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Build circuit to compute

32-bit integer ri
given 4-bit integer i

and 32-bit integers r0; r1; : : : ; r15:

register
read



CPU design in a nutshell

f0

�� !!BBBB g0

}}||||
((QQQQQQQQQ g1

vvmmmmmmmmm

  AAAA f1

~~}}}}
��

∧

��

∧

�� ""EEEEE ∧

��||yyyyy ∧

��
∧

��

∧

""EEEEE ∧

��

∧

||yyyyy ∧

����������

∧

��||yyyyy
""EEEEE

∧

��

∧

��

∧

��
∧

��

∧

��
h0 h1 h3 h2

Gates ∧ : a; b 7→ 1− ab computing

product h0 + 2h1 + 4h2 + 8h3

of integers f0 + 2f1; g0 + 2g1.

Electricity takes time to

percolate through wires and gates.

If f0; f1; g0; g1 are stable

then h0; h1; h2; h3 are stable

a few moments later.

Build circuit with more gates

to multiply (e.g.) 32-bit integers:

������������������� ???????????????????

(Details omitted.)

Build circuit to compute

32-bit integer ri
given 4-bit integer i

and 32-bit integers r0; r1; : : : ; r15:

register
read



CPU design in a nutshell

f0

�� !!BBBB g0

}}||||
((QQQQQQQQQ g1

vvmmmmmmmmm

  AAAA f1

~~}}}}
��

∧

��

∧

�� ""EEEEE ∧

��||yyyyy ∧

��
∧

��

∧

""EEEEE ∧

��

∧

||yyyyy ∧

����������

∧

��||yyyyy
""EEEEE

∧

��

∧

��

∧

��
∧

��

∧

��
h0 h1 h3 h2

Gates ∧ : a; b 7→ 1− ab computing

product h0 + 2h1 + 4h2 + 8h3

of integers f0 + 2f1; g0 + 2g1.

Electricity takes time to

percolate through wires and gates.

If f0; f1; g0; g1 are stable

then h0; h1; h2; h3 are stable

a few moments later.

Build circuit with more gates

to multiply (e.g.) 32-bit integers:

������������������� ???????????????????

(Details omitted.)

Build circuit to compute

32-bit integer ri
given 4-bit integer i

and 32-bit integers r0; r1; : : : ; r15:

register
read



Electricity takes time to

percolate through wires and gates.

If f0; f1; g0; g1 are stable

then h0; h1; h2; h3 are stable

a few moments later.

Build circuit with more gates

to multiply (e.g.) 32-bit integers:

������������������� ???????????????????

(Details omitted.)

Build circuit to compute

32-bit integer ri
given 4-bit integer i

and 32-bit integers r0; r1; : : : ; r15:

register
read



Electricity takes time to

percolate through wires and gates.

If f0; f1; g0; g1 are stable

then h0; h1; h2; h3 are stable

a few moments later.

Build circuit with more gates

to multiply (e.g.) 32-bit integers:

������������������� ???????????????????

(Details omitted.)

Build circuit to compute

32-bit integer ri
given 4-bit integer i

and 32-bit integers r0; r1; : : : ; r15:

register
read

Build circuit for “register write”:

r0; : : : ; r15; s; i 7→ r ′0; : : : ; r
′
15

where r ′j = rj except r ′i = s.



Electricity takes time to

percolate through wires and gates.

If f0; f1; g0; g1 are stable

then h0; h1; h2; h3 are stable

a few moments later.

Build circuit with more gates

to multiply (e.g.) 32-bit integers:

������������������� ???????????????????

(Details omitted.)

Build circuit to compute

32-bit integer ri
given 4-bit integer i

and 32-bit integers r0; r1; : : : ; r15:

register
read

Build circuit for “register write”:

r0; : : : ; r15; s; i 7→ r ′0; : : : ; r
′
15

where r ′j = rj except r ′i = s.

Build circuit for addition. Etc.



Electricity takes time to

percolate through wires and gates.

If f0; f1; g0; g1 are stable

then h0; h1; h2; h3 are stable

a few moments later.

Build circuit with more gates

to multiply (e.g.) 32-bit integers:

������������������� ???????????????????

(Details omitted.)

Build circuit to compute

32-bit integer ri
given 4-bit integer i

and 32-bit integers r0; r1; : : : ; r15:

register
read

Build circuit for “register write”:

r0; : : : ; r15; s; i 7→ r ′0; : : : ; r
′
15

where r ′j = rj except r ′i = s.

Build circuit for addition. Etc.

r0; : : : ; r15; i ; j; k 7→ r ′0; : : : ; r
′
15

where r ′‘ = r‘ except r ′i = rj rk :

register
read

register
read

������������� ?????????????

register
write



Electricity takes time to

percolate through wires and gates.

If f0; f1; g0; g1 are stable

then h0; h1; h2; h3 are stable

a few moments later.

Build circuit with more gates

to multiply (e.g.) 32-bit integers:

������������������� ???????????????????

(Details omitted.)

