Computational
algebraic number theory
tackles lattice-based cryptography
Daniel J. Bernstein
University of Illinois at Chicago \&
Technische Universiteit Eindhoven

> Moving to the left Moving to the right Big generator Moving through the night -Yes, "Big Generator", 1987
2013.07 talk slide online:
"I think NTRU should switch to random prime-degree extensions with big Galois groups."
2014.02 blog post:
"Here's a concrete suggestion, which I'll call NTRU Prime, for eliminating the structures that I find worrisome in existing ideal-lattice-based encryption systems."

NTRU Prime uses primes p, q with field $(\mathbf{Z} / q)[x] /\left(x^{p}-x-1\right)$.

ational

= number theory
attice-based cryptography

Bernstein

ty of Illinois at Chicago \& the Universiteit Eindhoven

Moving to the left Moving to the right

Big generator Moving through the night es, "Big Generator", 1987
2013.07 talk slide online:
"I think NTRU should switch to random prime-degree extensions with big Galois groups."
2014.02 blog post:
"Here's a concrete suggestion, which I'll call NTRU Prime, for eliminating the structures that I find worrisome in existing ideal-lattice-based encryption systems."

NTRU Prime uses primes p, q with field $(\mathbf{Z} / q)[x] /\left(x^{p}-x-1\right)$.

Clear ad
cycloton
theory
ed cryptography
is at Chicago \& siteit Eindhoven
loving to the left ving to the right

Big generator hrough the night Generator", 1987
2013.07 talk slide online:
"I think NTRU should switch to
random prime-degree extensions with big Galois groups."
2014.02 blog post:
"Here's a concrete suggestion, which I'll call NTRU Prime, for eliminating the structures that I find worrisome in existing ideal-lattice-based encryption systems."

NTRU Prime uses primes p, q with field $(\mathbf{Z} / q)[x] /\left(x^{p}-x-1\right)$.

Clear advantage o cyclotomics: mino
2013.07 talk slide online:
"I think NTRU should switch to random prime-degree extensions with big Galois groups."
2014.02 blog post:
"Here's a concrete suggestion, which I'll call NTRU Prime, for eliminating the structures that I find worrisome in existing ideal-lattice-based encryption systems."

NTRU Prime uses primes p, q with field $(\mathbf{Z} / q)[x] /\left(x^{p}-x-1\right)$.

Clear advantage of the usua cyclotomics: minor speedup
2013.07 talk slide online:
"I think NTRU should switch to random prime-degree extensions with big Galois groups."
2014.02 blog post:
"Here's a concrete suggestion, which I'll call NTRU Prime, for eliminating the structures that I find worrisome in existing ideal-lattice-based encryption systems."

NTRU Prime uses primes p, q with field $(\mathbf{Z} / q)[x] /\left(x^{p}-x-1\right)$.

Clear advantage of the usual cyclotomics: minor speedup.
2013.07 talk slide online:
"I think NTRU should switch to random prime-degree extensions with big Galois groups."
2014.02 blog post:
"Here's a concrete suggestion, which I'll call NTRU Prime, for eliminating the structures that I find worrisome in existing ideal-lattice-based encryption systems."

NTRU Prime uses primes p, q with field $(\mathbf{Z} / q)[x] /\left(x^{p}-x-1\right)$.

Clear advantage of the usual cyclotomics: minor speedup.

Extra advantage often claimed: some "security reductions".
2013.07 talk slide online:
"I think NTRU should switch to random prime-degree extensions with big Galois groups."
2014.02 blog post:
"Here's a concrete suggestion, which I'll call NTRU Prime, for eliminating the structures that I find worrisome in existing ideal-lattice-based encryption systems."

NTRU Prime uses primes p, q with field $(\mathbf{Z} / q)[x] /\left(x^{p}-x-1\right)$.

Clear advantage of the usual cyclotomics: minor speedup.

Extra advantage often claimed: some "security reductions".
But is this really an advantage? Lange and I conjecture that security is negatively correlated with strength of reductions.
2013.07 talk slide online:
"I think NTRU should switch to random prime-degree extensions with big Galois groups."
2014.02 blog post:
"Here's a concrete suggestion, which I'll call NTRU Prime, for eliminating the structures that I find worrisome in existing ideal-lattice-based encryption systems."

NTRU Prime uses primes p, q with field $(\mathbf{Z} / q)[x] /\left(x^{p}-x-1\right)$.

Clear advantage of the usual cyclotomics: minor speedup.

Extra advantage often claimed: some "security reductions".
But is this really an advantage? Lange and I conjecture that security is negatively correlated with strength of reductions.

Disadvantage of cyclotomics: many more symmetries feed a scary attack strategy.
Already serious damage
to some lattice-based systems, concerns about other systems.
talk slide online:
NTRU should switch to prime-degree extensions
Galois groups."
blog post:
a concrete suggestion, I call NTRU Prime, nating the structures
nd worrisome in
ideal-lattice-based on systems."

Prime uses primes p, q
$\mathrm{d}(\mathbf{Z} / q)[x] /\left(x^{p}-x-1\right)$.

Clear advantage of the usual cyclotomics: minor speedup.

Extra advantage often claimed:
some "security reductions".
But is this really an advantage?
Lange and I conjecture that security is negatively correlated with strength of reductions.

Disadvantage of cyclotomics: many more symmetries feed a scary attack strategy. Already serious damage
to some lattice-based systems, concerns about other systems.

Typical
"Becaus
in high-c has beer
algorithr
of years
unique ϵ
cryptosc
online:
ould switch to ree extensions sups."
suggestion,
RU Prime, structures me in
ce-based
primes p, q
$] /\left(x^{p}-x-1\right)$.

Clear advantage of the usual cyclotomics: minor speedup.

Extra advantage often claimed: some "security reductions".
But is this really an advantage?
Lange and I conjecture that security is negatively correlated with strength of reductions.

Disadvantage of cyclotomics: many more symmetries feed a scary attack strategy. Already serious damage to some lattice-based systems, concerns about other systems.

Typical lattice adv "Because finding in high-dimension has been a notoric algorithmic questi of years ... we ha unique evidence th cryptoschemes are

Clear advantage of the usual cyclotomics: minor speedup.

Extra advantage often claimed: some "security reductions".
But is this really an advantage?
Lange and I conjecture that security is negatively correlated with strength of reductions.

Disadvantage of cyclotomics: many more symmetries feed a scary attack strategy. Already serious damage
to some lattice-based systems, concerns about other systems.

Typical lattice advertisemen "Because finding short vectc in high-dimensional lattices has been a notoriously hard algorithmic question for hun of years ... we have solid a unique evidence that latticecryptoschemes are secure."

Clear advantage of the usual cyclotomics: minor speedup.

Extra advantage often claimed: some "security reductions".
But is this really an advantage? Lange and I conjecture that security is negatively correlated with strength of reductions.

Disadvantage of cyclotomics: many more symmetries feed a scary attack strategy.
Already serious damage
to some lattice-based systems, concerns about other systems.

Typical lattice advertisement:
"Because finding short vectors
in high-dimensional lattices
has been a notoriously hard algorithmic question for hundreds of years ... we have solid and unique evidence that lattice-based cryptoschemes are secure."

Clear advantage of the usual cyclotomics: minor speedup.

Extra advantage often claimed: some "security reductions".
But is this really an advantage? Lange and I conjecture that security is negatively correlated with strength of reductions.

Disadvantage of cyclotomics: many more symmetries feed a scary attack strategy.
Already serious damage
to some lattice-based systems, concerns about other systems.

Typical lattice advertisement:
"Because finding short vectors
in high-dimensional lattices
has been a notoriously hard algorithmic question for hundreds of years ... we have solid and unique evidence that lattice-based cryptoschemes are secure."

No. Dangerous exaggeration!
There are many obvious gaps between lattice-based systems and the classic lattice problems:
e.g., the systems use ideals.

Important to study these gaps.
vantage of the usual nics: minor speedup. vantage often claimed: ecurity reductions". is really an advantage?
nd I conjecture that is negatively correlated ength of reductions.
tage of cyclotomics:
ore symmetries cary attack strategy. serious damage lattice-based systems, about other systems.

Typical lattice advertisement:
"Because finding short vectors
in high-dimensional lattices
has been a notoriously hard
algorithmic question for hundreds
of years ... we have solid and
unique evidence that lattice-based
cryptoschemes are secure."
No. Dangerous exaggeration!
There are many obvious gaps
between lattice-based systems
and the classic lattice problems:
e.g., the systems use ideals.

Important to study these gaps.

2009 Sn homomc relativel sizes":
key give therefor principal
a princip ‘small' This is c
in comp and has previous see for e
f the usual
r speedup.
ften claimed:
luctions" .
n advantage?
cture that
ely correlated eductions.
yclotomics:
tries
< strategy.
mage
sed systems, her systems.

Typical lattice advertisement:
"Because finding short vectors
in high-dimensional lattices
has been a notoriously hard algorithmic question for hundreds
of years ... we have solid and unique evidence that lattice-based cryptoschemes are secure."

No. Dangerous exaggeration!
There are many obvious gaps
between lattice-based systems
and the classic lattice problems:
e.g., the systems use ideals.

Important to study these gaps.

2009 Smart-Verca homomorphic encı relatively small ke sizes": "Recoverin key given the publ therefore an instar principal ideal prol a principal ideal. 'small' generator c This is one of the in computational and has formed th previous cryptogra see for example [3

Typical lattice advertisement:
"Because finding short vectors in high-dimensional lattices
has been a notoriously hard algorithmic question for hundreds of years ... we have solid and unique evidence that lattice-based cryptoschemes are secure."

No. Dangerous exaggeration!
There are many obvious gaps between lattice-based systems and the classic lattice problems: e.g., the systems use ideals. Important to study these gaps.

2009 Smart-Vercauteren "F homomorphic encryption wit relatively small key and ciph sizes": "Recovering the priv key given the public key is therefore an instance of the principal ideal problem: a principal ideal ... comput 'small' generator of the idea
This is one of the core probl in computational number th and has formed the basis of previous cryptographic prop see for example [3]."

Typical lattice advertisement:
"Because finding short vectors in high-dimensional lattices
has been a notoriously hard algorithmic question for hundreds of years ... we have solid and unique evidence that lattice-based cryptoschemes are secure."

No. Dangerous exaggeration! There are many obvious gaps between lattice-based systems and the classic lattice problems: e.g., the systems use ideals. Important to study these gaps.

2009 Smart-Vercauteren "Fully homomorphic encryption with relatively small key and ciphertext sizes": "Recovering the private key given the public key is therefore an instance of the small principal ideal problem: ... Given a principal ideal ... compute a 'small' generator of the ideal. This is one of the core problems in computational number theory and has formed the basis of previous cryptographic proposals, see for example [3]."
lattice advertisement:
e finding short vectors dimensional lattices
a notoriously hard nic question for hundreds we have solid and vidence that lattice-based hemes are secure."
ggerous exaggeration!
e many obvious gaps lattice-based systems classic lattice problems:
systems use ideals.
it to study these gaps.

2009 Smart-Vercauteren "Fully homomorphic encryption with relatively small key and ciphertext sizes": "Recovering the private key given the public key is therefore an instance of the small principal ideal problem: ... Given a principal ideal ... compute a 'small' generator of the ideal. This is one of the core problems in computational number theory and has formed the basis of previous cryptographic proposals, see for example [3]."

Smart-\
"There approac In concl private key is ar and well algorithr particula solution the only does not equivale
ertisement:
short vectors

lattices

usly hard
on for hundreds
ve solid and
rat lattice-based
secure."
aggeration!
ovious gaps
sed systems
tice problems:
se ideals.
these gaps.

2009 Smart-Vercauteren "Fully homomorphic encryption with relatively small key and ciphertext sizes": "Recovering the private key given the public key is therefore an instance of the small principal ideal problem: ... Given a principal ideal ... compute a ‘small' generator of the ideal.
This is one of the core problems in computational number theory and has formed the basis of previous cryptographic proposals, see for example [3]."

Smart-Vercautere "There are curren approaches to the In conclusion dete private key given key is an instance and well studied p algorithmic numbe particular there ar solutions for this p the only sub-expo does not find a so equivalent to our

2009 Smart-Vercauteren "Fully homomorphic encryption with relatively small key and ciphertext sizes": "Recovering the private key given the public key is therefore an instance of the small principal ideal problem: ... Given a principal ideal ... compute a ‘small' generator of the ideal.
This is one of the core problems in computational number theory and has formed the basis of previous cryptographic proposals, see for example [3]."

Smart-Vercauteren, continu "There are currently two approaches to the problem. In conclusion determining th private key given only the p key is an instance of a class and well studied problem in algorithmic number theory. particular there are no efficie solutions for this problem, a the only sub-exponential me does not find a solution whi equivalent to our private key

2009 Smart-Vercauteren "Fully homomorphic encryption with relatively small key and ciphertext sizes": "Recovering the private key given the public key is therefore an instance of the small principal ideal problem: ... Given a principal ideal ... compute a 'small' generator of the ideal. This is one of the core problems in computational number theory and has formed the basis of previous cryptographic proposals, see for example [3]."

Smart-Vercauteren, continued:
"There are currently two approaches to the problem In conclusion determining the private key given only the public key is an instance of a classical and well studied problem in algorithmic number theory. In particular there are no efficient solutions for this problem, and the only sub-exponential method does not find a solution which is equivalent to our private key."
lart-Vercauteren "Fully rphic encryption with y small key and ciphertext 'Recovering the private n the public key is an instance of the small ideal problem: ... Given al ideal ... compute a enerator of the ideal. ne of the core problems utational number theory formed the basis of cryptographic proposals, xample [3]."

Smart-Vercauteren, continued:
"There are currently two approaches to the problem. ... In conclusion determining the private key given only the public key is an instance of a classical and well studied problem in algorithmic number theory. In particular there are no efficient solutions for this problem, and the only sub-exponential method does not find a solution which is equivalent to our private key."

In fact, focus on e.g., ma for man make ta for man

Highligh
Low-dim
Far fewe consider of the a to much
uteren "Fully yption with y and ciphertext g the private
ic key is
ace of the small
olem: ... Given
. compute a
of the ideal.
core problems number theory e basis of phic proposals,

In fact, the classical studies focus on small dimensions: e.g., make table of class nur for many quadratic fields, make table of class numbers for many cubic fields.

Highlights multiplicative issı Low-dim lattice issues are ea

Far fewer papers consider scalability of the algorithmic ideas to much larger dimensions.

Smart-Vercauteren, continued:
"There are currently two approaches to the problem. In conclusion determining the private key given only the public key is an instance of a classical and well studied problem in algorithmic number theory. In particular there are no efficient solutions for this problem, and the only sub-exponential method does not find a solution which is equivalent to our private key."

In fact, the classical studies focus on small dimensions:
e.g., make table of class numbers for many quadratic fields, make table of class numbers for many cubic fields.

Highlights multiplicative issues. Low-dim lattice issues are easy.

Far fewer papers consider scalability of the algorithmic ideas to much larger dimensions.
/ercauteren, continued:
are currently two
es to the problem. ...
usion determining the key given only the public instance of a classical studied problem in nic number theory. In
or there are no efficient for this problem, and sub-exponential method find a solution which is nt to our private key."

In fact, the classical studies focus on small dimensions:
e.g., make table of class numbers for many quadratic fields, make table of class numbers for many cubic fields.

Highlights multiplicative issues.
Low-dim lattice issues are easy.
Far fewer papers consider scalability of the algorithmic ideas
to much larger dimensions.

The sho
Take de i.e. field
(Weaker with \mathbf{Q}
n , continued:
tly two problem. ... rmining the only the public of a classical
roblem in
er theory. In
e no efficient oroblem, and
nential method lution which is orivate key."

In fact, the classical studies focus on small dimensions:
e.g., make table of class numbers for many quadratic fields, make table of class numbers for many cubic fields.

Highlights multiplicative issues.
Low-dim lattice issues are easy.
Far fewer papers consider scalability of the algorithmic ideas to much larger dimensions.

The short-generat
Take degree-n nur i.e. field $K \subseteq \mathbf{C}$ w
(Weaker specificat with $\mathbf{Q} \subseteq K$ and I

Far fewer papers consider scalability of the algorithmic ideas to much larger dimensions.

