $\alpha \in g\mathcal{O}$. What happens if $\alpha\mathcal{O} \neq g\mathcal{O}$?

Pure lattice approach: Discard α . Work much harder, find shorter α .

e.g. If
$$\alpha_1\mathcal{O}=g\mathcal{O}\cdot P^2\cdot Q^2$$
 and $\alpha_2\mathcal{O}=g\mathcal{O}\cdot P\cdot Q^3$ and $\alpha_3\mathcal{O}=g\mathcal{O}\cdot P\cdot Q^2$

Use LLL, BKZ, etc. to generate rather short $\alpha \in g\mathcal{O}$. What happens if $\alpha\mathcal{O} \neq g\mathcal{O}$?

Pure lattice approach: Discard α . Work much harder, find shorter α .

Alternative: Gain information from factorization of ideals.

e.g. If $\alpha_1 \mathcal{O} = g\mathcal{O} \cdot P^2 \cdot Q^2$ and $\alpha_2 \mathcal{O} = g\mathcal{O} \cdot P \cdot Q^3$ and $\alpha_3 \mathcal{O} = g\mathcal{O} \cdot P \cdot Q^2$ then $P = \alpha_1 \alpha_3^{-1} \mathcal{O}$ and $Q = \alpha_2 \alpha_3^{-1} \mathcal{O}$ and $g\mathcal{O} = \alpha_1^{-1} \alpha_2^{-2} \alpha_3^4 \mathcal{O}$. General strategy: For many α 's, factor $\alpha \mathcal{O}$ into products of powers of some primes and $g \mathcal{O}$.

Solve system of equations to find generator for $g\mathcal{O}$ as product of powers of the α 's.

General strategy: For many α 's, factor $\alpha \mathcal{O}$ into products of powers of some primes and $g\mathcal{O}$.

Solve system of equations to find generator for $g\mathcal{O}$ as product of powers of the α 's.

"Can the system be solved?"

Becomes increasingly
 reasonable to expect as the
 number of equations approaches
 and passes the number of primes.

General strategy: For many α 's, factor $\alpha \mathcal{O}$ into products of powers of some primes and $g\mathcal{O}$.

Solve system of equations to find generator for gO as product of powers of the α 's.

"Can the system be solved?"

— Becomes increasingly reasonable to expect as the number of equations approaches and passes the number of primes.

"But {primes} is infinite!"

"But what if αO doesn't factor into those primes?"

"But what if $\alpha \mathcal{O}$ doesn't factor into those primes?"

— Then throw it away.

But often it *does* factor.

"But what if αO doesn't factor into those primes?"

— Then throw it away.

But often it *does* factor.

Familiar issue from "index calculus" DL methods, CFRAC, LS, QS, NFS, etc. Model the norm of $(\alpha/g)\mathcal{O}$ as "random" integer in [1,x]; y-smoothness chance $\approx 1/y$ if $\log y \approx \sqrt{(1/2)\log x \log \log x}$.

Variation: Ignore $g\mathcal{O}$. Generate rather short $\alpha \in \mathcal{O}$, factor $\alpha \mathcal{O}$ into small primes. After enough α 's, solve system of equations; obtain generator for each prime.

Variation: Ignore $g\mathcal{O}$. Generate rather short $\alpha \in \mathcal{O}$, factor $\alpha \mathcal{O}$ into small primes. After enough α 's, solve system of equations; obtain generator for each prime. After this precomputation, factor one $\alpha \mathcal{O} \subseteq g\mathcal{O}$; obtain generator for $g\mathcal{O}$.

Variation: Ignore $g\mathcal{O}$. Generate rather short $\alpha \in \mathcal{O}$, factor $\alpha \mathcal{O}$ into small primes. After enough α 's, solve system of equations; obtain generator for each prime. After this precomputation, factor one $\alpha \mathcal{O} \subseteq g\mathcal{O}$; obtain generator for $g\mathcal{O}$.

"Do all primes have generators?"

Variation: Ignore $g\mathcal{O}$. Generate rather short $\alpha \in \mathcal{O}$, factor $\alpha \mathcal{O}$ into small primes. After enough α 's, solve system of equations; obtain generator for each prime. After this precomputation, factor one $\alpha \mathcal{O} \subseteq g\mathcal{O}$; obtain generator for $g\mathcal{O}$.

"Do all primes have generators?"

