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They use this shared secret
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Need surprisingly large g
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Is a "‘complete Edwards curve”.

“The Edwards addition law' :
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where
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Is a ‘complete Edwards curve”.

“The Edwards addition law' :
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Choose a non-square d € Fyg.

{(x,y) € Fg x Fq :
x° + y? =1+ dx’y?}

Is a ‘complete Edwards curve”.

“The Edwards addition law' :
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where

X1y2 + Y1X2
X3: :
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V1Y — X1X0
V3 =
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Choose an odd prime power g.

“What if denominators are 0?”

Answer: They aren't!

If X7 + y2 = 1+ dxiy;

and X22 —|—y22 =1+ dxgyf
then dxyxoy1y2 can't be £1.




More elliptic curves

Choose a non-square d € Fyg.

{(x,y) € Fg x Fq :
x° + y? =1+ dx’y?}

Is a ‘complete Edwards curve”.

“The Edwards addition law' :

(x1, ¥1) + (x2, y2) = (x3, ¥3)
where

3 = X1y2 + Y1X2
1+ dxixoy1yn
O Y1Y2 — X1XD
V3 =

1 — dxixoy1yo

Choose an odd prime power g.

“What if denominators are 0?”

Answer: They aren't!

If X7 + y2 = 1+ dxiy;

and X22 —|—y22 =1+ dxgyf
then dxyxoy1y2 can't be £1.

Main steps in proof:
|f (dX1X2y1y2)2 — 1 then
curve equation implies

(x1 + dxixoy1yoy1)® =
dxiyi(xo + y2)°.

Conclude that d is a square.
But d is not a square! Q.E.D.
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"What if denominators are 0?”

Answer: They aren't!

If X7 + y? = 1+ dxjy;

and X22 +y22 =1+ dx22y22
then dxyxoy1y2 can't be £1.

Main steps in proof:
|f (dX1X2y1y2)2 — 1 then
curve equation implies

(x1 + dxixoy1yoy1)? =
dxiyi(xo + y2)°.

Conclude that d is a square.
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“What if denominators are 0?”

Answer: They aren't!

If X7 + y2 = 1+ dxiy;

and X22 —|—y22 =1+ dxzzyf
then dxyxoy1y2 can't be £1.

Main steps in proof:
|f (dX1X2y1y2)2 — 1 then
curve equation implies

(x1 + dxixoy1yoy1)? =
dxiyi(xo + y2)°.

Conclude that d is a square.
But d is not a square! Q.E.D.
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Answer: They aren't! standard structure theorems?”

|t X12 + yl2 =1+ dx12y12 e.g. "Every afhine algebraic group
and X22 -+ y22 =1+ dxzzyf s linear.”

then dxixz2y1y2 can't be £1. e.g. “Theorem 1. The smallest

Main steps in proof: cardinality of a complete system
|f (dx1x2y1y2)2 — 1 then of addition laws on E equals
curve equation implies two.” (1995 Bosma-Lenstra)

(x1 + dxixoy1yoy1)? =
dxiyi(xo + y2)°.

Conclude that d is a square.
But d is not a square! Q.E.D.

The way out: Don't confuse
geometry with arithmetic.
The Edwards addition law is
complete for Fg, not Fq(\/g).
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The way out: Don't confuse
geometry with arithmetic.
The Edwards addition law is
complete for Fg, not Fq(\/g).
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Choose prime g = 2%2° — 1¢
Choose d = 121665/121666
this 1s non-square in Fg.
Use x? 4+ y? = 1 + dx?y?.
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Use x? + y? = 1 + dx?y?.




“Doesn’t this contradict

standard structure theorems?”

e.g. 'Every affine algebraic group

s linear.”

eg. T
cardina

neorem 1. The smallest

ity of a complete system

of addition laws on E equals
two.” (1995 Bosma—Lenstra)

The way out: Don't confuse

geometry with arithmetic.
The Edwards addition law is
complete for Fg, not Fg(v/d).