The short-generator problem

Take degree- n number field i.e. field $K \subseteq \mathbf{C}$ with $\operatorname{len}_{\mathbf{Q}}$
(Weaker specification: field with $\mathbf{Q} \subseteq K$ and $\operatorname{len}_{\mathbf{Q}} K=\prime$

In fact, the classical studies focus on small dimensions: e.g., make table of class numbers for many quadratic fields, make table of class numbers for many cubic fields.

Highlights multiplicative issues. Low-dim lattice issues are easy.

Far fewer papers consider scalability of the algorithmic ideas to much larger dimensions.

The short-generator problem

Take degree- n number field K.
i.e. field $K \subseteq \mathbf{C}$ with $\operatorname{len}_{\mathbf{Q}} K=n$.
(Weaker specification: field K with $\mathbf{Q} \subseteq K$ and $\operatorname{len}_{\mathbf{Q}} K=n$.)

In fact, the classical studies focus on small dimensions:
e.g., make table of class numbers for many quadratic fields, make table of class numbers for many cubic fields.

Highlights multiplicative issues.
Low-dim lattice issues are easy.
Far fewer papers consider scalability
of the algorithmic ideas to much larger dimensions.

The short-generator problem
Take degree- n number field K.
i.e. field $K \subseteq \mathbf{C}$ with $\operatorname{len}_{\mathbf{Q}} K=n$.
(Weaker specification: field K with $\mathbf{Q} \subseteq K$ and $\operatorname{len}_{\mathbf{Q}} K=n$.)
e.g. $n=2 ; K=\mathbf{Q}(i)=$
$\mathbf{Q} \oplus \mathbf{Q} i \hookrightarrow \mathbf{Q}[x] /\left(x^{2}+1\right)$.

In fact, the classical studies focus on small dimensions:
e.g., make table of class numbers for many quadratic fields, make table of class numbers for many cubic fields.

Highlights multiplicative issues.
Low-dim lattice issues are easy.
Far fewer papers consider scalability of the algorithmic ideas to much larger dimensions.

The short-generator problem
Take degree- n number field K.
i.e. field $K \subseteq \mathbf{C}$ with $\operatorname{len}_{\mathbf{Q}} K=n$.
(Weaker specification: field K with $\mathbf{Q} \subseteq K$ and $\operatorname{len}_{\mathbf{Q}} K=n$.)
e.g. $n=2 ; K=\mathbf{Q}(i)=$
$\mathbf{Q} \oplus \mathbf{Q} i \hookrightarrow \mathbf{Q}[x] /\left(x^{2}+1\right)$.
e.g. $n=256 ; \zeta=\exp (\pi i / n)$;
$K=\mathbf{Q}(\zeta) \hookrightarrow \mathbf{Q}[x] /\left(x^{n}+1\right)$.

In fact, the classical studies focus on small dimensions: e.g., make table of class numbers for many quadratic fields, make table of class numbers for many cubic fields.

Highlights multiplicative issues.
Low-dim lattice issues are easy.
Far fewer papers consider scalability of the algorithmic ideas to much larger dimensions.

The short-generator problem
Take degree- n number field K.
i.e. field $K \subseteq \mathbf{C}$ with $\operatorname{len}_{\mathbf{Q}} K=n$.
(Weaker specification: field K with $\mathbf{Q} \subseteq K$ and $\operatorname{len}_{\mathbf{Q}} K=n$.)
e.g. $n=2 ; K=\mathbf{Q}(i)=$
$\mathbf{Q} \oplus \mathbf{Q} i \hookrightarrow \mathbf{Q}[x] /\left(x^{2}+1\right)$.
e.g. $n=256 ; \zeta=\exp (\pi i / n)$;
$K=\mathbf{Q}(\zeta) \hookrightarrow \mathbf{Q}[x] /\left(x^{n}+1\right)$.
e.g. $n=660 ; \zeta=\exp (2 \pi i / 661)$;
$K=\mathbf{Q}(\zeta) \hookrightarrow \mathbf{Q}[x] /\left(x^{n}+\cdots+1\right)$.

In fact, the classical studies focus on small dimensions: e.g., make table of class numbers for many quadratic fields, make table of class numbers for many cubic fields.

Highlights multiplicative issues.
Low-dim lattice issues are easy.
Far fewer papers consider scalability of the algorithmic ideas to much larger dimensions.

The short-generator problem

Take degree- n number field K.
i.e. field $K \subseteq \mathbf{C}$ with $\operatorname{len}_{\mathbf{Q}} K=n$.
(Weaker specification: field K with $\mathbf{Q} \subseteq K$ and $\operatorname{len}_{\mathbf{Q}} K=n$.)
e.g. $n=2 ; K=\mathbf{Q}(i)=$
$\mathbf{Q} \oplus \mathbf{Q} i \hookrightarrow \mathbf{Q}[x] /\left(x^{2}+1\right)$.
e.g. $n=256 ; \zeta=\exp (\pi i / n)$;
$K=\mathbf{Q}(\zeta) \hookrightarrow \mathbf{Q}[x] /\left(x^{n}+1\right)$.
e.g. $n=660 ; \zeta=\exp (2 \pi i / 661)$;
$K=\mathbf{Q}(\zeta) \hookrightarrow \mathbf{Q}[x] /\left(x^{n}+\cdots+1\right)$.
e.g. $K=\mathbf{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}, \ldots, \sqrt{29})$.
the classical studies small dimensions:
ke table of class numbers
quadratic fields,
ble of class numbers cubic fields.
ts multiplicative issues.
lattice issues are easy.
r papers
scalability
gorithmic ideas
larger dimensions.

The short-generator problem

Take degree- n number field K. i.e. field $K \subseteq \mathbf{C}$ with $\operatorname{len}_{\mathbf{Q}} K=n$.
(Weaker specification: field K with $\mathbf{Q} \subseteq K$ and $\operatorname{len}_{\mathbf{Q}} K=n$.)
e.g. $n=2 ; K=\mathbf{Q}(i)=$
$\mathbf{Q} \oplus \mathbf{Q} i \hookrightarrow \mathbf{Q}[x] /\left(x^{2}+1\right)$.
e.g. $n=256 ; \zeta=\exp (\pi i / n)$;
$K=\mathbf{Q}(\zeta) \hookrightarrow \mathbf{Q}[x] /\left(x^{n}+1\right)$.
e.g. $n=660 ; \zeta=\exp (2 \pi i / 661)$;
$K=\mathbf{Q}(\zeta) \hookrightarrow \mathbf{Q}[x] /\left(x^{n}+\cdots+1\right)$.
e.g. $K=\mathbf{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}, \ldots, \sqrt{29})$.

Define
$\mathcal{O} \hookrightarrow \mathbf{Z}^{\prime}$
Nonzero factor u powers
al studies ensions:
f class numbers
c fields,
s numbers Ids.
cative issues.
sues are easy.
ideas
nensions.

The short-generator problem

Take degree- n number field K. i.e. field $K \subseteq \mathbf{C}$ with $\operatorname{len}_{\mathbf{Q}} K=n$.
(Weaker specification: field K with $\mathbf{Q} \subseteq K$ and $\operatorname{len}_{\mathbf{Q}} K=n$.)
e.g. $n=2 ; K=\mathbf{Q}(i)=$
$\mathbf{Q} \oplus \mathbf{Q} i \hookrightarrow \mathbf{Q}[x] /\left(x^{2}+1\right)$.
e.g. $n=256 ; \zeta=\exp (\pi i / n)$;
$K=\mathbf{Q}(\zeta) \hookrightarrow \mathbf{Q}[x] /\left(x^{n}+1\right)$.
e.g. $n=660 ; \zeta=\exp (2 \pi i / 661)$;
$K=\mathbf{Q}(\zeta) \hookrightarrow \mathbf{Q}[x] /\left(x^{n}+\cdots+1\right)$.
e.g. $K=\mathbf{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}, \ldots, \sqrt{29})$.

Define $\mathcal{O}=\overline{\mathbf{Z}} \cap K$
$\mathcal{O} \hookrightarrow \mathbf{Z}^{n}$ as \mathbf{Z}-mo
Nonzero ideals of factor uniquely as powers of prime ic

The short-generator problem

Take degree- n number field K. i.e. field $K \subseteq \mathbf{C}$ with $\operatorname{len}_{\mathbf{Q}} K=n$. (Weaker specification: field K with $\mathbf{Q} \subseteq K$ and $\operatorname{len}_{\mathbf{Q}} K=n$.)
e.g. $n=2 ; K=\mathbf{Q}(i)=$
$\mathbf{Q} \oplus \mathbf{Q} i \hookrightarrow \mathbf{Q}[x] /\left(x^{2}+1\right)$.
e.g. $n=256 ; \zeta=\exp (\pi i / n)$;
$K=\mathbf{Q}(\zeta) \hookrightarrow \mathbf{Q}[x] /\left(x^{n}+1\right)$.
e.g. $n=660 ; \zeta=\exp (2 \pi i / 661)$;
$K=\mathbf{Q}(\zeta) \hookrightarrow \mathbf{Q}[x] /\left(x^{n}+\cdots+1\right)$.
e.g. $K=\mathbf{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}, \ldots, \sqrt{29})$.

Define $\mathcal{O}=\overline{\mathbf{Z}} \cap K$; subring $\mathcal{O} \hookrightarrow \mathbf{Z}^{n}$ as \mathbf{Z}-modules.

Nonzero ideals of \mathcal{O}
factor uniquely as products powers of prime ideals of \mathcal{O}.

The short-generator problem

Take degree- n number field K.
i.e. field $K \subseteq \mathbf{C}$ with $\operatorname{len}_{\mathbf{Q}} K=n$.
(Weaker specification: field K with $\mathbf{Q} \subseteq K$ and $\operatorname{len}_{\mathbf{Q}} K=n$.)
e.g. $n=2 ; K=\mathbf{Q}(i)=$
$\mathbf{Q} \oplus \mathbf{Q} i \hookrightarrow \mathbf{Q}[x] /\left(x^{2}+1\right)$.
e.g. $n=256 ; \zeta=\exp (\pi i / n)$;
$K=\mathbf{Q}(\zeta) \hookrightarrow \mathbf{Q}[x] /\left(x^{n}+1\right)$.
e.g. $n=660 ; \zeta=\exp (2 \pi i / 661)$;
$K=\mathbf{Q}(\zeta) \hookrightarrow \mathbf{Q}[x] /\left(x^{n}+\cdots+1\right)$.
e.g. $K=\mathbf{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}, \ldots, \sqrt{29})$.

Define $\mathcal{O}=\overline{\mathbf{Z}} \cap K$; subring of K.
$\mathcal{O} \hookrightarrow \mathbf{Z}^{n}$ as Z-modules.
Nonzero ideals of \mathcal{O}
factor uniquely as products of powers of prime ideals of \mathcal{O}.

The short-generator problem

Take degree- n number field K.
i.e. field $K \subseteq \mathbf{C}$ with $\operatorname{len}_{\mathbf{Q}} K=n$.
(Weaker specification: field K with $\mathbf{Q} \subseteq K$ and $\operatorname{len}_{\mathbf{Q}} K=n$.)
e.g. $n=2 ; K=\mathbf{Q}(i)=$
$\mathbf{Q} \oplus \mathbf{Q} i \hookrightarrow \mathbf{Q}[x] /\left(x^{2}+1\right)$.
e.g. $n=256 ; \zeta=\exp (\pi i / n)$;
$K=\mathbf{Q}(\zeta) \hookrightarrow \mathbf{Q}[x] /\left(x^{n}+1\right)$.
e.g. $n=660 ; \zeta=\exp (2 \pi i / 661)$;
$K=\mathbf{Q}(\zeta) \hookrightarrow \mathbf{Q}[x] /\left(x^{n}+\cdots+1\right)$.
e.g. $K=\mathbf{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}, \ldots, \sqrt{29})$.

Define $\mathcal{O}=\overline{\mathbf{Z}} \cap K$; subring of K.
$\mathcal{O} \hookrightarrow \mathbf{Z}^{n}$ as Z-modules.
Nonzero ideals of \mathcal{O}
factor uniquely as products of powers of prime ideals of \mathcal{O}.
e.g. $K=\mathbf{Q}(i) \hookrightarrow \mathbf{Q}[x] /\left(x^{2}+1\right)$
$\Rightarrow \mathcal{O}=\mathbf{Z}[i] \hookrightarrow \mathbf{Z}[x] /\left(x^{2}+1\right)$.

The short-generator problem

Take degree- n number field K.
i.e. field $K \subseteq \mathbf{C}$ with $\operatorname{len}_{\mathbf{Q}} K=n$.
(Weaker specification: field K with $\mathbf{Q} \subseteq K$ and $\operatorname{len}_{\mathbf{Q}} K=n$.)
e.g. $n=2 ; K=\mathbf{Q}(i)=$
$\mathbf{Q} \oplus \mathbf{Q} i \hookrightarrow \mathbf{Q}[x] /\left(x^{2}+1\right)$.
e.g. $n=256 ; \zeta=\exp (\pi i / n)$;
$K=\mathbf{Q}(\zeta) \hookrightarrow \mathbf{Q}[x] /\left(x^{n}+1\right)$.
e.g. $n=660 ; \zeta=\exp (2 \pi i / 661)$;
$K=\mathbf{Q}(\zeta) \hookrightarrow \mathbf{Q}[x] /\left(x^{n}+\cdots+1\right)$.
e.g. $K=\mathbf{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}, \ldots, \sqrt{29})$.

Define $\mathcal{O}=\overline{\mathbf{Z}} \cap K$; subring of K.
$\mathcal{O} \hookrightarrow \mathbf{Z}^{n}$ as Z-modules.
Nonzero ideals of \mathcal{O}
factor uniquely as products of powers of prime ideals of \mathcal{O}.

$$
\begin{aligned}
& \text { e.g. } K=\mathbf{Q}(i) \hookrightarrow \mathbf{Q}[x] /\left(x^{2}+1\right) \\
& \Rightarrow \mathcal{O}=\mathbf{Z}[i] \hookrightarrow \mathbf{Z}[x] /\left(x^{2}+1\right) \\
& \text { e.g. } \zeta=\exp (\pi i / 256), K=\mathbf{Q}(\zeta) \\
& \Rightarrow \mathcal{O}=\mathbf{Z}[\zeta] \hookrightarrow \mathbf{Z}[x] /\left(x^{256}+1\right)
\end{aligned}
$$

The short-generator problem

Take degree- n number field K.
i.e. field $K \subseteq \mathbf{C}$ with $\operatorname{len}_{\mathbf{Q}} K=n$.
(Weaker specification: field K with $\mathbf{Q} \subseteq K$ and $\operatorname{len}_{\mathbf{Q}} K=n$.)
e.g. $n=2 ; K=\mathbf{Q}(i)=$
$\mathbf{Q} \oplus \mathbf{Q} i \hookrightarrow \mathbf{Q}[x] /\left(x^{2}+1\right)$.
e.g. $n=256 ; \zeta=\exp (\pi i / n)$;
$K=\mathbf{Q}(\zeta) \hookrightarrow \mathbf{Q}[x] /\left(x^{n}+1\right)$.
e.g. $n=660 ; \zeta=\exp (2 \pi i / 661)$;
$K=\mathbf{Q}(\zeta) \hookrightarrow \mathbf{Q}[x] /\left(x^{n}+\cdots+1\right)$.
e.g. $K=\mathbf{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}, \ldots, \sqrt{29})$.

Define $\mathcal{O}=\overline{\mathbf{Z}} \cap K$; subring of K.
$\mathcal{O} \hookrightarrow \mathbf{Z}^{n}$ as Z-modules.
Nonzero ideals of \mathcal{O}
factor uniquely as products of powers of prime ideals of \mathcal{O}.
e.g. $K=\mathbf{Q}(i) \hookrightarrow \mathbf{Q}[x] /\left(x^{2}+1\right)$
$\Rightarrow \mathcal{O}=\mathbf{Z}[i] \hookrightarrow \mathbf{Z}[x] /\left(x^{2}+1\right)$.
e.g. $\zeta=\exp (\pi i / 256), K=\mathbf{Q}(\zeta)$
$\Rightarrow \mathcal{O}=\mathbf{Z}[\zeta] \hookrightarrow \mathbf{Z}[x] /\left(x^{256}+1\right)$.
e.g. $\zeta=\exp (2 \pi i / 661), K=\mathbf{Q}(\zeta)$
$\Rightarrow \mathcal{O}=\mathbf{Z}[\zeta] \hookrightarrow \cdots$.