Build circuit to compute

32-bit integer ri
given 4-bit integer i

and 32-bit integers r0; r1; : : : ; r15:

register
read

Build circuit for “register write”:

r0; : : : ; r15; s; i 7→ r ′0; : : : ; r
′
15

where r ′j = rj except r ′i = s.

Build circuit for addition. Etc.

r0; : : : ; r15; i ; j; k 7→ r ′0; : : : ; r
′
15

where r ′‘ = r‘ except r ′i = rj rk :

register
read

register
read

������������� ?????????????

register
write



Electricity takes time to

percolate through wires and gates.

If f0; f1; g0; g1 are stable

then h0; h1; h2; h3 are stable

a few moments later.

Build circuit with more gates

to multiply (e.g.) 32-bit integers:

������������������� ???????????????????

(Details omitted.)

Build circuit to compute

32-bit integer ri
given 4-bit integer i

and 32-bit integers r0; r1; : : : ; r15:

register
read

Build circuit for “register write”:

r0; : : : ; r15; s; i 7→ r ′0; : : : ; r
′
15

where r ′j = rj except r ′i = s.

Build circuit for addition. Etc.

r0; : : : ; r15; i ; j; k 7→ r ′0; : : : ; r
′
15

where r ′‘ = r‘ except r ′i = rj rk :

register
read

register
read

������������� ?????????????

register
write



Build circuit to compute

32-bit integer ri
given 4-bit integer i

and 32-bit integers r0; r1; : : : ; r15:

register
read

Build circuit for “register write”:

r0; : : : ; r15; s; i 7→ r ′0; : : : ; r
′
15

where r ′j = rj except r ′i = s.

Build circuit for addition. Etc.

r0; : : : ; r15; i ; j; k 7→ r ′0; : : : ; r
′
15

where r ′‘ = r‘ except r ′i = rj rk :

register
read

register
read

������������� ?????????????

register
write



Build circuit to compute

32-bit integer ri
given 4-bit integer i

and 32-bit integers r0; r1; : : : ; r15:

register
read

Build circuit for “register write”:

r0; : : : ; r15; s; i 7→ r ′0; : : : ; r
′
15

where r ′j = rj except r ′i = s.

Build circuit for addition. Etc.

r0; : : : ; r15; i ; j; k 7→ r ′0; : : : ; r
′
15

where r ′‘ = r‘ except r ′i = rj rk :

register
read

register
read

������������� ?????????????

register
write

Add more flexibility.

More arithmetic:

replace (i ; j; k) with

(“×”; i ; j; k) and

(“+”; i ; j; k) and more options.



Build circuit to compute

32-bit integer ri
given 4-bit integer i

and 32-bit integers r0; r1; : : : ; r15:

register
read

Build circuit for “register write”:

r0; : : : ; r15; s; i 7→ r ′0; : : : ; r
′
15

where r ′j = rj except r ′i = s.

Build circuit for addition. Etc.

r0; : : : ; r15; i ; j; k 7→ r ′0; : : : ; r
′
15

where r ′‘ = r‘ except r ′i = rj rk :

register
read

register
read

������������� ?????????????

register
write

Add more flexibility.

More arithmetic:

replace (i ; j; k) with

(“×”; i ; j; k) and

(“+”; i ; j; k) and more options.



Build circuit to compute

32-bit integer ri
given 4-bit integer i

and 32-bit integers r0; r1; : : : ; r15:

register
read

Build circuit for “register write”:

r0; : : : ; r15; s; i 7→ r ′0; : : : ; r
′
15

where r ′j = rj except r ′i = s.

Build circuit for addition. Etc.

r0; : : : ; r15; i ; j; k 7→ r ′0; : : : ; r
′
15

where r ′‘ = r‘ except r ′i = rj rk :

register
read

register
read

������������� ?????????????

register
write

Add more flexibility.

More arithmetic:

replace (i ; j; k) with

(“×”; i ; j; k) and

(“+”; i ; j; k) and more options.



r0; : : : ; r15; i ; j; k 7→ r ′0; : : : ; r
′
15

where r ′‘ = r‘ except r ′i = rj rk :

register
read

register
read

������������� ?????????????

register
write

Add more flexibility.

More arithmetic:

replace (i ; j; k) with

(“×”; i ; j; k) and

(“+”; i ; j; k) and more options.



r0; : : : ; r15; i ; j; k 7→ r ′0; : : : ; r
′
15

where r ′‘ = r‘ except r ′i = rj rk :

register
read

register
read

������������� ?????????????

register
write

Add more flexibility.

More arithmetic:

replace (i ; j; k) with

(“×”; i ; j; k) and

(“+”; i ; j; k) and more options.

“Instruction fetch”:

p 7→ op; ip; jp; kp; p
′.



r0; : : : ; r15; i ; j; k 7→ r ′0; : : : ; r
′
15

where r ′‘ = r‘ except r ′i = rj rk :

register
read

register
read

������������� ?????????????

register
write

Add more flexibility.

More arithmetic:

replace (i ; j; k) with

(“×”; i ; j; k) and

(“+”; i ; j; k) and more options.

“Instruction fetch”:

p 7→ op; ip; jp; kp; p
′.

