BADA55, Curve41417, Kummer

Daniel J. Bernstein
University of Illinois at Chicago
and Technische Universiteit Eindhoven

Joint work with:
Tung Chou (BADA55)
Chitchanok Chuengsatiansup (BADA55, Curve41417, Kummer)
Andreas Hülsing (BADA55)
Tanja Lange (BADA55, Curve41417, Kummer)
Ruben Niederhagen (BADA55)
Peter Schwabe (Kummer)
Christine van Vredendaal (BADA55)
The NIST elliptic curves are behind the state of the art:

- Chosen by Jerry Solinas at NSA.
The NIST elliptic curves are behind the state of the art:

- Chosen by Jerry Solinas at NSA.
- Coefficients produced from NSA’s SHA-1.
The NIST elliptic curves are behind the state of the art:

- Chosen by Jerry Solinas at **NSA**.
- Coefficients produced from NSA’s **SHA-1**.
- NIST P-224 is **not twist-secure**.
- etc.

NIST now says it's looking for new curves.

Let’s make some new curves!
Take the NIST P-256 prime $p = 2^{256} - 2^{224} + 2^{192} + 2^{96} - 1$.
Take the NIST P-256 prime $p = 2^{256} - 2^{224} + 2^{192} + 2^{96} - 1$.

Generate random seeds s and hashes $B = H(s)$.

Hash function H:
Keccak with 256-bit output (i.e., keccakc512).
Freshly made from the best ingredients

Take the NIST P-256 prime $p = 2^{256} - 2^{224} + 2^{192} + 2^{96} - 1$.

Generate random seeds s and hashes $B = H(s)$.

Hash function H:
Keccak with 256-bit output (i.e., keccakc512).

If the elliptic curve $x^3 - 3x + B \mod p$
does not meet standard security criteria plus twist-security,
start over. (This happens tens of thousands of times!)
Take the NIST P-256 prime \(p = 2^{256} - 2^{224} + 2^{192} + 2^{96} - 1 \).

Generate random seeds \(s \) and hashes \(B = H(s) \).

Hash function \(H \): **Keccak** with 256-bit output (i.e., \(\text{keccakc512} \)).

If the elliptic curve \(x^3 - 3x + B \mod p \)
does not meet standard security criteria **plus twist-security**, start over. (This happens tens of thousands of times!)

Same with NIST P-224 prime \(2^{224} - 2^{96} + 1 \).
Take the NIST P-256 prime \(p = 2^{256} - 2^{224} + 2^{192} + 2^{96} - 1 \).

Generate random seeds \(s \) and hashes \(B = H(s) \).

Hash function \(H \): **Keccak** with 256-bit output (i.e., \texttt{keccakc512}).

If the elliptic curve \(x^3 - 3x + B \mod p \)
does not meet standard security criteria plus twist-security,
start over. (This happens tens of thousands of times!)

Same with NIST P-224 prime \(2^{224} - 2^{96} + 1 \).

Also with NIST P-384 prime \(2^{384} - 2^{128} - 2^{96} + 2^{32} - 1 \).

\texttt{keccakc512} is too small here so we switched to \texttt{keccakc768}.

Random seeds for your verification pleasure

224: 3CC520E9434349DF680A8F4BCADDA648D693B2907B216EE55CB4853DB68F9165

256: 3ADCC48E36F1D1926701417F101A75F000118A739D4686E77278325A825AA3C6

384: CA9EBD338A9EE0E6862FD329062ABC06A793575A1C744F0EC24503A525F5D06E
The B values in $x^3 - 3x + B$

224: BADA55ECFD9CA54C0738B8A6FB8CF4CC
 F84E916D83D6DA1B78B622351E11AB4E

256: BADA55ECD8BBEAD3ADD6C534F92197DE
 B47FCEB9BE7E0E702A8D1DD56B5D0B0C

384: BADA55EC3BE2AD1F9EEEA5881ECF95BB
 F3AC392526F01D4CD13E684C63A17CC4
 D5F271642AD83899113817A61006413D
The B values in $x^3 - 3x + B$

224: **BADA55EC**FD9CA54C0738B8A6FB8CF4CC
 F84E916D83D6DA1B78B622351E11AB4E

256: **BADA55EC**D8BBEAD3ADD6C534F92197DE
 B47FCEB9BE7E0E702A8D1DD56B5D0B0C

384: **BADA55EC**3BE2AD1F9EEEA5881ECF95BB
 F3AC392526F01D4CD13E684C63A17CC4
 D5F271642AD83899113817A61006413D
Brainpool to the rescue

2005 “ECC Brainpool standard curves and curve generation” generates deterministic seeds from π and e.

brainpoolP256r1:

- **p**: A9FB57DBA1EEA9BC3E660A909D838D72
 6E3BF623D52620282013481D1F6E5377

- **A**: 7D5A0975FC2C3057EEF67530417AFFE7
 FB8055C126DC5C6CE94A4B44F330B5D9

- **B**: 26DC5C6CE94A4B44F330B5D9BBD77CBF
 958416295CF7E1CE6BCCDC18FF8C07B6

Screwed up data flow in hash inputs; still uses SHA-1; not twist-secure.

