
(Picture credit: Reuters.)

How to manipulate standards

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Chinese government

is under attack from

terrorists in Hong Kong.



(Picture credit: Reuters.)

How to manipulate standards

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Chinese government

is under attack from

terrorists in Hong Kong.

Goal of this talk:

Help the government

decrypt the terrorists’

encrypted communications.



(Picture credit: Reuters.)

How to manipulate standards

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Chinese government

is under attack from

terrorists in Hong Kong.

Goal of this talk:

Help the government

decrypt the terrorists’

encrypted communications.

Intercept the ciphertext.

(Also exploit metadata etc.)

How does the ciphertext

relate to the plaintext?



(Picture credit: Reuters.)

How to manipulate standards

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Chinese government

is under attack from

terrorists in Hong Kong.

Goal of this talk:

Help the government

decrypt the terrorists’

encrypted communications.

Intercept the ciphertext.

(Also exploit metadata etc.)

How does the ciphertext

relate to the plaintext?



(Picture credit: Reuters.)

How to manipulate standards

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Chinese government

is under attack from

terrorists in Hong Kong.

Goal of this talk:

Help the government

decrypt the terrorists’

encrypted communications.

Intercept the ciphertext.

(Also exploit metadata etc.)

How does the ciphertext

relate to the plaintext?



Chinese government

is under attack from

terrorists in Hong Kong.

Goal of this talk:

Help the government

decrypt the terrorists’

encrypted communications.

Intercept the ciphertext.

(Also exploit metadata etc.)

How does the ciphertext

relate to the plaintext?



Chinese government

is under attack from

terrorists in Hong Kong.

Goal of this talk:

Help the government

decrypt the terrorists’

encrypted communications.

Intercept the ciphertext.

(Also exploit metadata etc.)

How does the ciphertext

relate to the plaintext?

Maybe 56-bit DES.

Feasible to search

all 256 possible keys,

check plaintext plausibility.



Chinese government

is under attack from

terrorists in Hong Kong.

Goal of this talk:

Help the government

decrypt the terrorists’

encrypted communications.

Intercept the ciphertext.

(Also exploit metadata etc.)

How does the ciphertext

relate to the plaintext?

Maybe 56-bit DES.

Feasible to search

all 256 possible keys,

check plaintext plausibility.

Maybe 128-bit AES.

Feasible search is unlikely

to find this target’s key.

(But can improve probability

by batching many targets.)



Chinese government

is under attack from

terrorists in Hong Kong.

Goal of this talk:

Help the government

decrypt the terrorists’

encrypted communications.

Intercept the ciphertext.

(Also exploit metadata etc.)

How does the ciphertext

relate to the plaintext?

Maybe 56-bit DES.

Feasible to search

all 256 possible keys,

check plaintext plausibility.

Maybe 128-bit AES.

Feasible search is unlikely

to find this target’s key.

(But can improve probability

by batching many targets.)

Are there better ways

to find plaintext

given AES ciphertext?

Extensively studied

in public literature.

Doesn’t look good for us.



Chinese government

is under attack from

terrorists in Hong Kong.

Goal of this talk:

Help the government

decrypt the terrorists’

encrypted communications.

Intercept the ciphertext.

(Also exploit metadata etc.)

How does the ciphertext

relate to the plaintext?

Maybe 56-bit DES.

Feasible to search

all 256 possible keys,

check plaintext plausibility.

Maybe 128-bit AES.

Feasible search is unlikely

to find this target’s key.

(But can improve probability

by batching many targets.)

Are there better ways

to find plaintext

given AES ciphertext?

Extensively studied

in public literature.

Doesn’t look good for us.



Chinese government

is under attack from

terrorists in Hong Kong.

Goal of this talk:

Help the government

decrypt the terrorists’

encrypted communications.

Intercept the ciphertext.

(Also exploit metadata etc.)

How does the ciphertext

relate to the plaintext?

Maybe 56-bit DES.

Feasible to search

all 256 possible keys,

check plaintext plausibility.

Maybe 128-bit AES.

Feasible search is unlikely

to find this target’s key.

(But can improve probability

by batching many targets.)

Are there better ways

to find plaintext

given AES ciphertext?

Extensively studied

in public literature.

Doesn’t look good for us.



Intercept the ciphertext.

(Also exploit metadata etc.)

