Crypto developments

Daniel J. Bernstein

Research Professor, University of Illinois at Chicago

Hoogleraar,
Cryptographic Implementations,
Technische Universiteit Eindhoven

A bit about me

Designer of:

- qmail, used by Yahoo to handle Internet mail;
- tinydns, used by Facebook to publish server addresses;
- dnscache, used by OpenDNS to look up server addresses;
- Curve25519 public-key system used by Apple to protect files stored on iPhones;
- ChaCha20 secret-key cipher used by Chrome to encrypt HTTPS connections to Google.

developments

. Bernstein

n Professor, ty of Illinois at Chicago

aar,

raphic Implementations, the Universiteit Eindhoven

A bit about me

Designer of:

- qmail, used by Yahoo to handle Internet mail;
- tinydns, used by Facebook to publish server addresses;
- dnscache, used by OpenDNS to look up server addresses;
- Curve25519 public-key system used by Apple to protect files stored on iPhones;
- ChaCha20 secret-key cipher used by Chrome to encrypt HTTPS connections to Google.

Standard

Goals: printegrity

nts

n

is at Chicago

olementations, siteit Eindhoven

A bit about me

Designer of:

- qmail, used by Yahoo to handle Internet mail;
- tinydns, used by Facebook to publish server addresses;
- dnscache, used by OpenDNS to look up server addresses;
- Curve25519 public-key system used by Apple to protect files stored on iPhones;
- ChaCha20 secret-key cipher used by Chrome to encrypt HTTPS connections to Google.

Standard crypto is

Goals: protect cor integrity, and avail

Designer of:

- qmail, used by Yahoo to handle Internet mail;
- tinydns, used by Facebook to publish server addresses;
- dnscache, used by OpenDNS to look up server addresses;
- Curve25519 public-key system used by Apple to protect files stored on iPhones;
- ChaCha20 secret-key cipher used by Chrome to encrypt HTTPS connections to Google.

Standard crypto is failing

Goals: protect confidentialit integrity, and availability.

ago

ons, hoven

Designer of:

- qmail, used by Yahoo to handle Internet mail;
- tinydns, used by Facebook to publish server addresses;
- dnscache, used by OpenDNS to look up server addresses;
- Curve25519 public-key system used by Apple to protect files stored on iPhones;
- ChaCha20 secret-key cipher used by Chrome to encrypt HTTPS connections to Google.

Standard crypto is failing

Goals: protect confidentiality, integrity, and availability.

Designer of:

- qmail, used by Yahoo to handle Internet mail;
- tinydns, used by Facebook to publish server addresses;
- dnscache, used by OpenDNS to look up server addresses;
- Curve25519 public-key system used by Apple to protect files stored on iPhones;
- ChaCha20 secret-key cipher used by Chrome to encrypt HTTPS connections to Google.

Standard crypto is failing

Goals: protect confidentiality, integrity, and availability.

Standard crypto does a bad job of meeting these goals today, and an even worse job tomorrow.

Designer of:

- qmail, used by Yahoo to handle Internet mail;
- tinydns, used by Facebook to publish server addresses;
- dnscache, used by OpenDNS to look up server addresses;
- Curve25519 public-key system used by Apple to protect files stored on iPhones;
- ChaCha20 secret-key cipher used by Chrome to encrypt HTTPS connections to Google.

Standard crypto is failing

Goals: protect confidentiality, integrity, and availability.

Standard crypto does a bad job of meeting these goals today, and an even worse job tomorrow.

The standardization process does not insist on security; ignores important warnings from cryptographers; ignores predictable improvements in computer technology; and is unable to resist attack.

out me

of: , used by Yahoo dle Internet mail; ns, used by Facebook olish server addresses; che, used by OpenDNS k up server addresses; 25519 public-key system y Apple to protect ored on iPhones; 1a20 secret-key cipher y Chrome to encrypt 'S connections to Google.

Standard crypto is failing

Goals: protect confidentiality, integrity, and availability.

Standard crypto does a bad job of meeting these goals today, and an even worse job tomorrow.

The standardization process does not insist on security; ignores important warnings from cryptographers; ignores predictable improvements in computer technology; and is unable to resist attack.

MD5

2008 Ste Appelba Osvik–de

 $MD5 \Rightarrow$

Yahoo et mail; by Facebook addresses; by OpenDNS r addresses; lic-key system protect Phones; t-key cipher to encrypt

ions to Google.

Standard crypto is failing

Goals: protect confidentiality, integrity, and availability.