Let’s make an NSA-free replacement with sensible data flow.

And let’s stick to the NIST primes.
2005 “ECC Brainpool standard curves and curve generation” generates deterministic seeds from π and e.

brainpoolP256r1:
\[
p: \text{A9FB57DBA1EEA9BC3E660A909D838D72} \\
\quad \text{6E3BF623D52620282013481D1F6E5377} \\
A: \text{7D5A0975FC2C3057EEF67530417AFFE7} \\
\quad \text{FB8055C126DC5C6CE94A4B44F330B5D9} \\
B: \text{26DC5C6CE94A4B44F330B5D9BBD77CBF} \\
\quad \text{958416295CF7E1CE6BCCDC18FF8C07B6}
\]
Brainpool to the rescue (or maybe not)

2005 “ECC Brainpool standard curves and curve generation” generates deterministic seeds from π and e.

brainpoolP256r1:
 p: A9FB57DBA1EEA9BC3E660A909D838D72
 6E3BF623D52620282013481D1F6E5377
 A: 7D5A0975FC2C3057EEF67530417AFFE7
 FB8055C126DC5C6CE94A4B44F330B5D9
 B: 26DC5C6CE94A4B44F330B5D9BBD77CBF
 958416295CF7E1CE6BCCDC18FF8C07B6

Screwed up data flow in hash inputs; still uses SHA-1; not twist-secure.
Let’s make an **NSA-free** replacement with **sensible data flow**. And let’s stick to the NIST primes.
Nothing up our sleeves

Constants already used: $\sin 1$; $\pi/4 = \arctan 1$; $e = \exp 1$. Start from $\cos 1$.
Constants already used: \(\sin 1; \pi/4 = \arctan 1; e = \exp 1 \).

Start from \(\cos 1 \).

Generate the full 160-bit seed as 32-bit counter followed by \(\cos 1 \).

(16-bit counter would have been unsafe: more than 1/1000 chance of failing to find secure curve.)
Nothing up our sleeves

Constants already used: \(\sin 1; \pi/4 = \arctan 1; e = \exp 1. \)
Start from \(\cos 1. \)

Generate the full 160-bit seed as 32-bit counter followed by \(\cos 1. \)

(16-bit counter would have been unsafe: more than 1/1000 chance of failing to find secure curve.)

To avoid the Brainpool problems:

- Don’t concatenate SHA-1 outputs.
 Use maximum-security full-length SHA-3-512.

- Generate \(B \) seed as complement of \(A \) seed. Guaranteed to be different.
Sage computer-algebra system computing 128 bits of cos 1:

```
sage -c 'print RealField(128)(cos(1)).str(16)[2:34],'
```

8a51407da8345c91c2466d976871bd2a

We started computations for the NIST P-224 prime and quickly found a secure twist-secure curve from seed 000000B8 8A51407DA8345C91C2466D976871BD2A.

Here are A, B (please verify with your own SHA-3 software):
7144BA12CE8A0C3BEFA053EDBADA555A
42391FC64F052376E041C7D4AF23195E
BD8D83625321D452E8A0C3BB0A048A26
115704E45DCEB346A9F4BD9741D14D49,
5C32EC7FC48CE1802D9B70DBC3FA574E
AF015FCE4E99B43E8E3468D6EFB2276B
A3669AFF6FFC0F4C6AE4AE2E5D74C3C0
AF97DCE17147688DDA89E734B56944A2
Sage computer-algebra system computing 128 bits of $\cos 1$:

```
sage -c 'print RealField(128)(cos(1)).str(16)[2:34]'
```

8a51407da8345c91c2466d976871bd2a

We started computations for the NIST P-224 prime and quickly found a secure twist-secure curve from seed 000000B8 8A51407DA8345C91C2466D976871BD2A.

Here are A, B (please verify with your own SHA-3 software):

7144BA12CE8A0C3BEFA053EDBADA555A
42391FC64F052376E041C7D4AF23195E
BD8D83625321D452E8A0C3BB0A048A26
115704E45DCEB346A9F4BD9741D14D49,

5C32EC7FC48CE1802D9B70DBC3FA574E
AF015FCE4E99B43EBE3468D6EFB2276B
A3669AFF6FFC0F4C6AE4AE2E5D74C3C0
AF97DCE17147688DDA89E734B56944A2
Lessons and credits

“Verifiably random” curves, even with “deterministic” seeds, do not stop the attacker from generating a curve with a one-in-a-million weakness.

safecurves.cr.yp.to/bada55.html

Computation credits:
Saber cluster at Technische Universiteit Eindhoven;
ISF K10 cluster at University of Haifa.

