Crypto developments

Daniel J. Bernstein
Research Professor,
University of Illinois at Chicago
Hoogleraar,
Cryptographic Implementations,
Technische Universiteit Eindhoven

A bit about me

Designer of:
• qmail, used by Yahoo
to handle Internet mail;
• tinydns, used by Facebook
to publish server addresses;
• dnscache, used by OpenDNS
to look up server addresses;
• Curve25519 public-key system
used by Apple to protect
files stored on iPhones;
• ChaCha20 secret-key cipher
used by Chrome to encrypt
HTTPS connections to Google.
Crypto developments

Daniel J. Bernstein
Research Professor,
University of Illinois at Chicago
Hoogleraar,
Cryptographic Implementations,
Technische Universiteit Eindhoven

A bit about me

Designer of:
- qmail, used by Yahoo
to handle Internet mail;
- tinydns, used by Facebook
to publish server addresses;
- dnscache, used by OpenDNS
to look up server addresses;
- Curve25519 public-key system
 used by Apple to protect
 files stored on iPhones;
- ChaCha20 secret-key cipher
 used by Chrome to encrypt
 HTTPS connections to Google.

Standard crypto is failing

Goals: protect confidentiality,
integrity, and availability.
A bit about me

Designer of:
- qmail, used by Yahoo to handle Internet mail;
- tinydns, used by Facebook to publish server addresses;
- dnscache, used by OpenDNS to look up server addresses;
- Curve25519 public-key system used by Apple to protect files stored on iPhones;
- ChaCha20 secret-key cipher used by Chrome to encrypt HTTPS connections to Google.

Standard crypto is failing
Goals: protect confidentiality, integrity, and availability.
A bit about me

Designer of:
- qmail, used by Yahoo to handle Internet mail;
- tinydns, used by Facebook to publish server addresses;
- dnscache, used by OpenDNS to look up server addresses;
- Curve25519 public-key system used by Apple to protect files stored on iPhones;
- ChaCha20 secret-key cipher used by Chrome to encrypt HTTPS connections to Google.

Standard crypto is failing

Goals: protect confidentiality, integrity, and availability.
A bit about me

Designer of:
• qmail, used by Yahoo to handle Internet mail;
• tinydns, used by Facebook to publish server addresses;
• dnscache, used by OpenDNS to look up server addresses;
• Curve25519 public-key system used by Apple to protect files stored on iPhones;
• ChaCha20 secret-key cipher used by Chrome to encrypt HTTPS connections to Google.

Standard crypto is failing

Goals: protect confidentiality, integrity, and availability.
A bit about me

Designer of:
• qmail, used by Yahoo to handle Internet mail;
• tinydns, used by Facebook to publish server addresses;
• dnscache, used by OpenDNS to look up server addresses;
• Curve25519 public-key system used by Apple to protect files stored on iPhones;
• ChaCha20 secret-key cipher used by Chrome to encrypt HTTPS connections to Google.

Standard crypto is failing

Goals: protect confidentiality, integrity, and availability.

Standard crypto does a bad job of meeting these goals today, and an even worse job tomorrow.
A bit about me

Designer of:
- qmail, used by Yahoo to handle Internet mail;
- tinydns, used by Facebook to publish server addresses;
- dnscache, used by OpenDNS to look up server addresses;
- Curve25519 public-key system used by Apple to protect files stored on iPhones;
- ChaCha20 secret-key cipher used by Chrome to encrypt HTTPS connections to Google.

Standard crypto is failing

Goals: protect confidentiality, integrity, and availability.

Standard crypto does a bad job of meeting these goals today, and an even worse job tomorrow.

The standardization process does not insist on security; ignores important warnings from cryptographers; ignores predictable improvements in computer technology; and is unable to resist attack.
About me
Designer of:
• qmail, used by Yahoo to handle Internet mail;
• tinydns, used by Facebook to publish server addresses;
• dnscache, used by OpenDNS to look up server addresses;
• Curve25519 public-key system used by Apple to protect files stored on iPhones;
• ChaCha20 secret-key cipher used by Chrome to encrypt HTTPS connections to Google.

Standard crypto is failing
Goals: protect confidentiality, integrity, and availability.

Standard crypto does a bad job of meeting these goals today, and an even worse job tomorrow.

The standardization process does not insist on security; ignores important warnings from cryptographers; ignores predictable improvements in computer technology; and is unable to resist attack.

