
Efficient implementation of

code-based cryptography

D. J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Joint work with:

Tung Chou

Technische Universiteit Eindhoven

Peter Schwabe

Radboud University Nijmegen



Objectives

Set new speed records

for public-key cryptography.



Objectives

Set new speed records

for public-key cryptography.

: : : at a high security level.



Objectives

Set new speed records

for public-key cryptography.

: : : at a high security level.

: : : including protection

against quantum computers.



Objectives

Set new speed records

for public-key cryptography.

: : : at a high security level.

: : : including protection

against quantum computers.

: : : including full protection

against cache-timing attacks,

branch-prediction attacks, etc.



Objectives

Set new speed records

for public-key cryptography.

: : : at a high security level.

: : : including protection

against quantum computers.

: : : including full protection

against cache-timing attacks,

branch-prediction attacks, etc.

: : : using code-based crypto

with a solid track record.



Objectives

Set new speed records

for public-key cryptography.

: : : at a high security level.

: : : including protection

against quantum computers.

: : : including full protection

against cache-timing attacks,

branch-prediction attacks, etc.

: : : using code-based crypto

with a solid track record.

: : : all of the above at once.



The track record

1978 McEliece proposed

public-key code-based crypto.

Has held up well after extensive

optimization of attack algorithms:

1962 Prange. 1981 Omura.

1988 Lee–Brickell. 1988 Leon.

1989 Krouk. 1989 Stern.

1989 Dumer.

1990 Coffey–Goodman.

1990 van Tilburg. 1991 Dumer.

1991 Coffey–Goodman–Farrell.

1993 Chabanne–Courteau.

1993 Chabaud.



1994 van Tilburg.

1994 Canteaut–Chabanne.

1998 Canteaut–Chabaud.

1998 Canteaut–Sendrier.

2008 Bernstein–Lange–Peters.

2009 Bernstein–Lange–

Peters–van Tilborg.

2009 Bernstein (post-quantum).

2009 Finiasz–Sendrier.

2010 Bernstein–Lange–Peters.

2011 May–Meurer–Thomae.

2011 Becker–Coron–Joux.

2012 Becker–Joux–May–Meurer.

2013 Bernstein–Jeffery–Lange–

Meurer (post-quantum).



Examples of the competition

Some cycle counts on h9ivy

(Intel Core i5-3210M, Ivy Bridge)

from bench.cr.yp.to:

mceliece encrypt 73092

(2008 Biswas–Sendrier, ≈280)

gls254 DH 76212

(binary elliptic curve; CHES 2013)

kummer DH 88448

(hyperelliptic; Asiacrypt 2014)

curve25519 DH 182708

(conservative elliptic curve)

mceliece decrypt 1130908

ronald1024 decrypt 1313324

http://bench.cr.yp.to


New decoding speeds

≈2128 security (n; t) = (4096; 41):



New decoding speeds

≈2128 security (n; t) = (4096; 41):

60493 Ivy Bridge cycles.

Talk will focus on this case.

(Decryption is slightly slower:

includes hash, cipher, MAC.)



New decoding speeds

≈2128 security (n; t) = (4096; 41):

60493 Ivy Bridge cycles.

Talk will focus on this case.

(Decryption is slightly slower:

includes hash, cipher, MAC.)

≈280 security (n; t) = (2048; 32):

26544 Ivy Bridge cycles.



New decoding speeds

≈2128 security (n; t) = (4096; 41):

60493 Ivy Bridge cycles.

Talk will focus on this case.

(Decryption is slightly slower:

includes hash, cipher, MAC.)

≈280 security (n; t) = (2048; 32):

26544 Ivy Bridge cycles.

All load/store addresses

and all branch conditions

are public. Eliminates

cache-timing attacks etc.

Similar improvements for CFS.



Constant-time fanaticism

The extremist’s approach

to eliminate timing attacks:

Handle all secret data

using only bit operations—

XOR (^), AND (&), etc.



Constant-time fanaticism

The extremist’s approach

to eliminate timing attacks:

Handle all secret data

using only bit operations—

XOR (^), AND (&), etc.

We take this approach.



Constant-time fanaticism

The extremist’s approach

to eliminate timing attacks:

Handle all secret data

using only bit operations—

XOR (^), AND (&), etc.

We take this approach.

“How can this be

competitive in speed?

Are you really simulating

field multiplication with

hundreds of bit operations

instead of simple log tables?”



Yes, we are.

Not as slow as it sounds!

On a typical 32-bit CPU,

the XOR instruction

is actually 32-bit XOR,

operating in parallel

on vectors of 32 bits.



Yes, we are.

Not as slow as it sounds!

