
BADA55, Curve41417, Kummer

Daniel J. Bernstein
University of Illinois at Chicago

and Technische Universiteit Eindhoven

Joint work with:
Tung Chou (BADA55)

Chitchanok Chuengsatiansup (BADA55, Curve41417, Kummer)
Andreas Hülsing (BADA55)

Tanja Lange (BADA55, Curve41417, Kummer)
Ruben Niederhagen (BADA55)

Peter Schwabe (Kummer)
Christine van Vredendaal (BADA55)

NSA/NIST FUD

The NIST elliptic curves are behind the state of the art:
I Chosen by Jerry Solinas at NSA.

I Coefficients produced from NSA’s SHA-1.
I NIST P-224 is not twist-secure.
I etc.

NIST now says it’s looking for new curves.

Let’s make some new curves!

NSA/NIST FUD

The NIST elliptic curves are behind the state of the art:
I Chosen by Jerry Solinas at NSA.
I Coefficients produced from NSA’s SHA-1.

I NIST P-224 is not twist-secure.
I etc.

NIST now says it’s looking for new curves.

Let’s make some new curves!

NSA/NIST FUD

The NIST elliptic curves are behind the state of the art:
I Chosen by Jerry Solinas at NSA.
I Coefficients produced from NSA’s SHA-1.
I NIST P-224 is not twist-secure.
I etc.

NIST now says it’s looking for new curves.

Let’s make some new curves!

Freshly made from the best ingredients

Take the NIST P-256 prime p = 2256 − 2224 + 2192 + 296 − 1.

Generate random seeds s and hashes B = H(s).
Hash function H:
Keccak with 256-bit output (i.e., keccakc512).

If the elliptic curve x3 − 3x + B mod p
does not meet standard security criteria plus twist-security,
start over. (This happens tens of thousands of times!)

Same with NIST P-224 prime 2224 − 296 + 1.

Also with NIST P-384 prime 2384 − 2128 − 296 + 232 − 1.
keccakc512 is too small here so we switched to keccakc768.

Freshly made from the best ingredients

Take the NIST P-256 prime p = 2256 − 2224 + 2192 + 296 − 1.

Generate random seeds s and hashes B = H(s).
Hash function H:
Keccak with 256-bit output (i.e., keccakc512).

If the elliptic curve x3 − 3x + B mod p
does not meet standard security criteria plus twist-security,
start over. (This happens tens of thousands of times!)

Same with NIST P-224 prime 2224 − 296 + 1.

Also with NIST P-384 prime 2384 − 2128 − 296 + 232 − 1.
keccakc512 is too small here so we switched to keccakc768.

Freshly made from the best ingredients

Take the NIST P-256 prime p = 2256 − 2224 + 2192 + 296 − 1.

Generate random seeds s and hashes B = H(s).
Hash function H:
Keccak with 256-bit output (i.e., keccakc512).

If the elliptic curve x3 − 3x + B mod p
does not meet standard security criteria plus twist-security,
start over. (This happens tens of thousands of times!)

Same with NIST P-224 prime 2224 − 296 + 1.

Also with NIST P-384 prime 2384 − 2128 − 296 + 232 − 1.
keccakc512 is too small here so we switched to keccakc768.

Freshly made from the best ingredients

Take the NIST P-256 prime p = 2256 − 2224 + 2192 + 296 − 1.

Generate random seeds s and hashes B = H(s).
Hash function H:
Keccak with 256-bit output (i.e., keccakc512).

If the elliptic curve x3 − 3x + B mod p
does not meet standard security criteria plus twist-security,
start over. (This happens tens of thousands of times!)

Same with NIST P-224 prime 2224 − 296 + 1.

Also with NIST P-384 prime 2384 − 2128 − 296 + 232 − 1.
keccakc512 is too small here so we switched to keccakc768.

Freshly made from the best ingredients

Take the NIST P-256 prime p = 2256 − 2224 + 2192 + 296 − 1.

Generate random seeds s and hashes B = H(s).
Hash function H:
Keccak with 256-bit output (i.e., keccakc512).

If the elliptic curve x3 − 3x + B mod p
does not meet standard security criteria plus twist-security,
start over. (This happens tens of thousands of times!)

Same with NIST P-224 prime 2224 − 296 + 1.

Also with NIST P-384 prime 2384 − 2128 − 296 + 232 − 1.
keccakc512 is too small here so we switched to keccakc768.