How does the ciphertext

relate to the plaintext?

Maybe 56-bit DES.

Feasible to search

all 256 possible keys,

check plaintext plausibility.

Maybe 128-bit AES.

Feasible search is unlikely

to find this target’s key.

(But can improve probability

by batching many targets.)

Are there better ways

to find plaintext

given AES ciphertext?

Extensively studied

in public literature.

Doesn’t look good for us.



Intercept the ciphertext.

(Also exploit metadata etc.)

How does the ciphertext

relate to the plaintext?

Maybe 56-bit DES.

Feasible to search

all 256 possible keys,

check plaintext plausibility.

Maybe 128-bit AES.

Feasible search is unlikely

to find this target’s key.

(But can improve probability

by batching many targets.)

Are there better ways

to find plaintext

given AES ciphertext?

Extensively studied

in public literature.

Doesn’t look good for us.

Maybe we’re smarter and

can find something better

than what’s in the literature.



Intercept the ciphertext.

(Also exploit metadata etc.)

How does the ciphertext

relate to the plaintext?

Maybe 56-bit DES.

Feasible to search

all 256 possible keys,

check plaintext plausibility.

Maybe 128-bit AES.

Feasible search is unlikely

to find this target’s key.

(But can improve probability

by batching many targets.)

Are there better ways

to find plaintext

given AES ciphertext?

Extensively studied

in public literature.

Doesn’t look good for us.

Maybe we’re smarter and

can find something better

than what’s in the literature.

Maybe there are other

parts of the system

that have been less studied,

are easier for us to break.



Intercept the ciphertext.

(Also exploit metadata etc.)

How does the ciphertext

relate to the plaintext?

Maybe 56-bit DES.

Feasible to search

all 256 possible keys,

check plaintext plausibility.

Maybe 128-bit AES.

Feasible search is unlikely

to find this target’s key.

(But can improve probability

by batching many targets.)

Are there better ways

to find plaintext

given AES ciphertext?

Extensively studied

in public literature.

Doesn’t look good for us.

Maybe we’re smarter and

can find something better

than what’s in the literature.

Maybe there are other

parts of the system

that have been less studied,

are easier for us to break.

Standard security model says:

terrorists compute cipher;

we see cipher output.

Maybe terrorists occasionally

compute something different.

Unintentionally: “bugs”.

With our help: “faults”.



Intercept the ciphertext.

(Also exploit metadata etc.)

How does the ciphertext

relate to the plaintext?

Maybe 56-bit DES.

Feasible to search

all 256 possible keys,

check plaintext plausibility.

Maybe 128-bit AES.

Feasible search is unlikely

to find this target’s key.

(But can improve probability

by batching many targets.)

Are there better ways

to find plaintext

given AES ciphertext?

Extensively studied

in public literature.

Doesn’t look good for us.

Maybe we’re smarter and

can find something better

than what’s in the literature.

Maybe there are other

parts of the system

that have been less studied,

are easier for us to break.

Standard security model says:

terrorists compute cipher;

we see cipher output.

Maybe terrorists occasionally

compute something different.

Unintentionally: “bugs”.

With our help: “faults”.



Intercept the ciphertext.

(Also exploit metadata etc.)

How does the ciphertext

relate to the plaintext?

Maybe 56-bit DES.

Feasible to search

all 256 possible keys,

check plaintext plausibility.

Maybe 128-bit AES.

Feasible search is unlikely

to find this target’s key.

(But can improve probability

by batching many targets.)

Are there better ways

to find plaintext

given AES ciphertext?

Extensively studied

in public literature.

Doesn’t look good for us.

Maybe we’re smarter and

can find something better

than what’s in the literature.

Maybe there are other

parts of the system

that have been less studied,

are easier for us to break.

Standard security model says:

terrorists compute cipher;

we see cipher output.

Maybe terrorists occasionally

compute something different.

Unintentionally: “bugs”.

With our help: “faults”.



Are there better ways

to find plaintext

given AES ciphertext?

Extensively studied

in public literature.

Doesn’t look good for us.

Maybe we’re smarter and

can find something better

than what’s in the literature.

Maybe there are other

parts of the system

that have been less studied,

are easier for us to break.

Standard security model says:

terrorists compute cipher;

we see cipher output.

Maybe terrorists occasionally

compute something different.

Unintentionally: “bugs”.

With our help: “faults”.