Standard crypto does a bad job of meeting these goals today, and an even worse job tomorrow.

The standardization process does not insist on security; ignores important warnings from cryptographers; ignores predictable improvements in computer technology; and is unable to resist attack.

MD5

Appelbaum-Lenst Osvik-de Weger e MD5 \Rightarrow rogue CA

2008 Stevens-Soti

Goals: protect confidentiality, integrity, and availability.

Standard crypto does a bad job of meeting these goals today, and an even worse job tomorrow.

The standardization process does not insist on security; ignores important warnings from cryptographers; ignores predictable improvements in computer technology; and is unable to resist attack.

<u>MD5</u>

2008 Stevens–Sotirov– Appelbaum–Lenstra–Molnar Osvik–de Weger exploited MD5 ⇒ rogue CA for TLS.

ok s; ONS

tem

er t

ogle.

Goals: protect confidentiality, integrity, and availability.

Standard crypto does a bad job of meeting these goals today, and an even worse job tomorrow.

The standardization process does not insist on security; ignores important warnings from cryptographers; ignores predictable improvements in computer technology; and is unable to resist attack.

MD5

2008 Stevens–Sotirov– Appelbaum–Lenstra–Molnar– Osvik–de Weger exploited MD5 \Rightarrow rogue CA for TLS.

Goals: protect confidentiality, integrity, and availability.

Standard crypto does a bad job of meeting these goals today, and an even worse job tomorrow.

The standardization process does not insist on security; ignores important warnings from cryptographers; ignores predictable improvements in computer technology; and is unable to resist attack.

MD5

2008 Stevens–Sotirov– Appelbaum–Lenstra–Molnar– Osvik–de Weger exploited MD5 \Rightarrow rogue CA for TLS.

2012 Flame: new MD5 attack.

Goals: protect confidentiality, integrity, and availability.

Standard crypto does a bad job of meeting these goals today, and an even worse job tomorrow.

The standardization process does not insist on security; ignores important warnings from cryptographers; ignores predictable improvements in computer technology; and is unable to resist attack.

MD5

2008 Stevens–Sotirov– Appelbaum–Lenstra–Molnar– Osvik–de Weger exploited MD5 ⇒ rogue CA for TLS.

2012 Flame: new MD5 attack.

Fact: By 1996, a few years after the introduction of MD5, Preneel and Dobbertin were calling for MD5 to be scrapped.

Goals: protect confidentiality, integrity, and availability.

Standard crypto does a bad job of meeting these goals today, and an even worse job tomorrow.

The standardization process does not insist on security; ignores important warnings from cryptographers; ignores predictable improvements in computer technology; and is unable to resist attack.

MD5

2008 Stevens–Sotirov– Appelbaum–Lenstra–Molnar– Osvik–de Weger exploited MD5 \Rightarrow rogue CA for TLS.

2012 Flame: new MD5 attack.

Fact: By 1996, a few years after the introduction of MD5, Preneel and Dobbertin were calling for MD5 to be scrapped.

Internet crypto standardization continued using MD5.

d crypto is failing

rotect confidentiality, and availability.

d crypto does a bad job ng these goals today, even worse job tomorrow.

indardization process insist on security; mportant warnings ptographers; predictable improvements uter technology; and to resist attack.

<u>MD5</u>

2008 Stevens–Sotirov– Appelbaum–Lenstra–Molnar– Osvik–de Weger exploited MD5 \Rightarrow rogue CA for TLS.

2012 Flame: new MD5 attack.

Fact: By 1996, a few years after the introduction of MD5, Preneel and Dobbertin were calling for MD5 to be scrapped.

Internet crypto standardization continued using MD5.

<u>Taiwan</u>

Renesas
Security
by T-Sys
CC assu

failing

nfidentiality, lability.

oes a bad job goals today, e job tomorrow.

on process security; warnings ers;

e improvements ology; and attack.

<u>MD5</u>

2008 Stevens–Sotirov– Appelbaum–Lenstra–Molnar– Osvik–de Weger exploited MD5 \Rightarrow rogue CA for TLS.

2012 Flame: new MD5 attack.

Fact: By 1996, a few years after the introduction of MD5, Preneel and Dobbertin were calling for MD5 to be scrapped.

Internet crypto standardization continued using MD5.

Taiwan Citizen Dig

Renesas HD65145 Security Microcon by T-Systems, cer CC assurance leve

MD5

2008 Stevens–Sotirov– Appelbaum–Lenstra–Molnar– Osvik–de Weger exploited MD5 ⇒ rogue CA for TLS.

2012 Flame: new MD5 attack.

Fact: By 1996, a few years after the introduction of MD5, Preneel and Dobbertin were calling for MD5 to be scrapped.