Random seeds for your verification pleasure

224: 3CC520E9434349DF680A8F4BCADDA648
D693B2907B216EE55CB4853DB68F9165

256: 3ADCC48E36F1D1926701417F101A75F0
00118A739D4686E77278325A825AA3C6

384: CA9EBD338A9EE0E6862FD329062ABC06
A793575A1C744F0EC24503A525F5D06E

The B values in x 3 − 3x + B

224: BADA55ECFD9CA54C0738B8A6FB8CF4CC
F84E916D83D6DA1B78B622351E11AB4E

256: BADA55ECD8BBEAD3ADD6C534F92197DE
B47FCEB9BE7E0E702A8D1DD56B5D0B0C

384: BADA55EC3BE2AD1F9EEEA5881ECF95BB
F3AC392526F01D4CD13E684C63A17CC4
D5F271642AD83899113817A61006413D

The B values in x 3 − 3x + B

224: BADA55ECFD9CA54C0738B8A6FB8CF4CC
F84E916D83D6DA1B78B622351E11AB4E

256: BADA55ECD8BBEAD3ADD6C534F92197DE
B47FCEB9BE7E0E702A8D1DD56B5D0B0C

384: BADA55EC3BE2AD1F9EEEA5881ECF95BB
F3AC392526F01D4CD13E684C63A17CC4
D5F271642AD83899113817A61006413D

Brainpool to the rescue

2005 “ECC Brainpool standard curves and curve generation”
generates deterministic seeds from π and e.

brainpoolP256r1:
p: A9FB57DBA1EEA9BC3E660A909D838D72

6E3BF623D52620282013481D1F6E5377
A: 7D5A0975FC2C3057EEF67530417AFFE7

FB8055C126DC5C6CE94A4B44F330B5D9
B: 26DC5C6CE94A4B44F330B5D9BBD77CBF

958416295CF7E1CE6BCCDC18FF8C07B6

Screwed up data flow in hash inputs; still uses SHA-1;
not twist-secure.
Let’s make an NSA-free replacement with sensible data flow.
And let’s stick to the NIST primes.

Brainpool to the rescue (or maybe not)

2005 “ECC Brainpool standard curves and curve generation”
generates deterministic seeds from π and e.

brainpoolP256r1:
p: A9FB57DBA1EEA9BC3E660A909D838D72

6E3BF623D52620282013481D1F6E5377
A: 7D5A0975FC2C3057EEF67530417AFFE7

FB8055C126DC5C6CE94A4B44F330B5D9
B: 26DC5C6CE94A4B44F330B5D9BBD77CBF

958416295CF7E1CE6BCCDC18FF8C07B6

Screwed up data flow in hash inputs; still uses SHA-1;
not twist-secure.
Let’s make an NSA-free replacement with sensible data flow.
And let’s stick to the NIST primes.

Brainpool to the rescue (or maybe not)

2005 “ECC Brainpool standard curves and curve generation”
generates deterministic seeds from π and e.

brainpoolP256r1:
p: A9FB57DBA1EEA9BC3E660A909D838D72

6E3BF623D52620282013481D1F6E5377
A: 7D5A0975FC2C3057EEF67530417AFFE7

FB8055C126DC5C6CE94A4B44F330B5D9
B: 26DC5C6CE94A4B44F330B5D9BBD77CBF

958416295CF7E1CE6BCCDC18FF8C07B6

Screwed up data flow in hash inputs; still uses SHA-1;
not twist-secure.
Let’s make an NSA-free replacement with sensible data flow.
And let’s stick to the NIST primes.

Nothing up our sleeves

Constants already used: sin 1; π/4 = arctan 1; e = exp 1.
Start from cos 1.

Generate the full 160-bit seed
as 32-bit counter followed by cos 1.

(16-bit counter would have been unsafe:
more than 1/1000 chance of failing to find secure curve.)

To avoid the Brainpool problems:
I Don’t concatenate SHA-1 outputs.

Use maximum-security full-length SHA-3-512.
I Generate B seed as complement of A seed.

Guaranteed to be different.

Nothing up our sleeves

Constants already used: sin 1; π/4 = arctan 1; e = exp 1.
Start from cos 1.

Generate the full 160-bit seed
as 32-bit counter followed by cos 1.

(16-bit counter would have been unsafe:
more than 1/1000 chance of failing to find secure curve.)

To avoid the Brainpool problems:
I Don’t concatenate SHA-1 outputs.

Use maximum-security full-length SHA-3-512.
I Generate B seed as complement of A seed.

Guaranteed to be different.

Nothing up our sleeves

Constants already used: sin 1; π/4 = arctan 1; e = exp 1.
Start from cos 1.

Generate the full 160-bit seed
as 32-bit counter followed by cos 1.

(16-bit counter would have been unsafe:
more than 1/1000 chance of failing to find secure curve.)

To avoid the Brainpool problems:
I Don’t concatenate SHA-1 outputs.

Use maximum-security full-length SHA-3-512.
I Generate B seed as complement of A seed.

Guaranteed to be different.

Sage computer-algebra system computing 128 bits of cos 1:

sage -c ’print RealField(128)(cos(1)).str(16)[2:34]’
8a51407da8345c91c2466d976871bd2a

We started computations for the NIST P-224 prime
and quickly found a secure twist-secure curve from seed
000000B8 8A51407DA8345C91C2466D976871BD2A.