Safe, conservative crypto:
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Use x? + y? = 1 + dx?y?.

Rest of this talk
will switch to square g.
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“Doesn’t this contradict
standard structure theorems?”

e.g. 'Every affine algebraic group
s linear.”

e.g. "Theorem 1. The smallest

cardinality of a complete system
of addition laws on E equals
two.” (1995 Bosma—Lenstra)

The way out: Don't confuse
geometry with arithmetic.
The Edwards addition law is
complete for Fg, not Fq(\/g).

Safe, conservative crypto:
Choose prime g = 22°° — 19.
Choose d = 121665/121666;
this i1s non-square in Fg.

Use x? + y? = 1 + dx?y?.

Rest of this talk
will switch to square g.

Disadvantage:
Maybe attacker can exploit
nontrivial subfield of F.

Advantage:
Will speed up scalar mult.
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Safe, conservative crypto:

this i1s non-square in Fg.
Use x? 4+ y? = 1 + dx?y?.

Rest of this talk
will switch to square gq.

Disadvantage:
Maybe attacker can exploit
nontrivial subfield of Fg.

Advantage:
Wil speed up scalar mult.

A class group of a quadratic

Choose prime g = 22°° — 19.
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mod t2 + uit + ug = 0
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— (vit + vp)?

mod t2 + uyt + up =0

in variables (ug, u1, vg, v1).




nservative crypto:

prime g = 22°° — 19.
d = 121665/121666;

on-square in Fg.

this talk
ch to square q.

ntage:
ttacker can exploit
)| subfield of Fg.

ge:
ed up scalar mult.

A class group of a quadratic field

Fix prime p € 3+4Z with p > 19.
e.g. p =27 _309.

Define C as the curve y? =

ot(t —1)(t — 10)(t —5/8)(t — 25)
over F, where § = —2/3°5%,

with specified point 0.

Define J as “JacC":

surface defined by equation

ot(t —1)(t — 10)(t —5/8)(t — 25)
— (vit + vp)?

mod t2 + uit + ug = 0

in variables (ug, u1, vy, v1).

View J |
handling
Define r.
0, —, + |
Jisan

Rational
taking o
Jis a “(
J i1s initi
maps un

any C-A



crypto:

2295 _ 19
5/121666;

in Fgq.
- dx?y?.

Ire q.

n exploit
of Fg.

ar mult.

A class group of a quadratic field

Fix prime p € 3+4Z with p > 19.
e.g. p =27 _309.

Define C as the curve y? =

6t(t —1)(t — 10)(t —5/8)(t — 25)
over F, where § = —2/3°5%,

with specified point 0.

Define J as “JacC":

surface defined by equation

ot(t —1)(t — 10)(t —5/8)(t — 25)
— (vit + vp)?

mod t2 + uyt + up =0

in variables (ug, u1, vg, v1).

View J projectivel
handling co carefu
Detfine rational op
0, —, + making J
J is an “Abelian v

Rationally map C

taking oo to 0.
Jis a “C-Abelian

J is initial:
maps uniquely to
any C-Abelian var



A class g

roup of a quadratic field

Fix prime p € 3+4Z with p > 19.
e.g. p =27 _309.

Define C
ot(t—1)

as the curve y? =
(t —10)(t —5/8)(t — 25)

over F, where § = —2/3°5%,
with specified point 0.

Define J as “JacC":

surface defined by equation

ot(t —1)(t — 10)(t —5/8)(t — 25)
— (vit + vp)?

mod t2 + uit + ug = 0

in variables (ug, u1, vy, v1).

View J projectively,
handling oo carefully.
Detfine rational operations
0, —, + making J a group.
J is an “Abelian variety" .

Rationally map C to J,
taking oo to 0.

J is a “C-Abelian variety".
J is initial:

maps uniquely to

any C-Abelian variety.



A class group of a quadratic field

Fix prime p € 3+4Z with p > 19.
e.g. p =27 _309.