The short-generator problem

Take degree- n number field K.
i.e. field $K \subseteq \mathbf{C}$ with $\operatorname{len}_{\mathbf{Q}} K=n$.
(Weaker specification: field K with $\mathbf{Q} \subseteq K$ and $\operatorname{len}_{\mathbf{Q}} K=n$.)
e.g. $n=2 ; K=\mathbf{Q}(i)=$
$\mathbf{Q} \oplus \mathbf{Q} i \hookrightarrow \mathbf{Q}[x] /\left(x^{2}+1\right)$.
e.g. $n=256 ; \zeta=\exp (\pi i / n)$;
$K=\mathbf{Q}(\zeta) \hookrightarrow \mathbf{Q}[x] /\left(x^{n}+1\right)$.
e.g. $n=660 ; \zeta=\exp (2 \pi i / 661)$;
$K=\mathbf{Q}(\zeta) \hookrightarrow \mathbf{Q}[x] /\left(x^{n}+\cdots+1\right)$.
e.g. $K=\mathbf{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}, \ldots, \sqrt{29})$.

Define $\mathcal{O}=\overline{\mathbf{Z}} \cap K$; subring of K.
$\mathcal{O} \hookrightarrow \mathbf{Z}^{n}$ as Z-modules.
Nonzero ideals of \mathcal{O}
factor uniquely as products of powers of prime ideals of \mathcal{O}.

$$
\begin{aligned}
& \text { e.g. } K=\mathbf{Q}(i) \hookrightarrow \mathbf{Q}[x] /\left(x^{2}+1\right) \\
& \Rightarrow \mathcal{O}=\mathbf{Z}[i] \hookrightarrow \mathbf{Z}[x] /\left(x^{2}+1\right) \\
& \text { e.g. } \zeta=\exp (\pi i / 256), K=\mathbf{Q}(\zeta) \\
& \Rightarrow \mathcal{O}=\mathbf{Z}[\zeta] \hookrightarrow \mathbf{Z}[x] /\left(x^{256}+1\right) .
\end{aligned}
$$

$$
\text { e.g. } \zeta=\exp (2 \pi i / 661), K=\mathbf{Q}(\zeta)
$$

$$
\Rightarrow \mathcal{O}=\mathbf{Z}[\zeta] \hookrightarrow \cdots
$$

$$
\text { e.g. } K=\mathbf{Q}(\sqrt{5}) \Rightarrow \mathcal{O}=
$$

$\mathbf{Z}[(1+\sqrt{5}) / 2] \hookrightarrow \mathbf{Z}[x] /\left(x^{2}-x-1\right)$.

rt-generator problem

gree- n number field K.
$K \subseteq \mathbf{C}$ with $\operatorname{len}_{\mathbf{Q}} K=n$. specification: field K
$=K$ and $\operatorname{len}_{\mathbf{Q}} K=n$.)
2; $K=\mathbf{Q}(i)=$
$\hookrightarrow \mathbf{Q}[x] /\left(x^{2}+1\right)$.
$256 ; \zeta=\exp (\pi i / n) ;$
$\zeta) \hookrightarrow \mathbf{Q}[x] /\left(x^{n}+1\right)$.
$660 ; \zeta=\exp (2 \pi i / 661) ;$
$\zeta) \hookrightarrow \mathbf{Q}[x] /\left(x^{n}+\cdots+1\right)$.
$\mathbf{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}, \ldots, \sqrt{29})$.

Define $\mathcal{O}=\overline{\mathbf{Z}} \cap K$; subring of K. $\mathcal{O} \hookrightarrow \mathbf{Z}^{n}$ as Z-modules.

Nonzero ideals of \mathcal{O}
factor uniquely as products of powers of prime ideals of \mathcal{O}.
e.g. $K=\mathbf{Q}(i) \hookrightarrow \mathbf{Q}[x] /\left(x^{2}+1\right)$
$\Rightarrow \mathcal{O}=\mathbf{Z}[i] \hookrightarrow \mathbf{Z}[x] /\left(x^{2}+1\right)$.
e.g. $\zeta=\exp (\pi i / 256), K=\mathbf{Q}(\zeta)$
$\Rightarrow \mathcal{O}=\mathbf{Z}[\zeta] \hookrightarrow \mathbf{Z}[x] /\left(x^{256}+1\right)$.
e.g. $\zeta=\exp (2 \pi i / 661), K=\mathbf{Q}(\zeta)$
$\Rightarrow \mathcal{O}=\mathbf{Z}[\zeta] \hookrightarrow \cdots$.
e.g. $K=\mathbf{Q}(\sqrt{5}) \Rightarrow \mathcal{O}=$
$\mathbf{Z}[(1+\sqrt{5}) / 2] \hookrightarrow \mathbf{Z}[x] /\left(x^{2}-x-1\right)$.

The sho
Find "sh given th
e.g. $\zeta=$
$\mathcal{O}=\mathbf{Z}[$
The Z-s 201 - 2
$935-1$
$979-1$
718 - 8
is an ide
Can you such tha

or problem

nber field K.
ith $\operatorname{len}_{\mathbf{Q}} K=n$.
ion: field K
$\mathrm{en}_{\mathbf{Q}} K=n$.)
(i) $=$
$\left.x^{2}+1\right)$
$\exp (\pi i / n)$;
$] /\left(x^{n}+1\right)$.
$\exp (2 \pi i / 661)$;
$/\left(x^{n}+\cdots+1\right)$.
$\overline{3}, \sqrt{5}, \ldots, \sqrt{29})$.

Define $\mathcal{O}=\overline{\mathbf{Z}} \cap K$; subring of K. $\mathcal{O} \hookrightarrow \mathbf{Z}^{n}$ as Z-modules.

Nonzero ideals of \mathcal{O}
factor uniquely as products of powers of prime ideals of \mathcal{O}.
e.g. $K=\mathbf{Q}(i) \hookrightarrow \mathbf{Q}[x] /\left(x^{2}+1\right)$
$\Rightarrow \mathcal{O}=\mathbf{Z}[i] \hookrightarrow \mathbf{Z}[x] /\left(x^{2}+1\right)$.
e.g. $\zeta=\exp (\pi i / 256), K=\mathbf{Q}(\zeta)$
$\Rightarrow \mathcal{O}=\mathbf{Z}[\zeta] \hookrightarrow \mathbf{Z}[x] /\left(x^{256}+1\right)$.
e.g. $\zeta=\exp (2 \pi i / 661), K=\mathbf{Q}(\zeta)$
$\Rightarrow \mathcal{O}=\mathbf{Z}[\zeta] \hookrightarrow \cdots$.
e.g. $K=\mathbf{Q}(\sqrt{5}) \Rightarrow \mathcal{O}=$
$\mathbf{Z}[(1+\sqrt{5}) / 2] \hookrightarrow \mathbf{Z}[x] /\left(x^{2}-x-1\right)$.

The short-generat
Find "short" nonz given the principal
e.g. $\zeta=\exp (\pi i / 4$ $\mathcal{O}=\mathbf{Z}[\zeta] \hookrightarrow \mathbf{Z}[x]$
The Z-submodule $201-233 \zeta-430$ $935-1063 \zeta-19$ $979-1119 \zeta-20$ $718-829 \zeta-153$ is an ideal I of \mathcal{O}. Can you find a she such that $I=g \mathcal{O}$

Define $\mathcal{O}=\overline{\mathbf{Z}} \cap K$; subring of K. $\mathcal{O} \hookrightarrow \mathbf{Z}^{n}$ as \mathbf{Z}-modules.

Nonzero ideals of \mathcal{O}
factor uniquely as products of powers of prime ideals of \mathcal{O}.

$$
\begin{aligned}
& \text { e.g. } K=\mathbf{Q}(i) \hookrightarrow \mathbf{Q}[x] /\left(x^{2}+1\right) \\
& \Rightarrow \mathcal{O}=\mathbf{Z}[i] \hookrightarrow \mathbf{Z}[x] /\left(x^{2}+1\right) . \\
& \text { e.g. } \zeta=\exp (\pi i / 256), K=\mathbf{Q}(\zeta) \\
& \Rightarrow \boldsymbol{O}=\mathbf{Z}[\zeta] \hookrightarrow \mathbf{Z}[x] /\left(x^{256}+1\right) . \\
& \text { e.g. } \zeta=\exp (2 \pi i / 661), K=\mathbf{Q}(\zeta) \\
& \Rightarrow \mathcal{O}=\mathbf{Z}[\zeta] \hookrightarrow \cdots .
\end{aligned}
$$

e.g. $K=\mathbf{Q}(\sqrt{5}) \Rightarrow \mathcal{O}=$
$\mathbf{Z}[(1+\sqrt{5}) / 2] \hookrightarrow \mathbf{Z}[x] /\left(x^{2}-x-1\right)$.

The short-generator problen Find "short" nonzero $g \in \mathcal{O}$ given the principal ideal $g \mathcal{O}$ e.g. $\zeta=\exp (\pi i / 4) ; K=\mathbf{Q}($ $\mathcal{O}=\mathbf{Z}[\zeta] \hookrightarrow \mathbf{Z}[x] /\left(x^{4}+1\right)$. The \mathbf{Z}-submodule of \mathcal{O} gen $201-233 \zeta-430 \zeta^{2}-712 \zeta$ $935-1063 \zeta-1986 \zeta^{2}-32$ $979-1119 \zeta-2092 \zeta^{2}-34$ $718-829 \zeta-1537 \zeta^{2}-254$ is an ideal I of \mathcal{O}.
Can you find a short $g \in \mathcal{O}$ such that $I=g \mathcal{O}$?

Define $\mathcal{O}=\overline{\mathbf{Z}} \cap K$; subring of K. $\mathcal{O} \hookrightarrow \mathbf{Z}^{n}$ as \mathbf{Z}-modules.

Nonzero ideals of \mathcal{O}
factor uniquely as products of powers of prime ideals of \mathcal{O}.
e.g. $K=\mathbf{Q}(i) \hookrightarrow \mathbf{Q}[x] /\left(x^{2}+1\right)$
$\Rightarrow \mathcal{O}=\mathbf{Z}[i] \hookrightarrow \mathbf{Z}[x] /\left(x^{2}+1\right)$.
e.g. $\zeta=\exp (\pi i / 256), K=\mathbf{Q}(\zeta)$
$\Rightarrow \mathcal{O}=\mathbf{Z}[\zeta] \hookrightarrow \mathbf{Z}[x] /\left(x^{256}+1\right)$.
e.g. $\zeta=\exp (2 \pi i / 661), K=\mathbf{Q}(\zeta)$
$\Rightarrow \mathcal{O}=\mathbf{Z}[\zeta] \hookrightarrow \cdots$.
e.g. $K=\mathbf{Q}(\sqrt{5}) \Rightarrow \mathcal{O}=$
$\mathbf{Z}[(1+\sqrt{5}) / 2] \hookrightarrow \mathbf{Z}[x] /\left(x^{2}-x-1\right)$.

The short-generator problem:
Find "short" nonzero $g \in \mathcal{O}$ given the principal ideal $g \mathcal{O}$. e.g. $\zeta=\exp (\pi i / 4) ; K=\mathbf{Q}(\zeta)$;
$\mathcal{O}=\mathbf{Z}[\zeta] \hookrightarrow \mathbf{Z}[x] /\left(x^{4}+1\right)$.
The \mathbf{Z}-submodule of \mathcal{O} gen by $201-233 \zeta-430 \zeta^{2}-712 \zeta^{3}$, $935-1063 \zeta-1986 \zeta^{2}-3299 \zeta^{3}$, $979-1119 \zeta-2092 \zeta^{2}-3470 \zeta^{3}$, $718-829 \zeta-1537 \zeta^{2}-2546 \zeta^{3}$ is an ideal I of \mathcal{O}.
Can you find a short $g \in \mathcal{O}$ such that $I=g \mathcal{O}$?
) $=\overline{\mathbf{Z}} \cap K$; subring of K. as \mathbf{Z}-modules.
ideals of \mathcal{O}
iquely as products of of prime ideals of \mathcal{O}.
$=\mathbf{Q}(i) \hookrightarrow \mathbf{Q}[x] /\left(x^{2}+1\right)$
$\mathbf{Z}[i] \hookrightarrow \mathbf{Z}[x] /\left(x^{2}+1\right)$.
$\exp (\pi i / 256), K=\mathbf{Q}(\zeta)$
$\mathbf{Z}[\zeta] \hookrightarrow \mathbf{Z}[x] /\left(x^{256}+1\right)$.
$\exp (2 \pi i / 661), K=\mathbf{Q}(\zeta)$
Z[弓] $\leftrightarrows \cdots$.
$\mathbf{Q}(\sqrt{5}) \Rightarrow \mathcal{O}=$
5) $/ 2] \hookrightarrow \mathbf{Z}[x] /\left(x^{2}-x-1\right)$.

The short-generator problem:
Find "short" nonzero $g \in \mathcal{O}$ given the principal ideal $g \mathcal{O}$.
e.g. $\zeta=\exp (\pi i / 4) ; K=\mathbf{Q}(\zeta)$;
$\mathcal{O}=\mathbf{Z}[\zeta] \hookrightarrow \mathbf{Z}[x] /\left(x^{4}+1\right)$.
The Z-submodule of \mathcal{O} gen by $201-233 \zeta-430 \zeta^{2}-712 \zeta^{3}$, $935-1063 \zeta-1986 \zeta^{2}-3299 \zeta^{3}$, $979-1119 \zeta-2092 \zeta^{2}-3470 \zeta^{3}$, $718-829 \zeta-1537 \zeta^{2}-2546 \zeta^{3}$ is an ideal I of \mathcal{O}.
Can you find a short $g \in \mathcal{O}$ such that $I=g \mathcal{O}$?

The latt
Use LLL short ele
$\mathbf{Z A}+\mathbf{Z}$
$A=(20$
$B=(93$
$C=(97$
D $=(71$
; subring of K. dules.
products of leals of \mathcal{O}.
$\mathbf{Q}[x] /\left(x^{2}+1\right)$
$x] /\left(x^{2}+1\right)$.
56), $K=\mathbf{Q}(\zeta)$
$[x] /\left(x^{256}+1\right)$.
661), $K=\mathbf{Q}(\zeta)$
$\Rightarrow \mathcal{O}=$
$z[x] /\left(x^{2}-x-1\right)$.

The short-generator problem:
Find "short" nonzero $g \in \mathcal{O}$ given the principal ideal $g \mathcal{O}$.
e.g. $\zeta=\exp (\pi i / 4) ; K=\mathbf{Q}(\zeta)$;
$\mathcal{O}=\mathbf{Z}[\zeta] \hookrightarrow \mathbf{Z}[x] /\left(x^{4}+1\right)$.
The \mathbf{Z}-submodule of \mathcal{O} gen by $201-233 \zeta-430 \zeta^{2}-712 \zeta^{3}$,
$935-1063 \zeta-1986 \zeta^{2}-3299 \zeta^{3}$,
$979-1119 \zeta-2092 \zeta^{2}-3470 \zeta^{3}$,
$718-829 \zeta-1537 \zeta^{2}-2546 \zeta^{3}$
is an ideal I of \mathcal{O}.
Can you find a short $g \in \mathcal{O}$
such that $I=g \mathcal{O}$?

The lattice perspe
Use LLL to quickl short elements of
$\mathbf{Z} A+\mathbf{Z B}+\mathbf{Z} C+$
$A=(201,-233$,
$B=(935,-1063$,
$C=(979,-1119$,
$D=(718,-829$,
of K.