“Instruction decode”:

decompression of compressed

format for op; ip; jp; kp; p
′.



r0; : : : ; r15; i ; j; k 7→ r ′0; : : : ; r
′
15

where r ′‘ = r‘ except r ′i = rj rk :

register
read

register
read

������������� ?????????????

register
write

Add more flexibility.

More arithmetic:

replace (i ; j; k) with

(“×”; i ; j; k) and

(“+”; i ; j; k) and more options.

“Instruction fetch”:

p 7→ op; ip; jp; kp; p
′.

“Instruction decode”:

decompression of compressed

format for op; ip; jp; kp; p
′.

More (but slower) storage:

“load” from and “store” to

larger “RAM” arrays.



r0; : : : ; r15; i ; j; k 7→ r ′0; : : : ; r
′
15

where r ′‘ = r‘ except r ′i = rj rk :

register
read

register
read

������������� ?????????????

register
write

Add more flexibility.

More arithmetic:

replace (i ; j; k) with

(“×”; i ; j; k) and

(“+”; i ; j; k) and more options.

“Instruction fetch”:

p 7→ op; ip; jp; kp; p
′.

“Instruction decode”:

decompression of compressed

format for op; ip; jp; kp; p
′.

More (but slower) storage:

“load” from and “store” to

larger “RAM” arrays.

Build “flip-flops”

storing (p; r0; : : : ; r15).

Hook (p; r0; : : : ; r15)

flip-flops into circuit inputs.

Hook outputs (p′; r ′0; : : : ; r
′
15)

into the same flip-flops.

At each “clock tick”,

flip-flops are overwritten

with the outputs.

Clock needs to be slow enough

for electricity to percolate

all the way through the circuit,

from flip-flops to flip-flops.



r0; : : : ; r15; i ; j; k 7→ r ′0; : : : ; r
′
15

where r ′‘ = r‘ except r ′i = rj rk :

register
read

register
read

������������� ?????????????

register
write

Add more flexibility.

More arithmetic:

replace (i ; j; k) with

(“×”; i ; j; k) and

(“+”; i ; j; k) and more options.

“Instruction fetch”:

p 7→ op; ip; jp; kp; p
′.

“Instruction decode”:

decompression of compressed

format for op; ip; jp; kp; p
′.

More (but slower) storage:

“load” from and “store” to

larger “RAM” arrays.

Build “flip-flops”

storing (p; r0; : : : ; r15).

Hook (p; r0; : : : ; r15)

flip-flops into circuit inputs.

Hook outputs (p′; r ′0; : : : ; r
′
15)

into the same flip-flops.

At each “clock tick”,

flip-flops are overwritten

with the outputs.

Clock needs to be slow enough

for electricity to percolate

all the way through the circuit,

from flip-flops to flip-flops.



r0; : : : ; r15; i ; j; k 7→ r ′0; : : : ; r
′
15

where r ′‘ = r‘ except r ′i = rj rk :

register
read

register
read

������������� ?????????????

register
write

Add more flexibility.

More arithmetic:

replace (i ; j; k) with

(“×”; i ; j; k) and

(“+”; i ; j; k) and more options.

“Instruction fetch”:

p 7→ op; ip; jp; kp; p
′.

“Instruction decode”:

decompression of compressed

format for op; ip; jp; kp; p
′.

More (but slower) storage:

“load” from and “store” to

larger “RAM” arrays.

Build “flip-flops”

storing (p; r0; : : : ; r15).

Hook (p; r0; : : : ; r15)

flip-flops into circuit inputs.

Hook outputs (p′; r ′0; : : : ; r
′
15)

into the same flip-flops.

At each “clock tick”,

flip-flops are overwritten

with the outputs.

Clock needs to be slow enough

for electricity to percolate

all the way through the circuit,

from flip-flops to flip-flops.



Add more flexibility.

More arithmetic:

replace (i ; j; k) with

(“×”; i ; j; k) and

(“+”; i ; j; k) and more options.

“Instruction fetch”:

p 7→ op; ip; jp; kp; p
′.

“Instruction decode”:

decompression of compressed

format for op; ip; jp; kp; p
′.

More (but slower) storage:

“load” from and “store” to

larger “RAM” arrays.

Build “flip-flops”

storing (p; r0; : : : ; r15).

Hook (p; r0; : : : ; r15)

flip-flops into circuit inputs.

Hook outputs (p′; r ′0; : : : ; r
′
15)

into the same flip-flops.

At each “clock tick”,

flip-flops are overwritten

with the outputs.

Clock needs to be slow enough

for electricity to percolate

all the way through the circuit,

from flip-flops to flip-flops.



Add more flexibility.

More arithmetic:

replace (i ; j; k) with

(“×”; i ; j; k) and

(“+”; i ; j; k) and more options.

“Instruction fetch”:

p 7→ op; ip; jp; kp; p
′.

“Instruction decode”:

decompression of compressed

format for op; ip; jp; kp; p
′.

More (but slower) storage:

“load” from and “store” to

larger “RAM” arrays.

Build “flip-flops”

storing (p; r0; : : : ; r15).