Define C as the curve y? =

6t(t —1)(t — 10)(t —5/8)(t — 25)
over F, where § = —2/3°5%,

with specified point 0.

Define J as “JacC":

surface defined by equation

ot(t —1)(t — 10)(t —5/8)(t — 25)
— (vit + vp)?

mod t2 + uyt + up =0

in variables (ug, u1, vg, v1).

View J projectively,
handling oo carefully.
Define rational operations
0, —, + making J a group.
J is an “Abelian variety" .

Rationally map C to J,
taking oo to 0.

J is a “C-Abelian variety" .
J is initial:

maps uniquely to

any C-Abelian variety.



yroup of a quadratic field

epc3+4Z with p > 19.
2127 300

" as the curve y? =

)(t —10)(t —5/8)(t — 25)
where § = —2/3°5%,
cified point 00.

as “Jac ('

lefined by equation

)(t —10)(t —5/8)(t — 25)
Vit + vp)?

+ it +ug =20

les (ug, u1, vo, v1).

View J projectively,
handling oo carefully.
Detfine rational operations

0, —, + making J a group.

J is an “Abelian variety" .

Rationally map C to J,
taking oo to 0.

J is a “C-Abelian variety".

J is initial:
maps uniquely to
any C-Abelian variety.

Kummel

J has cc
supporti
OfF%::
given 3
(1986 C
2006 Ga

Linear c
1, ug, up
x = 101
5u2 — 1

1 .
175u1 —
wrong f
always u



_quadratic field

47 with p > 19.
0.

Irve y2 =

t —5/8)(t — 25)
- —2/3°5%,

1T 00.

~ 1

equation

t —5/8)(t — 25)
)

)y =0
! V01 V].)

View J projectively,
handling oo carefully.
Define rational operations

0, —, + making J a group.

J is an “Abelian variety" .

Rationally map C to J,
taking oo to 0.

J is a “C-Abelian variety" .

J is initial:
maps uniquely to
any C-Abelian variety.

Kummer coordina

J has coordinates
supporting very fa
of Ps=P;+ P> a
given P3 and P, a
(1986 Chudnovsky
2006 Gaudry)

Linear combinatio!
1, ug, uq, ug, Uupuq,
X = 16u0u% — 8ué
5u? — 12150001
175u1 —1250, etc.
wrong formulas in

always use a comrg



- field

) > 19,

- — 25)

- — 25)

View J projectively,
handling oo carefully.
Detfine rational operations

0, —, + making J a group.

J is an “Abelian variety" .

Rationally map C to J,
taking oo to 0.

J is a “C-Abelian variety".

J is initial:
maps uniquely to
any C-Abelian variety.

Kummer coordinates

J has coordinates (x: y : z
supporting very fast comput
of Ps =P3+ P> and Py, = 2
given P3 and P> and P; = F
(1986 Chudnovsky—Chudnoy
2006 Gaudry)

Linear combinations of

1, ug, uq, u%, ug U1, u%, uou%, \
x = 16ugu? — 8u3 + 573ug
5uf — 1215000vgvy + 2460
175u1 —1250, etc. Warning;:
wrong formulas in literature

always use a computer!



View J projectively,
handling oo carefully.
Define rational operations

0, —, + making J a group.

J is an “Abelian variety" .

Rationally map C to J,
taking oo to 0.

J is a “C-Abelian variety" .

J is initial:
maps uniquely to
any C-Abelian variety.

Kummer coordinates

J has coordinates (x : y : z : t)
supporting very fast computation
of Ps = P3+ P> and P, = 2P
given P3 and P> and P = P3—P%5.
(1986 Chudnovsky—Chudnovsky,
2006 Gaudry)

Linear combinations of

1, ug, uq, ug, Uug U1, u%, UOU%, Vo V1
X = 16u0u% — 8u(2) + 573ugu; —
5uf — 1215000vgvy + 2460ug —
175u1 —1250, etc. Warning: many
wrong formulas in literature;

always use a computer!



orojectively, Kummer coordinates

0o carefully. J has coordinates (x : y : z : t)

ational operations

supporting very fast computation
of Ps = P3+ P> and P, = 2P
given P3 and P> and P = P3—P5.

making J a group.