2008 Stevens–Sotirov–Appelbaum–Lenstra–Molnar–Osvik–de Weger exploited MD5 ⇒ rogue CA for TLS.
Standard crypto is failing

Goals: protect confidentiality, integrity, and availability.

Standard crypto does a bad job of meeting these goals today, and an even worse job tomorrow.

The standardization process does not insist on security; ignores important warnings from cryptographers; ignores predictable improvements in computer technology; and is unable to resist attack.

MD5
2008 Stevens–Sotirov–Appelbaum–Lenstra–Molnar–Osvik–de Weger exploited MD5 ⇒ rogue CA for TLS.
A bit about me
Designer of:
• qmail, used by Yahoo to handle Internet mail;
• tinydns, used by Facebook to publish server addresses;
• dnscache, used by OpenDNS to look up server addresses;
• Curve25519 public-key system used by Apple to protect files stored on iPhones;
• ChaCha20 secret-key cipher used by Chrome to encrypt HTTPS connections to Google.

Standard crypto is failing
Goals: protect confidentiality, integrity, and availability.

Standard crypto does a bad job of meeting these goals today, and an even worse job tomorrow.

The standardization process does not insist on security; ignores important warnings from cryptographers; ignores predictable improvements in computer technology; and is unable to resist attack.

MD5
2008 Stevens–Sotirov–Appelbaum–Lenstra–Molnar–Osvik–de Weger exploited MD5 ⇒ rogue CA for TLS.
Standard crypto is failing

Goals: protect confidentiality, integrity, and availability.

Standard crypto does a bad job of meeting these goals today, and an even worse job tomorrow.

The standardization process does not insist on security; ignores important warnings from cryptographers; ignores predictable improvements in computer technology; and is unable to resist attack.

MD5

2008 Stevens–Sotirov–Appelbaum–Lenstra–Molnar–Osvik–de Weger exploited MD5 ⇒ rogue CA for TLS.
Standard crypto is failing

Goals: protect confidentiality, integrity, and availability.

Standard crypto does a bad job of meeting these goals today, and an even worse job tomorrow.

The standardization process does not insist on security; ignores important warnings from cryptographers; ignores predictable improvements in computer technology; and is unable to resist attack.

MD5

2008 Stevens–Sotirov–Appelbaum–Lenstra–Molnar–Osvik–de Weger exploited MD5 \Rightarrow rogue CA for TLS.

2012 Flame: new MD5 attack.
Standard crypto is failing

Goals: protect confidentiality, integrity, and availability.

Standard crypto does a bad job of meeting these goals today, and an even worse job tomorrow.

The standardization process does not insist on security; ignores important warnings from cryptographers; ignores predictable improvements in computer technology; and is unable to resist attack.

MD5

2008 Stevens–Sotirov–Appelbaum–Lenstra–Molnar–Osvik–de Weger exploited MD5 ⇒ rogue CA for TLS.

2012 Flame: new MD5 attack.

Fact: By 1996, a few years after the introduction of MD5, Preneel and Dobbertin were calling for MD5 to be scrapped.
Standard crypto is failing

Goals: protect confidentiality, integrity, and availability.

Standard crypto does a bad job of meeting these goals today, and an even worse job tomorrow.

The standardization process does not insist on security; ignores important warnings from cryptographers; ignores predictable improvements in computer technology; and is unable to resist attack.

MD5

2008 Stevens–Sotirov–Appelbaum–Lenstra–Molnar–Osvik–de Weger exploited MD5 \implies rogue CA for TLS.

2012 Flame: new MD5 attack.

Fact: By 1996, a few years after the introduction of MD5, Preneel and Dobbertin were calling for MD5 to be scrapped.

Internet crypto standardization continued using MD5.
Standard crypto is failing

Goals: protect confidentiality, integrity, and availability.

Standard crypto does a bad job of meeting these goals today, and an even worse job tomorrow.

The standardization process does not insist on security; ignores important warnings from cryptographers; ignores predictable improvements in computer technology; and is unable to resist attack.

MD5

2008 Stevens–Sotirov–Appelbaum–Lenstra–Molnar–Osvik–de Weger exploited MD5 ⇒ rogue CA for TLS.

2012 Flame: new MD5 attack.

Fact: By 1996, a few years after the introduction of MD5, Preneel and Dobbertin were calling for MD5 to be scrapped.

Internet crypto standardization continued using MD5.

