Introduction to quantum algorithms

Daniel J. Bernstein
University of Illinois at Chicago &
Technische Universiteit Eindhoven

Data ("state") stored in n bits: an element of $\{0, 1\}^n$, often viewed as representing an element of $\{0, 1, \dots, 2^n - 1\}$. Data ("state") stored in n bits: an element of $\{0, 1\}^n$, often viewed as representing an element of $\{0, 1, \dots, 2^n - 1\}$.

State stored in n qubits: a nonzero element of \mathbb{C}^{2^n} . Retrieving this vector is tough!

Data ("state") stored in n bits: an element of $\{0, 1\}^n$, often viewed as representing an element of $\{0, 1, \dots, 2^n - 1\}$.

State stored in n qubits: a nonzero element of \mathbb{C}^{2^n} . Retrieving this vector is tough!

If n qubits have state $(a_0, a_1, \ldots, a_{2^n-1})$ then **measuring** the qubits produces an element of $\{0, 1, \ldots, 2^n - 1\}$ and destroys the state. Measurement produces element

Measurement produces element q with probability $|a_q|^2/\sum_r |a_r|^2$.

(1, 0, 0, 0, 0, 0, 0) is " $|0\rangle$ " in standard notation.

Measurement produces 0.

(1, 0, 0, 0, 0, 0, 0) is " $|0\rangle$ " in standard notation.

Measurement produces 0.

(0, 0, 0, 0, 0, 0, 1, 0) is " $|6\rangle$ " in standard notation.

Measurement produces 6.

(1, 0, 0, 0, 0, 0, 0) is $(|0\rangle)$ in standard notation.

Measurement produces 0.

(0, 0, 0, 0, 0, 0, 1, 0) is " $|6\rangle$ " in standard notation.

Measurement produces 6.

 $(0,0,0,0,0,0,-7i,0) = -7i|6\rangle$:

Measurement produces 6.

(1, 0, 0, 0, 0, 0, 0) is " $|0\rangle$ " in standard notation.

Measurement produces 0.

(0,0,0,0,0,1,0) is

" $|6\rangle$ " in standard notation.

Measurement produces 6.

$$(0,0,0,0,0,0,-7i,0) = -7i|6\rangle$$
:

Measurement produces 6.

$$(0, 0, 4, 0, 0, 0, 8, 0) = 4|2\rangle + 8|6\rangle$$
:

Measurement produces

- 2 with probability 20%,
- 6 with probability 80%.

 $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7) \mapsto$ $(a_1, a_0, a_3, a_2, a_5, a_4, a_7, a_6)$ is complementing index bit 0, hence "complementing qubit 0".

 $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7) \mapsto$ $(a_1, a_0, a_3, a_2, a_5, a_4, a_7, a_6)$ is complementing index bit 0, hence "complementing qubit 0".

 $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7)$ is measured as (q_0, q_1, q_2) , representing $q = q_0 + 2q_1 + 4q_2$, with probability $|a_q|^2 / \sum_r |a_r|^2$.

 $(a_1, a_0, a_3, a_2, a_5, a_4, a_7, a_6)$ is measured as $(q_0 \oplus 1, q_1, q_2)$, representing $q \oplus 1$, with probability $|a_q|^2/\sum_r |a_r|^2$.

 $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7) \mapsto (a_4, a_5, a_6, a_7, a_0, a_1, a_2, a_3)$ is "complementing qubit 2": $(q_0, q_1, q_2) \mapsto (q_0, q_1, q_2 \oplus 1).$ $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7) \mapsto (a_4, a_5, a_6, a_7, a_0, a_1, a_2, a_3)$ is "complementing qubit 2": $(q_0, q_1, q_2) \mapsto (q_0, q_1, q_2 \oplus 1)$. $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7) \mapsto (a_0, a_4, a_2, a_6, a_1, a_5, a_3, a_7)$ is "swapping qubits 0 and 2": $(q_0, q_1, q_2) \mapsto (q_2, q_1, q_0)$.

$$(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7) \mapsto (a_4, a_5, a_6, a_7, a_0, a_1, a_2, a_3)$$
 is "complementing qubit 2": $(q_0, q_1, q_2) \mapsto (q_0, q_1, q_2 \oplus 1)$. $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7) \mapsto (a_0, a_4, a_2, a_6, a_1, a_5, a_3, a_7)$ is "swapping qubits 0 and 2": $(q_0, q_1, q_2) \mapsto (q_2, q_1, q_0)$.

Complementing qubit 2

- = swapping qubits 0 and 2
 - complementing qubit 0
 - swapping qubits 0 and 2.

Similarly: swapping qubits i, j.

 $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7) \mapsto (a_0, a_1, a_3, a_2, a_4, a_5, a_7, a_6)$ is a "reversible XOR gate" = "controlled NOT gate": $(q_0, q_1, q_2) \mapsto (q_0 \oplus q_1, q_1, q_2)$.

Example with more qubits:

 $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_9, a_{10}, a_{11}, a_{12}, a_{13}, a_{14}, a_{15}, a_{16}, a_{17}, a_{18}, a_{19}, a_{20}, a_{21}, a_{22}, a_{23}, a_{24}, a_{25}, a_{26}, a_{27}, a_{28}, a_{29}, a_{30}, a_{31})$ $\mapsto (a_0, a_1, a_3, a_2, a_4, a_5, a_7, a_6, a_8, a_9, a_{11}, a_{10}, a_{12}, a_{13}, a_{15}, a_{14}, a_{16}, a_{17}, a_{19}, a_{18}, a_{20}, a_{21}, a_{23}, a_{22}, a_{24}, a_{25}, a_{27}, a_{26}, a_{28}, a_{29}, a_{31}, a_{30}).$

 $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7) \mapsto$ $(a_0, a_1, a_2, a_3, a_4, a_5, a_7, a_6)$ is a "Toffoli gate" = "controlled controlled NOT gate": $(q_0, q_1, q_2) \mapsto (q_0 \oplus q_1 q_2, q_1, q_2).$

Example with more qubits:

 $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_9, a_{10}, a_{11}, a_{12}, a_{13}, a_{14}, a_{15}, a_{16}, a_{17}, a_{18}, a_{19}, a_{20}, a_{21}, a_{22}, a_{23}, a_{24}, a_{25}, a_{26}, a_{27}, a_{28}, a_{29}, a_{30}, a_{31})$ $\mapsto (a_0, a_1, a_2, a_3, a_4, a_5, a_7, a_6, a_8, a_9, a_{10}, a_{11}, a_{12}, a_{13}, a_{15}, a_{14}, a_{16}, a_{17}, a_{18}, a_{19}, a_{20}, a_{21}, a_{23}, a_{22}, a_{24}, a_{25}, a_{26}, a_{27}, a_{28}, a_{29}, a_{31}, a_{30}).$

Reversible computation

Say p is a permutation of $\{0, 1, \dots, 2^n - 1\}$.

General strategy to compose these fast quantum operations to obtain index permutation $(a_n(0), a_n(1), \dots, a_n(2n-1))$

$$(a_{p(0)}, a_{p(1)}, \dots, a_{p(2^{n}-1)})$$

 $\mapsto (a_0, a_1, \dots, a_{2^{n}-1})$:

Reversible computation

Say p is a permutation of $\{0, 1, \dots, 2^n - 1\}$.

General strategy to compose these fast quantum operations to obtain index permutation

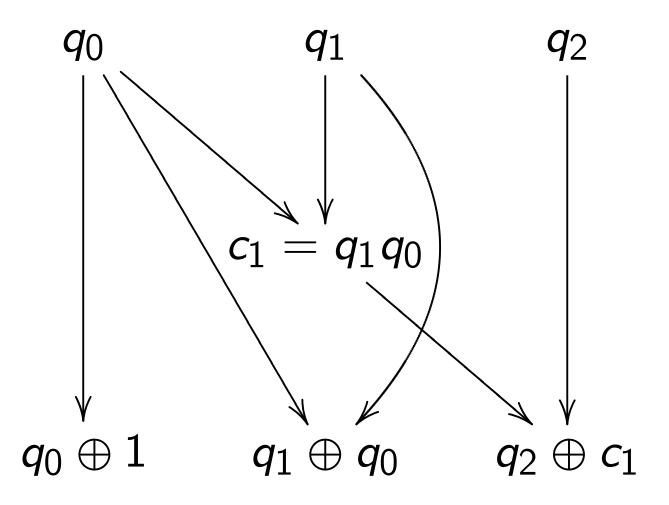
$$(a_{p(0)}, a_{p(1)}, \dots, a_{p(2^{n}-1)})$$

 $\mapsto (a_0, a_1, \dots, a_{2^{n}-1})$:

- 1. Build a traditional circuit to compute $j \mapsto p(j)$ using NOT/XOR/AND gates.
- 2. Convert into reversible gates: e.g., convert AND into Toffoli.

Example: Let's compute $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7) \mapsto (a_7, a_0, a_1, a_2, a_3, a_4, a_5, a_6);$ permutation $q \mapsto q + 1 \mod 8$.

1. Build a traditional circuit to compute $q \mapsto q + 1 \mod 8$.



2. Convert into reversible gates.

Toffoli for $q_2 \leftarrow q_2 \oplus q_1 q_0$: $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7) \mapsto$ $(a_0, a_1, a_2, a_7, a_4, a_5, a_6, a_3)$. 2. Convert into reversible gates.

Toffoli for $q_2 \leftarrow q_2 \oplus q_1 q_0$: $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7) \mapsto$ $(a_0, a_1, a_2, a_7, a_4, a_5, a_6, a_3)$.

Controlled NOT for $q_1 \leftarrow q_1 \oplus q_0$: $(a_0, a_1, a_2, a_7, a_4, a_5, a_6, a_3) \mapsto$ $(a_0, a_7, a_2, a_1, a_4, a_3, a_6, a_5).$ 2. Convert into reversible gates.

Toffoli for $q_2 \leftarrow q_2 \oplus q_1 q_0$: $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7) \mapsto$ $(a_0, a_1, a_2, a_7, a_4, a_5, a_6, a_3)$.

Controlled NOT for $q_1 \leftarrow q_1 \oplus q_0$: $(a_0, a_1, a_2, a_7, a_4, a_5, a_6, a_3) \mapsto$ $(a_0, a_7, a_2, a_1, a_4, a_3, a_6, a_5).$

NOT for $q_0 \leftarrow q_0 \oplus 1$: $(a_0, a_7, a_2, a_1, a_4, a_3, a_6, a_5) \mapsto$ $(a_7, a_0, a_1, a_2, a_3, a_4, a_5, a_6)$. This permutation example was deceptively easy.

It didn't need many operations.

For large n, most permutations p need many operations \Rightarrow slow. Really want fast circuits. This permutation example was deceptively easy.

It didn't need many operations.

For large n, most permutations p need many operations \Rightarrow slow. Really want fast circuits.

Also, it didn't need extra storage: circuit operated "in place" after computation $c_1 \leftarrow q_1 q_0$ was merged into $q_2 \leftarrow q_2 \oplus c_1$.

Typical circuits aren't in-place.