‘Abelian variety" .

ly map C to J, (1986 Chudnovsky—Chudnovsky,
o to 0. 2006 Gaudry)

--Abelian variety. Linear combinations of

al: 1,u0,u1,u8,uou1,u%,uou%,vovl:
iquely to X = 16uou% — 8u8 + 573ugu; —
belian variety. 5u% — 1215000vgv; + 2460ug —

175u1 —1250, etc. Warning: many
wrong formulas in literature;

always use a computer!




Y,

ly.
erations

a group.

ariety’ .

to J,

variety' .

lety.

Kummer coordinates

J has coordinates (x : y : z : t)
supporting very fast computation
of Ps = P3+ P> and P, = 2P
given P3 and P> and P = P3—P5.
(1986 Chudnovsky—Chudnovsky,
2006 Gaudry)

Linear combinations of

1, ug, uq, ug, Uug U1, u%, UOU%, Vo V1

X = 16u0u% — 8u(2) + 573ugu; —
5uf — 1215000vgvq + 2460ug —
175u1 —1250, etc. Warning: many
wrong formulas in literature;

always use a computer!

Hadamara

R

Y
X4

X X X
v v ¥
32 82 32
B2 2 42
Voo
Yo Zap 14




Kummer coordinates

J has coordinates (x : y : z : t)
supporting very fast computation
of Ps = P3+ P> and P, = 2P
given P3 and P> and P = P3—P5.
(1986 Chudnovsky—Chudnovsky,
2006 Gaudry)

Linear combinations of

1, ug, uq, ug, ug U1, u%, uou%, Vo V1

X = 16uou% — 8u8 + 573ugu; —
5u? — 1215000vgvq + 2460uq —
175u1 —1250, etc. Warning: many
wrong formulas in literature;

always use a computer!

X2 Yo 2z 1t X3 y3 Z
Vv ooy v v b
Hadamard Hadamarec
‘ Y /Y /¥ '
A2 A% A2
g R
VNUYN YN Y Yy
X\ X | X >
\L T~ 14X
Hadamard Hadamaré
X X X X >
v v ¥ Voo
L X1
b2 2 d? yi 2
20K 20 2N SR 2R 2R
X4 Ya 24 T4 X5 Y5 Z



Kummer coordinates

J has coordinates (x : y : z : t)
supporting very fast computation
of Ps = P3+ P> and P, = 2P
given P3 and P> and P = P3—P%5.
(1986 Chudnovsky—Chudnovsky,
2006 Gaudry)

Linear combinations of

1, ug, uq, ug, Uug U1, u%, UOU%, Vo V1

X = 16u0u% — 8u(2) + 573ugu; —
5uf — 1215000vgvq + 2460ug —
175u1 —1250, etc. Warning: many
wrong formulas in literature;

always use a computer!

Xo Vo Zop 1o X3 VY3 2Z3

A A A A A ¢

Hadamard Hadamard

vV /v /V
‘ .Az/.A2 A
2 C2

B D?
} ¢\¢ AN 2 2 A

X\ X | X X X
i/ T~ 1+ X i/
Hadamara Hadamard

R I

X X X X X X X
2 Vv
b2 2 2 yi., 21 11
v v v Y oy vy
X4 Y4 za t4 X5 Y5 Z5 1s




- coordinates

ordinates (x : y : z: t)

ng very fast computation
P;+ P> and P, = 2P
“and P2 dNnd Pl — P3—P2.
hudnovsky—Chudnovsky,

udry)

ombinations of

2 2 2 .
] u01 UOU]_, u]_r u0u11 VOV].
lou% — SUS + 573ugu; —
215000vgvy + 2460ug —
1250, etc. Warning: many
yrmulas in literature:

se a computer!