Internet crypto standardization continued using MD5.

Taiwan Citizen Digital Certi

Renesas HD65145C1 "High-Security Microcontroller": t by T-Systems, certified by E CC assurance level EAL4+.

nents

job

rrow.

2008 Stevens–Sotirov– Appelbaum–Lenstra–Molnar– Osvik–de Weger exploited MD5 ⇒ rogue CA for TLS.

2012 Flame: new MD5 attack.

Fact: By 1996, a few years after the introduction of MD5, Preneel and Dobbertin were calling for MD5 to be scrapped.

Internet crypto standardization continued using MD5.

Taiwan Citizen Digital Certificates

Renesas HD65145C1 "High-Security Microcontroller": tested by T-Systems, certified by BSI at CC assurance level EAL4+.

2008 Stevens–Sotirov– Appelbaum–Lenstra–Molnar– Osvik–de Weger exploited MD5 ⇒ rogue CA for TLS.

2012 Flame: new MD5 attack.

Fact: By 1996, a few years after the introduction of MD5, Preneel and Dobbertin were calling for MD5 to be scrapped.

Internet crypto standardization continued using MD5.

Taiwan Citizen Digital Certificates

Renesas HD65145C1 "High-Security Microcontroller": tested by T-Systems, certified by BSI at CC assurance level EAL4+.

Used in Chunghwa Telecom
HICOS PKI Smart Card, tested by
DOMUS IT Security Laboratory,
FIPS 140-2 Level 2 certificate
jointly from NIST and CSE.

2008 Stevens–Sotirov– Appelbaum–Lenstra–Molnar– Osvik–de Weger exploited MD5 ⇒ rogue CA for TLS.

2012 Flame: new MD5 attack.

Fact: By 1996, a few years after the introduction of MD5, Preneel and Dobbertin were calling for MD5 to be scrapped.

Internet crypto standardization continued using MD5.

Taiwan Citizen Digital Certificates

Renesas HD65145C1 "High-Security Microcontroller": tested by T-Systems, certified by BSI at CC assurance level EAL4+.

Used in Chunghwa Telecom
HICOS PKI Smart Card, tested by
DOMUS IT Security Laboratory,
FIPS 140-2 Level 2 certificate
jointly from NIST and CSE.

Deployed for two million people.

2008 Stevens–Sotirov– Appelbaum–Lenstra–Molnar– Osvik–de Weger exploited MD5 ⇒ rogue CA for TLS.

2012 Flame: new MD5 attack.

Fact: By 1996, a few years after the introduction of MD5, Preneel and Dobbertin were calling for MD5 to be scrapped.

Internet crypto standardization continued using MD5.

Taiwan Citizen Digital Certificates

Renesas HD65145C1 "High-Security Microcontroller": tested by T-Systems, certified by BSI at CC assurance level EAL4+.

Used in Chunghwa Telecom HICOS PKI Smart Card, tested by DOMUS IT Security Laboratory, FIPS 140-2 Level 2 certificate jointly from NIST and CSE.

Deployed for two million people. 2013 Bernstein-Chang-Cheng-Chou-Heninger-Lange-van Someren: 184 keys factored.

evens–Sotirov– um–Lenstra–Molnar– e Weger exploited rogue CA for TLS.

ame: new MD5 attack.

y 1996, a few years introduction of MD5, and Dobbertin were or MD5 to be scrapped.

crypto standardization ded using MD5.

Taiwan Citizen Digital Certificates

Renesas HD65145C1 "High-Security Microcontroller": tested by T-Systems, certified by BSI at CC assurance level EAL4+.

Used in Chunghwa Telecom
HICOS PKI Smart Card, tested by
DOMUS IT Security Laboratory,
FIPS 140-2 Level 2 certificate
jointly from NIST and CSE.

Deployed for two million people. 2013 Bernstein-Chang-Cheng-Chou-Heninger-Lange-van Someren: 184 keys factored.

Dual EC

2004: A random-(Didn't secretly

rov–
ra–Molnar–
xploited
for TLS.

MD5 attack.

few years
ion of MD5,
ertin were
be scrapped.

andardization ID5.

Taiwan Citizen Digital Certificates

Renesas HD65145C1 "High-Security Microcontroller": tested by T-Systems, certified by BSI at CC assurance level EAL4+.