The short-generator problem: Find "short" nonzero $g \in \mathcal{O}$ given the principal ideal $g \mathcal{O}$.
e.g. $\zeta=\exp (\pi i / 4) ; K=\mathbf{Q}(\zeta)$;
$\mathcal{O}=\mathbf{Z}[\zeta] \hookrightarrow \mathbf{Z}[x] /\left(x^{4}+1\right)$.
The Z-submodule of \mathcal{O} gen by $201-233 \zeta-430 \zeta^{2}-712 \zeta^{3}$, $935-1063 \zeta-1986 \zeta^{2}-3299 \zeta^{3}$, $979-1119 \zeta-2092 \zeta^{2}-3470 \zeta^{3}$, $718-829 \zeta-1537 \zeta^{2}-2546 \zeta^{3}$ is an ideal I of \mathcal{O}.
Can you find a short $g \in \mathcal{O}$
such that $I=g \mathcal{O}$?

The lattice perspective
Use LLL to quickly find short elements of lattice
$\mathbf{Z} A+\mathbf{Z} B+\mathbf{Z} C+\mathbf{Z} D$ wher
$A=(201,-233,-430,-71$
$B=(935,-1063,-1986,-$
$C=(979,-1119,-2092,-$
$D=(718,-829,-1537,-2$

The short-generator problem:
Find "short" nonzero $g \in \mathcal{O}$ given the principal ideal $g \mathcal{O}$. e.g. $\zeta=\exp (\pi i / 4) ; K=\mathbf{Q}(\zeta)$; $\mathcal{O}=\mathbf{Z}[\zeta] \hookrightarrow \mathbf{Z}[x] /\left(x^{4}+1\right)$.
The Z-submodule of \mathcal{O} gen by $201-233 \zeta-430 \zeta^{2}-712 \zeta^{3}$, $935-1063 \zeta-1986 \zeta^{2}-3299 \zeta^{3}$, $979-1119 \zeta-2092 \zeta^{2}-3470 \zeta^{3}$, $718-829 \zeta-1537 \zeta^{2}-2546 \zeta^{3}$ is an ideal I of \mathcal{O}.
Can you find a short $g \in \mathcal{O}$ such that $I=g \mathcal{O}$?

The lattice perspective
Use LLL to quickly find short elements of lattice
$\mathbf{Z} A+\mathbf{Z} B+\mathbf{Z} C+\mathbf{Z} D$ where
$A=(201,-233,-430,-712)$,
$B=(935,-1063,-1986,-3299)$,
$C=(979,-1119,-2092,-3470)$,
$D=(718,-829,-1537,-2546)$.

The short-generator problem:
Find "short" nonzero $g \in \mathcal{O}$ given the principal ideal $g \mathcal{O}$. e.g. $\zeta=\exp (\pi i / 4) ; K=\mathbf{Q}(\zeta)$; $\mathcal{O}=\mathbf{Z}[\zeta] \hookrightarrow \mathbf{Z}[x] /\left(x^{4}+1\right)$.
The Z-submodule of \mathcal{O} gen by $201-233 \zeta-430 \zeta^{2}-712 \zeta^{3}$, $935-1063 \zeta-1986 \zeta^{2}-3299 \zeta^{3}$, $979-1119 \zeta-2092 \zeta^{2}-3470 \zeta^{3}$, $718-829 \zeta-1537 \zeta^{2}-2546 \zeta^{3}$ is an ideal I of \mathcal{O}.
Can you find a short $g \in \mathcal{O}$ such that $I=g \mathcal{O}$?

The lattice perspective
Use LLL to quickly find short elements of lattice
$\mathbf{Z} A+\mathbf{Z} B+\mathbf{Z} C+\mathbf{Z} D$ where
$A=(201,-233,-430,-712)$,
$B=(935,-1063,-1986,-3299)$,
$C=(979,-1119,-2092,-3470)$,
$D=(718,-829,-1537,-2546)$.
Find $(3,1,4,1)$ as
$-37 A+3 B-7 C+16 D$.
This was my original g.

The short-generator problem:
Find "short" nonzero $g \in \mathcal{O}$ given the principal ideal $g \mathcal{O}$. e.g. $\zeta=\exp (\pi i / 4) ; K=\mathbf{Q}(\zeta)$;
$\mathcal{O}=\mathbf{Z}[\zeta] \hookrightarrow \mathbf{Z}[x] /\left(x^{4}+1\right)$.
The Z-submodule of \mathcal{O} gen by $201-233 \zeta-430 \zeta^{2}-712 \zeta^{3}$, $935-1063 \zeta-1986 \zeta^{2}-3299 \zeta^{3}$, $979-1119 \zeta-2092 \zeta^{2}-3470 \zeta^{3}$, $718-829 \zeta-1537 \zeta^{2}-2546 \zeta^{3}$ is an ideal I of \mathcal{O}.
Can you find a short $g \in \mathcal{O}$ such that $I=g \mathcal{O}$?

The lattice perspective
Use LLL to quickly find short elements of lattice
$\mathbf{Z} A+\mathbf{Z} B+\mathbf{Z} C+\mathbf{Z} D$ where
$A=(201,-233,-430,-712)$,
$B=(935,-1063,-1986,-3299)$,
$C=(979,-1119,-2092,-3470)$,
$D=(718,-829,-1537,-2546)$.
Find $(3,1,4,1)$ as
$-37 A+3 B-7 C+16 D$.
This was my original g.
Also find, e.g., (-4, $-1,3,1$).
Multiplying by root of unity
(here ζ^{2}) preserves shortness.
rt-generator problem:
ort" nonzero $g \in \mathcal{O}$
e principal ideal $g \mathcal{O}$.

$$
\exp (\pi i / 4) ; K=\mathbf{Q}(\zeta)
$$

$] \hookrightarrow \mathbf{Z}[x] /\left(x^{4}+1\right)$.
ubmodule of \mathcal{O} gen by
$33 \zeta-430 \zeta^{2}-712 \zeta^{3}$,
$063 \zeta-1986 \zeta^{2}-3299 \zeta^{3}$,
$119 \zeta-2092 \zeta^{2}-3470 \zeta^{3}$,
$29 \zeta-1537 \zeta^{2}-2546 \zeta^{3}$
al I of \mathcal{O}.
find a short $g \in \mathcal{O}$
$\mathrm{t} I=g \mathcal{O}$?

The lattice perspective

Use LLL to quickly find
short elements of lattice
$\mathbf{Z} A+\mathbf{Z} B+\mathbf{Z} C+\mathbf{Z} D$ where
$A=(201,-233,-430,-712)$,
$B=(935,-1063,-1986,-3299)$,
$C=(979,-1119,-2092,-3470)$,
$D=(718,-829,-1537,-2546)$.
Find $(3,1,4,1)$ as
$-37 A+3 B-7 C+16 D$.
This was my original g.
Also find, e.g., ($-4,-1,3,1$).
Multiplying by root of unity
(here ζ^{2}) preserves shortness.

For muc
LLL alm Big gap and size that LLI
or problem:
ero $g \in \mathcal{O}$ ideal $g \mathcal{O}$.
$; K=\mathbf{Q}(\zeta)$
$\left(x^{4}+1\right)$.
of \mathcal{O} gen by
$\zeta^{2}-712 \zeta^{3}$,
$86 \zeta^{2}-3299 \zeta^{3}$,
$92 \zeta^{2}-3470 \zeta^{3}$,
$7 \zeta^{2}-2546 \zeta^{3}$
rrt $g \in \mathcal{O}$

The lattice perspective

Use LLL to quickly find short elements of lattice
$\mathbf{Z} A+\mathbf{Z} B+\mathbf{Z} \mathbf{C}+\mathbf{Z} \mathbf{D}$ where
$A=(201,-233,-430,-712)$,
$B=(935,-1063,-1986,-3299)$,
$C=(979,-1119,-2092,-3470)$,
$D=(718,-829,-1537,-2546)$.
Find $(3,1,4,1)$ as
$-37 A+3 B-7 C+16 D$.
This was my original g.
Also find, e.g., ($-4,-1,3,1$).
Multiplying by root of unity
(here ζ^{2}) preserves shortness.

For much larger n
LLL almost never
Big gap between s and size of "short' that LLL typically

The lattice perspective

Use LLL to quickly find short elements of lattice
$\mathbf{Z} A+\mathbf{Z} B+\mathbf{Z} C+\mathbf{Z} D$ where
$A=(201,-233,-430,-712)$,
$B=(935,-1063,-1986,-3299)$,
$C=(979,-1119,-2092,-3470)$,
$D=(718,-829,-1537,-2546)$.
Find $(3,1,4,1)$ as
$-37 A+3 B-7 C+16 D$.
This was my original g.
Also find, e.g., ($-4,-1,3,1$).
Multiplying by root of unity (here ζ^{2}) preserves shortness.

For much larger n :
LLL almost never finds g. Big gap between size of g and size of "short" vectors that LLL typically finds in I

The lattice perspective

Use LLL to quickly find short elements of lattice
$\mathbf{Z} A+\mathbf{Z} B+\mathbf{Z} C+\mathbf{Z} D$ where
$A=(201,-233,-430,-712)$,
$B=(935,-1063,-1986,-3299)$,
$C=(979,-1119,-2092,-3470)$,
$D=(718,-829,-1537,-2546)$.
Find $(3,1,4,1)$ as
$-37 A+3 B-7 C+16 D$.
This was my original g.
Also find, e.g., ($-4,-1,3,1$).
Multiplying by root of unity
(here ζ^{2}) preserves shortness.

For much larger n :
LLL almost never finds g. Big gap between size of g and size of "short" vectors that LLL typically finds in I.

The lattice perspective

Use LLL to quickly find short elements of lattice
$\mathbf{Z} A+\mathbf{Z} B+\mathbf{Z} C+\mathbf{Z} D$ where
$A=(201,-233,-430,-712)$,
$B=(935,-1063,-1986,-3299)$,
$C=(979,-1119,-2092,-3470)$,
$D=(718,-829,-1537,-2546)$.
Find $(3,1,4,1)$ as
$-37 A+3 B-7 C+16 D$.
This was my original g.
Also find, e.g., ($-4,-1,3,1$).
Multiplying by root of unity
(here ζ^{2}) preserves shortness.

For much larger n :
LLL almost never finds g. Big gap between size of g and size of "short" vectors that LLL typically finds in I.

Increased BKZ block size: reduced gap but slower.

The lattice perspective

Use LLL to quickly find short elements of lattice
$\mathbf{Z} A+\mathbf{Z} B+\mathbf{Z} C+\mathbf{Z} D$ where
$A=(201,-233,-430,-712)$,
$B=(935,-1063,-1986,-3299)$,
$C=(979,-1119,-2092,-3470)$,
$D=(718,-829,-1537,-2546)$.
Find $(3,1,4,1)$ as
$-37 A+3 B-7 C+16 D$.
This was my original g.
Also find, e.g., ($-4,-1,3,1$). Multiplying by root of unity (here ζ^{2}) preserves shortness.

For much larger n :
LLL almost never finds g. Big gap between size of g and size of "short" vectors that LLL typically finds in I.

Increased BKZ block size: reduced gap but slower.

Fancier lattice algorithms:
Under reasonable assumptions, 2015 Laarhoven-de Weger finds g in time $\approx 1.23^{n}$.
Big progress compared to, e.g., 2008 Nguyen-Vidick ($\approx 1.33^{n}$) but still exponential time.

ice perspective

to quickly find
ments of lattice
$B+\mathbf{Z C}+\mathbf{Z} D$ where
$1,-233,-430,-712)$,
5, -1063, -1986, -3299),
9, -1119, -2092, -3470),
8, -829, -1537, -2546).
$1,4,1$) as
$3 B-7 C+16 D$.
s my original g.
, e.g., $(-4,-1,3,1)$.
ing by root of unity
preserves shortness.

For much larger n :
LLL almost never finds g.
Big gap between size of g and size of "short" vectors that LLL typically finds in I.

Increased BKZ block size: reduced gap but slower.

Fancier lattice algorithms: Under reasonable assumptions, 2015 Laarhoven-de Weger finds g in time $\approx 1.23^{n}$.
Big progress compared to, e.g., 2008 Nguyen-Vidick ($\approx 1.33^{n}$) but still exponential time.

Exploitir
Use LLL generate What he

Pure lat
Work m

ctive

y find
lattice
Z D where
-430, -712),
-1986, -3299),
-2092, -3470),
$-1537,-2546)$.
$+16 D$.
ral g.
$4,-1,3,1)$.
t of unity
s shortness.

For much larger n :
LLL almost never finds g.
Big gap between size of g and size of "short" vectors that LLL typically finds in I.

Increased BKZ block size: reduced gap but slower.

Fancier lattice algorithms:
Under reasonable assumptions, 2015 Laarhoven-de Weger finds g in time $\approx 1.23^{n}$.
Big progress compared to, e.g., 2008 Nguyen-Vidick ($\approx 1.33^{n}$) but still exponential time.

Exploiting factoriz
Use LLL, BKZ, et generate rather sh What happens if c

Pure lattice appro Work much harde

For much larger n :
LLL almost never finds g. Big gap between size of g and size of "short" vectors that LLL typically finds in I.

Increased BKZ block size: reduced gap but slower.

Fancier lattice algorithms:
Under reasonable assumptions, 2015 Laarhoven-de Weger finds g in time $\approx 1.23^{n}$.
Big progress compared to, e.g., 2008 Nguyen-Vidick ($\approx 1.33^{n}$) but still exponential time.

Exploiting factorization

Use LLL, BKZ, etc. to generate rather short $\alpha \in g$ What happens if $\alpha \mathcal{O} \neq g \mathcal{O}$

Pure lattice approach: Disca Work much harder, find sho

For much larger n :
LLL almost never finds g.
Big gap between size of g and size of "short" vectors that LLL typically finds in I.

Increased BKZ block size: reduced gap but slower.

Fancier lattice algorithms: Under reasonable assumptions, 2015 Laarhoven-de Weger finds g in time $\approx 1.23^{n}$.
Big progress compared to, e.g., 2008 Nguyen-Vidick ($\approx 1.33^{n}$) but still exponential time.

Exploiting factorization

Use LLL, BKZ, etc. to generate rather short $\alpha \in g \mathcal{O}$.
What happens if $\alpha \mathcal{O} \neq g \mathcal{O}$?
Pure lattice approach: Discard α. Work much harder, find shorter α.

For much larger n :
LLL almost never finds g.
Big gap between size of g and size of "short" vectors that LLL typically finds in I.

Increased BKZ block size: reduced gap but slower.

Fancier lattice algorithms:
Under reasonable assumptions, 2015 Laarhoven-de Weger finds g in time $\approx 1.23^{n}$.
Big progress compared to, e.g., 2008 Nguyen-Vidick ($\approx 1.33^{n}$) but still exponential time.

Exploiting factorization

Use LLL, BKZ, etc. to generate rather short $\alpha \in g \mathcal{O}$. What happens if $\alpha \mathcal{O} \neq g \mathcal{O}$?

Pure lattice approach: Discard α. Work much harder, find shorter α.

Alternative: Gain information from factorization of ideals.

For much larger n :
LLL almost never finds g.
Big gap between size of g and size of "short" vectors that LLL typically finds in I.

Increased BKZ block size: reduced gap but slower.

Fancier lattice algorithms: Under reasonable assumptions, 2015 Laarhoven-de Weger finds g in time $\approx 1.23^{n}$.
Big progress compared to, e.g., 2008 Nguyen-Vidick ($\approx 1.33^{n}$) but still exponential time.

Exploiting factorization

Use LLL, BKZ, etc. to generate rather short $\alpha \in g \mathcal{O}$. What happens if $\alpha \mathcal{O} \neq g \mathcal{O}$?

Pure lattice approach: Discard α. Work much harder, find shorter α.

Alternative: Gain information from factorization of ideals.
e.g. If $\alpha_{1} \mathcal{O}=g \mathcal{O} \cdot P^{2} \cdot Q^{2}$

For much larger n :
LLL almost never finds g.
Big gap between size of g and size of "short" vectors that LLL typically finds in I.

Increased BKZ block size: reduced gap but slower.

Fancier lattice algorithms: Under reasonable assumptions, 2015 Laarhoven-de Weger finds g in time $\approx 1.23^{n}$.
Big progress compared to, e.g., 2008 Nguyen-Vidick ($\approx 1.33^{n}$) but still exponential time.