— Standard heuristics:

For many (most?) number fields, yes; but for big cyclotomics, no! Modulo a few small primes, yes.

{principal nonzero ideals} is kernel of a semigroup map {nonzero ideals} \rightarrow C where C is a finite abelian group, the "class group of K".

Fundamental object of study in algebraic number theory.

{principal nonzero ideals} is kernel of a semigroup map {nonzero ideals} \rightarrow C where C is a finite abelian group, the "class group of K".

Fundamental object of study in algebraic number theory.

Factoring many small $\alpha \mathcal{O}$ is a standard textbook method of computing class group and generators of ideals.

{principal nonzero ideals} is kernel of a semigroup map {nonzero ideals} \rightarrow C where C is a finite abelian group, the "class group of K".

Fundamental object of study in algebraic number theory.

Factoring many small $\alpha \mathcal{O}$ is a standard textbook method of computing class group and generators of ideals.

Also compute unit group \mathcal{O}^* via ratios of generators.

Smart–Vercauteren statement regarding similar algorithm by Buchmann: "This method has complexity $\exp(O(N \log N) \cdot \sqrt{\log(\Delta) \cdot \log\log(\Delta)})$."

Smart–Vercauteren statement regarding similar algorithm by Buchmann: "This method has complexity $\exp(O(N \log N) \cdot \sqrt{\log(\Delta) \cdot \log\log(\Delta)})$."

— [citation needed]

Smart–Vercauteren statement regarding similar algorithm by Buchmann: "This method has complexity $\exp(O(N \log N) \cdot \sqrt{\log(\Delta) \cdot \log\log(\Delta)})$."

— [citation needed]

Did they mean Θ ? And +? $\exp(\Theta(N \log N))$ factor for short-vector enumeration? Silly: BKZ works just fine.

Smart–Vercauteren statement regarding similar algorithm by Buchmann: "This method has complexity $\exp(O(N \log N) \cdot \sqrt{\log(\Delta) \cdot \log\log(\Delta)})$."

— [citation needed]

Did they mean Θ ? And +? $\exp(\Theta(N \log N))$ factor for short-vector enumeration? Silly: BKZ works just fine. The whole algorithm will be subexponential unless norms are much worse than exponential.

Big generator

Smart–Vercauteren: "However this method is likely to produce a generator of large height, i.e., with large coefficients. Indeed so large, that writing the obtained generator down as a polynomial in θ may take exponential time."

Indeed, generator found for $g\mathcal{O}$ is product of powers of various α 's. Must be gu for some $u \in \mathcal{O}^*$, but extremely unlikely to be g.

Big generator

Smart–Vercauteren: "However this method is likely to produce a generator of large height, i.e., with large coefficients. Indeed so large, that writing the obtained generator down as a polynomial in θ may take exponential time."

Indeed, generator found for $g\mathcal{O}$ is product of powers of various α 's. Must be gu for some $u \in \mathcal{O}^*$, but extremely unlikely to be g.

How do we find g from gu?

There are exactly n distinct ring maps $\varphi_1, \ldots, \varphi_n : K \to \mathbf{C}$.

There are exactly n distinct ring maps $\varphi_1, \ldots, \varphi_n : K \to \mathbf{C}$.

Define Log : $K^* \to \mathbf{R}^n$ by Log $= (\log |\varphi_1|, \ldots, \log |\varphi_n|)$.

There are exactly n distinct ring maps $\varphi_1, \ldots, \varphi_n : K \to \mathbb{C}$.

Define Log : $K^* \to \mathbf{R}^n$ by Log $= (\log |\varphi_1|, \ldots, \log |\varphi_n|)$.

Log \mathcal{O}^* is a lattice of rank $r_1 + r_2 - 1$ where $r_1 = \#\{i : \varphi_i(K) \subseteq \mathbf{R}\},$ $2r_2 = \#\{i : \varphi_i(K) \not\subseteq \mathbf{R}\}.$

There are exactly n distinct ring maps $\varphi_1, \ldots, \varphi_n : K \to \mathbb{C}$.

Define Log : $K^* \to \mathbf{R}^n$ by Log $= (\log |\varphi_1|, \ldots, \log |\varphi_n|)$.

