Crypto developments

Daniel J. Bernstein

Research Professor, University of Illinois at Chicago

Hoogleraar,

Cryptographic Implementations,
Technische Universiteit Eindhoven

A bit about me

Designer of:

- qmail, used by Yahoo to handle Internet mail;
- tinydns, used by Facebook to publish server addresses;
- dnscache, used by OpenDNS to look up server addresses;
- Curve25519 public-key system used by Apple to protect files stored on iPhones;
- ChaCha20 secret-key cipher used by Chrome to encrypt HTTPS connections to Google.

Standard crypto is failing

Goals: protect confidentiality, integrity, and availability.

Standard crypto is failing

Goals: protect confidentiality, integrity, and availability.

Standard crypto does a bad job of meeting these goals today, and an even worse job tomorrow.

Standard crypto is failing

Goals: protect confidentiality, integrity, and availability.

Standard crypto does a bad job of meeting these goals today, and an even worse job tomorrow.

The standardization process does not insist on security; ignores important warnings from cryptographers; ignores predictable improvements in computer technology; and is unable to resist attack.

2008 Stevens–Sotirov– Appelbaum–Lenstra–Molnar– Osvik–de Weger exploited MD5 \Rightarrow rogue CA for TLS.

2008 Stevens–Sotirov– Appelbaum–Lenstra–Molnar– Osvik–de Weger exploited MD5 \Rightarrow rogue CA for TLS.

2012 Flame: new MD5 attack.

2008 Stevens–Sotirov– Appelbaum–Lenstra–Molnar– Osvik–de Weger exploited MD5 \Rightarrow rogue CA for TLS.

2012 Flame: new MD5 attack.

Fact: By 1996, a few years after the introduction of MD5, Preneel and Dobbertin were calling for MD5 to be scrapped.

2008 Stevens–Sotirov– Appelbaum–Lenstra–Molnar– Osvik–de Weger exploited MD5 \Rightarrow rogue CA for TLS.

2012 Flame: new MD5 attack.

Fact: By 1996, a few years after the introduction of MD5, Preneel and Dobbertin were calling for MD5 to be scrapped.

Internet crypto standardization continued using MD5.

Renesas HD65145C1 "High-Security Microcontroller": tested by T-Systems, certified by BSI at CC assurance level EAL4+.

Renesas HD65145C1 "High-Security Microcontroller": tested by T-Systems, certified by BSI at CC assurance level EAL4+.

Used in Chunghwa Telecom
HICOS PKI Smart Card, tested by
DOMUS IT Security Laboratory,
FIPS 140-2 Level 2 certificate
jointly from NIST and CSE.

Renesas HD65145C1 "High-Security Microcontroller": tested by T-Systems, certified by BSI at CC assurance level EAL4+.

Used in Chunghwa Telecom
HICOS PKI Smart Card, tested by
DOMUS IT Security Laboratory,
FIPS 140-2 Level 2 certificate
jointly from NIST and CSE.

Deployed for two million people.

Renesas HD65145C1 "High-Security Microcontroller": tested by T-Systems, certified by BSI at CC assurance level EAL4+.

Used in Chunghwa Telecom
HICOS PKI Smart Card, tested by
DOMUS IT Security Laboratory,
FIPS 140-2 Level 2 certificate
jointly from NIST and CSE.

Deployed for two million people. 2013 Bernstein-Chang-Cheng-Chou-Heninger-Lange-van Someren: 184 keys factored.

2004: ANSI draft "Dual EC" random-number generator.
(Didn't say: designed by NSA, secretly predictable to NSA.)

2004: ANSI draft "Dual EC" random-number generator.
(Didn't say: designed by NSA, secretly predictable to NSA.)

2006 Gjøsteen: Dual EC is biased. 2006 Sidorenko–Schoenmakers: Dual EC is even more biased.

2004: ANSI draft "Dual EC" random-number generator.
(Didn't say: designed by NSA, secretly predictable to NSA.)

2006 Gjøsteen: Dual EC is biased.

2006 Sidorenko-Schoenmakers:

Dual EC is even more biased.

NIST then standardized Dual EC.

2004: ANSI draft "Dual EC" random-number generator.
(Didn't say: designed by NSA, secretly predictable to NSA.)

2006 Gjøsteen: Dual EC is biased. 2006 Sidorenko–Schoenmakers: Dual EC is even more biased.

NIST then standardized Dual EC.

2007 Shumow–Ferguson: would have been easy to make Dual EC secretly predictable.

2004: ANSI draft "Dual EC" random-number generator.
(Didn't say: designed by NSA, secretly predictable to NSA.)

2006 Gjøsteen: Dual EC is biased. 2006 Sidorenko–Schoenmakers: Dual EC is even more biased.

NIST then standardized Dual EC.

2007 Shumow–Ferguson: would have been easy to make Dual EC secretly predictable.

NIST kept standard until 2014.

Crypto standardization process rewards unnecessary complexity.

Crypto standardization process rewards unnecessary complexity.

Exception: small platforms.

But modern crypto platforms are complicated software devices.

Crypto standardization process rewards unnecessary complexity.

Exception: small platforms.

But modern crypto platforms are complicated software devices.

Complex crypto is practically impossible to get right and audit. Many security holes: Heartbleed, goto fail, new SChannel bug, etc.

Crypto standardization process rewards unnecessary complexity.

Exception: small platforms.

But modern crypto platforms are complicated software devices.

Complex crypto is practically impossible to get right and audit. Many security holes: Heartbleed, goto fail, new SChannel bug, etc.

Crypto is front line, performance-constrained. Hard to isolate and monitor.

Attacker equipped with a large Shor computer breaks RSA, DSA, ECDSA, ECDH, etc.

Attacker equipped with a large Shor computer breaks RSA, DSA, ECDSA, ECDH, etc.

Retroactively decrypts intercepted ciphertexts, whether or not they have "perfect forward secrecy".

Attacker equipped with a large Shor computer breaks RSA, DSA, ECDSA, ECDH, etc.

Retroactively decrypts intercepted ciphertexts, whether or not they have "perfect forward secrecy".

No evidence that attackers have a Shor computer today. (D-Wave computer seems to be quantum but isn't Shor.)

Attacker equipped with a large Shor computer breaks RSA, DSA, ECDSA, ECDH, etc.

Retroactively decrypts intercepted ciphertexts, whether or not they have "perfect forward secrecy".

No evidence that attackers have a Shor computer today. (D-Wave computer seems to be quantum but isn't Shor.) My probability assessment: Medium probability by 2025. High probability by 2030.