Ongoing work requested by IRTF CFRG:
Quantify wiggle room in Microsoft’s “NUMS” curves.
Quantify wiggle room in Curve25519’s “as fast as possible”.

Preliminary work by Hamburg suggests that “as fast as possible” minimizes wiggle room.
What if the users want something stronger?
Beyond Curve25519

“E-521” mod $2^{521} - 1$: $x^2 + y^2 = 1 - 376014x^2y^2$.
Found by Bernstein–Lange, independently Hamburg, independently Aranha–Barreto–Pereira–Ricardini.
Beyond Curve25519

“E-521” mod $2^{521} - 1$: $x^2 + y^2 = 1 - 376014x^2y^2$.

Found by Bernstein–Lange, independently Hamburg, independently Aranha–Barreto–Pereira–Ricardini.

But do we really need something so big?
Beyond Curve25519

But do we really need something so big?

One way to choose security levels: Some users ask for “matching security levels” against AES-256.

e.g. NUMS coauthor Ben Black from Microsoft: “The goal is matching security levels of the suite components as designed.”
How secure is AES-256?

2^{256} computations: Brute-force Alice’s AES-256 key. Are there any high-probability AES-256 breaks using significantly fewer than 2^{256} operations?
Matching security of AES-256 as designed

How secure is AES-256?

2^{256} computations: Brute-force Alice’s AES-256 key. Are there any high-probability AES-256 breaks using significantly fewer than 2^{256} operations?

Yes! 2^{206} computations:
Collect encryptions of counter 0 under 2^{50} user keys; compare to encryptions of 0 under 2^{206} guessed keys.
Matching security of AES-256 as designed

How secure is AES-256?

2^{256} computations: Brute-force Alice’s AES-256 key. Are there any high-probability AES-256 breaks using significantly fewer than 2^{256} operations?

Yes! 2^{206} computations:
Collect encryptions of counter 0 under 2^{50} user keys; compare to encryptions of 0 under 2^{206} guessed keys.

How do we match this with ECC?
How secure is AES-256?

2^{256} computations: Brute-force Alice’s AES-256 key.
Are there any high-probability AES-256 breaks using significantly fewer than 2^{256} operations?

Yes! 2^{206} computations:
Collect encryptions of counter 0 under 2^{50} user keys; compare to encryptions of 0 under 2^{206} guessed keys.

How do we match this with ECC?

Curve41417 mod $2^{414} - 17$: $x^2 + y^2 = 1 + 3617x^2y^2$.
CHES 2014: Under 2 million cycles on ARM Cortex-A8, faster than OpenSSL’s fastest ECC option (secp160r1). This is the curve Silent Circle is using in Blackphone.
What if the users want something faster?
What if the users want something faster?
What if the users want something faster?

PRESERVE deliverable 1.1, “Security Requirements of VSA”: The different driving scenarios we looked into indicate that in most driving situations (SUL, MUL, and SHL) the packet rates do not exceed 750 packets per second. Only the maximum highway scenario (MHL) goes well beyond this value (2,265 packets per second). . . .

Processing 1,000 packets per second and processing each in 1 ms can hardly be met by current hardware. As discussed in [32], a Pentium D 3.4 GHz processor needs about 5 times as long for a verification (which is the most time-consuming operation in cryptographic processing overhead) and a typical OBU even 26 times as long. This is a good indication that a dedicated cryptographic co-processor is likely to be necessary.
Constant-time $\approx 2^{128}$-security DH on Intel Sandy Bridge