Taiwan Citizen Digital Certificates
Renesas HD65145C1 "High-Security Microcontroller": tested by T-Systems, certified by BSI at CC assurance level EAL4+.
Standard crypto is failing

Goals: protect confidentiality, integrity, and availability.

Standard crypto does a bad job of meeting these goals today, and an even worse job tomorrow.

The standardization process does not insist on security; ignores important warnings from cryptographers; ignores predictable improvements in computer technology; and is unable to resist attack.

MD5

2008 Stevens–Sotirov–Appelbaum–Lenstra–Molnar–Osvik–de Weger exploited MD5 ⇒ rogue CA for TLS.

2012 Flame: new MD5 attack.

Fact: By 1996, a few years after the introduction of MD5, Preneel and Dobbertin were calling for MD5 to be scrapped.

Internet crypto standardization continued using MD5.

Taiwan Citizen Digital Certificates

Standard crypto is failing

Goals: protect confidentiality, integrity, and availability.

Standard crypto does a bad job meeting these goals today, and an even worse job tomorrow.

The standardization process does not insist on security; ignores important warnings from cryptographers; ignores predictable improvements in computer technology; and is unable to resist attack.

MD5

2008 Stevens–Sotirov–Appelbaum–Lenstra–Molnar–Osvik–de Weger exploited MD5 ⇒ rogue CA for TLS.

2012 Flame: new MD5 attack.

Fact: By 1996, a few years after the introduction of MD5, Preneel and Dobbertin were calling for MD5 to be scrapped.

Internet crypto standardization continued using MD5.

Taiwan Citizen Digital Certificates

MD5

2008 Stevens–Sotirov–Appelbaum–Lenstra–Molnar–Osvik–de Weger exploited MD5 ⇒ rogue CA for TLS.

2012 Flame: new MD5 attack.

Fact: By 1996, a few years after the introduction of MD5, Preneel and Dobbertin were calling for MD5 to be scrapped.

Internet crypto standardization continued using MD5.

Taiwan Citizen Digital Certificates

MD5

2008 Stevens–Sotirov–Appelbaum–Lenstra–Molnar–Osvik–de Weger exploited MD5 ⇒ rogue CA for TLS.

2012 Flame: new MD5 attack.

Fact: By 1996, a few years after the introduction of MD5, Preneel and Dobbertin were calling for MD5 to be scrapped.

Internet crypto standardization continued using MD5.

Taiwan Citizen Digital Certificates

Used in Chunghwa Telecom HICOS PKI Smart Card, tested by DOMUS IT Security Laboratory, FIPS 140-2 Level 2 certificate jointly from NIST and CSE.
MD5

2008 Stevens–Sotirov–Appelbaum–Lenstra–Molnar–Osvik–de Weger exploited MD5 ⇒ rogue CA for TLS.

2012 Flame: new MD5 attack.

Fact: By 1996, a few years after the introduction of MD5, Preneel and Dobbertin were calling for MD5 to be scrapped. Internet crypto standardization continued using MD5.

Taiwan Citizen Digital Certificates

Used in Chunghwa Telecom HICOS PKI Smart Card, tested by DOMUS IT Security Laboratory, FIPS 140-2 Level 2 certificate jointly from NIST and CSE.

Deployed for two million people.
MD5

2008 Stevens–Sotirov–Appelbaum–Lenstra–Molnar–Osvik–de Weger exploited MD5 ⇒ rogue CA for TLS.

2012 Flame: new MD5 attack.

Fact: By 1996, a few years after the introduction of MD5, Preneel and Dobbertin were calling for MD5 to be scrapped.

Internet crypto standardization continued using MD5.

Taiwan Citizen Digital Certificates

Used in Chunghwa Telecom HICOS PKI Smart Card, tested by DOMUS IT Security Laboratory, FIPS 140-2 Level 2 certificate jointly from NIST and CSE.

Deployed for two million people.

2008 Stevens–Sotirov–Appelbaum–Lenstra–Molnar–Osvik–de Weger exploited MD5 ⇒ rogue CA for TLS.

2012 Flame: new MD5 attack.

Fact: By 1996, a few years after the introduction of MD5, Preneel and Dobbertin were calling for MD5 to be scrapped.

Internet crypto standardization continued using MD5.

Taiwan Citizen Digital Certificates

Used in Chunghwa Telecom HICOS PKI Smart Card, tested by DOMUS IT Security Laboratory, FIPS 140-2 Level 2 certificate jointly from NIST and CSE.

Deployed for two million people.