Are there better ways

to find plaintext

given AES ciphertext?

Extensively studied

in public literature.

Doesn’t look good for us.

Maybe we’re smarter and

can find something better

than what’s in the literature.

Maybe there are other

parts of the system

that have been less studied,

are easier for us to break.

Standard security model says:

terrorists compute cipher;

we see cipher output.

Maybe terrorists occasionally

compute something different.

Unintentionally: “bugs”.

With our help: “faults”.

Maybe we actually see

more than cipher output.

“Side channels”: e.g.,

plaintext or key is visible

through power consumption

or electromagnetic radiation.



Are there better ways

to find plaintext

given AES ciphertext?

Extensively studied

in public literature.

Doesn’t look good for us.

Maybe we’re smarter and

can find something better

than what’s in the literature.

Maybe there are other

parts of the system

that have been less studied,

are easier for us to break.

Standard security model says:

terrorists compute cipher;

we see cipher output.

Maybe terrorists occasionally

compute something different.

Unintentionally: “bugs”.

With our help: “faults”.

Maybe we actually see

more than cipher output.

“Side channels”: e.g.,

plaintext or key is visible

through power consumption

or electromagnetic radiation.

How do the terrorists

agree upon an AES key?

Maybe secret-key cryptography.

Terrorists Alice and Bob meet,

produce 128-bit key using

a random-number generator.

Maybe we can break this RNG.

See Tanja Lange’s talk.

Maybe the key is still

stored on Bob’s computer

and we can grab computer.

Lack of “key erasure”

(aka “forward secrecy”).



Are there better ways

to find plaintext

given AES ciphertext?

Extensively studied

in public literature.

Doesn’t look good for us.

Maybe we’re smarter and

can find something better

than what’s in the literature.

Maybe there are other

parts of the system

that have been less studied,

are easier for us to break.

Standard security model says:

terrorists compute cipher;

we see cipher output.

Maybe terrorists occasionally

compute something different.

Unintentionally: “bugs”.

With our help: “faults”.

Maybe we actually see

more than cipher output.

“Side channels”: e.g.,

plaintext or key is visible

through power consumption

or electromagnetic radiation.

How do the terrorists

agree upon an AES key?

Maybe secret-key cryptography.

Terrorists Alice and Bob meet,

produce 128-bit key using

a random-number generator.

Maybe we can break this RNG.

See Tanja Lange’s talk.

Maybe the key is still

stored on Bob’s computer

and we can grab computer.

Lack of “key erasure”

(aka “forward secrecy”).



Are there better ways

to find plaintext

given AES ciphertext?

Extensively studied

in public literature.

Doesn’t look good for us.

Maybe we’re smarter and

can find something better

than what’s in the literature.

Maybe there are other

parts of the system

that have been less studied,

are easier for us to break.

Standard security model says:

terrorists compute cipher;

we see cipher output.

Maybe terrorists occasionally

compute something different.

Unintentionally: “bugs”.

With our help: “faults”.

Maybe we actually see

more than cipher output.

“Side channels”: e.g.,

plaintext or key is visible

through power consumption

or electromagnetic radiation.

How do the terrorists

agree upon an AES key?

Maybe secret-key cryptography.

Terrorists Alice and Bob meet,

produce 128-bit key using

a random-number generator.

Maybe we can break this RNG.

See Tanja Lange’s talk.

Maybe the key is still

stored on Bob’s computer

and we can grab computer.

Lack of “key erasure”

(aka “forward secrecy”).



Standard security model says:

terrorists compute cipher;

we see cipher output.

Maybe terrorists occasionally

compute something different.

Unintentionally: “bugs”.

With our help: “faults”.

Maybe we actually see

more than cipher output.

“Side channels”: e.g.,

plaintext or key is visible

through power consumption

or electromagnetic radiation.

How do the terrorists

agree upon an AES key?

Maybe secret-key cryptography.

Terrorists Alice and Bob meet,

produce 128-bit key using

a random-number generator.

Maybe we can break this RNG.

See Tanja Lange’s talk.

Maybe the key is still

stored on Bob’s computer

and we can grab computer.

Lack of “key erasure”

(aka “forward secrecy”).



Standard security model says:

terrorists compute cipher;

we see cipher output.

Maybe terrorists occasionally

compute something different.

Unintentionally: “bugs”.