Xo Vo Zp 1o X3 VY3 2Z3

R B A A A A ¢

Hadamard Hadamard
A42<%
B2\ (2
Y Y Y Y
X X X
4 P i/
Hadamard Hadamard
W W W W W W
X X X
2 A
b2 2 d? Yy z1 ot
20K 2 2 T 2R 2 A
X4 Y4 zZp ta X5 Y5 Z5 15

These c«
induce ¢
so they
rational
but they
rational

Coefficie
are all s
(a : b?
= (2(

(A% : B?
= (8:



es

(x:y:z:t)

st computation
na P4 — 2P2

nd Pp = P3—P.
—Chudnovsky,
ns of

U%,UOU%,V()VlZ

% + 573uguy; —
1 + 2460ug —
Warning: many
literature;

uter!

X2 Yo zZp 1 X3 Y3 Z3
Vv v v vy ¢
Hadamard Hadamard
‘ Y /Y /Y

A2 A2 A2

e e
ANVNCVNYN Y Y Yy
X\ X | X X X
Hadamarc Hadamard

R I

X X X X X X X
2 A A T
b2 2 d? yi 71t
R 2 A 2 2 A 2
X4 ya z4 ta X5 Y5 Zs 15

These coordinates

iInduce coordinates

so they don't su
rational group o

OF
DE

but they do suppc

rational scalar mu

Coefficients in con

are all small, savin

(32 : bz:cz:dz)

—(20:1:20:
(A2 BQ C2 D2
= (81:—-39: -



Xo Vo Zp 1o X3 VY3 2Z3

R B A A A A ¢

Hadamard Hadamard

1

D2
¢\¢ AN 2 2 A

X\ X | X X X
\L T~ 15 i/
Hadamard Hadamard
W W W W W W
X X X
R il il il
B2 2 42 1 ozt
20K 2 2 T 2R 2 A
X4 Y4 Z4 4 X5 Y5 Z5 1y

These coordinates

induce coordinates on J/{-

so they don't support

rational group operations,
but they do support
rational scalar multiplication

Coefficients in computation
are all small, saving time:
(a%: b%: c? : d?)
= (20 :1:20:40),
(A2 B2 C2 D2)
= (81:—-39:—1:39).



Xo Vo Zp 1o X3 VY3 2Z3

A A A A A ¢

Hadamard Hadamard
A2 A2
B2 C2
Y Y Y Y
X X X
Hadamarc Hadamard

R R R

X X X

v v Y ¢ ¢ ¢

p2 2 g2 yi., 21 11
v v v Y oy oy
X4 Y4 z4 U4 X5 Y5 Zn s

These coordinates
induce coordinates on J/{+1},
so they don't support

rational group operations,
but they do support
rational scalar multiplication.

Coefficients in computation
are all small, saving time:
(a%: b%: c? : d?)

= (20 :1:20 : 40),
(A% : B?: C?: D?)

= (81:—-39:—1:39).



z b X3 y3 Zz3
vy b ¢
ard Hadamard
/Y
/P A2
\j ¢: g YooV oy
ard Hadamard
A A A A
X X X X X X
I A
2 -3 X1 X1
Voo
Z4 X5 Y5 75

These coordinates

induce coordinates on J/{+1},

so they don't su
rational group o

Dport

verations,

but they do support

rational scalar multiplication.

Coefficients in computation

are all small, saving time:
(a%: b%: c? : d?)

= (20 :1:20:40),
(A% : B? : C?: D?)

= (81:—39:

—1:39).

A Kumn

If y? =
ot(t—1
then
(y(z+2
(z -

where z



X3 Y3 Z£3
vV ¢
Hadamard

Y Y Y Y
I \

Hadamard

0o
YL
2 3

v v v

X5 Y5 Zp 15

These coordinates

induce coordinates on J/{+1},

so they don't support

rational group operations,
but they do support
rational scalar multiplication.

Coefficients in computation
are all small, saving time:
(a%: b%: c? : d?)

= (20 :1:20 : 40),
(A% : B?: C?: D?)