Dual EC

2004: ANSI draft “Dual EC” random-number generator.

(Didn’t say: designed by NSA, secretly predictable to NSA.)
MD5
2008 Stevens–Sotirov–Appelbaum–Lenstra–Molnar–Osvik–de Weger exploited MD5 ⇒ rogue CA for TLS.

2012 Flame: new MD5 attack.

Fact: By 1996, a few years after the introduction of MD5, Preneel and Dobbertin were calling for MD5 to be scrapped.

Internet crypto standardization continued using MD5.

Taiwan Citizen Digital Certificates

Used in Chunghwa Telecom HICOS PKI Smart Card, tested by DOMUS IT Security Laboratory, FIPS 140-2 Level 2 certificate jointly from NIST and CSE.

Deployed for two million people.

Dual EC
2004: ANSI draft “Dual EC” random-number generator.
(Didn’t say: designed by NSA, secretly predictable to NSA.)
Taiwan Citizen Digital Certificates

Used in Chunghwa Telecom HICOS PKI Smart Card, tested by DOMUS IT Security Laboratory, FIPS 140-2 Level 2 certificate jointly from NIST and CSE.

Deployed for two million people.

Dual EC

2004: ANSI draft “Dual EC” random-number generator.
(Didn’t say: designed by NSA, secretly predictable to NSA.)
Taiwan Citizen Digital Certificates

Used in Chunghwa Telecom HICOS PKI Smart Card, tested by DOMUS IT Security Laboratory, FIPS 140-2 Level 2 certificate jointly from NIST and CSE.

Deployed for two million people.

Dual EC

2004: ANSI draft “Dual EC” random-number generator.
(Didn’t say: designed by NSA, secretly predictable to NSA.)
Taiwan Citizen Digital Certificates

Used in Chunghwa Telecom HICOS PKI Smart Card, tested by DOMUS IT Security Laboratory, FIPS 140-2 Level 2 certificate jointly from NIST and CSE.

Deployed for two million people.

Dual EC

2004: ANSI draft “Dual EC” random-number generator.
(Didn’t say: designed by NSA, secretly predictable to NSA.)

2006 Gjøsteen: Dual EC is biased.

2006 Sidorenko–Schoenmakers: Dual EC is even more biased.
Taiwan Citizen Digital Certificates

Used in Chunghwa Telecom HICOS PKI Smart Card, tested by DOMUS IT Security Laboratory, FIPS 140-2 Level 2 certificate jointly from NIST and CSE.

Deployed for two million people.

Dual EC

2004: ANSI draft “Dual EC” random-number generator.
(Didn’t say: designed by NSA, secretly predictable to NSA.)

2006 Gjøsteen: Dual EC is biased.
2006 Sidorenko–Schoenmakers: Dual EC is even more biased.

NIST then standardized Dual EC.
Taiwan Citizen Digital Certificates

Used in Chunghwa Telecom HICOS PKI Smart Card, tested by DOMUS IT Security Laboratory, FIPS 140-2 Level 2 certificate jointly from NIST and CSE.

Dual EC

2004: ANSI draft “Dual EC” random-number generator. (Didn’t say: designed by NSA, secretly predictable to NSA.)

2006 Gjøsteen: Dual EC is biased.

2006 Sidorenko–Schoenmakers: Dual EC is even more biased.

NIST then standardized Dual EC.

2007 Shumow–Ferguson: would have been easy to make Dual EC secretly predictable.
Taiwan Citizen Digital Certificates

Used in Chunghwa Telecom HICOS PKI Smart Card, tested by DOMUS IT Security Laboratory, FIPS 140-2 Level 2 certificate jointly from NIST and CSE.

Deployed for two million people.

Dual EC

2004: ANSI draft “Dual EC” random-number generator.

(Didn’t say: designed by NSA, secretly predictable to NSA.)

2006 Gjøsteen: Dual EC is biased.

2006 Sidorenko–Schoenmakers: Dual EC is even more biased.

NIST then standardized Dual EC.

2007 Shumow–Ferguson: would have been easy to make Dual EC secretly predictable.

NIST kept standard until 2014.
Taiwan Citizen Digital Certificates

Chunghwa Telecom HICOS PKI Smart Card, tested by DOMUS IT Security Laboratory, FIPS 140-2 Level 2 certificate jointly from NIST and CSE.

Deployed for two million people.

Dual EC

2004: ANSI draft “Dual EC” random-number generator. (Didn’t say: designed by NSA, secretly predictable to NSA.)