Log \mathcal{O}^* is a lattice of rank $r_1 + r_2 - 1$ where $r_1 = \#\{i : \varphi_i(K) \subseteq \mathbf{R}\},$ $2r_2 = \#\{i : \varphi_i(K) \not\subseteq \mathbf{R}\}.$

e.g. $\zeta = \exp(\pi i/256)$, $K = \mathbf{Q}(\zeta)$: images of ζ under ring maps are ζ , ζ^3 , ζ^5 , ..., ζ^{511} . $r_1 = 0$; $r_2 = 128$; rank 127.

Find elements of Log \mathcal{O}^* close to Log gu.

Find elements of Log \mathcal{O}^* close to Log gu.

This is a close-vector problem ("bounded-distance decoding"). "Embedding" heuristic: CVP as fast as SVP.

Find elements of Log \mathcal{O}^* close to Log gu.

This is a close-vector problem ("bounded-distance decoding"). "Embedding" heuristic: CVP as fast as SVP.

This finds Log *u*.

Easily reconstruct *g*up to a root of unity.

#{roots of unity} is small.

Say we know Log norm K:F g for a proper subfield $F \subset K$.

Say we know Log norm $_{K:F}g$ for a proper subfield $F \subset K$.

We also know Log norm $K_{:F}$ gu, so we know Log norm $K_{:F}$ u.

Say we know Log norm $_{K:F}g$ for a proper subfield $F \subset K$.

We also know Log norm $_{K:F}gu$, so we know Log norm $_{K:F}u$.

This linearly constrains Log u to a shifted sublattice of Log \mathcal{O}^* . Number of independent constraints: unit rank for F.

Say we know Log norm $_{K:F}g$ for a proper subfield $F \subset K$.

We also know Log norm $K_{:F}$ gu, so we know Log norm $K_{:F}$ u.

This linearly constrains Log u to a shifted sublattice of Log \mathcal{O}^* . Number of independent constraints: unit rank for F.

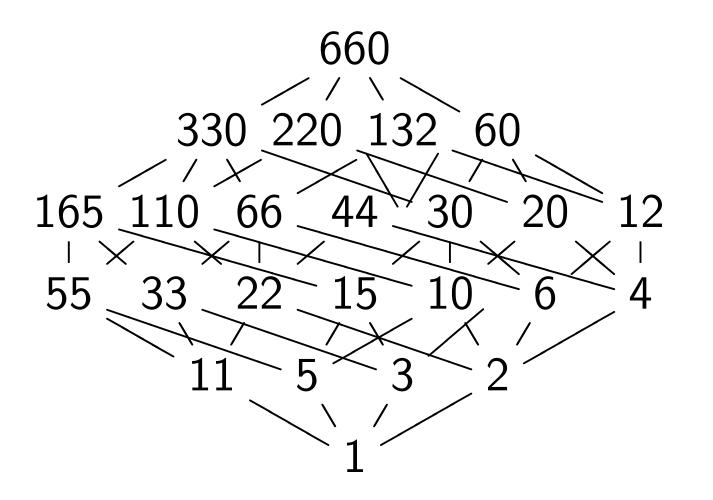
Find elements close to $\log gu$. Lower-dimension lattice problem, if unit rank of F is positive. Start by recursively computing Log norm $_{K:F}g$ via norm of $g\mathcal{O}$ for each $F \subset K$.

Various constraints on Log *u*, depending on subfield structure.

Start by recursively computing Log norm $_{K:F}g$ via norm of $g\mathcal{O}$ for each $F \subset K$.

Various constraints on Log *u*, depending on subfield structure.

e.g. $\zeta = \exp(2\pi i/661)$, $K = \mathbf{Q}(\zeta)$. Degrees of subfields of K:



Most extreme case:

Composite of quadratics, such as

$$K = \mathbf{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}, \dots, \sqrt{29}).$$

CVP becomes trivial!

Most extreme case:

Composite of quadratics, such as

$$K = \mathbf{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}, \dots, \sqrt{29}).$$

CVP becomes trivial!

Many intermediate cases.

"Subexponential in *cyclotomic* rings of *highly smooth* index": It's much more general than that.

Most extreme case:

Composite of quadratics, such as $K = \mathbf{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}, \dots, \sqrt{29}).$

CVP becomes trivial!

Many intermediate cases.

"Subexponential in *cyclotomic* rings of *highly smooth* index": It's much more general than that.

For cyclotomics this approach is superseded by subsequent Campbell–Groves–Shepherd algorithm, using known (good) basis for cyclotomic units.