Here are A,B (please verify with your own SHA-3 software):
7144BA12CE8A0C3BEFA053EDBADA555A
42391FC64F052376E041C7D4AF23195E
BD8D83625321D452E8A0C3BB0A048A26
115704E45DCEB346A9F4BD9741D14D49,
5C32EC7FC48CE1802D9B70DBC3FA574E
AF015FCE4E99B43EBE3468D6EFB2276B
A3669AFF6FFC0F4C6AE4AE2E5D74C3C0
AF97DCE17147688DDA89E734B56944A2

Sage computer-algebra system computing 128 bits of cos 1:

sage -c ’print RealField(128)(cos(1)).str(16)[2:34]’
8a51407da8345c91c2466d976871bd2a

We started computations for the NIST P-224 prime
and quickly found a secure twist-secure curve from seed
000000B8 8A51407DA8345C91C2466D976871BD2A.

Here are A,B (please verify with your own SHA-3 software):
7144BA12CE8A0C3BEFA053EDBADA555A
42391FC64F052376E041C7D4AF23195E
BD8D83625321D452E8A0C3BB0A048A26
115704E45DCEB346A9F4BD9741D14D49,
5C32EC7FC48CE1802D9B70DBC3FA574E
AF015FCE4E99B43EBE3468D6EFB2276B
A3669AFF6FFC0F4C6AE4AE2E5D74C3C0
AF97DCE17147688DDA89E734B56944A2

Lessons and credits

“Verifiably random” curves, even with “deterministic” seeds,
do not stop the attacker from generating a curve
with a one-in-a-million weakness.

safecurves.cr.yp.to/bada55.html

Computation credits:
Saber cluster at Technische Universiteit Eindhoven;
ISF K10 cluster at University of Haifa.

Ongoing work requested by IRTF CFRG:
Quantify wiggle room in Microsoft’s “NUMS” curves.
Quantify wiggle room in Curve25519’s “as fast as possible”.
Preliminary work by Hamburg suggests that
“as fast as possible” minimizes wiggle room.

http://safecurves.cr.yp.to/bada55.html
https://www.ietf.org/mail-archive/web/cfrg/current/msg05087.html

What if the users want something stronger?

Beyond Curve25519

“E-521” mod 2521 − 1: x2 + y2 = 1 − 376014x2y2.
Found by Bernstein–Lange, independently Hamburg,
independently Aranha–Barreto–Pereira–Ricardini.

But do we really need something so big?

One way to choose security levels:
Some users ask for “matching security levels” against AES-256.

e.g. NUMS coauthor Ben Black from Microsoft:
“The goal is matching security levels
of the suite components as designed.”

Beyond Curve25519

“E-521” mod 2521 − 1: x2 + y2 = 1 − 376014x2y2.
Found by Bernstein–Lange, independently Hamburg,
independently Aranha–Barreto–Pereira–Ricardini.

But do we really need something so big?

One way to choose security levels:
Some users ask for “matching security levels” against AES-256.

e.g. NUMS coauthor Ben Black from Microsoft:
“The goal is matching security levels
of the suite components as designed.”

Beyond Curve25519

“E-521” mod 2521 − 1: x2 + y2 = 1 − 376014x2y2.
Found by Bernstein–Lange, independently Hamburg,
independently Aranha–Barreto–Pereira–Ricardini.

But do we really need something so big?

One way to choose security levels:
Some users ask for “matching security levels” against AES-256.

e.g. NUMS coauthor Ben Black from Microsoft:
“The goal is matching security levels
of the suite components as designed.”

Matching security of AES-256 as designed

How secure is AES-256?

2256 computations: Brute-force Alice’s AES-256 key.
Are there any high-probability AES-256 breaks
using significantly fewer than 2256 operations?

Yes! 2206 computations:
Collect encryptions of counter 0 under 250 user keys;
compare to encryptions of 0 under 2206 guessed keys.

How do we match this with ECC?

Curve41417 mod 2414 − 17: x2 + y2 = 1 + 3617x2y2.
CHES 2014: Under 2 million cycles on ARM Cortex-A8,
faster than OpenSSL’s fastest ECC option (secp160r1).
This is the curve Silent Circle is using in Blackphone.

Matching security of AES-256 as designed

How secure is AES-256?

2256 computations: Brute-force Alice’s AES-256 key.
Are there any high-probability AES-256 breaks
using significantly fewer than 2256 operations?

Yes! 2206 computations:
Collect encryptions of counter 0 under 250 user keys;
compare to encryptions of 0 under 2206 guessed keys.

How do we match this with ECC?