Hook (p; r0; : : : ; r15)

flip-flops into circuit inputs.

Hook outputs (p′; r ′0; : : : ; r
′
15)

into the same flip-flops.

At each “clock tick”,

flip-flops are overwritten

with the outputs.

Clock needs to be slow enough

for electricity to percolate

all the way through the circuit,

from flip-flops to flip-flops.

Now have semi-flexible CPU:

flip-flops

insn
fetch

insn
decode

register
read

register
read

������� ???????

register
write

Further flexibility is useful

but orthogonal to this talk.



Add more flexibility.

More arithmetic:

replace (i ; j; k) with

(“×”; i ; j; k) and

(“+”; i ; j; k) and more options.

“Instruction fetch”:

p 7→ op; ip; jp; kp; p
′.

“Instruction decode”:

decompression of compressed

format for op; ip; jp; kp; p
′.

More (but slower) storage:

“load” from and “store” to

larger “RAM” arrays.

Build “flip-flops”

storing (p; r0; : : : ; r15).

Hook (p; r0; : : : ; r15)

flip-flops into circuit inputs.

Hook outputs (p′; r ′0; : : : ; r
′
15)

into the same flip-flops.

At each “clock tick”,

flip-flops are overwritten

with the outputs.

Clock needs to be slow enough

for electricity to percolate

all the way through the circuit,

from flip-flops to flip-flops.

Now have semi-flexible CPU:

flip-flops

insn
fetch

insn
decode

register
read

register
read

������� ???????

register
write

Further flexibility is useful

but orthogonal to this talk.



Add more flexibility.

More arithmetic:

replace (i ; j; k) with

(“×”; i ; j; k) and

(“+”; i ; j; k) and more options.

“Instruction fetch”:

p 7→ op; ip; jp; kp; p
′.

“Instruction decode”:

decompression of compressed

format for op; ip; jp; kp; p
′.

More (but slower) storage:

“load” from and “store” to

larger “RAM” arrays.

Build “flip-flops”

storing (p; r0; : : : ; r15).

Hook (p; r0; : : : ; r15)

flip-flops into circuit inputs.

Hook outputs (p′; r ′0; : : : ; r
′
15)

into the same flip-flops.

At each “clock tick”,

flip-flops are overwritten

with the outputs.

Clock needs to be slow enough

for electricity to percolate

all the way through the circuit,

from flip-flops to flip-flops.

Now have semi-flexible CPU:

flip-flops

insn
fetch

insn
decode

register
read

register
read

������� ???????

register
write

Further flexibility is useful

but orthogonal to this talk.



Build “flip-flops”

storing (p; r0; : : : ; r15).

Hook (p; r0; : : : ; r15)

flip-flops into circuit inputs.

Hook outputs (p′; r ′0; : : : ; r
′
15)

into the same flip-flops.

At each “clock tick”,

flip-flops are overwritten

with the outputs.

Clock needs to be slow enough

for electricity to percolate

all the way through the circuit,

from flip-flops to flip-flops.

Now have semi-flexible CPU:

flip-flops

insn
fetch

insn
decode

register
read

register
read

������� ???????

register
write

Further flexibility is useful

but orthogonal to this talk.



Build “flip-flops”

storing (p; r0; : : : ; r15).

Hook (p; r0; : : : ; r15)

flip-flops into circuit inputs.

Hook outputs (p′; r ′0; : : : ; r
′
15)

into the same flip-flops.

At each “clock tick”,

flip-flops are overwritten

with the outputs.

Clock needs to be slow enough

for electricity to percolate

all the way through the circuit,

from flip-flops to flip-flops.

Now have semi-flexible CPU:

flip-flops

insn
fetch

insn
decode

register
read

register
read

������� ???????

register
write

Further flexibility is useful

but orthogonal to this talk.

“Pipelining” allows faster clock:

flip-flops

insn
fetch

stage 1

flip-flops

insn
decode

stage 2

flip-flops

register
read

register
read

stage 3

flip-flops
������� ???????

stage 4

flip-flops

register
write

stage 5



Build “flip-flops”

storing (p; r0; : : : ; r15).

Hook (p; r0; : : : ; r15)

flip-flops into circuit inputs.

Hook outputs (p′; r ′0; : : : ; r
′
15)

into the same flip-flops.

At each “clock tick”,

flip-flops are overwritten

with the outputs.

Clock needs to be slow enough

for electricity to percolate

all the way through the circuit,

from flip-flops to flip-flops.

Now have semi-flexible CPU:

flip-flops

insn
fetch

insn
decode

register
read

register
read

������� ???????

register
write

Further flexibility is useful

but orthogonal to this talk.

“Pipelining” allows faster clock:

flip-flops

insn
fetch

stage 1

flip-flops

insn
decode

stage 2

flip-flops

register
read

register
read

stage 3

flip-flops
������� ???????

stage 4

flip-flops

register
write

stage 5



Build “flip-flops”

storing (p; r0; : : : ; r15).

Hook (p; r0; : : : ; r15)

flip-flops into circuit inputs.

Hook outputs (p′; r ′0; : : : ; r
′
15)

into the same flip-flops.