2006 Gjøsteen: Dual EC is biased.

2006 Sidorenko–Schoenmakers: Dual EC is even more biased.

NIST then standardized Dual EC.

2007 Shumow–Ferguson: would have been easy to make Dual EC secretly predictable.

NIST kept standard until 2014.

Heartbleed

Crypto standardization process rewards unnecessary complexity.
Taiwan Citizen Digital Certificates

Used in Chunghwa Telecom HICOS PKI Smart Card, tested by DOMUS IT Security Laboratory, FIPS 140-2 Level 2 certificate jointly from NIST and CSE.

Deployed for two million people.

Dual EC

2004: ANSI draft “Dual EC” random-number generator.

(Didn’t say: designed by NSA, secretly predictable to NSA.)

2006 Gjøsteen: Dual EC is biased.

2006 Sidorenko–Schoenmakers: Dual EC is even more biased.

NIST then standardized Dual EC.

2007 Shumow–Ferguson: would have been easy to make Dual EC secretly predictable.

NIST kept standard until 2014.

Heartbleed

Crypto standardization process rewards unnecessary complexity.
Taiwan Citizen Digital Certificates

Used in Chunghwa Telecom HICOS PKI Smart Card, tested by DOMUS IT Security Laboratory, FIPS 140-2 Level 2 certificate jointly from NIST and CSE.

Deployed for two million people.

Dual EC

2004: ANSI draft “Dual EC” random-number generator. (Didn’t say: designed by NSA, secretly predictable to NSA.)

2006 Gjøsteen: Dual EC is biased.

2006 Sidorenko–Schoenmakers: Dual EC is even more biased.

NIST then standardized Dual EC.

2007 Shumow–Ferguson: would have been easy to make Dual EC secretly predictable.

NIST kept standard until 2014.

Heartbleed

Crypto standardization process rewards unnecessary complexity.
Dual EC

2004: ANSI draft “Dual EC” random-number generator.
(Didn’t say: designed by NSA, secretly predictable to NSA.)

2006 Gjøsteen: Dual EC is biased.
2006 Sidorenko–Schoenmakers: Dual EC is even more biased.

NIST then standardized Dual EC.

2007 Shumow–Ferguson: would have been easy to make Dual EC secretly predictable.

NIST kept standard until 2014.

Heartbleed

Crypto standardization process rewards unnecessary complexity.
Dual EC

2004: ANSI draft “Dual EC” random-number generator.
(Didn’t say: designed by NSA, secretly predictable to NSA.)

2006 Gjøsteen: Dual EC is biased.
2006 Sidorenko–Schoenmakers: Dual EC is even more biased.

NIST then standardized Dual EC.

2007 Shumow–Ferguson: would have been easy to make Dual EC secretly predictable.
NIST kept standard until 2014.

Heartbleed

Crypto standardization process rewards unnecessary complexity.
Exception: small platforms.
But modern crypto platforms are complicated software devices.
Dual EC

2004: ANSI draft “Dual EC” random-number generator.
(Didn’t say: designed by NSA, secretly predictable to NSA.)

2006 Gjøsteen: Dual EC is biased.
2006 Sidorenko–Schoenmakers: Dual EC is even more biased.
NIST *then* standardized Dual EC.

2007 Shumow–Ferguson: would have been easy to make Dual EC secretly predictable.

NIST kept standard until 2014.

Heartbleed

Crypto standardization process rewards unnecessary complexity.

Exception: small platforms.
But modern crypto platforms are complicated software devices.

Complex crypto is practically impossible to get right and audit.
Many security holes: Heartbleed, goto fail, new SChannel bug, etc.
Dual EC

2004: ANSI draft “Dual EC” random-number generator. (Didn’t say: designed by NSA, secretly predictable to NSA.)

2006 Gjøsteen: Dual EC is biased.

2006 Sidorenko–Schoenmakers: Dual EC is even more biased.

NIST *then* standardized Dual EC.

2007 Shumow–Ferguson: would have been easy to make Dual EC secretly predictable.

NIST kept standard until 2014.

Heartbleed

Crypto standardization process rewards unnecessary complexity.

Exception: small platforms.

But modern crypto platforms are complicated software devices.

Complex crypto is practically impossible to get right and audit. Many security holes: Heartbleed, goto fail, new SChannel bug, etc.

Crypto is front line, performance-constrained.

Hard to isolate and monitor.
Dual EC

2004: ANSI draft “Dual EC” random-number generator.