Used in Chunghwa Telecom
HICOS PKI Smart Card, tested by
DOMUS IT Security Laboratory,
FIPS 140-2 Level 2 certificate
jointly from NIST and CSE.

Deployed for two million people. 2013 Bernstein-Chang-Cheng-Chou-Heninger-Lange-van Someren: 184 keys factored.

Dual EC

2004: ANSI draft random-number go (Didn't say: desig secretly predictable)

Renesas HD65145C1 "High-Security Microcontroller": tested by T-Systems, certified by BSI at CC assurance level EAL4+.

Used in Chunghwa Telecom
HICOS PKI Smart Card, tested by
DOMUS IT Security Laboratory,
FIPS 140-2 Level 2 certificate
jointly from NIST and CSE.

Deployed for two million people. 2013 Bernstein-Chang-Cheng-Chou-Heninger-Lange-van Someren: 184 keys factored.

Dual EC

2004: ANSI draft "Dual EC random-number generator. (Didn't say: designed by NS secretly predictable to NSA.

ck.

)5,

ped.

ion

Renesas HD65145C1 "High-Security Microcontroller": tested by T-Systems, certified by BSI at CC assurance level EAL4+.

Used in Chunghwa Telecom
HICOS PKI Smart Card, tested by
DOMUS IT Security Laboratory,
FIPS 140-2 Level 2 certificate
jointly from NIST and CSE.

Deployed for two million people. 2013 Bernstein-Chang-Cheng-Chou-Heninger-Lange-van Someren: 184 keys factored.

Dual EC

2004: ANSI draft "Dual EC" random-number generator.
(Didn't say: designed by NSA, secretly predictable to NSA.)

Renesas HD65145C1 "High-Security Microcontroller": tested by T-Systems, certified by BSI at CC assurance level EAL4+.

Used in Chunghwa Telecom
HICOS PKI Smart Card, tested by
DOMUS IT Security Laboratory,
FIPS 140-2 Level 2 certificate
jointly from NIST and CSE.

Deployed for two million people. 2013 Bernstein-Chang-Cheng-Chou-Heninger-Lange-van Someren: 184 keys factored.

Dual EC

2004: ANSI draft "Dual EC" random-number generator.
(Didn't say: designed by NSA, secretly predictable to NSA.)

2006 Gjøsteen: Dual EC is biased. 2006 Sidorenko-Schoenmakers: Dual EC is even more biased.

Renesas HD65145C1 "High-Security Microcontroller": tested by T-Systems, certified by BSI at CC assurance level EAL4+.

Used in Chunghwa Telecom
HICOS PKI Smart Card, tested by
DOMUS IT Security Laboratory,
FIPS 140-2 Level 2 certificate
jointly from NIST and CSE.

Deployed for two million people. 2013 Bernstein-Chang-Cheng-Chou-Heninger-Lange-van Someren: 184 keys factored.

Dual EC

2004: ANSI draft "Dual EC" random-number generator.
(Didn't say: designed by NSA, secretly predictable to NSA.)

2006 Gjøsteen: Dual EC is biased. 2006 Sidorenko-Schoenmakers: Dual EC is even more biased.

NIST then standardized Dual EC.

Renesas HD65145C1 "High-Security Microcontroller": tested by T-Systems, certified by BSI at CC assurance level EAL4+.

Used in Chunghwa Telecom
HICOS PKI Smart Card, tested by
DOMUS IT Security Laboratory,
FIPS 140-2 Level 2 certificate
jointly from NIST and CSE.

Deployed for two million people. 2013 Bernstein-Chang-Cheng-Chou-Heninger-Lange-van Someren: 184 keys factored.

Dual EC

2004: ANSI draft "Dual EC" random-number generator.
(Didn't say: designed by NSA, secretly predictable to NSA.)

2006 Gjøsteen: Dual EC is biased. 2006 Sidorenko-Schoenmakers: Dual EC is even more biased.

NIST then standardized Dual EC.

2007 Shumow–Ferguson: would have been easy to make Dual EC secretly predictable.

Renesas HD65145C1 "High-Security Microcontroller": tested by T-Systems, certified by BSI at CC assurance level EAL4+.

Used in Chunghwa Telecom
HICOS PKI Smart Card, tested by
DOMUS IT Security Laboratory,
FIPS 140-2 Level 2 certificate
jointly from NIST and CSE.

Deployed for two million people. 2013 Bernstein-Chang-Cheng-Chou-Heninger-Lange-van Someren: 184 keys factored.