= (81:—-39:—1:39).

A Kummer-friend|

If y? =

ot(t —1)(t — 10)(

then

(v(z+2)%)* = (z-
(z—1/2)(z

where z = (5 — 2t



3 I3
vy
|

Y
(/ X
2N

X
R
1 .X1
1 0
o

These coordinates

induce coordinates on J/{+1},

so they don't support

rational group operations,
but they do support
rational scalar multiplication.

Coefficients in computation
are all small, saving time:
(a2 : b%: c? : d?)

= (20 :1:20 : 40),
(A% : B?: C?: D?)

= (81:—-39:—1:39).

A Kummer-friendly Scholter

If y? =

6t(t —1)(t —10)(t —5/8)(:

then

(v(2+2)°)* = (z-1)(z+1)
(z—1/2)(z+3/2)(z -

where z = (5 — 2t) /(5 + t).



These coordinates

induce coordinates on J/{+£1},

so they don't support

rational group operations,
but they do support
rational scalar multiplication.

Coefficients in computation
are all small, saving time:
(a%: b%: c? : d?)

= (20 :1:20 : 40),
(A% : B?: C?: D?)

= (81:—-39:—1:39).

A Kummer-friendly Scholten curve

If y? =

6t(t —1)(t —10)(t —5/8)(t — 25)

then

(v(2+2)°)? = (z-1)(z+1)(z+2)
(z—1/2)(z+3/2)(z —2/3)

where z = (5 — 2t) /(5 + t).



These coordinates

induce coordinates on J/{+£1},

so they don't support

rational group operations,
but they do support
rational scalar multiplication.

Coefficients in computation
are all small, saving time:
(a%: b%: c? : d?)

= (20 :1:20 : 40),
(A% : B?: C?: D?)

= (81:—-39:—1:39).

A Kummer-friendly Scholten curve

If y? =

6t(t —1)(t —10)(t —5/8)(t — 25)

then

(v(2+2)°)? = (z-1)(z+1)(z+2)
(z—1/2)(z+3/2)(z —2/3)

where z = (5 — 2t) /(5 + t).

Define F > = Fp[i]/(i* + 1);
r = (7 + 4i)? = 33 + 56i;
s =159 4+ 56/; w = /—384.




These coordinates

induce coordinates on J/{+£1},

so they don't support

rational group operations,
but they do support
rational scalar multiplication.

Coefficients in computation
are all small, saving time:
(a%: b%: c? : d?)

= (20 :1:20 : 40),
(A% : B?: C?: D?)

= (81:—-39:—1:39).

A Kummer-friendly Scholten curve

If y? =

6t(t —1)(t —10)(t —5/8)(t — 25)

then

(v(2+2)°)? = (z-1)(z+1)(z+2)
(z—1/2)(z+3/2)(z —2/3)

where z = (5 — 2t) /(5 + t).

Define F > = Fp[i]/(i* + 1);
r = (7 + 4i)? = 33 + 56i;
s =159 4+ 56/; w = /—384.

Then (wy(z +2)3/(1 — iz)3)?
= rx3 + sx2 +35x+ T
where x = (1 4 iz)?/(1 — iz)?.



yordinates

oordinates on J/{+1},

don’t support

group operations,
do support
scalar multiplication.

nts In computation
mall, saving time:
¢ d?)

) : 1:20:40),

" C?: D?)

[ —39: —1:39).

A Kummer-friendly Scholten curve

If y? =

6t(t—1)(t—10)(t —5/8)(t — 25)

then

(v(2+2)°)? = (z-1)(2+1)(2+2)
(z—1/2)(z+3/2)(z —2/3)

where z = (5 — 2t) /(5 + t).

Define F > = Fp[i]/(i* 4 1);
r = (7 + 4i)? = 33 + 56/;
s =159 4+ 56/: w = +/—384.

Then (wy(z +2)%/(1 — iz)3)?
= x> +sx2 +35x+ T
where x = (1 4 iz)?/(1 — iz)?.