Exploiting factorization

Use LLL, BKZ, etc. to generate rather short $\alpha \in g \mathcal{O}$. What happens if $\alpha \mathcal{O} \neq g \mathcal{O}$?

Pure lattice approach: Discard α. Work much harder, find shorter α.

Alternative: Gain information from factorization of ideals.
e.g. If $\alpha_{1} \mathcal{O}=g \mathcal{O} \cdot P^{2} \cdot Q^{2}$
and $\alpha_{2} \mathcal{O}=g \mathcal{O} \cdot P \cdot Q^{3}$

For much larger n :
LLL almost never finds g.
Big gap between size of g and size of "short" vectors that LLL typically finds in I.

Increased BKZ block size: reduced gap but slower.

Fancier lattice algorithms: Under reasonable assumptions, 2015 Laarhoven-de Weger finds g in time $\approx 1.23^{n}$.
Big progress compared to, e.g., 2008 Nguyen-Vidick ($\approx 1.33^{n}$) but still exponential time.

Exploiting factorization

Use LLL, BKZ, etc. to generate rather short $\alpha \in g \mathcal{O}$. What happens if $\alpha \mathcal{O} \neq g \mathcal{O}$?

Pure lattice approach: Discard α. Work much harder, find shorter α.

Alternative: Gain information from factorization of ideals.

$$
\begin{aligned}
& \text { e.g. If } \alpha_{1} \mathcal{O}=g \mathcal{O} \cdot P^{2} \cdot Q^{2} \\
& \text { and } \alpha_{2} \mathcal{O}=g \mathcal{O} \cdot P \cdot Q^{3} \\
& \text { and } \alpha_{3} \mathcal{O}=g \mathcal{O} \cdot P \cdot Q^{2}
\end{aligned}
$$

For much larger n :
LLL almost never finds g.
Big gap between size of g and size of "short" vectors that LLL typically finds in I.

Increased BKZ block size: reduced gap but slower.

Fancier lattice algorithms: Under reasonable assumptions, 2015 Laarhoven-de Weger finds g in time $\approx 1.23^{n}$.
Big progress compared to, e.g., 2008 Nguyen-Vidick ($\approx 1.33^{n}$) but still exponential time.

Exploiting factorization

Use LLL, BKZ, etc. to generate rather short $\alpha \in g \mathcal{O}$. What happens if $\alpha \mathcal{O} \neq g \mathcal{O}$?

Pure lattice approach: Discard α. Work much harder, find shorter α.

Alternative: Gain information from factorization of ideals.

$$
\begin{aligned}
& \text { e.g. If } \alpha_{1} \mathcal{O}=g \mathcal{O} \cdot P^{2} \cdot Q^{2} \\
& \text { and } \alpha_{2} \mathcal{O}=g \mathcal{O} \cdot P \cdot Q^{3} \\
& \text { and } \alpha_{3} \mathcal{O}=g \mathcal{O} \cdot P \cdot Q^{2} \text { then } \\
& P=\alpha_{1} \alpha_{3}^{-1} \mathcal{O} \text { and } Q=\alpha_{2} \alpha_{3}^{-1} \mathcal{O} \\
& \text { and } g \mathcal{O}=\alpha_{1}^{-1} \alpha_{2}^{-2} \alpha_{3}^{4} \mathcal{O} .
\end{aligned}
$$

h larger n:
ost never finds g. between size of g of "short" vectors typically finds in I.
d BKZ block size: gap but slower.
lattice algorithms: easonable assumptions, arhoven-de Weger n time $\approx 1.23^{n}$. ress compared to, e.g., uyen-Vidick ($\approx 1.33^{n}$) exponential time.

Exploiting factorization

Use LLL, BKZ, etc. to generate rather short $\alpha \in g \mathcal{O}$. What happens if $\alpha \mathcal{O} \neq g \mathcal{O}$?

Pure lattice approach: Discard α. Work much harder, find shorter α.

General factor α of some

Solve sy to find as prodı

Alternative: Gain information from factorization of ideals.

$$
\begin{aligned}
& \text { e.g. If } \alpha_{1} \mathcal{O}=g \mathcal{O} \cdot P^{2} \cdot Q^{2} \\
& \text { and } \alpha_{2} \mathcal{O}=g \mathcal{O} \cdot P \cdot Q^{3} \\
& \text { and } \alpha_{3} \mathcal{O}=g \mathcal{O} \cdot P \cdot Q^{2} \text { then } \\
& P=\alpha_{1} \alpha_{3}^{-1} \mathcal{O} \text { and } Q=\alpha_{2} \alpha_{3}^{-1} \mathcal{O} \\
& \text { and } g \mathcal{O}=\alpha_{1}^{-1} \alpha_{2}^{-2} \alpha_{3}^{4} \mathcal{O} .
\end{aligned}
$$

finds g.
ize of g vectors finds in I.
ck size:
lower.
orithms:
assumptions,
e Weger
$.23^{n}$
ared to, e.g.,
$\mathrm{ck}\left(\approx 1.33^{n}\right)$
al time.

Exploiting factorization

Use LLL, BKZ, etc. to generate rather short $\alpha \in g \mathcal{O}$. What happens if $\alpha \mathcal{O} \neq g \mathcal{O}$?

Pure lattice approach: Discard α. Work much harder, find shorter α.

General strategy: factor $\alpha \mathcal{O}$ into prc
of some primes an factor $\alpha \mathcal{O}$ into pro
of some primes an Solve system of ec to find generator f as product of pow

Alternative: Gain information from factorization of ideals.
e.g. If $\alpha_{1} \mathcal{O}=g \mathcal{O} \cdot P^{2} \cdot Q^{2}$
and $\alpha_{2} \mathcal{O}=g \mathcal{O} \cdot P \cdot Q^{3}$
and $\alpha_{3} \mathcal{O}=g \mathcal{O} \cdot P \cdot Q^{2}$ then
$P=\alpha_{1} \alpha_{3}^{-1} \mathcal{O}$ and $Q=\alpha_{2} \alpha_{3}^{-1} \mathcal{O}$
and $g \mathcal{O}=\alpha_{1}^{-1} \alpha_{2}^{-2} \alpha_{3}^{4} \mathcal{O}$.

Exploiting factorization

Use LLL, BKZ, etc. to
generate rather short $\alpha \in g \mathcal{O}$.
What happens if $\alpha \mathcal{O} \neq g \mathcal{O}$?
Pure lattice approach: Discard α.
Work much harder, find shorter α.
Alternative: Gain information
from factorization of ideals.
e.g. If $\alpha_{1} \mathcal{O}=g \mathcal{O} \cdot P^{2} \cdot Q^{2}$

$$
02-2
$$

$$
\text { and } \alpha_{2} \mathcal{O}=g \mathcal{O} \cdot P \cdot Q^{3}
$$

$$
\text { and } \alpha_{3} \mathcal{O}=g \mathcal{O} \cdot P \cdot Q^{2} \text { then }
$$

$P=\alpha_{1} \alpha_{3}^{-1} \mathcal{O}$ and $Q=\alpha_{2} \alpha_{3}^{-1} \mathcal{O}$

$$
P=\alpha_{1} \alpha_{3}^{-1} \mathcal{O} \text { and } Q=\alpha_{2} \alpha_{3}^{-1} \mathcal{O}
$$

and $g \mathcal{O}=\alpha_{1}^{-1} \alpha_{2}^{-2} \alpha_{3}^{4} \mathcal{O}$.

$$
\text { and } g \mathcal{O}=\alpha_{1}^{-1} \alpha_{2}^{-2} \alpha_{3}^{4} \mathcal{O}
$$

General strategy: For many factor $\alpha \mathcal{O}$ into products of of some primes and $g \mathcal{O}$.

Solve system of equations to find generator for $g \mathcal{O}$ as product of powers of the

Exploiting factorization

Use LLL, BKZ, etc. to generate rather short $\alpha \in g \mathcal{O}$. What happens if $\alpha \mathcal{O} \neq g \mathcal{O}$?

Pure lattice approach: Discard α. Work much harder, find shorter α.

General strategy: For many α 's, factor $\alpha \mathcal{O}$ into products of powers of some primes and $g \mathcal{O}$.

Solve system of equations to find generator for $g \mathcal{O}$ as product of powers of the α 's.

Alternative: Gain information from factorization of ideals.

$$
\begin{aligned}
& \text { e.g. If } \alpha_{1} \mathcal{O}=g \mathcal{O} \cdot P^{2} \cdot Q^{2} \\
& \text { and } \alpha_{2} \mathcal{O}=g \mathcal{O} \cdot P \cdot Q^{3} \\
& \text { and } \alpha_{3} \mathcal{O}=g \mathcal{O} \cdot P \cdot Q^{2} \text { then } \\
& P=\alpha_{1} \alpha_{3}^{-1} \mathcal{O} \text { and } Q=\alpha_{2} \alpha_{3}^{-1} \mathcal{O} \\
& \text { and } g \mathcal{O}=\alpha_{1}^{-1} \alpha_{2}^{-2} \alpha_{3}^{4} \mathcal{O} .
\end{aligned}
$$

Exploiting factorization

Use LLL, BKZ, etc. to generate rather short $\alpha \in g \mathcal{O}$. What happens if $\alpha \mathcal{O} \neq g \mathcal{O}$?

Pure lattice approach: Discard α. Work much harder, find shorter α.

Alternative: Gain information from factorization of ideals.

$$
\begin{aligned}
& \text { e.g. If } \alpha_{1} \mathcal{O}=g \mathcal{O} \cdot P^{2} \cdot Q^{2} \\
& \text { and } \alpha_{2} \mathcal{O}=g \mathcal{O} \cdot P \cdot Q^{3} \\
& \text { and } \alpha_{3} \mathcal{O}=g \mathcal{O} \cdot P \cdot Q^{2} \text { then } \\
& P=\alpha_{1} \alpha_{3}^{-1} \mathcal{O} \text { and } Q=\alpha_{2} \alpha_{3}^{-1} \mathcal{O} \\
& \text { and } g \mathcal{O}=\alpha_{1}^{-1} \alpha_{2}^{-2} \alpha_{3}^{4} \mathcal{O} .
\end{aligned}
$$

General strategy: For many α 's, factor $\alpha \mathcal{O}$ into products of powers of some primes and $g \mathcal{O}$.

Solve system of equations to find generator for $g \mathcal{O}$ as product of powers of the α 's.
"Can the system be solved?"

- Becomes increasingly reasonable to expect as the number of equations approaches and passes the number of primes.

Exploiting factorization

Use LLL, BKZ, etc. to generate rather short $\alpha \in g \mathcal{O}$. What happens if $\alpha \mathcal{O} \neq g \mathcal{O}$?

Pure lattice approach: Discard α. Work much harder, find shorter α.

Alternative: Gain information from factorization of ideals.

$$
\begin{aligned}
& \text { e.g. If } \alpha_{1} \mathcal{O}=g \mathcal{O} \cdot P^{2} \cdot Q^{2} \\
& \text { and } \alpha_{2} \mathcal{O}=g \mathcal{O} \cdot P \cdot Q^{3} \\
& \text { and } \alpha_{3} \mathcal{O}=g \mathcal{O} \cdot P \cdot Q^{2} \text { then } \\
& P=\alpha_{1} \alpha_{3}^{-1} \mathcal{O} \text { and } Q=\alpha_{2} \alpha_{3}^{-1} \mathcal{O} \\
& \text { and } g \mathcal{O}=\alpha_{1}^{-1} \alpha_{2}^{-2} \alpha_{3}^{4} \mathcal{O} .
\end{aligned}
$$

General strategy: For many α 's, factor $\alpha \mathcal{O}$ into products of powers of some primes and $g \mathcal{O}$.

Solve system of equations to find generator for $g \mathcal{O}$ as product of powers of the α 's.
"Can the system be solved?"

- Becomes increasingly reasonable to expect as the number of equations approaches and passes the number of primes.
"But \{primes\} is infinite!"

g factorization

$B K Z$, etc. to rather short $\alpha \in g \mathcal{O}$. ppens if $\alpha \mathcal{O} \neq g \mathcal{O}$?
tice approach: Discard α. uch harder, find shorter α.
ive: Gain information torization of ideals.

$$
\begin{aligned}
& 1 \mathcal{O}=g \mathcal{O} \cdot P^{2} \cdot Q^{2} \\
& =g \mathcal{O} \cdot P \cdot Q^{3} \\
& =g \mathcal{O} \cdot P \cdot Q^{2} \text { then } \\
& x_{3}^{-1} \mathcal{O} \text { and } Q=\alpha_{2} \alpha_{3}^{-1} \mathcal{O} \\
& =\alpha_{1}^{-1} \alpha_{2}^{-2} \alpha_{3}^{4} \mathcal{O} .
\end{aligned}
$$

General strategy: For many α 's, factor $\alpha \mathcal{O}$ into products of powers of some primes and $g \mathcal{O}$.

Solve system of equations to find generator for $g \mathcal{O}$
as product of powers of the α 's.
"Can the system be solved?"

- Becomes increasingly
reasonable to expect as the number of equations approaches and passes the number of primes.
"But \{primes\} is infinite!"

ation

c. to
ort $\alpha \in g \mathcal{O}$.
$\chi \mathcal{O} \neq g \mathcal{O}$?
ach: Discard α.
, find shorter α.
information
of ideals.
$\cdot P^{2} \cdot Q^{2}$

- Q^{3}
- Q^{2} then
$Q=\alpha_{2} \alpha_{3}^{-1} \mathcal{O}$
${ }^{2} \alpha_{3}^{4} \mathcal{O}$.

General strategy: For many α 's, factor $\alpha \mathcal{O}$ into products of powers of some primes and $g \mathcal{O}$.

Solve system of equations to find generator for $g \mathcal{O}$ as product of powers of the α 's.
"Can the system be solved?"

- Becomes increasingly
reasonable to expect as the number of equations approaches and passes the number of primes.
"But \{primes\} is infinite!"
- Restrict to a
e.g., all primes of

General strategy: For many α 's, factor $\alpha \mathcal{O}$ into products of powers of some primes and $g \mathcal{O}$.

Solve system of equations to find generator for $g \mathcal{O}$ as product of powers of the α 's. "Can the system be solved?"

- Becomes increasingly
reasonable to expect as the number of equations approaches and passes the number of primes.
"But \{primes\} is infinite!"
— Restrict to a "factor base
e.g., all primes of norm $\leq y$.

General strategy: For many α 's, factor $\alpha \mathcal{O}$ into products of powers of some primes and $g \mathcal{O}$.

Solve system of equations to find generator for $g \mathcal{O}$ as product of powers of the α 's.
"Can the system be solved?"

- Becomes increasingly
reasonable to expect as the number of equations approaches and passes the number of primes.
"But \{primes\} is infinite!"
— Restrict to a "factor base":
e.g., all primes of norm $\leq y$.

General strategy: For many α 's, factor $\alpha \mathcal{O}$ into products of powers of some primes and $g \mathcal{O}$.

Solve system of equations to find generator for $g \mathcal{O}$ as product of powers of the α 's.
"Can the system be solved?"

- Becomes increasingly reasonable to expect as the number of equations approaches and passes the number of primes.
"But \{primes\} is infinite!"
— Restrict to a "factor base":
e.g., all primes of norm $\leq y$.
"But what if $\alpha \mathcal{O}$ doesn't factor into those primes?"

General strategy: For many α 's, factor $\alpha \mathcal{O}$ into products of powers of some primes and $g \mathcal{O}$.

Solve system of equations to find generator for $g \mathcal{O}$ as product of powers of the α 's.
"Can the system be solved?"

- Becomes increasingly reasonable to expect as the number of equations approaches and passes the number of primes.
"But \{primes\} is infinite!"
— Restrict to a "factor base":
e.g., all primes of norm $\leq y$.
"But what if $\alpha \mathcal{O}$ doesn't factor into those primes?"
- Then throw it away.

But often it does factor.

General strategy: For many α 's, factor $\alpha \mathcal{O}$ into products of powers of some primes and $g \mathcal{O}$.

Solve system of equations to find generator for $g \mathcal{O}$ as product of powers of the α 's.
"Can the system be solved?"