Dual EC

2004: ANSI draft "Dual EC" random-number generator.
(Didn't say: designed by NSA, secretly predictable to NSA.)

2006 Gjøsteen: Dual EC is biased. 2006 Sidorenko–Schoenmakers: Dual EC is even more biased.

NIST then standardized Dual EC.

2007 Shumow–Ferguson: would have been easy to make Dual EC secretly predictable.

NIST kept standard until 2014.

Citizen Digital Certificates

HD65145C1 "High-Microcontroller": tested stems, certified by BSI at rance level EAL4+.

Chunghwa Telecom
PKI Smart Card, tested by
IT Security Laboratory,
0-2 Level 2 certificate
om NIST and CSE.

d for two million people.
rnstein-Chang-Chengeninger-Lange-van
184 keys factored.

Dual EC

2004: ANSI draft 'Dual EC' random-number generator.

(Didn't say: designed by NSA, secretly predictable to NSA.)

2006 Gjøsteen: Dual EC is biased. 2006 Sidorenko-Schoenmakers: Dual EC is even more biased.

NIST then standardized Dual EC.

2007 Shumow–Ferguson: would have been easy to make Dual EC secretly predictable.

NIST kept standard until 2014.

<u>Heartble</u>

Crypto s rewards

gital Certificates

C1 "Hightroller": tested tified by BSI at I EAL4+.

Telecom Card, tested by ity Laboratory, 2 certificate and CSE.

million people.
nang-Chengange-van
s factored.

Dual EC

2004: ANSI draft "Dual EC" random-number generator.
(Didn't say: designed by NSA, secretly predictable to NSA.)

2006 Gjøsteen: Dual EC is biased. 2006 Sidorenko–Schoenmakers: Dual EC is even more biased.

NIST then standardized Dual EC.

2007 Shumow–Ferguson: would have been easy to make Dual EC secretly predictable.

NIST kept standard until 2014.

Heartbleed

Crypto standardiza rewards unnecessa

ficates ested SI at ted by tory, te ople. ng-

Dual EC

2004: ANSI draft "Dual EC" random-number generator.
(Didn't say: designed by NSA, secretly predictable to NSA.)

2006 Gjøsteen: Dual EC is biased. 2006 Sidorenko–Schoenmakers: Dual EC is even more biased.

NIST then standardized Dual EC.

2007 Shumow–Ferguson: would have been easy to make Dual EC secretly predictable.

NIST kept standard until 2014.

Heartbleed

Crypto standardization processary complete

2004: ANSI draft 'Dual EC' random-number generator.

(Didn't say: designed by NSA, secretly predictable to NSA.)

2006 Gjøsteen: Dual EC is biased. 2006 Sidorenko–Schoenmakers: Dual EC is even more biased.

NIST then standardized Dual EC.

2007 Shumow–Ferguson: would have been easy to make Dual EC secretly predictable.

NIST kept standard until 2014.

Heartbleed

Crypto standardization process rewards unnecessary complexity.

2004: ANSI draft "Dual EC" random-number generator.
(Didn't say: designed by NSA, secretly predictable to NSA.)

2006 Gjøsteen: Dual EC is biased. 2006 Sidorenko-Schoenmakers: Dual EC is even more biased.

NIST then standardized Dual EC.

2007 Shumow–Ferguson: would have been easy to make Dual EC secretly predictable.

NIST kept standard until 2014.

Heartbleed

Crypto standardization process rewards unnecessary complexity.

Exception: small platforms.

But modern crypto platforms are complicated software devices.

2004: ANSI draft 'Dual EC' random-number generator.

(Didn't say: designed by NSA, secretly predictable to NSA.)

2006 Gjøsteen: Dual EC is biased. 2006 Sidorenko-Schoenmakers: Dual EC is even more biased.

NIST then standardized Dual EC.

2007 Shumow–Ferguson: would have been easy to make Dual EC secretly predictable.

NIST kept standard until 2014.

Heartbleed

Crypto standardization process rewards unnecessary complexity.

Exception: small platforms.

But modern crypto platforms are complicated software devices.

Complex crypto is practically impossible to get right and audit. Many security holes: Heartbleed, goto fail, new SChannel bug, etc.

2004: ANSI draft 'Dual EC' random-number generator.

(Didn't say: designed by NSA, secretly predictable to NSA.)

2006 Gjøsteen: Dual EC is biased. 2006 Sidorenko-Schoenmakers: Dual EC is even more biased.

NIST then standardized Dual EC.

2007 Shumow–Ferguson: would have been easy to make Dual EC secretly predictable.

NIST kept standard until 2014.