At each “clock tick”,

flip-flops are overwritten

with the outputs.

Clock needs to be slow enough

for electricity to percolate

all the way through the circuit,

from flip-flops to flip-flops.

Now have semi-flexible CPU:

flip-flops

insn
fetch

insn
decode

register
read

register
read

������� ???????

register
write

Further flexibility is useful

but orthogonal to this talk.

“Pipelining” allows faster clock:

flip-flops

insn
fetch

stage 1

flip-flops

insn
decode

stage 2

flip-flops

register
read

register
read

stage 3

flip-flops
������� ???????

stage 4

flip-flops

register
write

stage 5



Now have semi-flexible CPU:

flip-flops

insn
fetch

insn
decode

register
read

register
read

������� ???????

register
write

Further flexibility is useful

but orthogonal to this talk.

“Pipelining” allows faster clock:

flip-flops

insn
fetch

stage 1

flip-flops

insn
decode

stage 2

flip-flops

register
read

register
read

stage 3

flip-flops
������� ???????

stage 4

flip-flops

register
write

stage 5



Now have semi-flexible CPU:

flip-flops

insn
fetch

insn
decode

register
read

register
read

������� ???????

register
write

Further flexibility is useful

but orthogonal to this talk.

“Pipelining” allows faster clock:

flip-flops

insn
fetch

stage 1

flip-flops

insn
decode

stage 2

flip-flops

register
read

register
read

stage 3

flip-flops
������� ???????

stage 4

flip-flops

register
write

stage 5

Goal: Stage n handles instruction

one tick after stage n − 1.

Instruction fetch

reads next instruction,

feeds p′ back, sends instruction.

After next clock tick,

instruction decode

uncompresses this instruction,

while instruction fetch
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preserve instruction semantics:

e.g., stall on read-after-write.
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Goal: Stage n handles instruction

one tick after stage n − 1.

Instruction fetch

reads next instruction,

feeds p′ back, sends instruction.

After next clock tick,

instruction decode

uncompresses this instruction,

while instruction fetch

reads another instruction.

Some extra flip-flop area.

Also extra area to

preserve instruction semantics:

e.g., stall on read-after-write.
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Expand each 32-bit integer
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Intel “AVX2” has n = 8;

Intel “AVX-512” has n = 16;

GPUs have larger n.
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• Sort each column in parallel.

• Sort each row in parallel.

With proper choice of

left-to-right/right-to-left

for each row, can prove

that this sorts whole array.



Spread array across
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each of area no(1),
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1 3 1 4 5 9 2 6 7→
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• Repeat until number of steps

equals row length.

Sort each row, in parallel,

in a total of n0:5+o(1) seconds.

Sort all n cells

in n0:5+o(1) seconds:

• Recursively sort quadrants

in parallel, if n > 1.

• Sort each column in parallel.

• Sort each row in parallel.

• Sort each column in parallel.

• Sort each row in parallel.

With proper choice of

left-to-right/right-to-left

for each row, can prove

that this sorts whole array.



Spread array across

square mesh of n small cells,

each of area no(1),

with near-neighbor wiring:
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Sort row of n0:5 cells

in n0:5+o(1) seconds:

• Sort each pair in parallel.

3 1 4 1 5 9 2 6 7→
1 3 1 4 5 9 2 6

• Sort alternate pairs in parallel.

1 3 1 4 5 9 2 6 7→
1 1 3 4 5 2 9 6

• Repeat until number of steps

equals row length.

Sort each row, in parallel,

in a total of n0:5+o(1) seconds.

Sort all n cells

in n0:5+o(1) seconds:

• Recursively sort quadrants

in parallel, if n > 1.

• Sort each column in parallel.

• Sort each row in parallel.

• Sort each column in parallel.

• Sort each row in parallel.

With proper choice of

left-to-right/right-to-left

for each row, can prove

that this sorts whole array.



Sort row of n0:5 cells

in n0:5+o(1) seconds:

• Sort each pair in parallel.

3 1 4 1 5 9 2 6 7→
1 3 1 4 5 9 2 6

• Sort alternate pairs in parallel.

1 3 1 4 5 9 2 6 7→
1 1 3 4 5 2 9 6

• Repeat until number of steps

equals row length.

Sort each row, in parallel,

in a total of n0:5+o(1) seconds.

Sort all n cells

in n0:5+o(1) seconds:

• Recursively sort quadrants

in parallel, if n > 1.

• Sort each column in parallel.

• Sort each row in parallel.

• Sort each column in parallel.

• Sort each row in parallel.

With proper choice of

left-to-right/right-to-left

for each row, can prove

that this sorts whole array.



Sort row of n0:5 cells

in n0:5+o(1) seconds:

• Sort each pair in parallel.

3 1 4 1 5 9 2 6 7→
1 3 1 4 5 9 2 6

• Sort alternate pairs in parallel.

1 3 1 4 5 9 2 6 7→
1 1 3 4 5 2 9 6

• Repeat until number of steps

equals row length.

Sort each row, in parallel,

in a total of n0:5+o(1) seconds.