- Becomes increasingly reasonable to expect as the number of equations approaches and passes the number of primes.
"But \{primes\} is infinite!"
— Restrict to a "factor base": e.g., all primes of norm $\leq y$.
"But what if $\alpha \mathcal{O}$ doesn't factor into those primes?"
- Then throw it away.

But often it does factor.
Familiar issue from
"index calculus" DL methods, CFRAC, LS, QS, NFS, etc. Model the norm of $(\alpha / g) \mathcal{O}$ as "random" integer in $[1, x]$;
y-smoothness chance $\approx 1 / y$
if $\log y \approx \sqrt{(1 / 2) \log x \log \log x}$.
strategy: For many α 's, \mathcal{O} into products of powers primes and $g \mathcal{O}$.
stem of equations
enerator for $g \mathcal{O}$
ict of powers of the α 's.
e system be solved?"
mes increasingly
le to expect as the of equations approaches ses the number of primes.
rimes\} is infinite!"
— Restrict to a "factor base":
e.g., all primes of norm $\leq y$.
"But what if $\alpha \mathcal{O}$ doesn't factor into those primes?"

- Then throw it away.

But often it does factor.
Familiar issue from
"index calculus" DL methods, CFRAC, LS, QS, NFS, etc. Model the norm of $(\alpha / g) \mathcal{O}$ as "random" integer in $[1, x]$;
y-smoothness chance $\approx 1 / y$
if $\log y \approx \sqrt{(1 / 2) \log x \log \log x}$.

Variatio Generat factor α After en solve sys obtain g

For many α 's, ducts of powers
$\mathrm{d} g \mathcal{O}$.
uations
or $g \mathcal{O}$
ers of the α 's.
e solved?"
singly
act as the
ns approaches mber of primes.
nfinite!"
— Restrict to a "factor base":
e.g., all primes of norm $\leq y$.
"But what if $\alpha \mathcal{O}$ doesn't factor into those primes?"

- Then throw it away.

But often it does factor.
Familiar issue from
"index calculus" DL methods, CFRAC, LS, QS, NFS, etc. Model the norm of $(\alpha / g) \mathcal{O}$ as "random" integer in $[1, x]$;
y-smoothness chance $\approx 1 / y$
if $\log y \approx \sqrt{(1 / 2) \log x \log \log x}$.

Variation: Ignore Generate rather sh factor $\alpha \mathcal{O}$ into sm After enough α 's, solve system of eq obtain generator f
$\alpha^{\prime} \mathrm{s}$
oowers
$\alpha^{\prime} \mathrm{s}$.
ches
imes.
— Restrict to a "factor base":
e.g., all primes of norm $\leq y$.
"But what if $\alpha \mathcal{O}$ doesn't
factor into those primes?"

- Then throw it away.

But often it does factor.
Familiar issue from
"index calculus" DL methods, CFRAC, LS, QS, NFS, etc.
Model the norm of $(\alpha / g) \mathcal{O}$
as "random" integer in $[1, x]$;
y-smoothness chance $\approx 1 / y$
if $\log y \approx \sqrt{(1 / 2) \log x \log \log x}$.

Variation: Ignore $g \mathcal{O}$.
Generate rather short $\alpha \in \mathcal{C}$ factor $\alpha \mathcal{O}$ into small primes After enough α 's, solve system of equations; obtain generator for each pr
— Restrict to a "factor base":
e.g., all primes of norm $\leq y$.
"But what if $\alpha \mathcal{O}$ doesn't
factor into those primes?"

- Then throw it away.

But often it does factor.
Familiar issue from
"index calculus" DL methods, CFRAC, LS, QS, NFS, etc. Model the norm of $(\alpha / g) \mathcal{O}$ as "random" integer in $[1, x]$; y-smoothness chance $\approx 1 / y$ if $\log y \approx \sqrt{(1 / 2) \log x \log \log x}$.

Variation: Ignore $g \mathcal{O}$.
Generate rather short $\alpha \in \mathcal{O}$, factor $\alpha \mathcal{O}$ into small primes.
After enough α 's, solve system of equations; obtain generator for each prime.
— Restrict to a "factor base":
e.g., all primes of norm $\leq y$.
"But what if $\alpha \mathcal{O}$ doesn't factor into those primes?"

- Then throw it away.

But often it does factor.
Familiar issue from
"index calculus" DL methods, CFRAC, LS, QS, NFS, etc. Model the norm of $(\alpha / g) \mathcal{O}$ as "random" integer in $[1, x]$; y-smoothness chance $\approx 1 / y$ if $\log y \approx \sqrt{(1 / 2) \log x \log \log x}$.

Variation: Ignore $g \mathcal{O}$.
Generate rather short $\alpha \in \mathcal{O}$, factor $\alpha \mathcal{O}$ into small primes.
After enough α 's, solve system of equations; obtain generator for each prime. After this precomputation, factor one $\alpha \mathcal{O} \subseteq g \mathcal{O}$; obtain generator for $g \mathcal{O}$.
— Restrict to a "factor base":
e.g., all primes of norm $\leq y$.
"But what if $\alpha \mathcal{O}$ doesn't factor into those primes?"

- Then throw it away.

But often it does factor.
Familiar issue from
"index calculus" DL methods, CFRAC, LS, QS, NFS, etc. Model the norm of $(\alpha / g) \mathcal{O}$ as "random" integer in $[1, x]$; y-smoothness chance $\approx 1 / y$ if $\log y \approx \sqrt{(1 / 2) \log x \log \log x}$.

Variation: Ignore $g \mathcal{O}$.
Generate rather short $\alpha \in \mathcal{O}$, factor $\alpha \mathcal{O}$ into small primes.
After enough α 's, solve system of equations; obtain generator for each prime. After this precomputation, factor one $\alpha \mathcal{O} \subseteq g \mathcal{O}$; obtain generator for $g \mathcal{O}$.
"Do all primes have generators?"
— Restrict to a "factor base": e.g., all primes of norm $\leq y$.
"But what if $\alpha \mathcal{O}$ doesn't factor into those primes?"

- Then throw it away.

But often it does factor.
Familiar issue from
"index calculus" DL methods, CFRAC, LS, QS, NFS, etc. Model the norm of $(\alpha / g) \mathcal{O}$ as "random" integer in $[1, x]$; y-smoothness chance $\approx 1 / y$ if $\log y \approx \sqrt{(1 / 2) \log x \log \log x}$.

Variation: Ignore $\mathbf{g O}$.
Generate rather short $\alpha \in \mathcal{O}$, factor $\alpha \mathcal{O}$ into small primes.
After enough α 's, solve system of equations; obtain generator for each prime. After this precomputation, factor one $\alpha \mathcal{O} \subseteq g \mathcal{O}$; obtain generator for $g \mathcal{O}$.
"Do all primes have generators?"

- Standard heuristics:

For many (most?) number fields, yes; but for big cyclotomics, no! Modulo a few small primes, yes.
ict to a "factor base": primes of norm $\leq y$.
lat if $\alpha \mathcal{O}$ doesn't
to those primes?"
throw it away.
n it does factor.
issue from
alculus" DL methods,
LS, QS, NFS, etc.
ne norm of $(\alpha / g) \mathcal{O}$
om" integer in $[1, x]$;
hness chance $\approx 1 / y$
$\approx \sqrt{(1 / 2) \log x \log \log x}$.

Variation: Ignore $g \mathcal{O}$.
Generate rather short $\alpha \in \mathcal{O}$, factor $\alpha \mathcal{O}$ into small primes.
After enough α 's,
solve system of equations;
obtain generator for each prime.
After this precomputation,
factor one $\alpha \mathcal{O} \subseteq g \mathcal{O}$;
obtain generator for $g \mathcal{O}$.
"Do all primes have generators?"

- Standard heuristics:

For many (most?) number fields, yes; but for big cyclotomics, no! Modulo a few small primes, yes.
\{princip kernel o
\{nonzer
C is a fi the "cla

Fundam in algeb
actor base" :
norm $\leq y$.

doesn't

 rimes?"away.
factor.

L methods,
VFS, etc.
f $(\alpha / g) \mathcal{O}$
er in $[1, x]$;
nce $\approx 1 / y$
$\log x \log \log x$.

Variation: Ignore $g \mathcal{O}$.
Generate rather short $\alpha \in \mathcal{O}$, factor $\alpha \mathcal{O}$ into small primes.
After enough α 's,
solve system of equations;
obtain generator for each prime.
After this precomputation,
factor one $\alpha \mathcal{O} \subseteq g \mathcal{O}$;
obtain generator for $g \mathcal{O}$.
"Do all primes have generators?"

- Standard heuristics:

For many (most?) number fields, yes; but for big cyclotomics, no! Modulo a few small primes, yes.
\{principal nonzero kernel of a semigr \{nonzero ideals\} C is a finite abelia the "class group o Fundamental obje in algebraic numb

Variation: Ignore $g \mathcal{O}$.
Generate rather short $\alpha \in \mathcal{O}$, factor $\alpha \mathcal{O}$ into small primes. After enough α 's, solve system of equations; obtain generator for each prime.
After this precomputation, factor one $\alpha \mathcal{O} \subseteq g \mathcal{O}$; obtain generator for $g \mathcal{O}$.
"Do all primes have generators?"

- Standard heuristics:

For many (most?) number fields, yes; but for big cyclotomics, no!
Modulo a few small primes, yes.
\{principal nonzero ideals\} is kernel of a semigroup map \{nonzero ideals $\} \rightarrow C$ wher C is a finite abelian group, the "class group of K ".

Fundamental object of study in algebraic number theory.

Variation: Ignore $g \mathcal{O}$.
Generate rather short $\alpha \in \mathcal{O}$, factor $\alpha \mathcal{O}$ into small primes. After enough α 's, solve system of equations; obtain generator for each prime. After this precomputation, factor one $\alpha \mathcal{O} \subseteq g \mathcal{O}$; obtain generator for gO .
"Do all primes have generators?"

- Standard heuristics:

For many (most?) number fields, yes; but for big cyclotomics, no! Modulo a few small primes, yes.
\{principal nonzero ideals\} is kernel of a semigroup map \{nonzero ideals\} $\rightarrow C$ where C is a finite abelian group, the "class group of K ".

Fundamental object of study in algebraic number theory.

Variation: Ignore $g \mathcal{O}$.
Generate rather short $\alpha \in \mathcal{O}$, factor $\alpha \mathcal{O}$ into small primes.
After enough α 's, solve system of equations; obtain generator for each prime. After this precomputation, factor one $\alpha \mathcal{O} \subseteq g \mathcal{O}$; obtain generator for gO .
"Do all primes have generators?"

- Standard heuristics:

For many (most?) number fields, yes; but for big cyclotomics, no! Modulo a few small primes, yes.
\{principal nonzero ideals\} is kernel of a semigroup map \{nonzero ideals\} $\rightarrow C$ where C is a finite abelian group, the "class group of K ".

Fundamental object of study in algebraic number theory.

Factoring many small $\alpha \mathcal{O}$ is a standard textbook method of computing class group and generators of ideals.

Variation: Ignore $\mathrm{g} \mathcal{O}$.
Generate rather short $\alpha \in \mathcal{O}$, factor $\alpha \mathcal{O}$ into small primes.
After enough α 's, solve system of equations; obtain generator for each prime.
After this precomputation, factor one $\alpha \mathcal{O} \subseteq g \mathcal{O}$; obtain generator for gO .
"Do all primes have generators?"

- Standard heuristics:

For many (most?) number fields, yes; but for big cyclotomics, no! Modulo a few small primes, yes.
\{principal nonzero ideals\} is kernel of a semigroup map \{nonzero ideals\} $\rightarrow C$ where C is a finite abelian group, the "class group of K ".

Fundamental object of study in algebraic number theory.

Factoring many small $\alpha \mathcal{O}$ is a standard textbook method of computing class group and generators of ideals.

Also compute unit group \mathcal{O}^{*} via ratios of generators.

1: Ignore $g \mathcal{O}$.
rather short $\alpha \in \mathcal{O}$,
\mathcal{O} into small primes.
ough α 's,
tem of equations;
enerator for each prime.
is precomputation,
ne $\alpha \mathcal{O} \subseteq g \mathcal{O}$;
enerator for $g \mathcal{O}$.
primes have generators?"
dard heuristics:
y (most?) number fields, for big cyclotomics, no!
a few small primes, yes.
\{principal nonzero ideals\} is kernel of a semigroup map \{nonzero ideals\} $\rightarrow C$ where C is a finite abelian group, the "class group of K ".

Fundamental object of study in algebraic number theory.

Factoring many small $\alpha \mathcal{O}$ is a standard textbook method of computing class group and generators of ideals.

Also compute unit group \mathcal{O}^{*} via ratios of generators.

A note
Smart-\ regardin
Buchma complex
$\sqrt{\log (\Delta}$
$\mathrm{g} \mathcal{O}$.
ort $\alpha \in \mathcal{O}$,
all primes.
uations;
or each prime.
utation,
o°;
or gO .
e generators?" stics:
number fields, clotomics, no!
Ill primes, yes.
\{principal nonzero ideals\} is kernel of a semigroup map \{nonzero ideals\} $\rightarrow C$ where C is a finite abelian group, the "class group of K ".

Fundamental object of study in algebraic number theory.

Factoring many small $\alpha \mathcal{O}$ is a standard textbook method of computing class group and generators of ideals.

Also compute unit group \mathcal{O}^{*} via ratios of generators.

A note on time an
Smart-Vercautere regarding similar a Buchmann: "This complexity $\exp (O$ $\sqrt{\log (\Delta) \cdot \log \log (}$
\{principal nonzero ideals\} is kernel of a semigroup map \{nonzero ideals $\} \rightarrow C$ where C is a finite abelian group, the "class group of K ".

Fundamental object of study in algebraic number theory.

Factoring many small $\alpha \mathcal{O}$ is a standard textbook method of computing class group and generators of ideals.

Also compute unit group \mathcal{O}^{*} via ratios of generators.

A note on time analysis
Smart-Vercauteren stateme regarding similar algorithm Buchmann: "This method complexity $\exp (O(N \log N)$ $\sqrt{\log (\Delta) \cdot \log \log (\Delta)}) . "$
\{principal nonzero ideals\} is kernel of a semigroup map \{nonzero ideals\} $\rightarrow C$ where C is a finite abelian group, the "class group of K ".

Fundamental object of study in algebraic number theory.

Factoring many small $\alpha \mathcal{O}$ is a standard textbook method of computing class group and generators of ideals.

Also compute unit group \mathcal{O}^{*} via ratios of generators.

A note on time analysis
Smart-Vercauteren statement regarding similar algorithm by Buchmann: "This method has complexity $\exp (O(N \log N)$.
$\sqrt{\log (\Delta) \cdot \log \log (\Delta)}) . "$
\{principal nonzero ideals\} is kernel of a semigroup map \{nonzero ideals $\} \rightarrow C$ where C is a finite abelian group, the "class group of K ".

Fundamental object of study in algebraic number theory.

Factoring many small $\alpha \mathcal{O}$ is a standard textbook method of computing class group and generators of ideals.

Also compute unit group \mathcal{O}^{*} via ratios of generators.

A note on time analysis
Smart-Vercauteren statement regarding similar algorithm by
Buchmann: "This method has complexity $\exp (O(N \log N)$.
$\sqrt{\log (\Delta) \cdot \log \log (\Delta)}) . "$

- [citation needed]
\{principal nonzero ideals\} is kernel of a semigroup map \{nonzero ideals\} $\rightarrow C$ where C is a finite abelian group, the "class group of K ".

Fundamental object of study in algebraic number theory.

Factoring many small $\alpha \mathcal{O}$ is a standard textbook method of computing class group and generators of ideals.

Also compute unit group \mathcal{O}^{*} via ratios of generators.

A note on time analysis
Smart-Vercauteren statement regarding similar algorithm by
Buchmann: "This method has complexity $\exp (O(N \log N)$.
$\sqrt{\log (\Delta) \cdot \log \log (\Delta)}) . "$

- [citation needed]

Did they mean Θ ? And + ?
$\exp (\Theta(N \log N))$ factor for short-vector enumeration? Silly: BKZ works just fine.
\{principal nonzero ideals\} is kernel of a semigroup map \{nonzero ideals\} $\rightarrow C$ where C is a finite abelian group, the "class group of K ".