Heartbleed

Crypto standardization process rewards unnecessary complexity.

Exception: small platforms.

But modern crypto platforms are complicated software devices.

Complex crypto is practically impossible to get right and audit. Many security holes: Heartbleed, goto fail, new SChannel bug, etc.

Crypto is front line, performance-constrained. Hard to isolate and monitor.

NSI draft "Dual EC"

number generator.
say: designed by NSA,
predictable to NSA.)

østeen: Dual EC is biased.

dorenko-Schoenmakers:

is even more biased.

en standardized Dual EC.

umow-Ferguson:

ave been easy to make

secretly predictable.

pt standard until 2014.

<u>Heartbleed</u>

Crypto standardization process rewards unnecessary complexity.

Exception: small platforms.

But modern crypto platforms are complicated software devices.

Complex crypto is practically impossible to get right and audit. Many security holes: Heartbleed, goto fail, new SChannel bug, etc.

Crypto is front line, performance-constrained. Hard to isolate and monitor.

Quantur

Attacker a large S RSA, DS "Dual EC" enerator. ned by NSA, e to NSA.

ual EC is biased. choenmakers: nore biased.

rdized Dual EC.

guson:

easy to make predictable.

d until 2014.

Heartbleed

Crypto standardization process rewards unnecessary complexity.

Exception: small platforms.

But modern crypto platforms are complicated software devices.

Complex crypto is practically impossible to get right and audit. Many security holes: Heartbleed, goto fail, new SChannel bug, etc.

Crypto is front line, performance-constrained. Hard to isolate and monitor.

Quantum compute

Attacker equipped a large Shor comp RSA, DSA, ECDS

Crypto standardization process rewards unnecessary complexity.

Exception: small platforms.

But modern crypto platforms are complicated software devices.

Complex crypto is practically impossible to get right and audit. Many security holes: Heartbleed, goto fail, new SChannel bug, etc.

Crypto is front line, performance-constrained. Hard to isolate and monitor.

Quantum computers

Attacker equipped with a large Shor computer break RSA, DSA, ECDSA, ECDH,

Δ

) piased.

ers:

al EC.

ke

14.

Crypto standardization process rewards unnecessary complexity.

Exception: small platforms.

But modern crypto platforms are complicated software devices.

Complex crypto is practically impossible to get right and audit. Many security holes: Heartbleed, goto fail, new SChannel bug, etc.

Crypto is front line, performance-constrained. Hard to isolate and monitor.

Quantum computers

Attacker equipped with a large Shor computer breaks RSA, DSA, ECDSA, ECDH, etc.

Crypto standardization process rewards unnecessary complexity.

Exception: small platforms.

But modern crypto platforms are

complicated software devices.

Complex crypto is practically impossible to get right and audit. Many security holes: Heartbleed, goto fail, new SChannel bug, etc.

Crypto is front line, performance-constrained. Hard to isolate and monitor.

Quantum computers

Attacker equipped with a large Shor computer breaks RSA, DSA, ECDSA, ECDH, etc.

Retroactively decrypts intercepted ciphertexts, whether or not they have "perfect forward secrecy".

Crypto standardization process rewards unnecessary complexity.

Exception: small platforms.

But modern crypto platforms are complicated software devices.

Complex crypto is practically impossible to get right and audit. Many security holes: Heartbleed, goto fail, new SChannel bug, etc.

Crypto is front line, performance-constrained. Hard to isolate and monitor.

Quantum computers

Attacker equipped with a large Shor computer breaks RSA, DSA, ECDSA, ECDH, etc.

Retroactively decrypts intercepted ciphertexts, whether or not they have "perfect forward secrecy".

No evidence that attackers have a Shor computer today. (D-Wave computer seems to be quantum but isn't Shor.)

Crypto standardization process rewards unnecessary complexity.

Exception: small platforms.

But modern crypto platforms are complicated software devices.

Complex crypto is practically impossible to get right and audit. Many security holes: Heartbleed, goto fail, new SChannel bug, etc.

Crypto is front line, performance-constrained. Hard to isolate and monitor.

Quantum computers

Attacker equipped with a large Shor computer breaks RSA, DSA, ECDSA, ECDH, etc.

Retroactively decrypts intercepted ciphertexts, whether or not they have "perfect forward secrecy".

No evidence that attackers have a Shor computer today. (D-Wave computer seems to be quantum but isn't Shor.)
My probability assessment:
Medium probability by 2025.
High probability by 2030.