Sort all n cells

in n0:5+o(1) seconds:

• Recursively sort quadrants

in parallel, if n > 1.

• Sort each column in parallel.

• Sort each row in parallel.

• Sort each column in parallel.

• Sort each row in parallel.

With proper choice of

left-to-right/right-to-left

for each row, can prove

that this sorts whole array.

For example, assume that

this 8× 8 array is in cells:

3 1 4 1 5 9 2 6

5 3 5 8 9 7 9 3

2 3 8 4 6 2 6 4

3 3 8 3 2 7 9 5

0 2 8 8 4 1 9 7

1 6 9 3 9 9 3 7

5 1 0 5 8 2 0 9

7 4 9 4 4 5 9 2



Sort row of n0:5 cells

in n0:5+o(1) seconds:

• Sort each pair in parallel.

3 1 4 1 5 9 2 6 7→
1 3 1 4 5 9 2 6

• Sort alternate pairs in parallel.

1 3 1 4 5 9 2 6 7→
1 1 3 4 5 2 9 6

• Repeat until number of steps

equals row length.

Sort each row, in parallel,

in a total of n0:5+o(1) seconds.

Sort all n cells

in n0:5+o(1) seconds:

• Recursively sort quadrants

in parallel, if n > 1.

• Sort each column in parallel.

• Sort each row in parallel.

• Sort each column in parallel.

• Sort each row in parallel.

With proper choice of

left-to-right/right-to-left

for each row, can prove

that this sorts whole array.

For example, assume that

this 8× 8 array is in cells:

3 1 4 1 5 9 2 6

5 3 5 8 9 7 9 3

2 3 8 4 6 2 6 4

3 3 8 3 2 7 9 5

0 2 8 8 4 1 9 7

1 6 9 3 9 9 3 7

5 1 0 5 8 2 0 9

7 4 9 4 4 5 9 2



Sort row of n0:5 cells

in n0:5+o(1) seconds:

• Sort each pair in parallel.

3 1 4 1 5 9 2 6 7→
1 3 1 4 5 9 2 6

• Sort alternate pairs in parallel.

1 3 1 4 5 9 2 6 7→
1 1 3 4 5 2 9 6

• Repeat until number of steps

equals row length.

Sort each row, in parallel,

in a total of n0:5+o(1) seconds.

Sort all n cells

in n0:5+o(1) seconds:

• Recursively sort quadrants

in parallel, if n > 1.

• Sort each column in parallel.

• Sort each row in parallel.

• Sort each column in parallel.

• Sort each row in parallel.

With proper choice of

left-to-right/right-to-left

for each row, can prove

that this sorts whole array.

For example, assume that

this 8× 8 array is in cells:

3 1 4 1 5 9 2 6

5 3 5 8 9 7 9 3

2 3 8 4 6 2 6 4

3 3 8 3 2 7 9 5

0 2 8 8 4 1 9 7

1 6 9 3 9 9 3 7

5 1 0 5 8 2 0 9

7 4 9 4 4 5 9 2



Sort all n cells

in n0:5+o(1) seconds:

• Recursively sort quadrants

in parallel, if n > 1.

• Sort each column in parallel.

• Sort each row in parallel.

• Sort each column in parallel.

• Sort each row in parallel.

With proper choice of

left-to-right/right-to-left

for each row, can prove

that this sorts whole array.

For example, assume that

this 8× 8 array is in cells:

3 1 4 1 5 9 2 6

5 3 5 8 9 7 9 3

2 3 8 4 6 2 6 4

3 3 8 3 2 7 9 5

0 2 8 8 4 1 9 7

1 6 9 3 9 9 3 7

5 1 0 5 8 2 0 9

7 4 9 4 4 5 9 2



Sort all n cells

in n0:5+o(1) seconds:

• Recursively sort quadrants

in parallel, if n > 1.

• Sort each column in parallel.

• Sort each row in parallel.

• Sort each column in parallel.

• Sort each row in parallel.

With proper choice of

left-to-right/right-to-left

for each row, can prove

that this sorts whole array.

For example, assume that

this 8× 8 array is in cells:

3 1 4 1 5 9 2 6

5 3 5 8 9 7 9 3

2 3 8 4 6 2 6 4

3 3 8 3 2 7 9 5

0 2 8 8 4 1 9 7

1 6 9 3 9 9 3 7

5 1 0 5 8 2 0 9

7 4 9 4 4 5 9 2

Recursively sort quadrants,
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9 9 8 8 9 9 9 9



Sort all n cells

in n0:5+o(1) seconds:

• Recursively sort quadrants

in parallel, if n > 1.

• Sort each column in parallel.

• Sort each row in parallel.

• Sort each column in parallel.

• Sort each row in parallel.

With proper choice of

left-to-right/right-to-left

for each row, can prove

that this sorts whole array.