On a typical 32-bit CPU,

the XOR instruction

is actually 32-bit XOR,

operating in parallel

on vectors of 32 bits.

Low-end smartphone CPU:

128-bit XOR every cycle.

Ivy Bridge:

256-bit XOR every cycle,

or three 128-bit XORs.



Not immediately obvious

that this “bitslicing”

saves time for, e.g.,

multiplication in F212 .



Not immediately obvious

that this “bitslicing”

saves time for, e.g.,

multiplication in F212 .

But quite obvious that it

saves time for addition in F212 .



Not immediately obvious

that this “bitslicing”

saves time for, e.g.,

multiplication in F212 .

But quite obvious that it

saves time for addition in F212 .

Typical decoding algorithms

have add, mult roughly balanced.

Coming next: how to save

many adds and most mults.

Nice synergy with bitslicing.



The additive FFT

Fix n = 4096 = 212, t = 41.

Big final decoding step

is to find all roots in F212

of f = c41x
41 + · · ·+ c0x

0.

For each ¸ ∈ F212 ,

compute f (¸) by Horner’s rule:

41 adds, 41 mults.



The additive FFT

Fix n = 4096 = 212, t = 41.

Big final decoding step

is to find all roots in F212

of f = c41x
41 + · · ·+ c0x

0.

For each ¸ ∈ F212 ,

compute f (¸) by Horner’s rule:

41 adds, 41 mults.

Or use Chien search: compute

cig
i , cig

2i , cig
3i , etc. Cost per

point: again 41 adds, 41 mults.



The additive FFT

Fix n = 4096 = 212, t = 41.

Big final decoding step

is to find all roots in F212

of f = c41x
41 + · · ·+ c0x

0.

For each ¸ ∈ F212 ,

compute f (¸) by Horner’s rule:

41 adds, 41 mults.

Or use Chien search: compute

cig
i , cig

2i , cig
3i , etc. Cost per

point: again 41 adds, 41 mults.

Our cost: 6.01 adds, 2.09 mults.



Asymptotics:

normally t ∈ Θ(n= lg n),

so Horner’s rule costs

Θ(nt) = Θ(n2= lg n).



Asymptotics:

normally t ∈ Θ(n= lg n),

so Horner’s rule costs

Θ(nt) = Θ(n2= lg n).

Wait a minute.

Didn’t we learn in school

that FFT evaluates

an n-coeff polynomial

at n points

using n1+o(1) operations?

Isn’t this better than n2= lg n?



Standard radix-2 FFT:

Want to evaluate

f = c0 + c1x + · · ·+ cn−1x
n−1

at all the nth roots of 1.

Write f as f0(x2) + xf1(x2).

Observe big overlap between

f (¸) = f0(¸2) + ¸f1(¸2),

f (−¸) = f0(¸2)− ¸f1(¸2).

f0 has n=2 coeffs;

evaluate at (n=2)nd roots of 1

by same idea recursively.

Similarly f1.



Useless in char 2: ¸ = −¸.

Standard workarounds are painful.

FFT considered impractical.

1988 Wang–Zhu,

independently 1989 Cantor:

“additive FFT” in char 2.

Still quite expensive.

1996 von zur Gathen–Gerhard:

some improvements.

2010 Gao–Mateer:

much better additive FFT.

We use Gao–Mateer,

plus some new improvements.



Gao and Mateer evaluate

f = c0 + c1x + · · ·+ cn−1x
n−1

on a size-n F2-linear space.

Their main idea: Write f as

f0(x2 + x) + xf1(x2 + x).

Big overlap between f (¸) =

f0(¸2 + ¸) + ¸f1(¸2 + ¸)

and f (¸+ 1) =

f0(¸2 + ¸) + (¸+ 1)f1(¸2 + ¸).

“Twist” to ensure 1 ∈ space.

Then
˘
¸2 + ¸

¯
is a

size-(n=2) F2-linear space.

Apply same idea recursively.



Results

60493 Ivy Bridge cycles:

8622 for permutation.

20846 for syndrome.

7714 for BM.

14794 for roots.

8520 for permutation.

Code will be public domain.

We’re still speeding it up.

Also 10× speedup for CFS.

More information:

cr.yp.to/papers.html#mcbits

http://cr.yp.to/papers.html#mcbits


What you find in paper:

Cryptosystem specification.

Our speedups to additive FFT.

(We now have more speedups:

cr.yp.to/papers.html#auth256.)

Fast syndrome computation

without big precomputed matrix.

Important for lightweight!

Fast secret permutation

using bit operations:

sorting networks,

permutation networks.

http://cr.yp.to/papers.html#auth256