With our help: “faults”.

Maybe we actually see

more than cipher output.

“Side channels”: e.g.,

plaintext or key is visible

through power consumption

or electromagnetic radiation.

How do the terrorists

agree upon an AES key?

Maybe secret-key cryptography.

Terrorists Alice and Bob meet,

produce 128-bit key using

a random-number generator.

Maybe we can break this RNG.

See Tanja Lange’s talk.

Maybe the key is still

stored on Bob’s computer

and we can grab computer.

Lack of “key erasure”

(aka “forward secrecy”).

Maybe public-key cryptography.

e.g. ECDHE;P key exchange

using standard point P

on an elliptic curve E:

1. Alice generates secret a,

sends aP on E.

2. Bob generates secret b,

sends bP on E.

3. Alice computes abP .

4. Bob computes abP .

5. Alice and Bob convert

abP into AES key.



Standard security model says:

terrorists compute cipher;

we see cipher output.

Maybe terrorists occasionally

compute something different.

Unintentionally: “bugs”.

With our help: “faults”.

Maybe we actually see

more than cipher output.

“Side channels”: e.g.,

plaintext or key is visible

through power consumption

or electromagnetic radiation.

How do the terrorists

agree upon an AES key?

Maybe secret-key cryptography.

Terrorists Alice and Bob meet,

produce 128-bit key using

a random-number generator.

Maybe we can break this RNG.

See Tanja Lange’s talk.

Maybe the key is still

stored on Bob’s computer

and we can grab computer.

Lack of “key erasure”

(aka “forward secrecy”).

Maybe public-key cryptography.

e.g. ECDHE;P key exchange

using standard point P

on an elliptic curve E:

1. Alice generates secret a,

sends aP on E.

2. Bob generates secret b,

sends bP on E.

3. Alice computes abP .

4. Bob computes abP .

5. Alice and Bob convert

abP into AES key.



Standard security model says:

terrorists compute cipher;

we see cipher output.

Maybe terrorists occasionally

compute something different.

Unintentionally: “bugs”.

With our help: “faults”.

Maybe we actually see

more than cipher output.

“Side channels”: e.g.,

plaintext or key is visible

through power consumption

or electromagnetic radiation.

How do the terrorists

agree upon an AES key?

Maybe secret-key cryptography.

Terrorists Alice and Bob meet,

produce 128-bit key using

a random-number generator.

Maybe we can break this RNG.

See Tanja Lange’s talk.

Maybe the key is still

stored on Bob’s computer

and we can grab computer.

Lack of “key erasure”

(aka “forward secrecy”).

Maybe public-key cryptography.

e.g. ECDHE;P key exchange

using standard point P

on an elliptic curve E:

1. Alice generates secret a,

sends aP on E.

2. Bob generates secret b,

sends bP on E.

3. Alice computes abP .

4. Bob computes abP .

5. Alice and Bob convert

abP into AES key.



How do the terrorists

agree upon an AES key?

Maybe secret-key cryptography.

Terrorists Alice and Bob meet,

produce 128-bit key using

a random-number generator.

Maybe we can break this RNG.

See Tanja Lange’s talk.

Maybe the key is still

stored on Bob’s computer

and we can grab computer.

Lack of “key erasure”

(aka “forward secrecy”).

Maybe public-key cryptography.

e.g. ECDHE;P key exchange

using standard point P

on an elliptic curve E:

1. Alice generates secret a,

sends aP on E.

2. Bob generates secret b,

sends bP on E.

3. Alice computes abP .

4. Bob computes abP .

5. Alice and Bob convert

abP into AES key.



How do the terrorists

agree upon an AES key?

Maybe secret-key cryptography.

Terrorists Alice and Bob meet,

produce 128-bit key using

a random-number generator.

Maybe we can break this RNG.

See Tanja Lange’s talk.

Maybe the key is still

stored on Bob’s computer

and we can grab computer.

Lack of “key erasure”

(aka “forward secrecy”).

Maybe public-key cryptography.

e.g. ECDHE;P key exchange

using standard point P

on an elliptic curve E:

1. Alice generates secret a,

sends aP on E.

2. Bob generates secret b,

sends bP on E.

3. Alice computes abP .

4. Bob computes abP .

5. Alice and Bob convert

abP into AES key.

Maybe we can break RNG for a.

Maybe we can grab a.