Map (x,
to an Ec
by chain



s on J/{+£1},

ort
rations,

rt
tiplication.

nputation
g time:

40),

)
-1 : 39).

A Kummer-friendly Scholten curve

If y? =

ot(t —1)(t — 10)(t —5/8)(t — 25)

then

(y(z4+2)3)? = (z—1)(z+1)(z+2)
(z—-1/2)(z+3/2)(z —2/3)

where z = (5 — 2t) /(5 + t).

Define F » = Fo[i]/(i% +1);
r = (74 4i)? = 33 + 56/;
s =159 4+ 56/; w = /—384.

Then (wy(z +2)3/(1 — iz)3)?
= rx3 + sx2 +35x+ T
where x = (1 4 iz)?/(1 — iz)?.

Map (x,wy(z + 2
to an Edwards cur
by chain of “2-iso;



A Kummer-friendly Scholten curve

If y? =

6t(t —1)(t —10)(t —5/8)(t — 25)

then

(y(z+2)3)? = (z—1)(z+1)(z+2)
(z—1/2)(z+3/2)(z —2/3)

where z = (5 —2t) /(5 + t).

Define F o = Fp[il/(i* + 1);
r = (7 + 4i)? = 33 + 56/;
s =159 4+ 56/: w = +/—384.

Then (wy(z +2)%/(1 — iz)3)?
= x> +sx2 +35x+ T
where x = (1 4 iz)?/(1 — iz)?.

Map (x, wy(z +2)3/(1 — iz
to an Edwards curve E over
by chain of “2-isogenies’ .



A Kummer-friendly Scholten curve

If y? =

6t(t —1)(t —10)(t —5/8)(t — 25)

then

(y(z4+2)3)? = (z—1)(z+1)(z+2)
(z—-1/2)(z+3/2)(z —2/3)

where z = (5 — 2t) /(5 + t).

Define F » = Fo[i]/(i% +1);
r = (7 + 4i)? = 33 + 56/;
s =159 4+ 56/; w = /—384.

Then (wy(z +2)3/(1 — iz)3)?
= rx3 + sx2 +35x+T
where x = (1 4 iz)?/(1 — iz)?.

Map (x, wy(z + 2)3/(1 — iz)3)
to an Edwards curve E over Fpg
by chain of “2-isogenies’ .



A Kummer-friendly Scholten curve

If y? =

ot(t —1)(t — 10)(t —5/8)(t — 25)

then

(y(z4+2)3)? = (z—1)(z+1)(z+2)
(z—-1/2)(z+3/2)(z —2/3)

where z = (5 — 2t) /(5 + t).

Define F » = Fo[i]/(i% +1);
r = (7 + 4i)? = 33 + 56i;
s =159 4+ 56/; w = /—384.

Then (wy(z +2)3/(1 — iz)3)?
= rx3 + sx2 +35x+T
where x = (1 4 iz)?/(1 — iz)?.

Map (x, wy(z + 2)3/(1 — iz)3)
to an Edwards curve E over Fpg
by chain of “2-isogenies’ .

View two coordinates over Fpg
as four coordinates over Fp;
view curve E as surface W.
Have now mapped C rationally
to this Abelian variety W'.



A Kummer-friendly Scholten curve

If y? =

6t(t—1)(t—10)(t —5/8)(t — 25)

then

(y(z4+2)3)? = (z—1)(z+1)(z+2)
(z—-1/2)(z+3/2)(z —2/3)

where z = (5 — 2t) /(5 + t).

Define F » = Fo[i]/(i% +1);
r = (7 + 4i)? = 33 + 56/;
s =159 4+ 56/; w = /—384.

Then (wy(z +2)3/(1 — iz)3)?
= rx3 + sx2 +35x+T
where x = (1 4 iz)?/(1 — iz)?.

Map (x, wy(z + 2)3/(1 — iz)3)
to an Edwards curve E over Fpg
by chain of “2-isogenies’ .