Curve41417 mod 2414 − 17: x2 + y2 = 1 + 3617x2y2.
CHES 2014: Under 2 million cycles on ARM Cortex-A8,
faster than OpenSSL’s fastest ECC option (secp160r1).
This is the curve Silent Circle is using in Blackphone.

Matching security of AES-256 as designed

How secure is AES-256?

2256 computations: Brute-force Alice’s AES-256 key.
Are there any high-probability AES-256 breaks
using significantly fewer than 2256 operations?

Yes! 2206 computations:
Collect encryptions of counter 0 under 250 user keys;
compare to encryptions of 0 under 2206 guessed keys.

How do we match this with ECC?

Curve41417 mod 2414 − 17: x2 + y2 = 1 + 3617x2y2.
CHES 2014: Under 2 million cycles on ARM Cortex-A8,
faster than OpenSSL’s fastest ECC option (secp160r1).
This is the curve Silent Circle is using in Blackphone.

Matching security of AES-256 as designed

How secure is AES-256?

2256 computations: Brute-force Alice’s AES-256 key.
Are there any high-probability AES-256 breaks
using significantly fewer than 2256 operations?

Yes! 2206 computations:
Collect encryptions of counter 0 under 250 user keys;
compare to encryptions of 0 under 2206 guessed keys.

How do we match this with ECC?

Curve41417 mod 2414 − 17: x2 + y2 = 1 + 3617x2y2.
CHES 2014: Under 2 million cycles on ARM Cortex-A8,
faster than OpenSSL’s fastest ECC option (secp160r1).
This is the curve Silent Circle is using in Blackphone.

What if the users want something faster?

What if the users want something faster?

What if the users want something faster?

PRESERVE deliverable 1.1, “Security Requirements of VSA”:
The different driving scenarios we looked into indicate
that in most driving situations (SUL, MUL, and SHL) the
packet rates do not exceed 750 packets per second. Only
the maximum highway scenario (MHL) goes well beyond
this value (2,265 packets per second). . . .

Processing 1,000 packets per second and processing each
in 1 ms can hardly be met by current hardware. As
discussed in [32], a Pentium D 3.4 GHz processor needs
about 5 times as long for a verification (which is the
most time-consuming operation in cryptographic
processing overhead) and a typical OBU even 26 times as
long. This is a good indication that a dedicated
cryptographic co-processor is likely to be necessary.

Constant-time ≈2128-security DH on Intel Sandy Bridge
cycles ladder open g field source
194036 yes yes 1 2255 − 19 CHES 2011
153000? yes no 1 2252 − 2232 − 1 eprint 2012
137000? no no 1 (2127 − 5997)2 Asiacrypt 2012
122716 yes yes 2 2127 − 1 Eurocrypt 2013
119904 no yes 1 2254 CHES 2013

96000? no no 1 (2127 − 5997)2 CT-RSA 2014
92000? no no 1 (2127 − 5997)2 eprint 2014
88916 yes yes 2 2127 − 1 Asiacrypt 2014

CHES 2011: Bernstein–Duif–Lange–Schwabe–Yang. eprint 2012:
Hamburg. CHES 2012: Bernstein–Schwabe. Asiacrypt 2012:
Longa–Sica. Eurocrypt 2013: Bos–Costello–Hisil–Lauter.
CHES 2013: Oliveira–López–Aranha–Rodŕıguez-Henŕıquez.
CT-RSA 2014, eprint 2014: Faz-Hernández–Longa–Sánchez.
Eurocrypt 2014: Costello–Hisil–Smith. Asiacrypt 2014:
Bernstein–Chuengsatiansup–Lange–Schwabe.

Constant-time ≈2128-security DH on more CPUs
arch cycles ladder open g field source
A8-slow 497389 yes yes 1 2255 − 19 CHES 2012
A8-slow 305395 yes yes 2 2127 − 1 Asiacrypt 2014
A8-fast 460200 yes yes 1 2255 − 19 CHES 2012
A8-fast 273349 yes yes 2 2127 − 1 Asiacrypt 2014
Ivy 182708 yes yes 1 2255 − 19 CHES 2011
Ivy 145000? yes yes 1 (2127 − 1)2 Eurocrypt 2014
Ivy 119032 yes yes 2 2127 − 1 Eurocrypt 2013
Ivy 114036 no yes 1 2254 CHES 2013
Ivy 92000? no no 1 (2127 − 5997)2 CT-RSA 2014
Ivy 89000? no no 1 (2127 − 5997)2 eprint 2014
Ivy 88448 yes yes 2 2127 − 1 Asiacrypt 2014
Haswell 145907 yes yes 1 2255 − 19 CHES 2011
Haswell 100895 yes yes 2 2127 − 1 Eurocrypt 2013
Haswell 55595 no yes 1 2254 CHES 2013
Haswell 54389 yes yes 2 2127 − 1 Asiacrypt 2014