Hard if Alice discarded it.

Maybe we can modify aP .

Hard if Bob already knows it.

(Not compatible with discard ⇒
Alice, Bob use two DH layers.)

Maybe we can “break ECDL”:

compute a from aP .

Maybe we can “break ECDH”:

compute abP from aP; bP .



How do the terrorists

agree upon an AES key?

Maybe secret-key cryptography.

Terrorists Alice and Bob meet,

produce 128-bit key using

a random-number generator.

Maybe we can break this RNG.

See Tanja Lange’s talk.

Maybe the key is still

stored on Bob’s computer

and we can grab computer.

Lack of “key erasure”

(aka “forward secrecy”).

Maybe public-key cryptography.

e.g. ECDHE;P key exchange

using standard point P

on an elliptic curve E:

1. Alice generates secret a,

sends aP on E.

2. Bob generates secret b,

sends bP on E.

3. Alice computes abP .

4. Bob computes abP .

5. Alice and Bob convert

abP into AES key.

Maybe we can break RNG for a.

Maybe we can grab a.

Hard if Alice discarded it.

Maybe we can modify aP .

Hard if Bob already knows it.

(Not compatible with discard ⇒
Alice, Bob use two DH layers.)

Maybe we can “break ECDL”:

compute a from aP .

Maybe we can “break ECDH”:

compute abP from aP; bP .



How do the terrorists

agree upon an AES key?

Maybe secret-key cryptography.

Terrorists Alice and Bob meet,

produce 128-bit key using

a random-number generator.

Maybe we can break this RNG.

See Tanja Lange’s talk.

Maybe the key is still

stored on Bob’s computer

and we can grab computer.

Lack of “key erasure”

(aka “forward secrecy”).

Maybe public-key cryptography.

e.g. ECDHE;P key exchange

using standard point P

on an elliptic curve E:

1. Alice generates secret a,

sends aP on E.

2. Bob generates secret b,

sends bP on E.

3. Alice computes abP .

4. Bob computes abP .

5. Alice and Bob convert

abP into AES key.

Maybe we can break RNG for a.

Maybe we can grab a.

Hard if Alice discarded it.

Maybe we can modify aP .

Hard if Bob already knows it.

(Not compatible with discard ⇒
Alice, Bob use two DH layers.)

Maybe we can “break ECDL”:

compute a from aP .

Maybe we can “break ECDH”:

compute abP from aP; bP .



Maybe public-key cryptography.

e.g. ECDHE;P key exchange

using standard point P

on an elliptic curve E:

1. Alice generates secret a,

sends aP on E.

2. Bob generates secret b,

sends bP on E.

3. Alice computes abP .

4. Bob computes abP .

5. Alice and Bob convert

abP into AES key.

Maybe we can break RNG for a.

Maybe we can grab a.

Hard if Alice discarded it.

Maybe we can modify aP .

Hard if Bob already knows it.

(Not compatible with discard ⇒
Alice, Bob use two DH layers.)

Maybe we can “break ECDL”:

compute a from aP .

Maybe we can “break ECDH”:

compute abP from aP; bP .



Maybe public-key cryptography.

e.g. ECDHE;P key exchange

using standard point P

on an elliptic curve E:

1. Alice generates secret a,

sends aP on E.

2. Bob generates secret b,

sends bP on E.

3. Alice computes abP .

4. Bob computes abP .

5. Alice and Bob convert

abP into AES key.

Maybe we can break RNG for a.

Maybe we can grab a.

Hard if Alice discarded it.

Maybe we can modify aP .

Hard if Bob already knows it.

(Not compatible with discard ⇒
Alice, Bob use two DH layers.)

Maybe we can “break ECDL”:

compute a from aP .

Maybe we can “break ECDH”:

compute abP from aP; bP .

ECDL/ECDH difficulty

depends on curve E.

How did terrorists decide

which curve E to use?



Maybe public-key cryptography.

e.g. ECDHE;P key exchange

using standard point P

on an elliptic curve E:

1. Alice generates secret a,

sends aP on E.

2. Bob generates secret b,

sends bP on E.

3. Alice computes abP .

4. Bob computes abP .

5. Alice and Bob convert

abP into AES key.

Maybe we can break RNG for a.

Maybe we can grab a.

Hard if Alice discarded it.

Maybe we can modify aP .

Hard if Bob already knows it.