Start from any circuit:

inputs
$$b_1, b_2, \ldots, b_i$$
;

$$b_{i+1} = 1 \oplus b_{f(i+1)} b_{g(i+1)};$$

$$b_{i+2} = 1 \oplus b_{f(i+2)} b_{g(i+2)};$$

. . .

$$b_T = 1 \oplus b_{f(T)} b_{g(T)};$$
 specified outputs.

Start from any circuit:

inputs
$$b_1, b_2, \ldots, b_i$$
;

$$b_{i+1} = 1 \oplus b_{f(i+1)} b_{g(i+1)};$$

$$b_{i+2} = 1 \oplus b_{f(i+2)} b_{g(i+2)};$$

. . .

$$b_T = 1 \oplus b_{f(T)} b_{g(T)};$$
 specified outputs.

Reversible but dirty:

inputs
$$b_1, b_2, \ldots, b_T$$
;

$$b_{i+1} \leftarrow 1 \oplus b_{i+1} \oplus b_{f(i+1)} b_{g(i+1)};$$

$$b_{i+2} \leftarrow 1 \oplus b_{i+2} \oplus b_{f(i+2)} b_{g(i+2)};$$

. . .

$$b_T \leftarrow 1 \oplus b_T \oplus b_{f(T)}b_{g(T)}$$
.

Same outputs if all of

$$b_{i+1}, \ldots, b_T$$
 started as 0.

Reversible and clean: after finishing dirty computation, set non-outputs back to 0, by repeating same operations on non-outputs in reverse order.

Original computation: (inputs) → (inputs, dirt, outputs).

Dirty reversible computation: (inputs, zeros, zeros) → (inputs, dirt, outputs).

Clean reversible computation: (inputs, zeros, zeros) → (inputs, zeros, outputs).

Given fast circuit for p and fast circuit for p^{-1} , build fast reversible circuit for $(x, zeros) \mapsto (p(x), zeros)$.

Given fast circuit for p and fast circuit for p^{-1} , build fast reversible circuit for $(x, zeros) \mapsto (p(x), zeros)$.

Replace reversible bit operations with Toffoli gates etc. permuting $\mathbf{C}^{2^{n+z}} \to \mathbf{C}^{2^{n+z}}$.

Permutation on first 2^n entries is $(a_{p(0)}, a_{p(1)}, \dots, a_{p(2^n-1)})$ $\mapsto (a_0, a_1, \dots, a_{2^n-1}).$

Typically prepare vectors supported on first 2^n entries so don't care how permutation acts on last $2^{n+z} - 2^n$ entries.

Warning: Number of **qubits** \approx number of **bit operations** in original p, p^{-1} circuits.

This can be much larger than number of **bits stored** in the original circuits.

Many useful techniques to compress into fewer qubits, but often these lose time.

Many subtle tradeoffs.

Crude "poly-time" analyses don't care about this, but serious cryptanalysis is much more precise.

"Hadamard":

$$(a_0, a_1) \mapsto (a_0 + a_1, a_0 - a_1).$$

"Hadamard":

$$(a_0, a_1) \mapsto (a_0 + a_1, a_0 - a_1).$$

$$(a_0, a_1, a_2, a_3) \mapsto (a_0 + a_1, a_0 - a_1, a_2 + a_3, a_2 - a_3).$$

"Hadamard":

$$(a_0, a_1) \mapsto (a_0 + a_1, a_0 - a_1).$$

$$(a_0, a_1, a_2, a_3) \mapsto (a_0 + a_1, a_0 - a_1, a_2 + a_3, a_2 - a_3).$$

Same for qubit 1:

$$(a_0, a_1, a_2, a_3) \mapsto (a_0 + a_2, a_1 + a_3, a_0 - a_2, a_1 - a_3).$$

"Hadamard":

$$(a_0, a_1) \mapsto (a_0 + a_1, a_0 - a_1).$$

$$(a_0, a_1, a_2, a_3) \mapsto (a_0 + a_1, a_0 - a_1, a_2 + a_3, a_2 - a_3).$$

Same for qubit 1:

$$(a_0, a_1, a_2, a_3) \mapsto (a_0 + a_2, a_1 + a_3, a_0 - a_2, a_1 - a_3).$$

Qubit 0 and then qubit 1:

$$(a_0, a_1, a_2, a_3) \mapsto$$

 $(a_0 + a_1, a_0 - a_1, a_2 + a_3, a_2 - a_3) \mapsto$
 $(a_0 + a_1 + a_2 + a_3, a_0 - a_1 + a_2 - a_3,$
 $a_0 + a_1 - a_2 - a_3, a_0 - a_1 - a_2 + a_3).$

Repeat *n* times: e.g., $(1,0,0,\ldots,0) \mapsto (1,1,1,\ldots,1)$.

Measuring (1, 0, 0, . . . , 0) always produces 0.

Measuring (1, 1, 1, ..., 1)can produce any output: $Pr[output = q] = 1/2^n$. Repeat *n* times: e.g., $(1,0,0,\ldots,0) \mapsto (1,1,1,\ldots,1)$.

Measuring (1, 0, 0, . . . , 0) always produces 0.

Measuring (1, 1, 1, ..., 1)can produce any output: $Pr[output = q] = 1/2^n$.

Aside from "normalization" (irrelevant to measurement), have Hadamard = Hadamard⁻¹, so easily work backwards from "uniform superposition" $(1, 1, 1, \ldots, 1)$ to "pure state" $(1, 0, 0, \ldots, 0)$.

Simon's algorithm

Assume: nonzero $s \in \{0, 1\}^n$ satisfies $f(x) = f(x \oplus s)$ for every $x \in \{0, 1\}^n$. Can we find this period s, given a fast circuit for f?

Simon's algorithm

Assume: nonzero $s \in \{0, 1\}^n$ satisfies $f(x) = f(x \oplus s)$ for every $x \in \{0, 1\}^n$. Can we find this period s, given a fast circuit for f?

We don't have enough data if f has many periods.

Assume: only periods are 0, s.

Simon's algorithm

Assume: nonzero $s \in \{0, 1\}^n$ satisfies $f(x) = f(x \oplus s)$ for every $x \in \{0, 1\}^n$. Can we find this period s, given a fast circuit for f?

We don't have enough data if f has many periods.

Assume: only periods are 0, s.

Traditional solution:

Compute f for many inputs, sort, analyze collisions.

Success probability is very low until #inputs approaches $2^{n/2}$.

Simon's algorithm is much, much, much, much, much, much faster.

Say f maps n bits to m bits, using z "ancilla" bits for reversibility.

Prepare n + m + z qubits in pure zero state: vector (1, 0, 0, ...).

Use n-fold Hadamard to move first n qubits into uniform superposition: (1, 1, 1, ..., 1, 0, 0, ...) with 2^n entries 1, others 0.

Apply fast vector permutation for reversible f computation: 1 in position (q, 0, 0)moves to position (q, f(q), 0).

Note symmetry between 1 at (q, f(q), 0) and 1 at $(q \oplus s, f(q), 0)$.

Apply n-fold Hadamard.

Measure. By symmetry, output is orthogonal to s.

Repeat n + 10 times. Use Gaussian elimination to (probably) find s.

Grover's algorithm

Assume: unique $s \in \{0, 1\}^n$ has f(s) = 0.

Traditional algorithm to find s: compute f for many inputs, hope to find output 0. Success probability is very low until #inputs approaches 2^n .

Grover's algorithm takes only $2^{n/2}$ reversible computations of f. Typically: reversibility overhead is small enough that this easily beats traditional algorithm.

Start from uniform superposition over all n-bit strings q.

Step 1: Set $a \leftarrow b$ where

$$b_q = -a_q$$
 if $f(q) = 0$,

 $b_q = a_q$ otherwise.

This is fast.

Step 2: "Grover diffusion".

Negate a around its average.

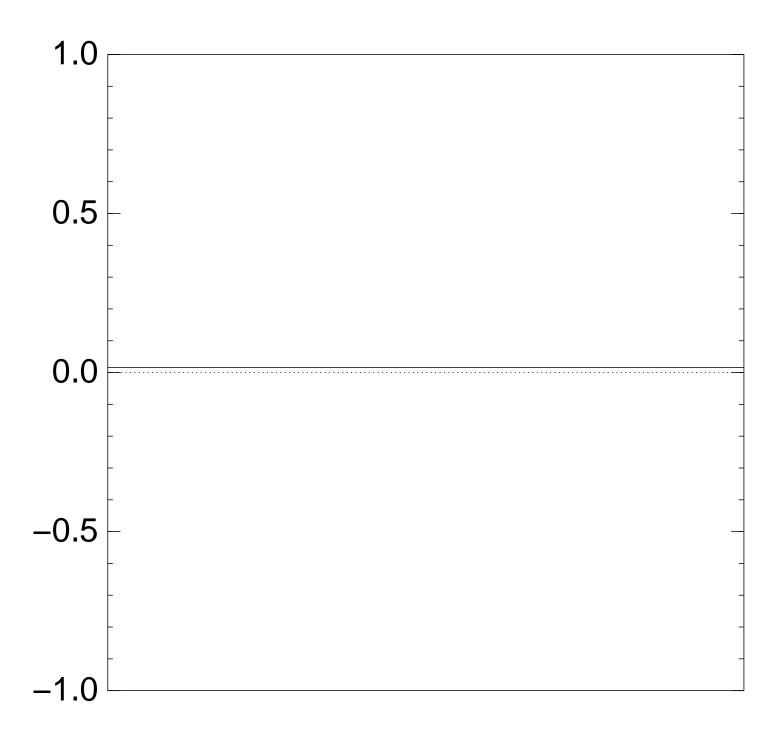
This is also fast.

Repeat steps 1 and 2 about $0.58 \cdot 2^{0.5n}$ times.

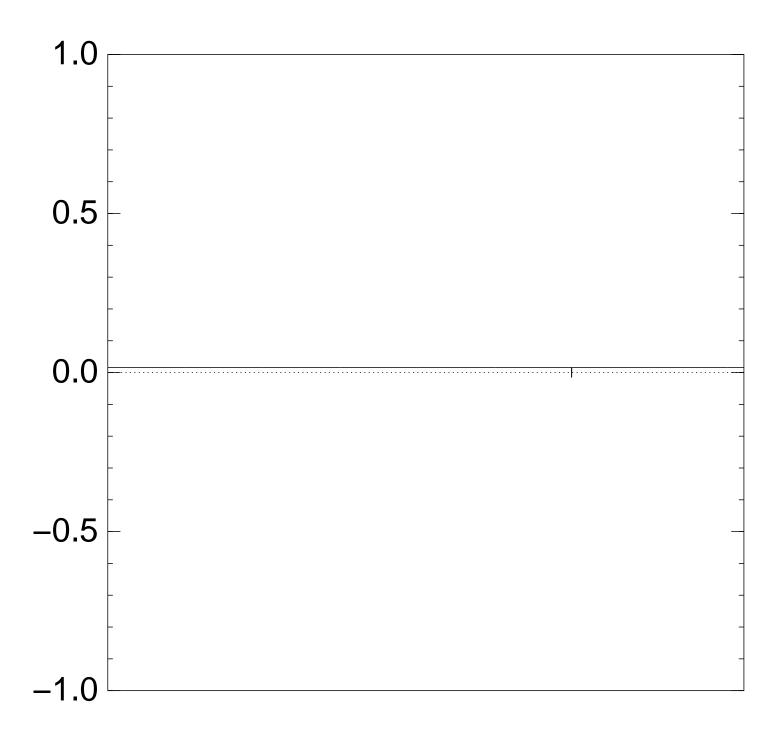
Measure the *n* qubits.