View two coordinates over Fpg
as four coordinates over Fp;
view curve E as surface W.
Have now mapped C rationally
to this Abelian variety W'.

Compute formulas for

the unique map J —- W

of C-Abelian varieties

and a “dual isogeny” W — J.
Composition has small kernel.



ner-friendly Scholten curve

)(t —10)(t —5/8)(t — 25)

°)* = (z—1)(z+1)(z+2)
-1/2)(z+3/2)(z — 2/3)
= (5—2t)/(5+t).

2 = Fpli]/(i* +1);
-4/)? = 33 + 56i;

+ 56/; w = 4/—384.
y(z+2)°/(1—iz)%)?
sx? +sx+4r

= (1+4iz)?/(1 —iz)?.

Map (x, wy(z + 2)3/(1 — iz)3)
to an Edwards curve E over sz
by chain of “2-isogenies’ .

View two coordinates over sz
as four coordinates over Fp;
view curve E as surface W.
Have now mapped C rationally
to this Abelian variety W'.

Compute formulas for

the unique map J — W

of C-Abelian varieties

and a “dual isogeny” W — J.
Composition has small kernel.

Cryptog

Speed re
ar— aP

Speed re
a, P
for Jaco

with sm.

"Hyper-
groups s
and sup
with sm.
3 Indepe
on 2 deg
but ever



v Scholten curve

t —5/8)(t — 25)

-1)(z+1)(z+2)
-3/2)(z — 2/3)
/(5 +t).

/(% + 1),

3 + 501;

— /—384.

/(1 - iz)’)?
+7

)2/ (1 —iz).

Map (x, wy(z + 2)3/(1 — iz)3)
to an Edwards curve E over Fpg
by chain of “2-isogenies’ .

View two coordinates over Fpg
as four coordinates over Fp;
view curve E as surface W.
Have now mapped C rationally
to this Abelian variety W'.

Compute formulas for

the unique map J — W

of C-Abelian varieties

and a “dual isogeny” W — J.
Composition has small kernel.

Cryptographic con

Speed records for
a — aP use Edwa

Speed records for
a, P — aP use Ku
for Jacobians of g

with small Kumme

"Hyper-and-ellipti
groups support Ed
and support Kumi
with small coeffici
3 independent con
on 2 degrees of fre
but everything lift



| curve

- — 25)

(z+2)
-2/3)

Map (x, wy(z + 2)3/(1 — iz)3)
to an Edwards curve E over sz
by chain of “2-isogenies’ .

View two coordinates over sz
as four coordinates over Fp;
view curve E as surface W.
Have now mapped C rationally
to this Abelian variety W'.

Compute formulas for

the unique map J — W

of C-Abelian varieties

and a “dual isogeny” W — J.
Composition has small kernel.

Cryptographic consequences

Speed records for high-secur
a — aP use Edwards coords

Speed records for high-secur
a, P — aP use Kummer coc
for Jacobians of genus-2 cur
with small Kummer coefficie

"Hyper-and-elliptic-curve”
groups support Edwards coc
and support Kummer coord
with small coefficients.

3 independent constraints
on 2 degrees of freedom,
but everything lifts to Q.



Map (x, wy(z + 2)3/(1 — iz)3)
to an Edwards curve E over Fpg
by chain of “2-isogenies’ .

View two coordinates over Fpg
as four coordinates over Fp;
view curve E as surface W.
Have now mapped C rationally
to this Abelian variety W'.

Compute formulas for

the unique map J — W

of C-Abelian varieties

and a “dual isogeny” W — J.
Composition has small kernel.

Cryptographic consequences

Speed records for high-security
a — aP use Edwards coords.

Speed records for high-security
a, P — aP use Kummer coords
for Jacobians of genus-2 curves
with small Kummer coefficients.

"Hyper-and-elliptic-curve”
groups support Edwards coords
and support Kummer coords
with small coefficients.

3 independent constraints

on 2 degrees of freedom,

but everything lifts to Q.