Fundamental object of study in algebraic number theory.

Factoring many small $\alpha \mathcal{O}$ is a standard textbook method of computing class group and generators of ideals.

Also compute unit group \mathcal{O}^{*} via ratios of generators.

A note on time analysis
Smart-Vercauteren statement regarding similar algorithm by
Buchmann: "This method has complexity $\exp (O(N \log N)$.
$\sqrt{\log (\Delta) \cdot \log \log (\Delta)}) . "$

- [citation needed]

Did they mean Θ ? And + ? $\exp (\Theta(N \log N))$ factor for short-vector enumeration? Silly: BKZ works just fine. The whole algorithm will be subexponential unless norms are much worse than exponential.
al nonzero ideals\} is a semigroup map o ideals $\} \rightarrow C$ where nite abelian group, ss group of $K^{\prime \prime}$.
ental object of study raic number theory.
g many small $\alpha \mathcal{O}$
dard textbook method uting class group erators of ideals. npute unit group \mathcal{O}^{*} s of generators.

A note on time analysis
Smart-Vercauteren statement regarding similar algorithm by Buchmann: "This method has complexity $\exp (O(N \log N)$. $\sqrt{\log (\Delta) \cdot \log \log (\Delta)}) . "$

- [citation needed]

Did they mean Θ ? And + ? $\exp (\Theta(N \log N))$ factor for short-vector enumeration?
Silly: BKZ works just fine.
The whole algorithm will be subexponential unless norms are much worse than exponential.

Big gen

Smart-\ this met a genera with larg large, th generatc
θ may ta
Indeed, product Must be but extr
ideals\} is
oup map
$\rightarrow C$ where
n group,
f $K^{\prime \prime}$.
ct of study
er theory.
nall $\alpha \mathcal{O}$
oook method
; group ideals.
group \mathcal{O}^{*} ators.

A note on time analysis

Smart-Vercauteren statement regarding similar algorithm by
Buchmann: "This method has complexity $\exp (O(N \log N)$. $\sqrt{\log (\Delta) \cdot \log \log (\Delta)}) . "$

- [citation needed]

Did they mean Θ ? And + ?
$\exp (\Theta(N \log N))$ factor
for short-vector enumeration?
Silly: BKZ works just fine.
The whole algorithm will be subexponential unless norms are much worse than exponential.

Big generator

Smart-Vercautere this method is like a generator of larg with large coeffici large, that writing generator down as θ may take expon

Indeed, generator product of powers Must be $g u$ for so but extremely unli

A note on time analysis
Smart-Vercauteren statement regarding similar algorithm by
Buchmann: "This method has complexity $\exp (O(N \log N)$. $\sqrt{\log (\Delta) \cdot \log \log (\Delta)}) . "$

- [citation needed]

Did they mean Θ ? And + ? $\exp (\Theta(N \log N))$ factor for short-vector enumeration?
Silly: BKZ works just fine.
The whole algorithm will be subexponential unless norms are much worse than exponential.

Big generator

Smart-Vercauteren: "Howe this method is likely to prod a generator of large height, with large coefficients. Inde large, that writing the obtai generator down as a polynor θ may take exponential time

Indeed, generator found for product of powers of various Must be $g u$ for some $u \in \mathcal{O}$ but extremely unlikely to be

A note on time analysis

Smart-Vercauteren statement regarding similar algorithm by Buchmann: "This method has complexity $\exp (O(N \log N)$. $\sqrt{\log (\Delta) \cdot \log \log (\Delta)}) . "$

- [citation needed]

Did they mean Θ ? And + ? $\exp (\Theta(N \log N))$ factor for short-vector enumeration?
Silly: BKZ works just fine.
The whole algorithm will be subexponential unless norms are much worse than exponential.

Big generator

Smart-Vercauteren: "However this method is likely to produce a generator of large height, i.e., with large coefficients. Indeed so large, that writing the obtained generator down as a polynomial in θ may take exponential time."

Indeed, generator found for $g \mathcal{O}$ is product of powers of various α^{\prime} s. Must be $g u$ for some $u \in \mathcal{O}^{*}$, but extremely unlikely to be g.

A note on time analysis

Smart-Vercauteren statement regarding similar algorithm by Buchmann: "This method has complexity $\exp (O(N \log N)$. $\sqrt{\log (\Delta) \cdot \log \log (\Delta)}) . "$

- [citation needed]

Did they mean Θ ? And + ? $\exp (\Theta(N \log N))$ factor for short-vector enumeration?
Silly: BKZ works just fine.
The whole algorithm will be subexponential unless norms are much worse than exponential.

Big generator

Smart-Vercauteren: "However this method is likely to produce a generator of large height, i.e., with large coefficients. Indeed so large, that writing the obtained generator down as a polynomial in θ may take exponential time."

Indeed, generator found for $g \mathcal{O}$ is product of powers of various α^{\prime} s. Must be $g u$ for some $u \in \mathcal{O}^{*}$, but extremely unlikely to be g.

How do we find g from $g u$?

n time analysis

ercauteren statement g similar algorithm by nn: "This method has ity $\exp (O(N \log N)$. $) \cdot \log \log (\Delta)) . "$
ion needed]
mean Θ ? And + ?
$\checkmark \log N)$) factor
-vector enumeration?
<Z works just fine.
le algorithm will be nential unless norms are
orse than exponential.

Big generator

Smart-Vercauteren: "However this method is likely to produce a generator of large height, i.e., with large coefficients. Indeed so large, that writing the obtained generator down as a polynomial in θ may take exponential time."

Indeed, generator found for $g \mathcal{O}$ is product of powers of various α 's. Must be $g u$ for some $u \in \mathcal{O}^{*}$, but extremely unlikely to be g.

How do we find g from $g u$?

There ar ring ma
alysis
n statement Igorithm by method has $N \log N$)
$\bar{\Delta})$)."

$$
\text { And }+ \text { ? }
$$

actor
umeration?
just fine.
im will be
less norms are
exponential.

Big generator

Smart-Vercauteren: "However this method is likely to produce a generator of large height, i.e., with large coefficients. Indeed so large, that writing the obtained generator down as a polynomial in θ may take exponential time."

Indeed, generator found for $g \mathcal{O}$ is product of powers of various α 's. Must be $g u$ for some $u \in \mathcal{O}^{*}$, but extremely unlikely to be g.

How do we find g from $g u$?

There are exactly ring maps φ_{1}, \ldots

Big generator

Smart-Vercauteren: "However this method is likely to produce a generator of large height, i.e., with large coefficients. Indeed so large, that writing the obtained generator down as a polynomial in θ may take exponential time."

Indeed, generator found for $g \mathcal{O}$ is product of powers of various α 's. Must be $g u$ for some $u \in \mathcal{O}^{*}$, but extremely unlikely to be g.

How do we find g from $g u$?

There are exactly n distinct ring maps $\varphi_{1}, \ldots, \varphi_{n}: K \rightarrow$

Big generator

Smart-Vercauteren: "However this method is likely to produce a generator of large height, i.e., with large coefficients. Indeed so large, that writing the obtained generator down as a polynomial in θ may take exponential time."

Indeed, generator found for $g \mathcal{O}$ is product of powers of various α 's. Must be $g u$ for some $u \in \mathcal{O}^{*}$, but extremely unlikely to be g.

How do we find g from $g u$?

There are exactly n distinct ring maps $\varphi_{1}, \ldots, \varphi_{n}: K \rightarrow \mathbf{C}$.

Big generator

Smart-Vercauteren: "However this method is likely to produce a generator of large height, i.e., with large coefficients. Indeed so large, that writing the obtained generator down as a polynomial in θ may take exponential time."

Indeed, generator found for $g \mathcal{O}$ is product of powers of various α 's. Must be $g u$ for some $u \in \mathcal{O}^{*}$, but extremely unlikely to be g.

How do we find g from $g u$?

There are exactly n distinct ring maps $\varphi_{1}, \ldots, \varphi_{n}: K \rightarrow \mathbf{C}$.

Define Log: $K^{*} \rightarrow \mathbf{R}^{n}$ by $\log =\left(\log \left|\varphi_{1}\right|, \ldots, \log \left|\varphi_{n}\right|\right)$.

Big generator

Smart-Vercauteren: "However this method is likely to produce a generator of large height, i.e., with large coefficients. Indeed so large, that writing the obtained generator down as a polynomial in θ may take exponential time."

Indeed, generator found for $g \mathcal{O}$ is product of powers of various α 's. Must be $g u$ for some $u \in \mathcal{O}^{*}$, but extremely unlikely to be g.

How do we find g from $g u$?

There are exactly n distinct ring maps $\varphi_{1}, \ldots, \varphi_{n}: K \rightarrow \mathbf{C}$.

Define Log : $K^{*} \rightarrow \mathbf{R}^{n}$ by $\log =\left(\log \left|\varphi_{1}\right|, \ldots, \log \left|\varphi_{n}\right|\right)$.
$\log \mathcal{O}^{*}$ is a lattice of rank $r_{1}+r_{2}-1$ where

$$
\begin{aligned}
r_{1} & =\#\left\{i: \varphi_{i}(K) \subseteq \mathbf{R}\right\}, \\
2 r_{2} & =\#\left\{i: \varphi_{i}(K) \nsubseteq \mathbf{R}\right\} .
\end{aligned}
$$

Big generator

Smart-Vercauteren: "However this method is likely to produce a generator of large height, i.e., with large coefficients. Indeed so large, that writing the obtained generator down as a polynomial in θ may take exponential time."

Indeed, generator found for $g \mathcal{O}$ is product of powers of various α 's. Must be $g u$ for some $u \in \mathcal{O}^{*}$, but extremely unlikely to be g.

How do we find g from $g u$?

There are exactly n distinct ring maps $\varphi_{1}, \ldots, \varphi_{n}: K \rightarrow \mathbf{C}$.

Define Log : $K^{*} \rightarrow \mathbf{R}^{n}$ by $\log =\left(\log \left|\varphi_{1}\right|, \ldots, \log \left|\varphi_{n}\right|\right)$.
$\log \mathcal{O}^{*}$ is a lattice
of rank $r_{1}+r_{2}-1$ where

$$
\begin{aligned}
r_{1} & =\#\left\{i: \varphi_{i}(K) \subseteq \mathbf{R}\right\}, \\
2 r_{2} & =\#\left\{i: \varphi_{i}(K) \nsubseteq \mathbf{R}\right\} .
\end{aligned}
$$

$$
\text { e.g. } \zeta=\exp (\pi i / 256), K=\mathbf{Q}(\zeta)
$$

$$
\text { images of } \zeta \text { under ring maps }
$$

$$
\text { are } \zeta, \zeta^{3}, \zeta^{5}, \ldots, \zeta^{511}
$$

$$
r_{1}=0 ; r_{2}=128 ; \text { rank } 127
$$

erator

/ercauteren: "However hod is likely to produce tor of large height, i.e., ze coefficients. Indeed so at writing the obtained r down as a polynomial in ake exponential time."
generator found for $g \mathcal{O}$ is of powers of various α 's. $g u$ for some $u \in \mathcal{O}^{*}$, emely unlikely to be g.
we find g from $g u$?

There are exactly n distinct ring maps $\varphi_{1}, \ldots, \varphi_{n}: K \rightarrow \mathbf{C}$.

Define Log : $K^{*} \rightarrow \mathbf{R}^{n}$ by $\log =\left(\log \left|\varphi_{1}\right|, \ldots, \log \left|\varphi_{n}\right|\right)$.
$\log \mathcal{O}^{*}$ is a lattice
of rank $r_{1}+r_{2}-1$ where

$$
\begin{aligned}
& \quad r_{1}=\#\left\{i: \varphi_{i}(K) \subseteq \mathbf{R}\right\} \\
& 2 r_{2}=\#\left\{i: \varphi_{i}(K) \nsubseteq \mathbf{R}\right\} \\
& \text { e.g. } \zeta=\exp (\pi i / 256), K=\mathbf{Q}(\zeta): \\
& \text { images of } \zeta \text { under ring maps } \\
& \text { are } \zeta, \zeta^{3}, \zeta^{5}, \ldots, \zeta^{511} . \\
& r_{1}=0 ; r_{2}=128 ; \text { rank } 127 .
\end{aligned}
$$

Comput
as sum for the

There are exactly n distinct ring maps $\varphi_{1}, \ldots, \varphi_{n}: K \rightarrow \mathbf{C}$.

Define Log : $K^{*} \rightarrow \mathbf{R}^{n}$ by
$\log =\left(\log \left|\varphi_{1}\right|, \ldots, \log \left|\varphi_{n}\right|\right)$.
$\log \mathcal{O}^{*}$ is a lattice
of rank $r_{1}+r_{2}-1$ where

$$
\begin{aligned}
r_{1} & =\#\left\{i: \varphi_{i}(K) \subseteq \mathbf{R}\right\}, \\
2 r_{2} & =\#\left\{i: \varphi_{i}(K) \nsubseteq \mathbf{R}\right\} .
\end{aligned}
$$

$$
\text { e.g. } \zeta=\exp (\pi i / 256), K=\mathbf{Q}(\zeta)
$$

images of ζ under ring maps
are $\zeta, \zeta^{3}, \zeta^{5}, \ldots, \zeta^{511}$.
$r_{1}=0 ; r_{2}=128 ;$ rank 127.

Compute $\log g u$ as sum of multiple for the original α 's

There are exactly n distinct ring maps $\varphi_{1}, \ldots, \varphi_{n}: K \rightarrow \mathbf{C}$.

Define Log : $K^{*} \rightarrow \mathbf{R}^{n}$ by
$\log =\left(\log \left|\varphi_{1}\right|, \ldots, \log \left|\varphi_{n}\right|\right)$.
$\log \mathcal{O}^{*}$ is a lattice
of rank $r_{1}+r_{2}-1$ where

$$
\begin{aligned}
r_{1} & =\#\left\{i: \varphi_{i}(K) \subseteq \mathbf{R}\right\}, \\
2 r_{2} & =\#\left\{i: \varphi_{i}(K) \nsubseteq \mathbf{R}\right\} .
\end{aligned}
$$

$$
\text { e.g. } \zeta=\exp (\pi i / 256), K=\mathbf{Q}(\zeta)
$$

images of ζ under ring maps are $\zeta, \zeta^{3}, \zeta^{5}, \ldots, \zeta^{511}$.
$r_{1}=0 ; r_{2}=128 ;$ rank 127.

Compute Log $g u$
as sum of multiples of $\log 0$ for the original α 's.

There are exactly n distinct ring maps $\varphi_{1}, \ldots, \varphi_{n}: K \rightarrow \mathbf{C}$.

Define Log : $K^{*} \rightarrow \mathbf{R}^{n}$ by $\log =\left(\log \left|\varphi_{1}\right|, \ldots, \log \left|\varphi_{n}\right|\right)$.
$\log \mathcal{O}^{*}$ is a lattice of rank $r_{1}+r_{2}-1$ where

$$
\begin{aligned}
r_{1} & =\#\left\{i: \varphi_{i}(K) \subseteq \mathbf{R}\right\}, \\
2 r_{2} & =\#\left\{i: \varphi_{i}(K) \nsubseteq \mathbf{R}\right\} .
\end{aligned}
$$

$$
\text { e.g. } \zeta=\exp (\pi i / 256), K=\mathbf{Q}(\zeta)
$$

$$
\text { images of } \zeta \text { under ring maps }
$$

$$
\text { are } \zeta, \zeta^{3}, \zeta^{5}, \ldots, \zeta^{511}
$$

$$
r_{1}=0 ; r_{2}=128 ; \text { rank } 127
$$

Compute $\log g u$
as sum of multiples of $\log \alpha$ for the original α 's.

There are exactly n distinct ring maps $\varphi_{1}, \ldots, \varphi_{n}: K \rightarrow \mathbf{C}$.