With high probability this finds s.

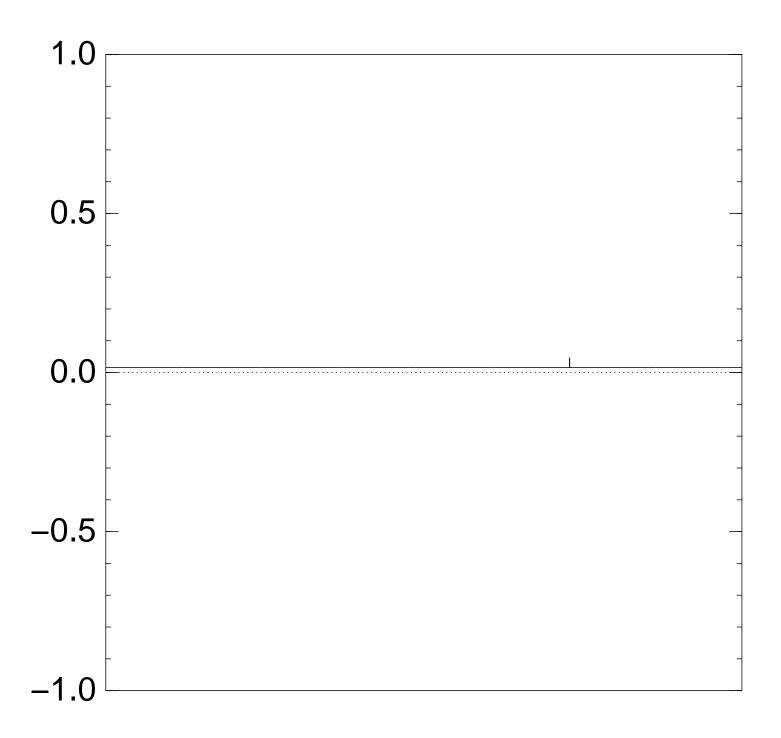
Graph of $q \mapsto a_q$ for an example with n=12 after 0 steps:



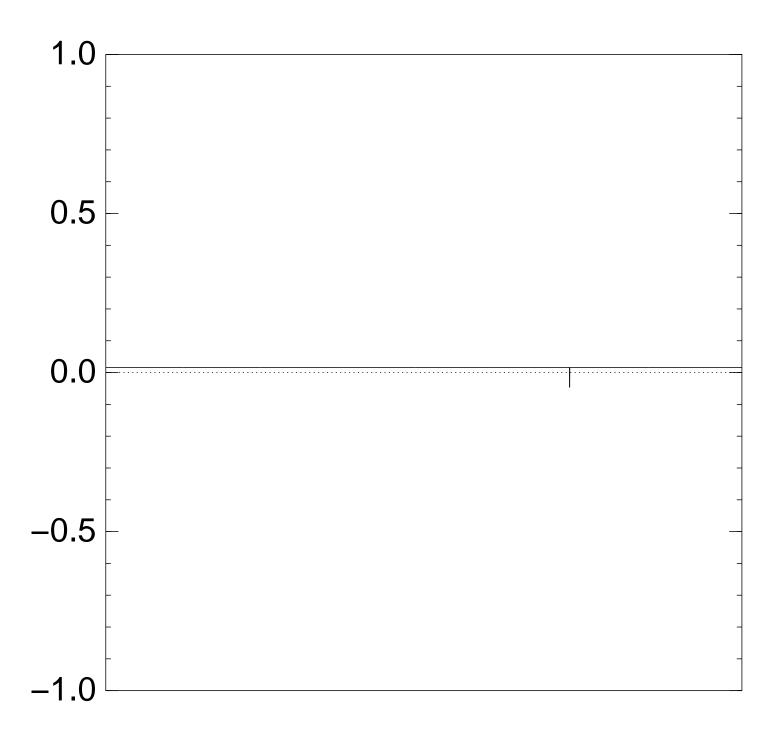
Graph of $q \mapsto a_q$ for an example with n=12 after Step 1:



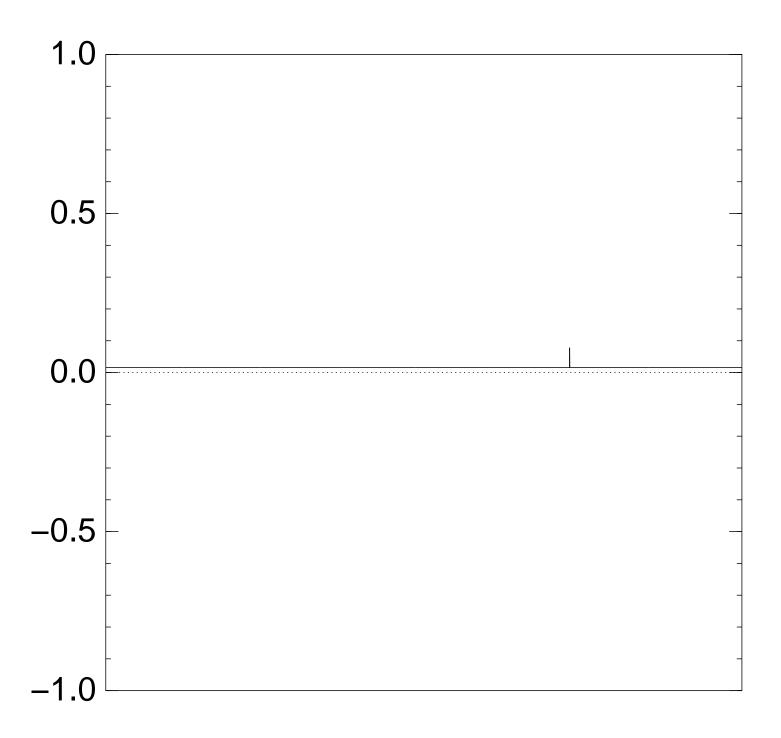
Graph of $q\mapsto a_q$ for an example with n=12 after Step 1+ Step 2:



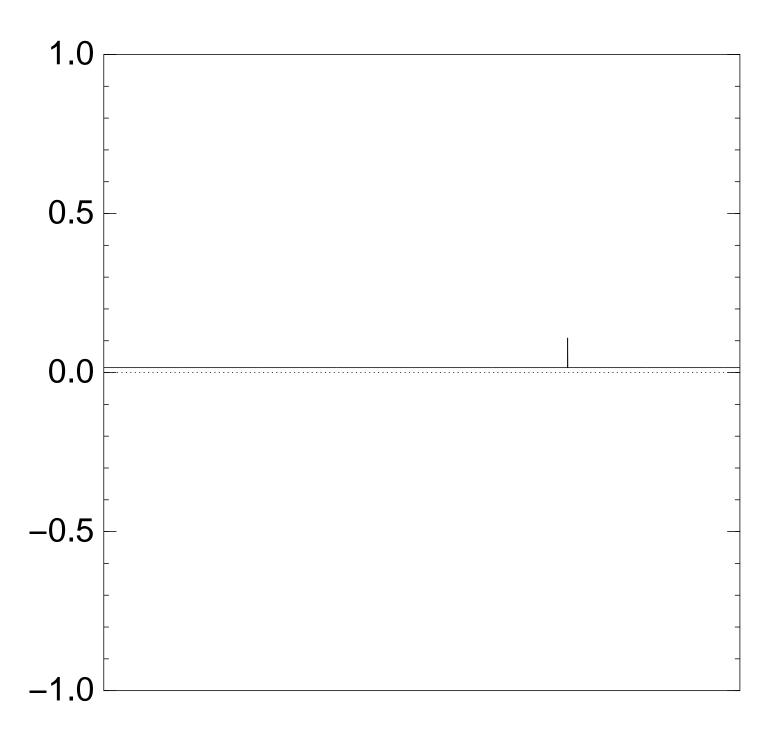
Graph of $q\mapsto a_q$ for an example with n=12 after Step 1+ Step 2+ Step 1:



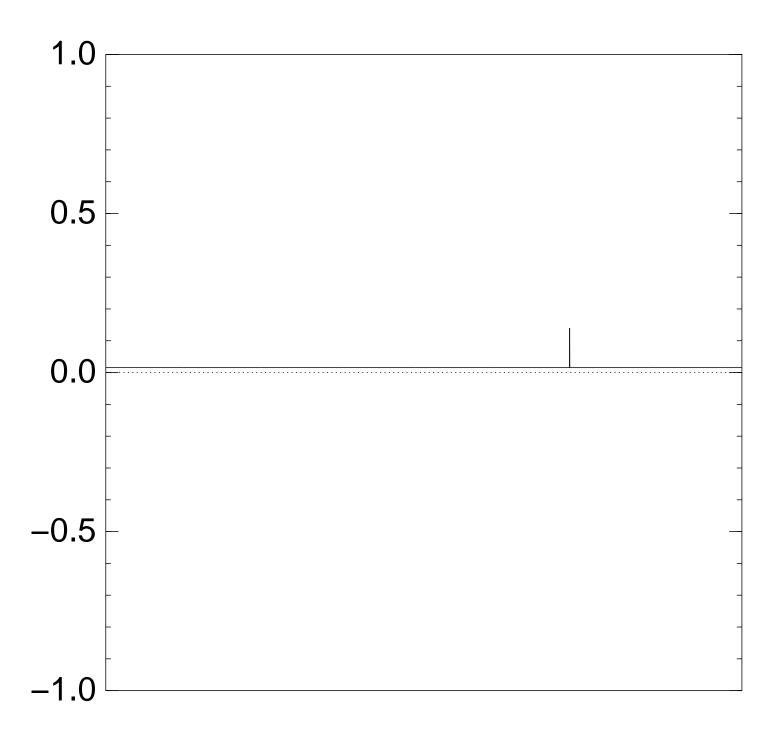
Graph of $q \mapsto a_q$ for an example with n=12after $2 \times (\text{Step } 1 + \text{Step } 2)$:



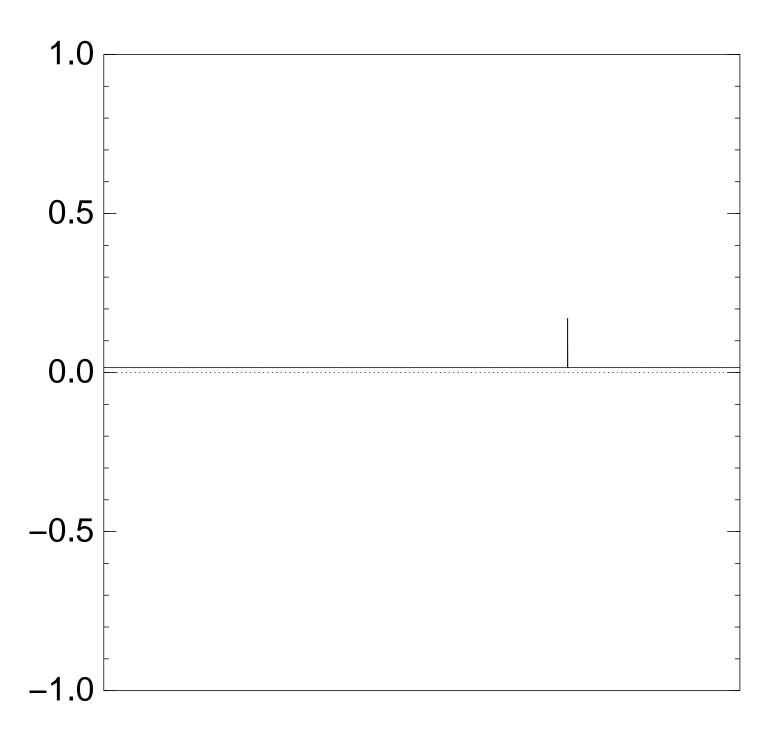
Graph of $q \mapsto a_q$ for an example with n = 12after $3 \times (\text{Step } 1 + \text{Step } 2)$:



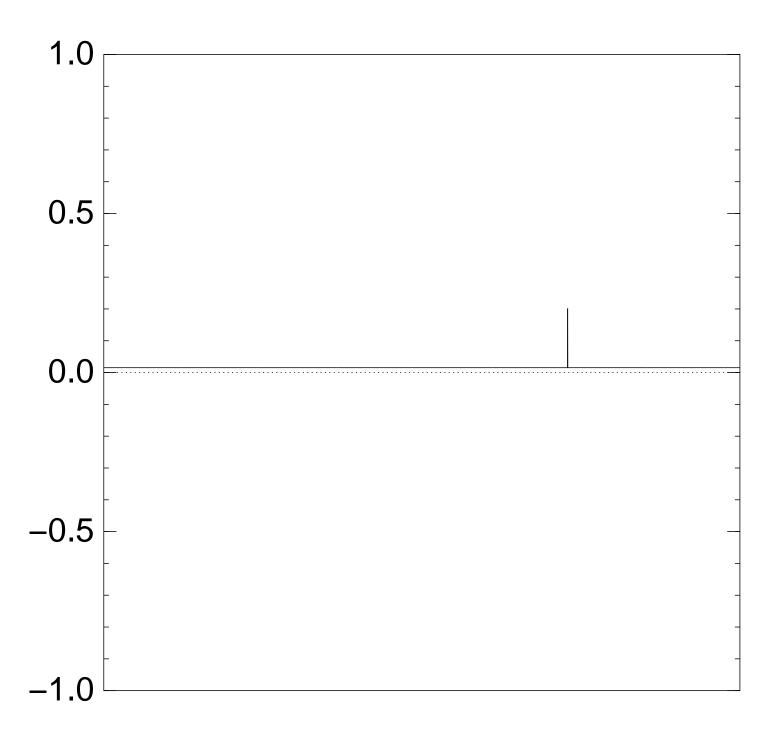
Graph of $q \mapsto a_q$ for an example with n=12 after $4 \times (\text{Step } 1 + \text{Step } 2)$:



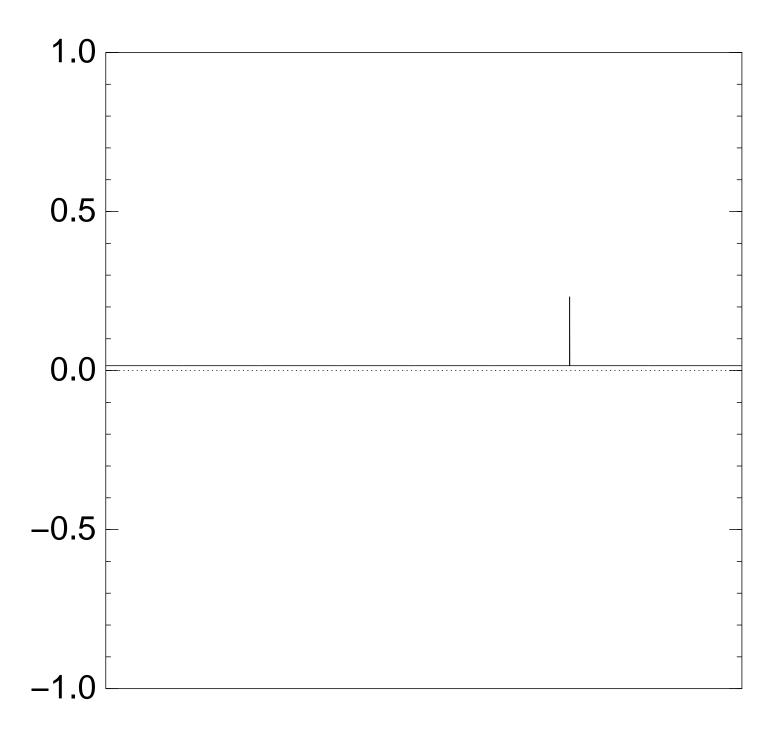
Graph of $q \mapsto a_q$ for an example with n=12 after $5 \times (\text{Step } 1 + \text{Step } 2)$:



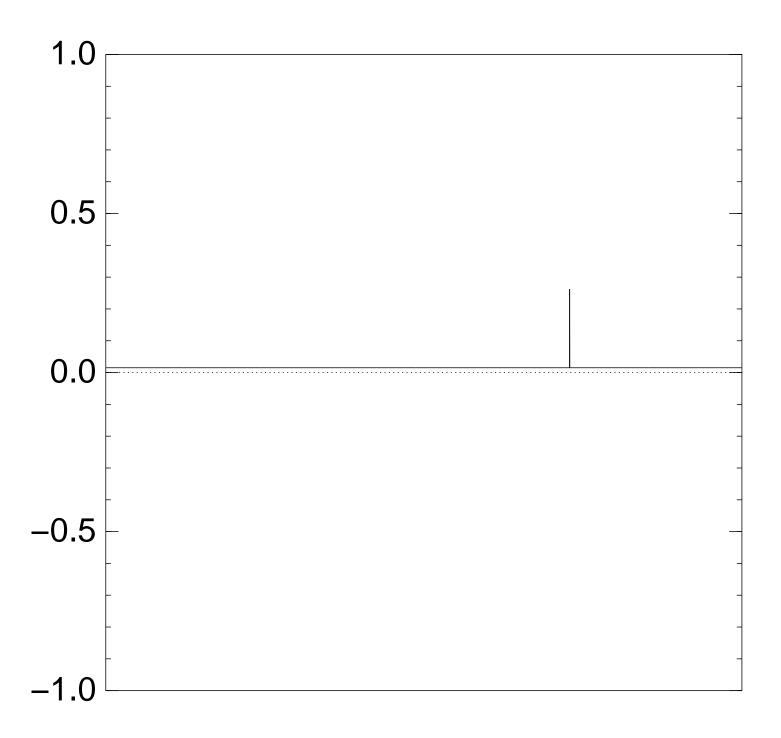
Graph of $q \mapsto a_q$ for an example with n=12after $6 \times (\text{Step } 1 + \text{Step } 2)$:



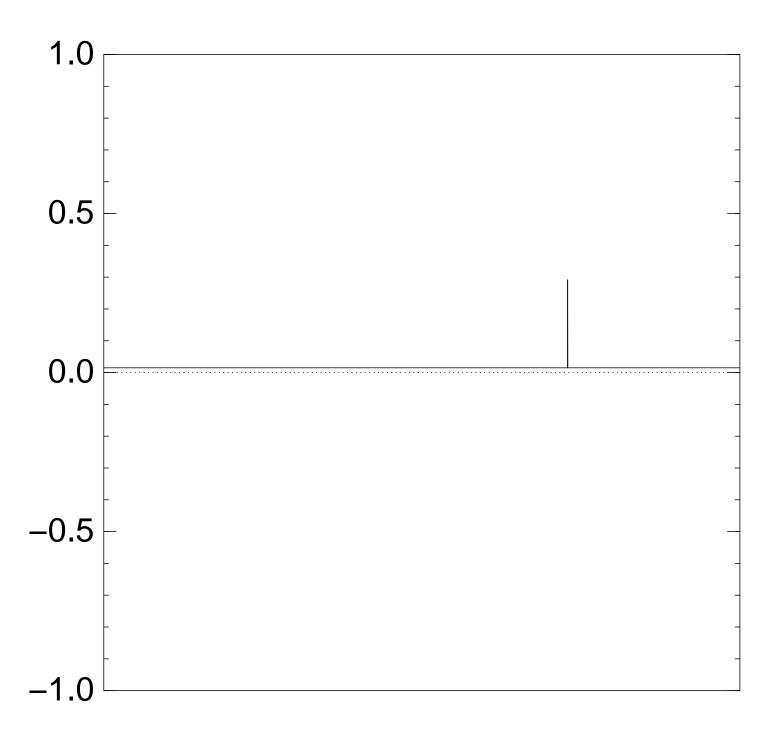
Graph of $q \mapsto a_q$ for an example with n=12 after $7 \times (\text{Step } 1 + \text{Step } 2)$:



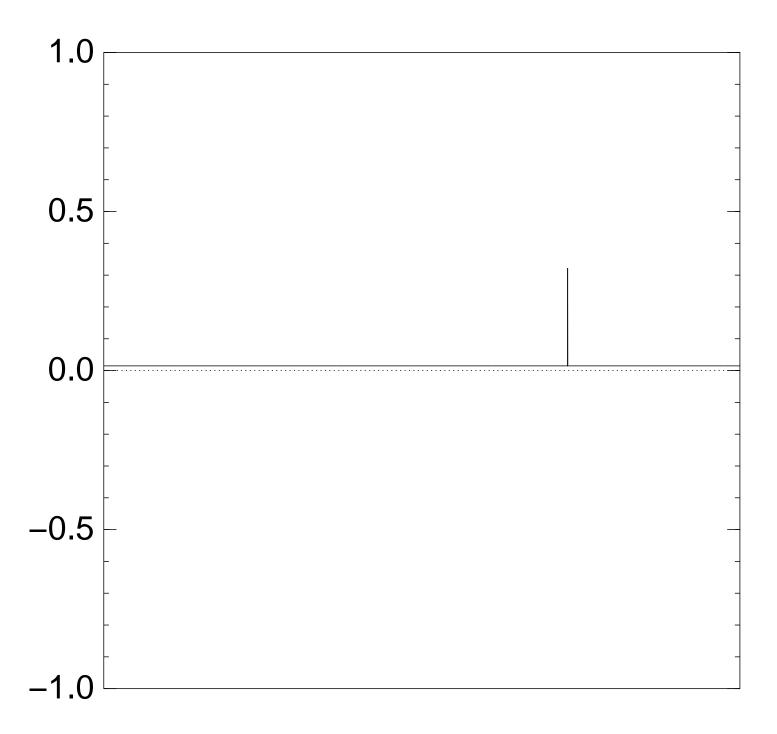
Graph of $q \mapsto a_q$ for an example with n=12 after $8 \times (\text{Step } 1 + \text{Step } 2)$:



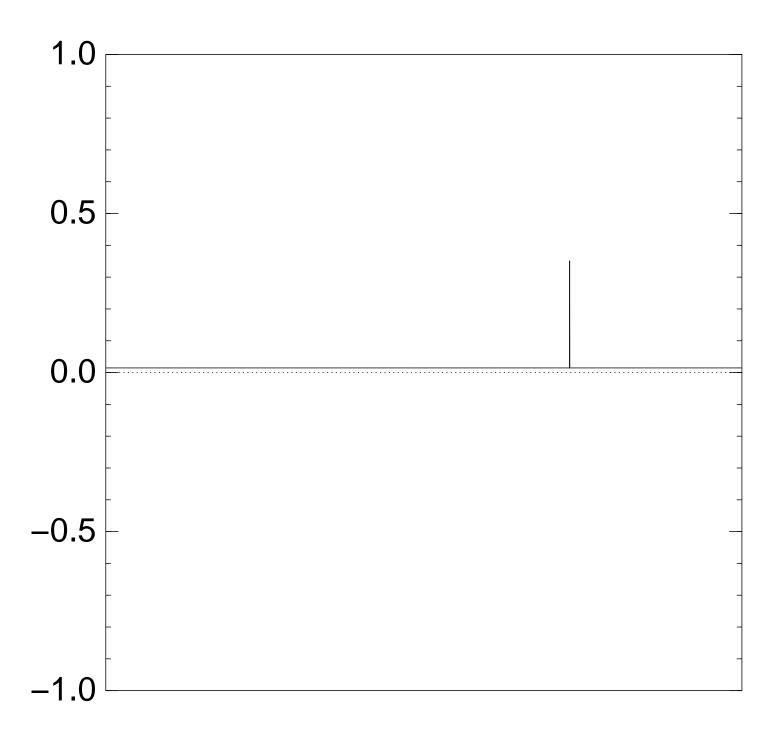
Graph of $q \mapsto a_q$ for an example with n=12 after $9 \times (\text{Step } 1 + \text{Step } 2)$:



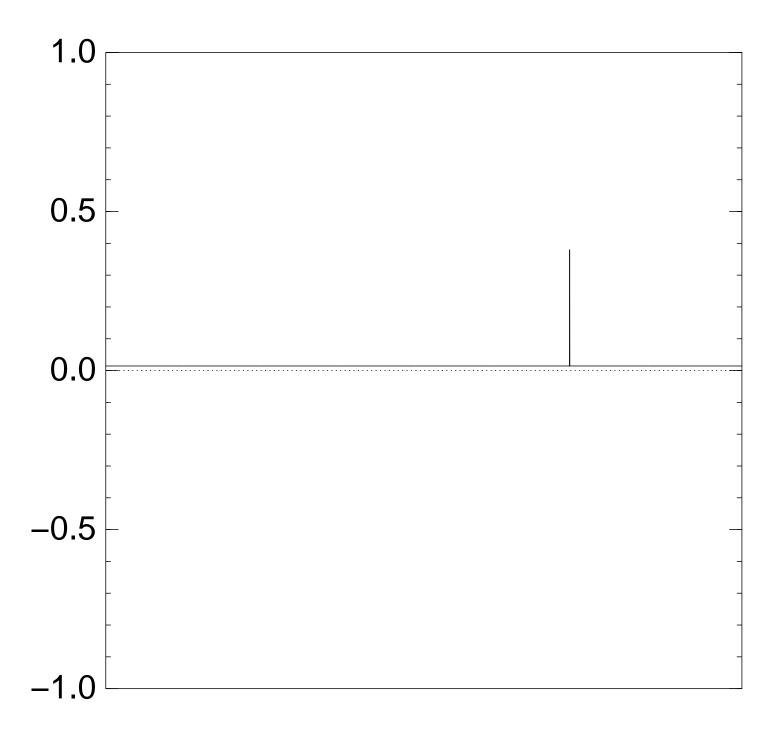
Graph of $q \mapsto a_q$ for an example with n=12 after $10 \times (\text{Step } 1 + \text{Step } 2)$:



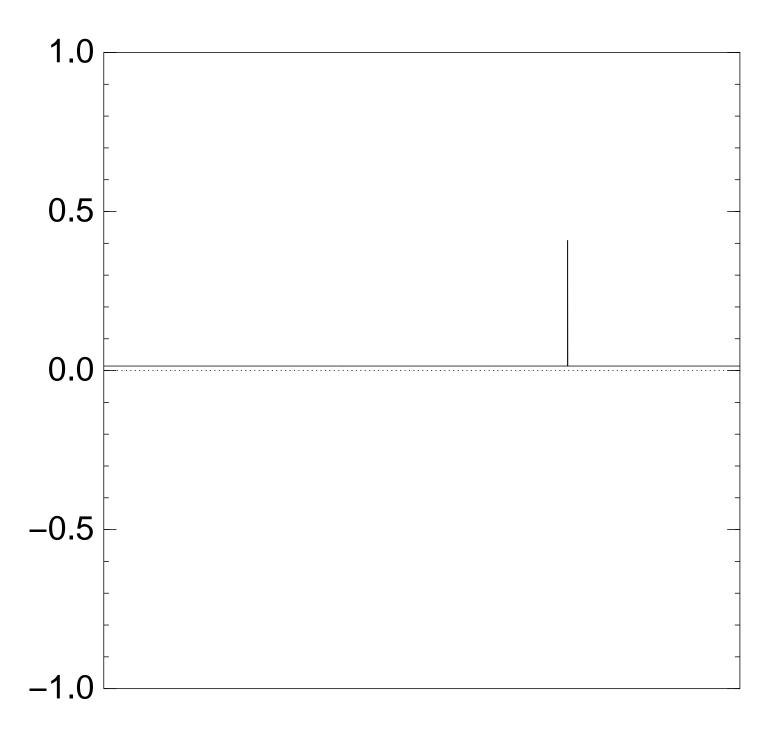
Graph of $q \mapsto a_q$ for an example with n=12 after $11 \times (\text{Step } 1 + \text{Step } 2)$:



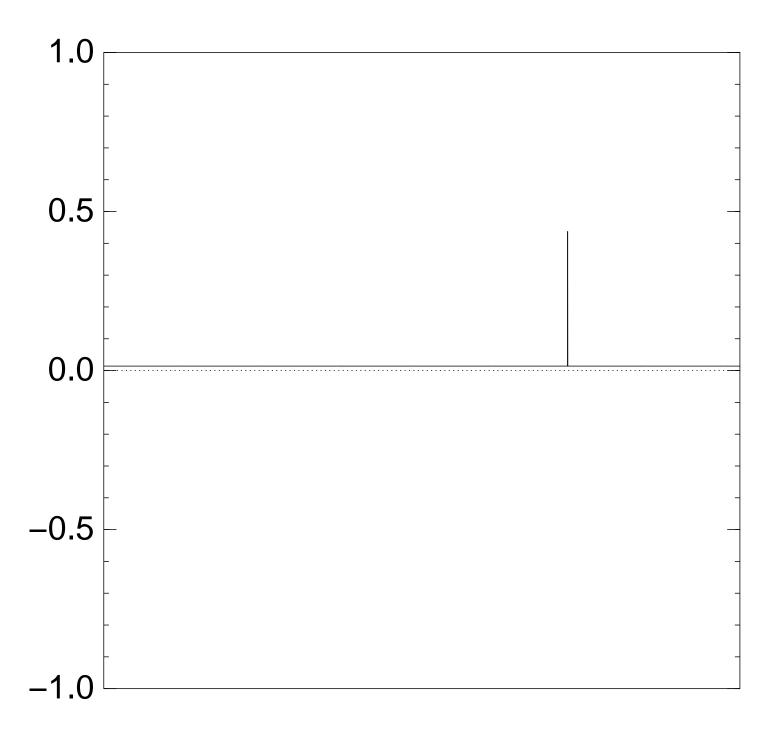
Graph of $q \mapsto a_q$ for an example with n=12 after $12 \times (\text{Step } 1 + \text{Step } 2)$:



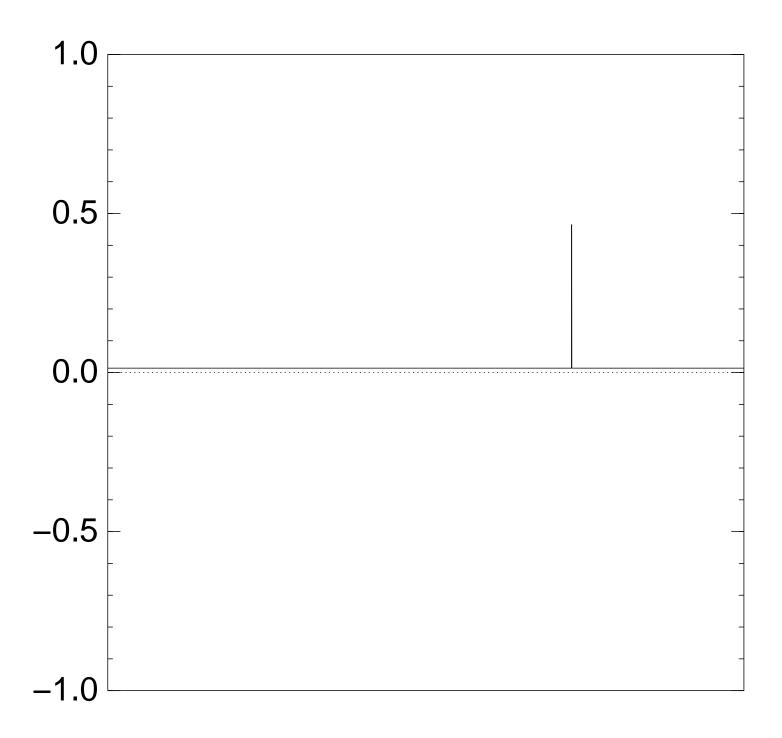
Graph of $q \mapsto a_q$ for an example with n=12 after $13 \times (\text{Step } 1 + \text{Step } 2)$:



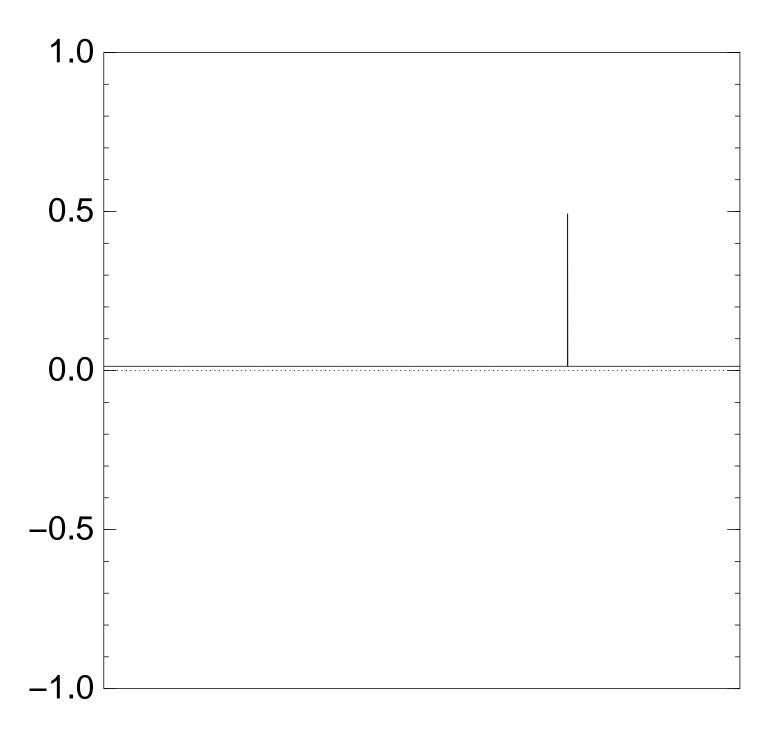
Graph of $q \mapsto a_q$ for an example with n=12 after $14 \times (\text{Step } 1 + \text{Step } 2)$:



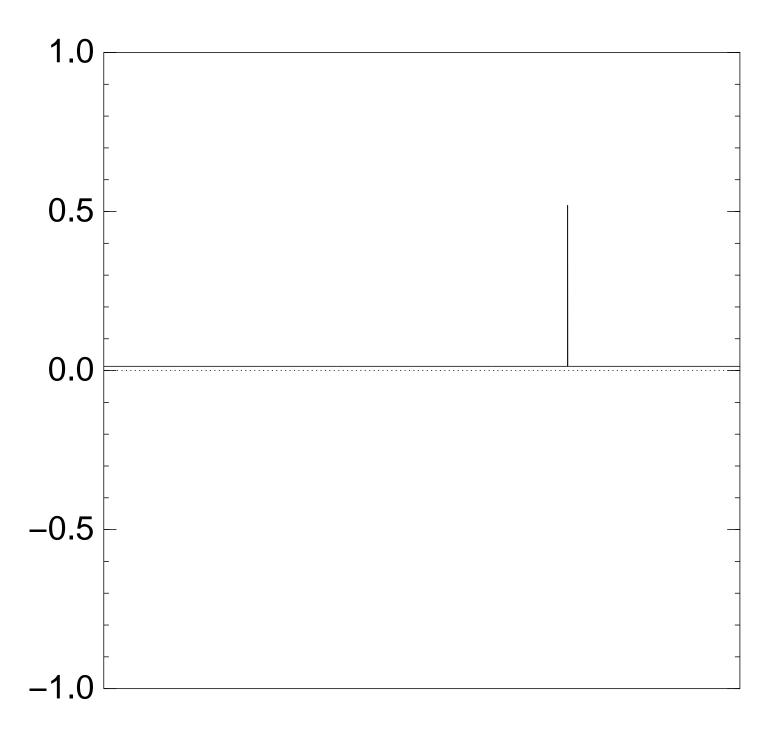
Graph of $q \mapsto a_q$ for an example with n=12 after $15 \times (\text{Step } 1 + \text{Step } 2)$:



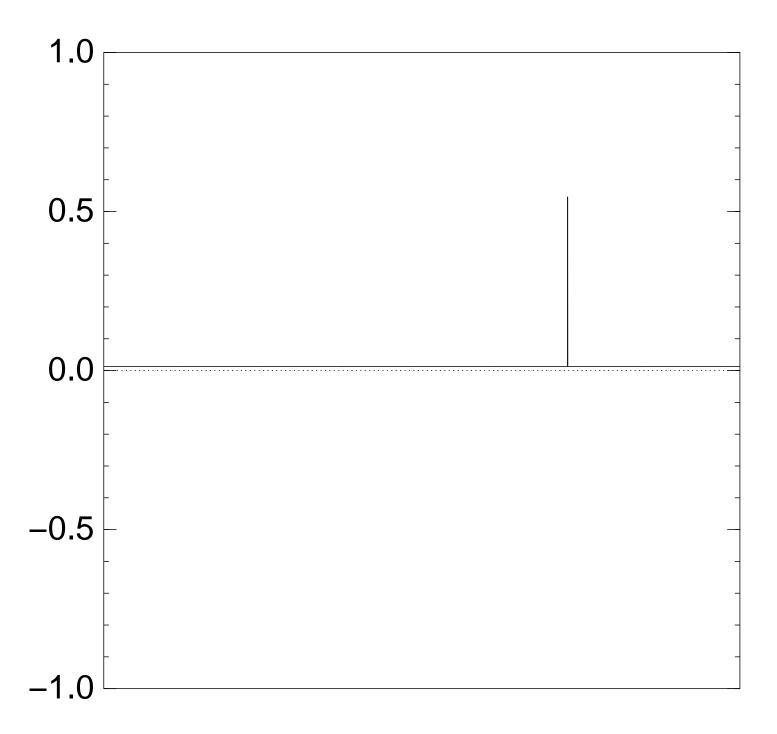
Graph of $q \mapsto a_q$ for an example with n=12 after $16 \times (\text{Step } 1 + \text{Step } 2)$:



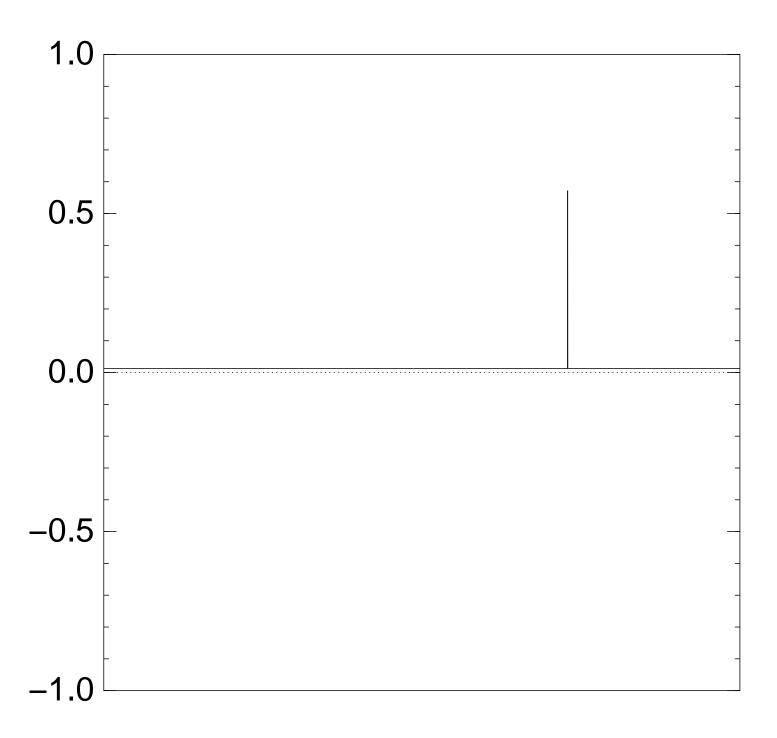
Graph of $q \mapsto a_q$ for an example with n=12 after $17 \times (\text{Step } 1 + \text{Step } 2)$:



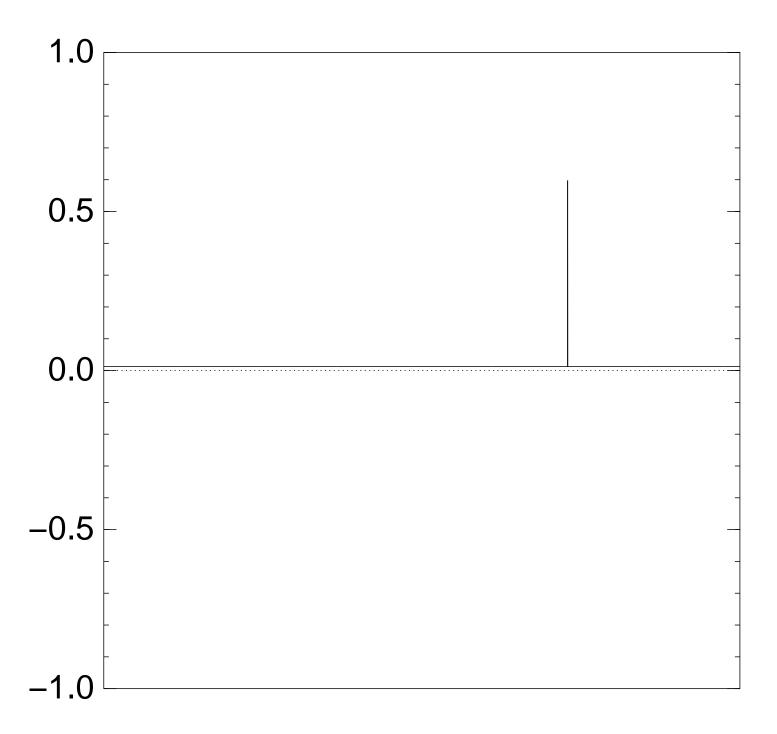
Graph of $q \mapsto a_q$ for an example with n=12 after $18 \times (\text{Step } 1 + \text{Step } 2)$:



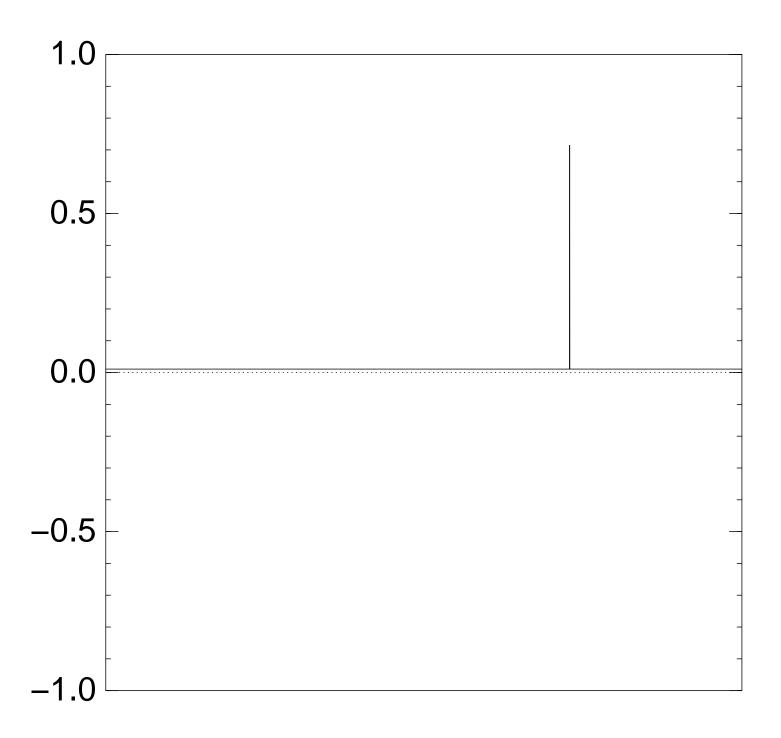
Graph of $q \mapsto a_q$ for an example with n=12 after $19 \times (\text{Step } 1 + \text{Step } 2)$:



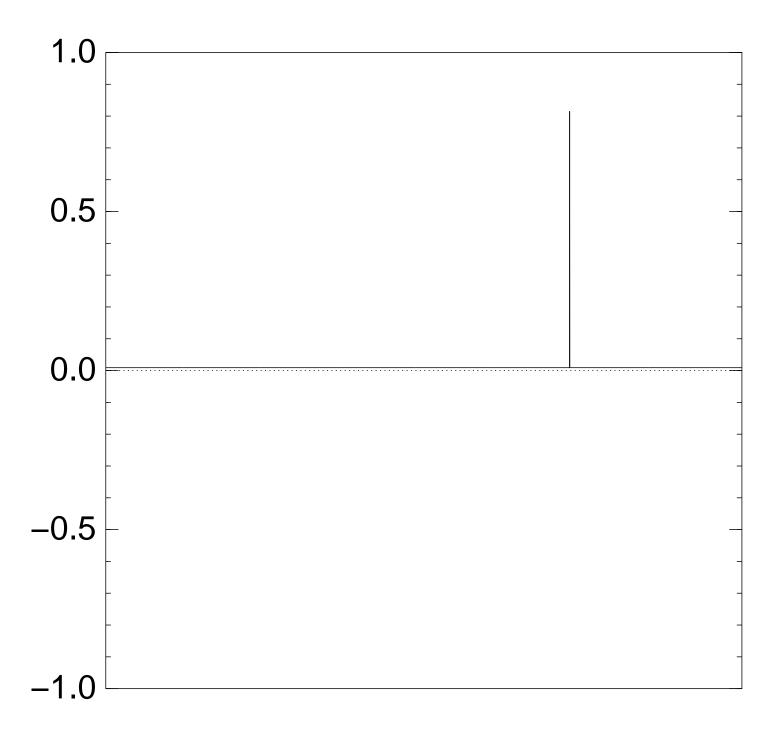
Graph of $q \mapsto a_q$ for an example with n=12 after $20 \times (\text{Step } 1 + \text{Step } 2)$:



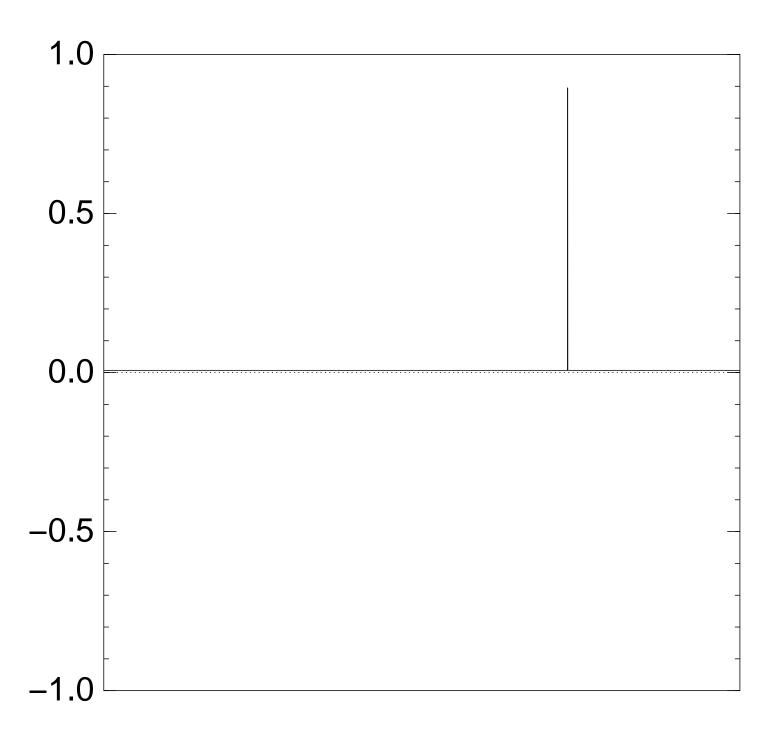
Graph of $q \mapsto a_q$ for an example with n=12 after $25 \times (\text{Step } 1 + \text{Step } 2)$:



Graph of $q \mapsto a_q$ for an example with n=12 after $30 \times (\text{Step } 1 + \text{Step } 2)$:

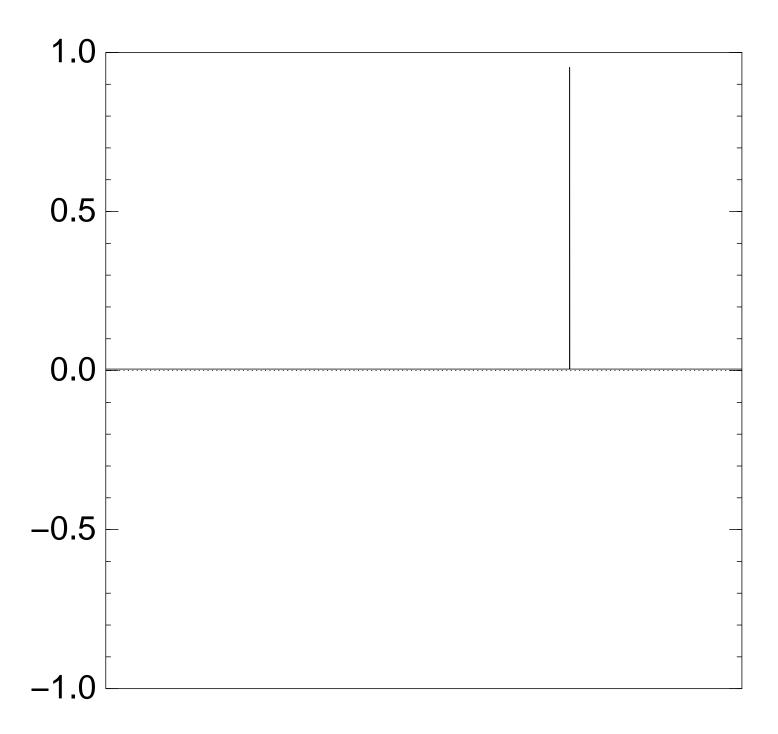


Graph of $q \mapsto a_q$ for an example with n = 12 after $35 \times (\text{Step } 1 + \text{Step } 2)$:

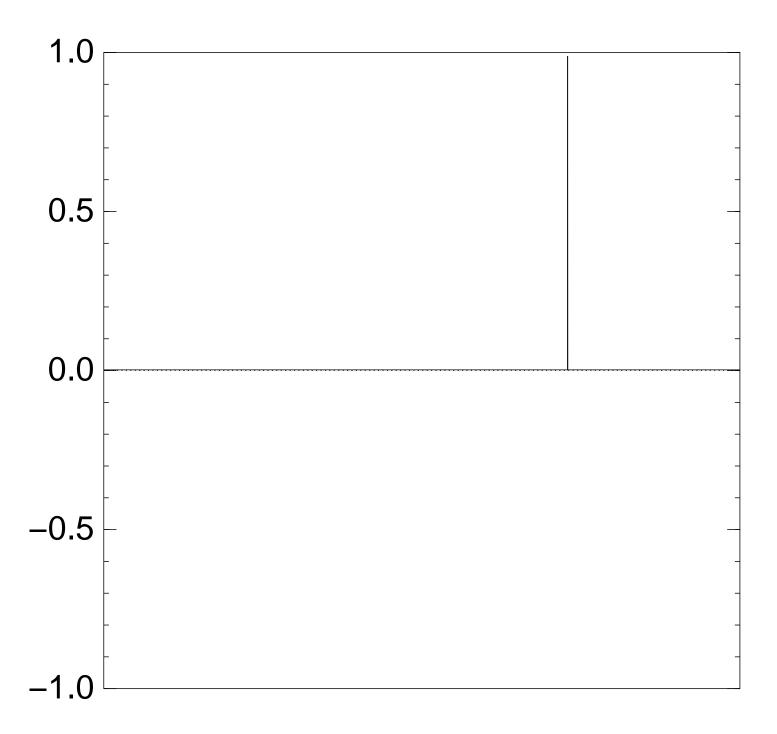


Good moment to stop, measure.

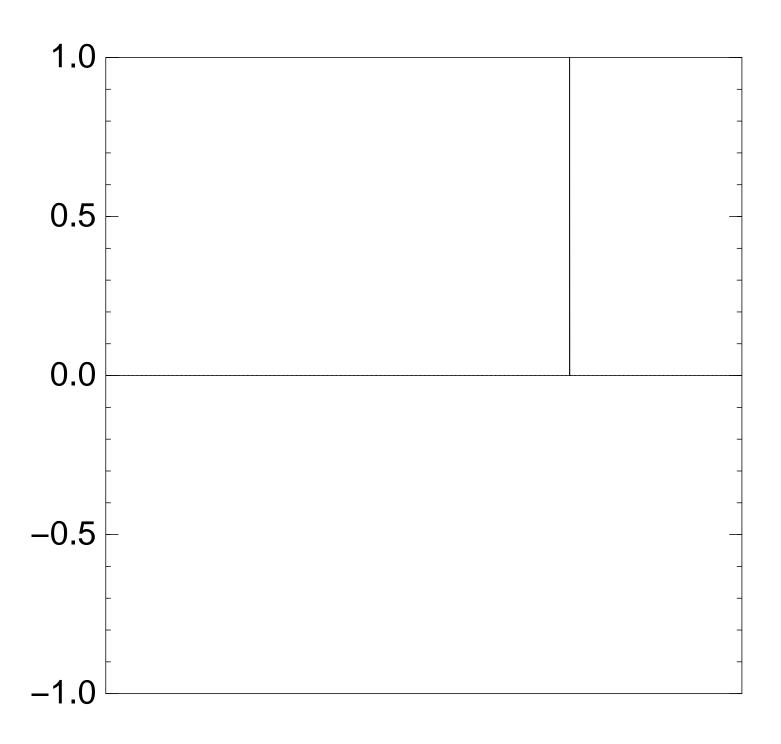
Graph of $q \mapsto a_q$ for an example with n=12 after $40 \times (\text{Step } 1 + \text{Step } 2)$:



Graph of $q \mapsto a_q$ for an example with n=12 after $45 \times (\text{Step } 1 + \text{Step } 2)$:

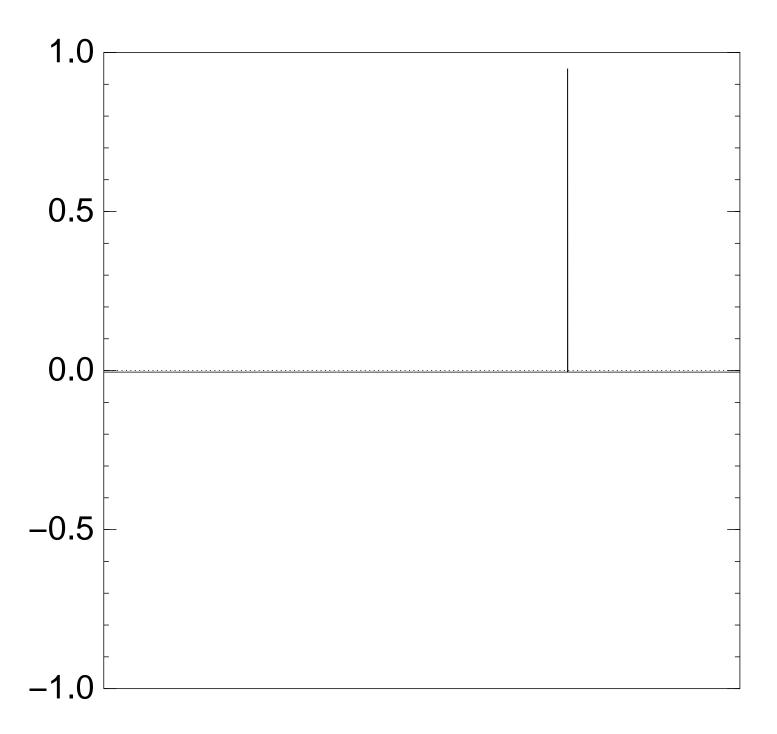


Graph of $q \mapsto a_q$ for an example with n=12 after $50 \times (\text{Step } 1 + \text{Step } 2)$:

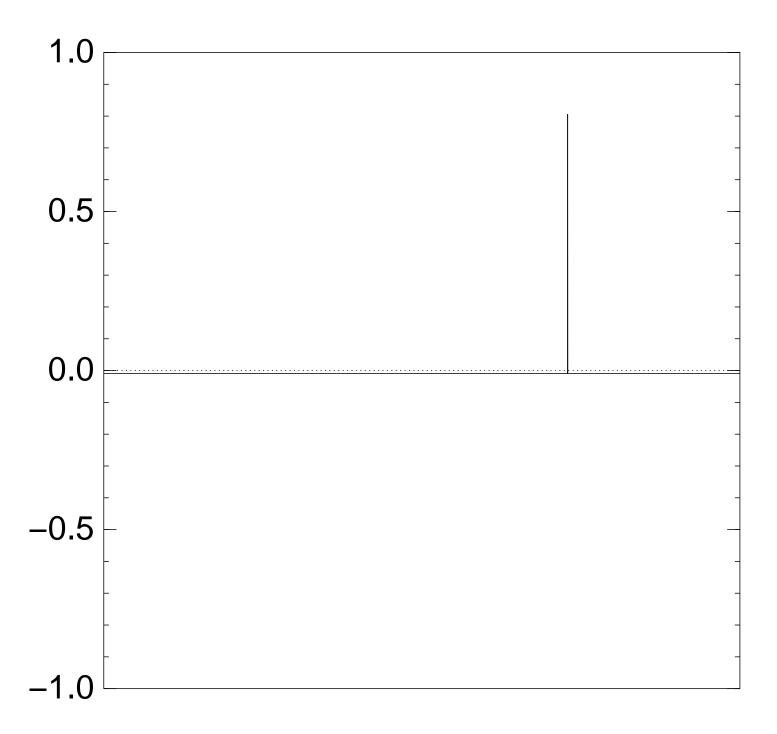


Traditional stopping point.

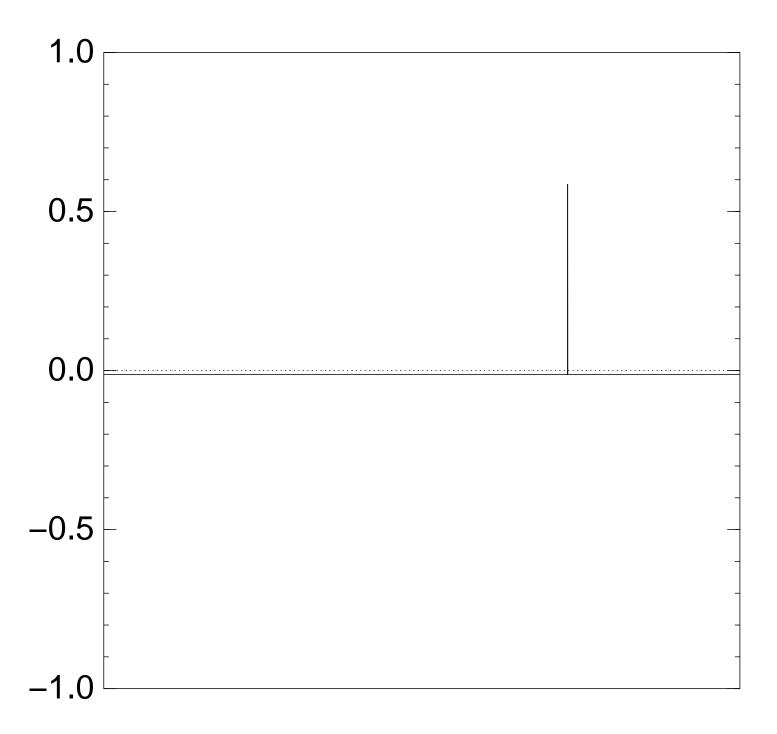
Graph of $q \mapsto a_q$ for an example with n=12 after $60 \times (\text{Step } 1 + \text{Step } 2)$:



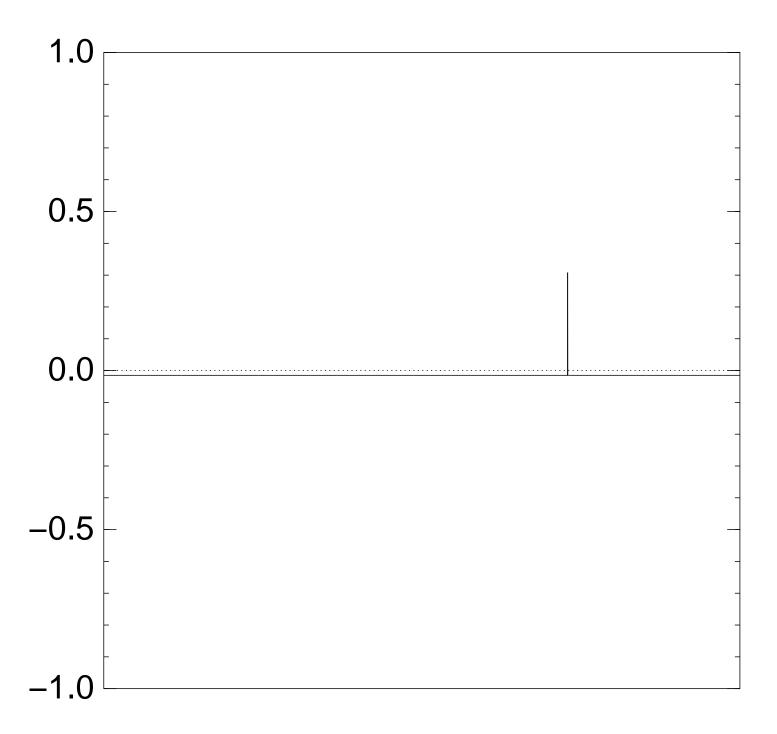
Graph of $q \mapsto a_q$ for an example with n=12 after $70 \times (\text{Step } 1 + \text{Step } 2)$:



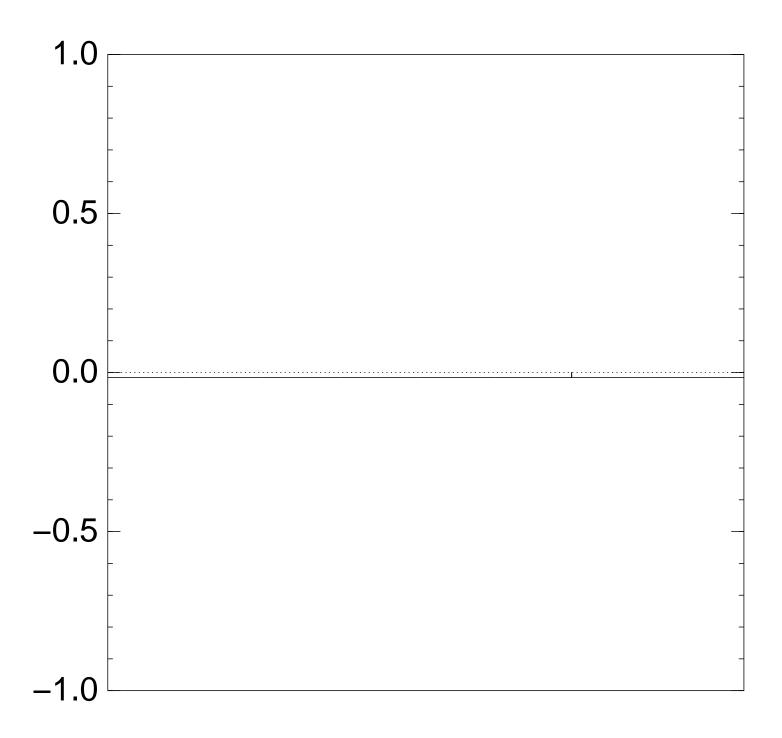
Graph of $q \mapsto a_q$ for an example with n=12 after $80 \times (\text{Step } 1 + \text{Step } 2)$:



Graph of $q \mapsto a_q$ for an example with n=12 after $90 \times (\text{Step } 1 + \text{Step } 2)$:



Graph of $q\mapsto a_q$ for an example with n=12 after $100\times ({\rm Step}\ 1+{\rm Step}\ 2)$:



Very bad stopping point.

 $q \mapsto a_q$ is completely described by a vector of two numbers (with fixed multiplicities):

- (1) a_q for roots q;
- (2) a_q for non-roots q.

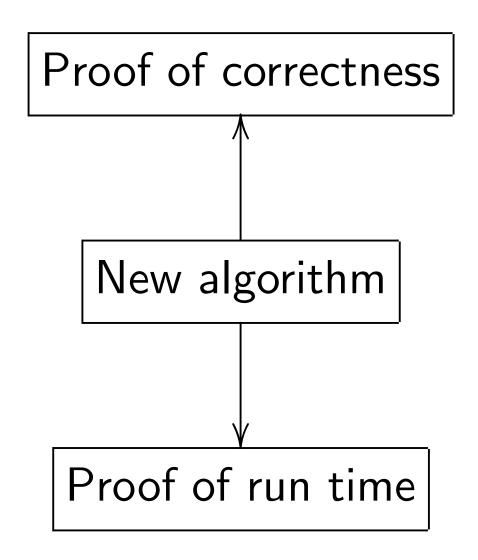
Step 1 + Step 2 act linearly on this vector.

Easily compute eigenvalues and powers of this linear map to understand evolution of state of Grover's algorithm.

 \Rightarrow Probability is ≈ 1 after $\approx (\pi/4)2^{0.5n}$ iterations.

Notes on provability

Textbook algorithm analysis:



Mislead students into thinking that best algorithm = best proven algorithm.

Ignorant response: "Work harder, find proofs!"

Ignorant response: "Work harder, find proofs!"

Consensus of the experts: proofs probably do not *exist* for most of these algorithms. So demanding proofs is silly.

Ignorant response: "Work harder, find proofs!"

Consensus of the experts: proofs probably do not *exist* for most of these algorithms. So demanding proofs is silly.

Without proofs, how do we analyze correctness+speed? Answer: Real algorithm analysis relies critically on heuristics and computer experiments.

- 1. Simulate *tiny* q. computer?
- ⇒ Huge extrapolation errors.

- 1. Simulate tiny q. computer?
- \Rightarrow Huge extrapolation errors.
- 2. Faster algorithm-specific simulation? Yes, sometimes.

- 1. Simulate tiny q. computer?
- ⇒ Huge extrapolation errors.
- 2. Faster algorithm-specific simulation? Yes, sometimes.
- 3. Fast **trapdoor simulation.**Simulator (like prover) knows
 more than the algorithm does.
 Tung Chou has implemented this,
 found errors in two publications.