<table>
<thead>
<tr>
<th>cycles</th>
<th>ladder</th>
<th>open</th>
<th>g</th>
<th>field</th>
<th>source</th>
</tr>
</thead>
<tbody>
<tr>
<td>194036</td>
<td>yes</td>
<td>yes</td>
<td>1</td>
<td>$2^{255} - 19$</td>
<td>CHES 2011</td>
</tr>
<tr>
<td>153000?</td>
<td>yes</td>
<td>no</td>
<td>1</td>
<td>$2^{252} - 2^{232} - 1$</td>
<td>eprint 2012</td>
</tr>
<tr>
<td>137000?</td>
<td>no</td>
<td>no</td>
<td>1</td>
<td>$(2^{127} - 5997)^2$</td>
<td>Asiacrypt 2012</td>
</tr>
<tr>
<td>122716</td>
<td>yes</td>
<td>yes</td>
<td>2</td>
<td>$2^{127} - 1$</td>
<td>Eurocrypt 2013</td>
</tr>
<tr>
<td>119904</td>
<td>no</td>
<td>yes</td>
<td>1</td>
<td>2^{254}</td>
<td>CHES 2013</td>
</tr>
<tr>
<td>96000?</td>
<td>no</td>
<td>no</td>
<td>1</td>
<td>$(2^{127} - 5997)^2$</td>
<td>CT-RSA 2014</td>
</tr>
<tr>
<td>92000?</td>
<td>no</td>
<td>no</td>
<td>1</td>
<td>$(2^{127} - 5997)^2$</td>
<td>eprint 2014</td>
</tr>
<tr>
<td>88916</td>
<td>yes</td>
<td>yes</td>
<td>2</td>
<td>$2^{127} - 1$</td>
<td>Asiacrypt 2014</td>
</tr>
</tbody>
</table>

Constant-time $\approx 2^{128}$-security DH on more CPUs

<table>
<thead>
<tr>
<th>arch</th>
<th>cycles</th>
<th>ladder</th>
<th>open</th>
<th>g</th>
<th>field</th>
<th>source</th>
</tr>
</thead>
<tbody>
<tr>
<td>A8-slow</td>
<td>497389</td>
<td>yes</td>
<td>yes</td>
<td>1</td>
<td>$2^{255} - 19$</td>
<td>CHES 2012</td>
</tr>
<tr>
<td>A8-slow</td>
<td>305395</td>
<td>yes</td>
<td>yes</td>
<td>2</td>
<td>$2^{127} - 1$</td>
<td>Asiacrypt 2014</td>
</tr>
<tr>
<td>A8-fast</td>
<td>460200</td>
<td>yes</td>
<td>yes</td>
<td>1</td>
<td>$2^{255} - 19$</td>
<td>CHES 2012</td>
</tr>
<tr>
<td>A8-fast</td>
<td>273349</td>
<td>yes</td>
<td>yes</td>
<td>2</td>
<td>$2^{127} - 1$</td>
<td>Asiacrypt 2014</td>
</tr>
<tr>
<td>Ivy</td>
<td>182708</td>
<td>yes</td>
<td>yes</td>
<td>1</td>
<td>$2^{255} - 19$</td>
<td>CHES 2011</td>
</tr>
<tr>
<td>Ivy</td>
<td>145000?</td>
<td>yes</td>
<td>yes</td>
<td>1</td>
<td>$(2^{127} - 1)^2$</td>
<td>Eurocrypt 2014</td>
</tr>
<tr>
<td>Ivy</td>
<td>119032</td>
<td>yes</td>
<td>yes</td>
<td>2</td>
<td>$2^{127} - 1$</td>
<td>Eurocrypt 2013</td>
</tr>
<tr>
<td>Ivy</td>
<td>114036</td>
<td>no</td>
<td>yes</td>
<td>1</td>
<td>2^{254}</td>
<td>CHES 2013</td>
</tr>
<tr>
<td>Ivy</td>
<td>92000?</td>
<td>no</td>
<td>no</td>
<td>1</td>
<td>$(2^{127} - 5997)^2$</td>
<td>CT-RSA 2014</td>
</tr>
<tr>
<td>Ivy</td>
<td>89000?</td>
<td>no</td>
<td>no</td>
<td>1</td>
<td>$(2^{127} - 5997)^2$</td>
<td>eprint 2014</td>
</tr>
<tr>
<td>Ivy</td>
<td>88448</td>
<td>yes</td>
<td>yes</td>
<td>2</td>
<td>$2^{127} - 1$</td>
<td>Asiacrypt 2014</td>
</tr>
<tr>
<td>Haswell</td>
<td>145907</td>
<td>yes</td>
<td>yes</td>
<td>1</td>
<td>$2^{255} - 19$</td>
<td>CHES 2011</td>
</tr>
<tr>
<td>Haswell</td>
<td>100895</td>
<td>yes</td>
<td>yes</td>
<td>2</td>
<td>$2^{127} - 1$</td>
<td>Eurocrypt 2013</td>
</tr>
<tr>
<td>Haswell</td>
<td>55595</td>
<td>no</td>
<td>yes</td>
<td>1</td>
<td>2^{254}</td>
<td>CHES 2013</td>
</tr>
<tr>
<td>Haswell</td>
<td>54389</td>
<td>yes</td>
<td>yes</td>
<td>2</td>
<td>$2^{127} - 1$</td>
<td>Asiacrypt 2014</td>
</tr>
</tbody>
</table>