Define Log : $K^{*} \rightarrow \mathbf{R}^{n}$ by $\log =\left(\log \left|\varphi_{1}\right|, \ldots, \log \left|\varphi_{n}\right|\right)$.
$\log \mathcal{O}^{*}$ is a lattice of rank $r_{1}+r_{2}-1$ where

$$
\begin{aligned}
r_{1} & =\#\left\{i: \varphi_{i}(K) \subseteq \mathbf{R}\right\}, \\
2 r_{2} & =\#\left\{i: \varphi_{i}(K) \nsubseteq \mathbf{R}\right\} .
\end{aligned}
$$

$$
\text { e.g. } \zeta=\exp (\pi i / 256), K=\mathbf{Q}(\zeta)
$$

$$
\text { images of } \zeta \text { under ring maps }
$$

$$
\text { are } \zeta, \zeta^{3}, \zeta^{5}, \ldots, \zeta^{511}
$$

$$
r_{1}=0 ; r_{2}=128 ; \text { rank } 127
$$

Compute Log $g u$
as sum of multiples of $\log \alpha$ for the original α 's.

Find elements of $\log \mathcal{O}^{*}$ close to Log $g u$.

There are exactly n distinct ring maps $\varphi_{1}, \ldots, \varphi_{n}: K \rightarrow \mathbf{C}$.

Define Log : $K^{*} \rightarrow \mathbf{R}^{n}$ by $\log =\left(\log \left|\varphi_{1}\right|, \ldots, \log \left|\varphi_{n}\right|\right)$.
$\log \mathcal{O}^{*}$ is a lattice
of rank $r_{1}+r_{2}-1$ where

$$
\begin{aligned}
r_{1} & =\#\left\{i: \varphi_{i}(K) \subseteq \mathbf{R}\right\}, \\
2 r_{2} & =\#\left\{i: \varphi_{i}(K) \nsubseteq \mathbf{R}\right\} .
\end{aligned}
$$

$$
\text { e.g. } \zeta=\exp (\pi i / 256), K=\mathbf{Q}(\zeta)
$$

$$
\text { images of } \zeta \text { under ring maps }
$$

$$
\text { are } \zeta, \zeta^{3}, \zeta^{5}, \ldots, \zeta^{511}
$$

$$
r_{1}=0 ; r_{2}=128 ; \text { rank } 127
$$

Compute Log gu
as sum of multiples of $\log \alpha$ for the original α 's.

Find elements of $\log \mathcal{O}^{*}$ close to $\log g u$.

This is a close-vector problem ("bounded-distance decoding").
"Embedding" heuristic:
CVP as fast as SVP.

There are exactly n distinct ring maps $\varphi_{1}, \ldots, \varphi_{n}: K \rightarrow \mathbf{C}$.

Define Log : $K^{*} \rightarrow \mathbf{R}^{n}$ by $\log =\left(\log \left|\varphi_{1}\right|, \ldots, \log \left|\varphi_{n}\right|\right)$.
$\log \mathcal{O}^{*}$ is a lattice
of rank $r_{1}+r_{2}-1$ where

$$
\begin{aligned}
r_{1} & =\#\left\{i: \varphi_{i}(K) \subseteq \mathbf{R}\right\}, \\
2 r_{2} & =\#\left\{i: \varphi_{i}(K) \nsubseteq \mathbf{R}\right\} .
\end{aligned}
$$

$$
\text { e.g. } \zeta=\exp (\pi i / 256), K=\mathbf{Q}(\zeta)
$$

images of ζ under ring maps
are $\zeta, \zeta^{3}, \zeta^{5}, \ldots, \zeta^{511}$.
$r_{1}=0 ; r_{2}=128 ;$ rank 127.

Compute Log $g u$
as sum of multiples of $\log \alpha$ for the original α 's.

Find elements of $\log \mathcal{O}^{*}$ close to $\log g u$.

This is a close-vector problem ("bounded-distance decoding").
"Embedding" heuristic:
CVP as fast as SVP.
This finds $\log u$.
Easily reconstruct g up to a root of unity. $\#\{$ roots of unity $\}$ is small.
e exactly n distinct os $\varphi_{1}, \ldots, \varphi_{n}: K \rightarrow \mathbf{C}$.
og : $K^{*} \rightarrow \mathbf{R}^{n}$ by $\left.\operatorname{og}\left|\varphi_{1}\right|, \ldots, \log \left|\varphi_{n}\right|\right)$.
is a lattice
$r_{1}+r_{2}-1$ where
$\left\{i: \varphi_{i}(K) \subseteq \mathbf{R}\right\}$,
$\left\{i: \varphi_{i}(K) \nsubseteq \mathbf{R}\right\}$.
$\exp (\pi i / 256), K=\mathbf{Q}(\zeta):$
f ζ under ring maps
$\zeta^{5}, \ldots, \zeta^{511}$.
$2=128$; rank 127.

Compute Log $g u$
as sum of multiples of $\log \alpha$ for the original α 's.

Find elements of $\log \mathcal{O}^{*}$ close to $\log g u$.

This is a close-vector problem ("bounded-distance decoding").
"Embedding" heuristic:
CVP as fast as SVP.
This finds $\log u$.
Easily reconstruct g
up to a root of unity.
$\#\{$ roots of unity $\}$ is small.

A subfie
Say we for a pro
n distinct
$\varphi_{n}: K \rightarrow \mathbf{C}$.
$\rightarrow \mathbf{R}^{n}$ by
., $\left.\log \left|\varphi_{n}\right|\right)$.
where
$\subseteq \mathbf{R}\}$,
$\nsubseteq \mathbf{R}\}$.
$56), K=\mathbf{Q}(\zeta)$:
ring maps
511.
rank 127 .
n distinct

$$
\varphi_{n}: K \rightarrow \mathbf{C} .
$$

$\rightarrow \mathbf{R}^{n}$ by
., $\left.\log \left|\varphi_{n}\right|\right)$.
$\subseteq \mathbf{R}\}$,
$\notin \mathbf{R}\}$.
56), $K=\mathbf{Q}(\zeta):$
ring maps
511
rank 127.

Compute Log $g u$
as sum of multiples of $\log \alpha$ for the original α 's.

Find elements of $\log \mathcal{O}^{*}$ close to $\log g u$.

This is a close-vector problem ("bounded-distance decoding").
"Embedding" heuristic:
CVP as fast as SVP.
This finds $\log u$.
Easily reconstruct g
up to a root of unity.
$\#\{$ roots of unity $\}$ is small.

A subfield-logarith
Say we know Log for a proper subfie

Compute $\log g u$
as sum of multiples of $\log \alpha$ for the original α 's.

Find elements of $\log \mathcal{O}^{*}$ close to $\log g u$.

This is a close-vector problem ("bounded-distance decoding"). "Embedding" heuristic:
CVP as fast as SVP.
This finds $\log u$.
Easily reconstruct g
up to a root of unity. $\#\{$ roots of unity $\}$ is small.
C.

A subfield-logarithm attack
Say we know \log norm $_{K: F} g$
for a proper subfield $F \subset K$
Say we know \log norm $_{K: F} g$
for a proper subfield $F \subset K$

Compute Log $g u$

as sum of multiples of $\log \alpha$ for the original α 's.

Find elements of $\log \mathcal{O}^{*}$ close to $\log g u$.

This is a close-vector problem ("bounded-distance decoding").
"Embedding" heuristic:
CVP as fast as SVP.
This finds $\log u$.
Easily reconstruct g up to a root of unity. $\#\{$ roots of unity $\}$ is small.

A subfield-logarithm attack
Say we know Log norm K:F g for a proper subfield $F \subset K$.

Compute Log $g u$

as sum of multiples of $\log \alpha$ for the original α 's.

Find elements of $\log \mathcal{O}^{*}$ close to $\log g u$.

This is a close-vector problem ("bounded-distance decoding").
"Embedding" heuristic:
CVP as fast as SVP.
This finds $\log u$.
Easily reconstruct g up to a root of unity. $\#\{$ roots of unity $\}$ is small.

A subfield-logarithm attack
Say we know Log norm K:F g for a proper subfield $F \subset K$.

We also know Log norm K: $^{\text {g }}$ gu, so we know \log norm $_{K: F} u$.

Compute Log $g u$

as sum of multiples of $\log \alpha$ for the original α 's.

Find elements of $\log \mathcal{O}^{*}$ close to $\log g u$.

This is a close-vector problem ("bounded-distance decoding").
"Embedding" heuristic:
CVP as fast as SVP.
This finds $\log u$.
Easily reconstruct g up to a root of unity. $\#\{$ roots of unity $\}$ is small.

A subfield-logarithm attack
Say we know Log norm K:F g for a proper subfield $F \subset K$.

We also know Log norm ${ }_{K: F} g u$, so we know \log norm $_{K: F} u$.

This linearly constrains $\log u$ to a shifted sublattice of $\log \mathcal{O}^{*}$.
Number of independent constraints: unit rank for F.

Compute Log $g u$

as sum of multiples of $\log \alpha$ for the original α 's.

Find elements of $\log \mathcal{O}^{*}$ close to $\log g u$.

This is a close-vector problem ("bounded-distance decoding").
"Embedding" heuristic:
CVP as fast as SVP.
This finds $\log u$.
Easily reconstruct g up to a root of unity. $\#\{$ roots of unity $\}$ is small.

A subfield-logarithm attack
Say we know Log norm K:F g for a proper subfield $F \subset K$.

We also know Log norm ${ }_{K: F} g u$, so we know Log norm K : u.

This linearly constrains $\log u$ to a shifted sublattice of $\log \mathcal{O}^{*}$.
Number of independent constraints: unit rank for F.

Find elements close to $\log g u$. Lower-dimension lattice problem, if unit rank of F is positive.
e Log gu
of multiples of $\log \alpha$ riginal α 's.
ments of $\log \mathcal{O}^{*}$
$\log g u$.
close-vector problem ed-distance decoding").
ding" heuristic:
fast as SVP.
ds $\log u$.
construct g
root of unity.
of unity\} is small.

A subfield-logarithm attack
Say we know Log norm KiF g for a proper subfield $F \subset K$.

We also know Log norm K:F gu, so we know \log norm $_{K: F} u$.

This linearly constrains $\log u$ to a shifted sublattice of $\log \mathcal{O}^{*}$.
Number of independent constraints: unit rank for F.

Find elements close to $\log g u$.
Lower-dimension lattice problem, if unit rank of F is positive.

Start by
Log norn for each

Various dependir

Start by recursivel $\log ^{\text {norm }}{ }_{K: F} g$ via for each $F \subset K$.

Various constraint depending on subf

A subfield-logarithm attack

Say we know \log norm $_{K: F} g$
for a proper subfield $F \subset K$.
Say we know \log norm $_{K: F} g$
for a proper subfield $F \subset K$.
We also know Log norm ${ }_{K: F} g u$, so we know \log norm $_{K: F} u$.

This linearly constrains $\log u$ to a shifted sublattice of $\log \mathcal{O}^{*}$.
Number of independent constraints: unit rank for F.

Find elements close to $\log g u$. Lower-dimension lattice problem, if unit rank of F is positive.

A subfield-logarithm attack

Say we know Log norm Ki: g for a proper subfield $F \subset K$.

We also know Log norm K: gu, so we know \log norm $_{K: F} u$.

This linearly constrains $\log u$ to a shifted sublattice of $\log \mathcal{O}^{*}$.
Number of independent constraints: unit rank for F.

Find elements close to $\log g u$. Lower-dimension lattice problem, if unit rank of F is positive.

Start by recursively computi $\log ^{\text {norm }}{ }_{K: F} g$ via norm of for each $F \subset K$.

Various constraints on Log L depending on subfield struct

A subfield-logarithm attack

Say we know Log norm ${ }_{K: F} g$ for a proper subfield $F \subset K$.

We also know Log norm ${ }_{K: F} g u$, so we know \log norm $_{K: F} u$.

This linearly constrains Log u to a shifted sublattice of $\log \mathcal{O}^{*}$.
Number of independent constraints: unit rank for F.

Find elements close to $\log g u$. Lower-dimension lattice problem, if unit rank of F is positive.

Start by recursively computing
 for each $F \subset K$.

Various constraints on $\log u$, depending on subfield structure.

A subfield-logarithm attack

Say we know Log norm ${ }_{K: F} g$ for a proper subfield $F \subset K$.

We also know Log norm ${ }_{K: F} g u$, so we know \log norm $_{K: F} u$.

This linearly constrains Log u to a shifted sublattice of $\log \mathcal{O}^{*}$.
Number of independent constraints: unit rank for F.

Find elements close to $\log g u$. Lower-dimension lattice problem, if unit rank of F is positive.

Start by recursively computing Log norm $_{K: F} g$ via norm of $g \mathcal{O}$ for each $F \subset K$.

Various constraints on $\log u$, depending on subfield structure.
e.g. $\zeta=\exp (2 \pi i / 661), K=\mathbf{Q}(\zeta)$.

Degrees of subfields of K :

Id-logarithm attack

know Log norm ${ }_{K: F} g$ per subfield $F \subset K$.
know $\log \operatorname{norm}_{K: F} g u$, now Log norm K : $F u$.
early constrains $\log u$ ted sublattice of $\log \mathcal{O}^{*}$. of independent ats: unit rank for F. ments close to $\log g u$. imension lattice problem, ank of F is positive.

Start by recursively computing
Log norm $K: F g$ via norm of $g \mathcal{O}$ for each $F \subset K$.

Various constraints on $\log u$, depending on subfield structure.
e.g. $\zeta=\exp (2 \pi i / 661), K=\mathbf{Q}(\zeta)$.

Degrees of subfields of K :

Most ex
Compos
$K=\mathbf{Q}($
CVP be

m attack

$\operatorname{norm}_{K: F} g$
ld $F \subset K$.
$\operatorname{norm}_{K: F} g u$,
$\operatorname{prm}_{K: F} u$.
rains $\log u$
tice of $\log \mathcal{O}^{*}$.
ndent
ank for F.
e to $\log g u$. attice problem, positive.

Start by recursively computing Log norm ${ }_{K: F} g$ via norm of $g \mathcal{O}$ for each $F \subset K$.

Various constraints on $\log u$, depending on subfield structure.
e.g. $\zeta=\exp (2 \pi i / 661), K=\mathbf{Q}(\zeta)$.

Degrees of subfields of K :

Most extreme cas
Composite of qua $K=\mathbf{Q}(\sqrt{2}, \sqrt{3}, \sqrt{ }$
CVP becomes triv

Start by recursively computing
 for each $F \subset K$.

Various constraints on $\log u$, depending on subfield structure.
e.g. $\zeta=\exp (2 \pi i / 661), K=\mathbf{Q}(\zeta)$.

Degrees of subfields of K :

Most extreme case:
Composite of quadratics, su $K=\mathbf{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}, \ldots, \sqrt{2}$
CVP becomes trivial!

Start by recursively computing
 for each $F \subset K$.

Various constraints on $\log u$, depending on subfield structure.

$$
\text { e.g. } \zeta=\exp (2 \pi i / 661), K=\mathbf{Q}(\zeta)
$$

Degrees of subfields of K :

Most extreme case:
Composite of quadratics, such as $K=\mathbf{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}, \ldots, \sqrt{29})$.
CVP becomes trivial!

Start by recursively computing
 for each $F \subset K$.

Various constraints on $\log u$, depending on subfield structure.

$$
\text { e.g. } \zeta=\exp (2 \pi i / 661), K=\mathbf{Q}(\zeta)
$$

Degrees of subfields of K :

Most extreme case:
Composite of quadratics, such as $K=\mathbf{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}, \ldots, \sqrt{29})$.
CVP becomes trivial!
Many intermediate cases.
"Subexponential in cyclotomic rings of highly smooth index":
It's much more general than that.

Start by recursively computing
 for each $F \subset K$.

Various constraints on $\log u$, depending on subfield structure.

$$
\text { e.g. } \zeta=\exp (2 \pi i / 661), K=\mathbf{Q}(\zeta)
$$

Degrees of subfields of K :

Most extreme case:
Composite of quadratics, such as $K=\mathbf{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}, \ldots, \sqrt{29})$.
CVP becomes trivial!
Many intermediate cases. "Subexponential in cyclotomic rings of highly smooth index": It's much more general than that.

For cyclotomics this approach is superseded by subsequent Campbell-Groves-Shepherd algorithm, using known (good) basis for cyclotomic units.