(Didn’t say: designed by NSA, secretly predictable to NSA.)

Østeene: Dual EC is biased.

Sidorenko–Schoenmakers: Dual EC is even more biased.

Then standardized Dual EC.

Shumow–Ferguson: would have been easy to make Dual EC secretly predictable.

NIST kept standard until 2014.

Heartbleed

Crypto standardization process rewards unnecessary complexity.

Exception: small platforms.

But modern crypto platforms are complicated software devices.

Complex crypto is practically impossible to get right and audit.

Many security holes: Heartbleed, goto fail, new SChannel bug, etc.

Crypto is front line, performance-constrained.

Hard to isolate and monitor.

Quantum computers

Attacker equipped with a large Shor computer breaks RSA, DSA, ECDSA, ECDH, etc.
Heartbleed

Crypto standardization process rewards unnecessary complexity.

Exception: small platforms.

But modern crypto platforms are complicated software devices.

Complex crypto is practically impossible to get right and audit.

Many security holes: Heartbleed, goto fail, new SChannel bug, etc.

Crypto is front line, performance-constrained.

Hard to isolate and monitor.

Quantum computers

Attacker equipped with a large Shor computer breaks RSA, DSA, ECDSA, etc.
<table>
<thead>
<tr>
<th>Heartbleed</th>
<th>Quantum computers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crypto standardization process rewards unnecessary complexity.</td>
<td>Attacker equipped with a large Shor computer breaks RSA, DSA, ECDSA, ECDH, etc.</td>
</tr>
<tr>
<td>Exception: small platforms. But modern crypto platforms are complicated software devices.</td>
<td></td>
</tr>
<tr>
<td>Complex crypto is practically impossible to get right and audit. Many security holes: Heartbleed, goto fail, new SChannel bug, etc.</td>
<td></td>
</tr>
<tr>
<td>Crypto is front line, performance-constrained. Hard to isolate and monitor.</td>
<td></td>
</tr>
</tbody>
</table>
Heartbleed
Cryp to standardization process rewards unnecessary complexity.
Exception: small platforms.
But modern crypto platforms are complicated software devices.
Complex crypto is practically impossible to get right and audit.
Many security holes: Heartbleed, goto fail, new SChannel bug, etc.
Crypto is front line, performance-constrained.
Hard to isolate and monitor.

Quantum computers
Attacker equipped with a large Shor computer breaks RSA, DSA, ECDSA, ECDH, etc.
Heartbleed

Crypto standardization process rewards unnecessary complexity.
Exception: small platforms.
But modern crypto platforms are complicated software devices.
Complex crypto is practically impossible to get right and audit.
Many security holes: Heartbleed, goto fail, new SChannel bug, etc.

Crypto is front line, performance-constrained.
Hard to isolate and monitor.

Quantum computers

Attacker equipped with a large Shor computer breaks RSA, DSA, ECDSA, ECDH, etc.
Retroactively decrypts intercepted ciphertexts, *whether or not they have “perfect forward secrecy”*.
Heartbleed

Crypto standardization process rewards unnecessary complexity.

Exception: small platforms.

But modern crypto platforms are complicated software devices.

Complex crypto is practically impossible to get right and audit.

Many security holes: Heartbleed, goto fail, new SChannel bug, etc.

Crypto is front line, performance-constrained.

Hard to isolate and monitor.

Quantum computers

Attacker equipped with a large Shor computer breaks RSA, DSA, ECDSA, ECDH, etc.

Retroactively decrypts intercepted ciphertexts, **whether or not they have “perfect forward secrecy”**.

No evidence that attackers have a Shor computer today.

(D-Wave computer seems to be quantum but isn’t Shor.)
Heartbleed

Crypto standardization process rewards unnecessary complexity.

Exception: small platforms.

But modern crypto platforms are complicated software devices.

Complex crypto is practically impossible to get right and audit.
Many security holes: Heartbleed, goto fail, new SChannel bug, etc.

Crypto is front line, performance-constrained.
Hard to isolate and monitor.

Quantum computers

Attacker equipped with a large Shor computer breaks RSA, DSA, ECDSA, ECDH, etc.

Retroactively decrypts intercepted ciphertexts, **whether or not they have “perfect forward secrecy”**.

No evidence that attackers have a Shor computer today. (D-Wave computer seems to be quantum but isn’t Shor.)
My probability assessment: Medium probability by 2025. High probability by 2030.