For example, assume that

this 8× 8 array is in cells:

3 1 4 1 5 9 2 6

5 3 5 8 9 7 9 3

2 3 8 4 6 2 6 4

3 3 8 3 2 7 9 5

0 2 8 8 4 1 9 7

1 6 9 3 9 9 3 7

5 1 0 5 8 2 0 9

7 4 9 4 4 5 9 2
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1 1 2 3 2 2 2 3

3 3 3 3 4 5 5 6

3 4 4 5 6 6 7 7

5 8 8 8 9 9 9 9

1 1 0 0 2 2 1 0

4 4 3 2 5 4 4 3

7 6 5 5 9 8 7 7

9 9 8 8 9 9 9 9



Sort all n cells

in n0:5+o(1) seconds:

• Recursively sort quadrants

in parallel, if n > 1.

• Sort each column in parallel.

• Sort each row in parallel.

• Sort each column in parallel.

• Sort each row in parallel.

With proper choice of

left-to-right/right-to-left

for each row, can prove

that this sorts whole array.

For example, assume that

this 8× 8 array is in cells:

3 1 4 1 5 9 2 6

5 3 5 8 9 7 9 3

2 3 8 4 6 2 6 4

3 3 8 3 2 7 9 5

0 2 8 8 4 1 9 7

1 6 9 3 9 9 3 7

5 1 0 5 8 2 0 9

7 4 9 4 4 5 9 2

Recursively sort quadrants,
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1 1 2 3 2 2 2 3

3 3 3 3 4 5 5 6

3 4 4 5 6 6 7 7

5 8 8 8 9 9 9 9

1 1 0 0 2 2 1 0

4 4 3 2 5 4 4 3

7 6 5 5 9 8 7 7

9 9 8 8 9 9 9 9



For example, assume that

this 8× 8 array is in cells:

3 1 4 1 5 9 2 6

5 3 5 8 9 7 9 3

2 3 8 4 6 2 6 4

3 3 8 3 2 7 9 5

0 2 8 8 4 1 9 7

1 6 9 3 9 9 3 7

5 1 0 5 8 2 0 9

7 4 9 4 4 5 9 2

Recursively sort quadrants,

top →, bottom ←:

1 1 2 3 2 2 2 3

3 3 3 3 4 5 5 6

3 4 4 5 6 6 7 7

5 8 8 8 9 9 9 9

1 1 0 0 2 2 1 0

4 4 3 2 5 4 4 3

7 6 5 5 9 8 7 7

9 9 8 8 9 9 9 9



For example, assume that

this 8× 8 array is in cells:

3 1 4 1 5 9 2 6

5 3 5 8 9 7 9 3

2 3 8 4 6 2 6 4

3 3 8 3 2 7 9 5

0 2 8 8 4 1 9 7

1 6 9 3 9 9 3 7

5 1 0 5 8 2 0 9

7 4 9 4 4 5 9 2
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For example, assume that

this 8× 8 array is in cells:

3 1 4 1 5 9 2 6

5 3 5 8 9 7 9 3

2 3 8 4 6 2 6 4

3 3 8 3 2 7 9 5

0 2 8 8 4 1 9 7

1 6 9 3 9 9 3 7

5 1 0 5 8 2 0 9
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For example, assume that

this 8× 8 array is in cells:

3 1 4 1 5 9 2 6

5 3 5 8 9 7 9 3

2 3 8 4 6 2 6 4

3 3 8 3 2 7 9 5

0 2 8 8 4 1 9 7

1 6 9 3 9 9 3 7

5 1 0 5 8 2 0 9

7 4 9 4 4 5 9 2
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Recursively sort quadrants,

top →, bottom ←:
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Recursively sort quadrants,

top →, bottom ←:
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Recursively sort quadrants,

top →, bottom ←:
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Sort each column

in parallel:

1 1 0 0 2 2 1 0
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Sort each column

in parallel:

1 1 0 0 2 2 1 0
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alternately ←, →:

0 0 0 1 1 1 2 2
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Sort each column

in parallel:

1 1 0 0 2 2 1 0
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7 8 8 8 9 9 9 9
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alternately ←, →:

0 0 0 1 1 1 2 2

3 2 2 2 2 2 1 1

3 3 3 3 3 4 4 4
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9 8 7 7 6 5 5 5
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9 8 8 8 9 9 8 8
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Sort each column

in parallel:

1 1 0 0 2 2 1 0

1 1 2 2 2 2 2 3

3 3 3 3 4 4 4 3

3 4 3 3 5 5 5 6

4 4 4 5 6 6 7 7

5 6 5 5 9 8 7 7
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Sort each row in parallel,

alternately ←, →:

0 0 0 1 1 1 2 2
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7 8 8 8 9 9 9 9
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in parallel:
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Sort each row in parallel,

alternately ←, →:

0 0 0 1 1 1 2 2

3 2 2 2 2 2 1 1

3 3 3 3 3 4 4 4

6 5 5 5 4 3 3 3

4 4 4 5 6 6 7 7

9 8 7 7 6 5 5 5

7 8 8 8 9 9 9 9

9 9 9 9 9 9 8 8

Sort each column

in parallel:

0 0 0 1 1 1 1 1

3 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

4 4 4 5 4 4 4 4

6 5 5 5 6 5 5 5

7 8 7 7 6 6 7 7

9 8 8 8 9 9 8 8

9 9 9 9 9 9 9 9



Sort each row in parallel,

alternately ←, →:

0 0 0 1 1 1 2 2

3 2 2 2 2 2 1 1

3 3 3 3 3 4 4 4

6 5 5 5 4 3 3 3

4 4 4 5 6 6 7 7

9 8 7 7 6 5 5 5

7 8 8 8 9 9 9 9

9 9 9 9 9 9 8 8

Sort each column

in parallel:

0 0 0 1 1 1 1 1

3 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

4 4 4 5 4 4 4 4

6 5 5 5 6 5 5 5

7 8 7 7 6 6 7 7

9 8 8 8 9 9 8 8

9 9 9 9 9 9 9 9

Sort each row in parallel,

← or → as desired:

0 0 0 1 1 1 1 1

2 2 2 2 2 2 2 3

3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 5

5 5 5 5 5 5 6 6

6 6 7 7 7 7 7 8

8 8 8 8 8 9 9 9

9 9 9 9 9 9 9 9



Sort each row in parallel,

alternately ←, →:

0 0 0 1 1 1 2 2

3 2 2 2 2 2 1 1

3 3 3 3 3 4 4 4

6 5 5 5 4 3 3 3

4 4 4 5 6 6 7 7

9 8 7 7 6 5 5 5

7 8 8 8 9 9 9 9

9 9 9 9 9 9 8 8

Sort each column

in parallel:

0 0 0 1 1 1 1 1

3 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

4 4 4 5 4 4 4 4

6 5 5 5 6 5 5 5

7 8 7 7 6 6 7 7

9 8 8 8 9 9 8 8

9 9 9 9 9 9 9 9

Sort each row in parallel,

← or → as desired:

0 0 0 1 1 1 1 1

2 2 2 2 2 2 2 3

3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 5

5 5 5 5 5 5 6 6

6 6 7 7 7 7 7 8

8 8 8 8 8 9 9 9

9 9 9 9 9 9 9 9



Sort each row in parallel,

alternately ←, →:

0 0 0 1 1 1 2 2

3 2 2 2 2 2 1 1

3 3 3 3 3 4 4 4

6 5 5 5 4 3 3 3

4 4 4 5 6 6 7 7

9 8 7 7 6 5 5 5

7 8 8 8 9 9 9 9

9 9 9 9 9 9 8 8

Sort each column

in parallel:

0 0 0 1 1 1 1 1

3 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

4 4 4 5 4 4 4 4

6 5 5 5 6 5 5 5

7 8 7 7 6 6 7 7

9 8 8 8 9 9 8 8

9 9 9 9 9 9 9 9

Sort each row in parallel,

← or → as desired:

0 0 0 1 1 1 1 1

2 2 2 2 2 2 2 3

3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 5

5 5 5 5 5 5 6 6

6 6 7 7 7 7 7 8

8 8 8 8 8 9 9 9

9 9 9 9 9 9 9 9



Sort each column

in parallel:

0 0 0 1 1 1 1 1

3 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

4 4 4 5 4 4 4 4

6 5 5 5 6 5 5 5

7 8 7 7 6 6 7 7

9 8 8 8 9 9 8 8

9 9 9 9 9 9 9 9

Sort each row in parallel,

← or → as desired:

0 0 0 1 1 1 1 1

2 2 2 2 2 2 2 3

3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 5

5 5 5 5 5 5 6 6

6 6 7 7 7 7 7 8

8 8 8 8 8 9 9 9

9 9 9 9 9 9 9 9



Sort each column

in parallel:

0 0 0 1 1 1 1 1

3 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

4 4 4 5 4 4 4 4

6 5 5 5 6 5 5 5

7 8 7 7 6 6 7 7

9 8 8 8 9 9 8 8

9 9 9 9 9 9 9 9

Sort each row in parallel,

← or → as desired:

0 0 0 1 1 1 1 1

2 2 2 2 2 2 2 3

3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 5

5 5 5 5 5 5 6 6

6 6 7 7 7 7 7 8

8 8 8 8 8 9 9 9

9 9 9 9 9 9 9 9

Chips are in fact evolving

towards having this much

parallelism and communication.

GPUs: parallel + global RAM.

Old Xeon Phi: parallel + ring.

New Xeon Phi: parallel + mesh.



Sort each column

in parallel:

0 0 0 1 1 1 1 1

3 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

4 4 4 5 4 4 4 4

6 5 5 5 6 5 5 5

7 8 7 7 6 6 7 7

9 8 8 8 9 9 8 8

9 9 9 9 9 9 9 9

Sort each row in parallel,

← or → as desired:

0 0 0 1 1 1 1 1

2 2 2 2 2 2 2 3

3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 5

5 5 5 5 5 5 6 6

6 6 7 7 7 7 7 8

8 8 8 8 8 9 9 9

9 9 9 9 9 9 9 9

Chips are in fact evolving

towards having this much
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using such a system will write

his beautifully-structured, but
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much more powerful and reliable

than a completely automatic

one. : : : As I say, this idea

certainly isn’t my own; it is so

exciting I hope that everyone soon

becomes aware of its possibilities.
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