(Not compatible with discard ⇒
Alice, Bob use two DH layers.)

Maybe we can “break ECDL”:

compute a from aP .

Maybe we can “break ECDH”:

compute abP from aP; bP .

ECDL/ECDH difficulty

depends on curve E.

How did terrorists decide

which curve E to use?



Maybe public-key cryptography.

e.g. ECDHE;P key exchange

using standard point P

on an elliptic curve E:

1. Alice generates secret a,

sends aP on E.

2. Bob generates secret b,

sends bP on E.

3. Alice computes abP .

4. Bob computes abP .

5. Alice and Bob convert

abP into AES key.

Maybe we can break RNG for a.

Maybe we can grab a.

Hard if Alice discarded it.

Maybe we can modify aP .

Hard if Bob already knows it.

(Not compatible with discard ⇒
Alice, Bob use two DH layers.)

Maybe we can “break ECDL”:

compute a from aP .

Maybe we can “break ECDH”:

compute abP from aP; bP .

ECDL/ECDH difficulty

depends on curve E.

How did terrorists decide

which curve E to use?



Maybe we can break RNG for a.

Maybe we can grab a.

Hard if Alice discarded it.

Maybe we can modify aP .

Hard if Bob already knows it.

(Not compatible with discard ⇒
Alice, Bob use two DH layers.)

Maybe we can “break ECDL”:

compute a from aP .

Maybe we can “break ECDH”:

compute abP from aP; bP .

ECDL/ECDH difficulty

depends on curve E.

How did terrorists decide

which curve E to use?



Maybe we can break RNG for a.

Maybe we can grab a.

Hard if Alice discarded it.

Maybe we can modify aP .

Hard if Bob already knows it.

(Not compatible with discard ⇒
Alice, Bob use two DH layers.)

Maybe we can “break ECDL”:

compute a from aP .

Maybe we can “break ECDH”:

compute abP from aP; bP .

ECDL/ECDH difficulty

depends on curve E.

How did terrorists decide

which curve E to use?

How did terrorists decide

to use ECDH instead of

another public-key protocol?



Maybe we can break RNG for a.

Maybe we can grab a.

Hard if Alice discarded it.

Maybe we can modify aP .

Hard if Bob already knows it.

(Not compatible with discard ⇒
Alice, Bob use two DH layers.)

Maybe we can “break ECDL”:

compute a from aP .

Maybe we can “break ECDH”:

compute abP from aP; bP .

ECDL/ECDH difficulty

depends on curve E.

How did terrorists decide

which curve E to use?

How did terrorists decide

to use ECDH instead of

another public-key protocol?

How did terrorists decide

to use AES instead of

another secret-key cipher?



Maybe we can break RNG for a.

Maybe we can grab a.

Hard if Alice discarded it.

Maybe we can modify aP .

Hard if Bob already knows it.

(Not compatible with discard ⇒
Alice, Bob use two DH layers.)

Maybe we can “break ECDL”:

compute a from aP .

Maybe we can “break ECDH”:

compute abP from aP; bP .

ECDL/ECDH difficulty

depends on curve E.

How did terrorists decide

which curve E to use?

How did terrorists decide

to use ECDH instead of

another public-key protocol?

How did terrorists decide

to use AES instead of

another secret-key cipher?

Did they screw up? (See TLS.)

Can we influence this?



Maybe we can break RNG for a.

Maybe we can grab a.

Hard if Alice discarded it.

Maybe we can modify aP .

Hard if Bob already knows it.

(Not compatible with discard ⇒
Alice, Bob use two DH layers.)

Maybe we can “break ECDL”:

compute a from aP .

Maybe we can “break ECDH”:

compute abP from aP; bP .

ECDL/ECDH difficulty

depends on curve E.

How did terrorists decide

which curve E to use?

How did terrorists decide

to use ECDH instead of

another public-key protocol?

How did terrorists decide

to use AES instead of

another secret-key cipher?

Did they screw up? (See TLS.)

Can we influence this?

Move towards more accurate

model of cryptography.

e.g. protocol ECDHV :

−1. Jerry generates E; P; S.

0. Public checks V (E; P; S) = 1.

1. Alice generates secret a,

sends aP on E.

2. Bob generates secret b,

sends bP on E.

3. Alice computes abP .

4. Bob computes abP .

5. Alice and Bob convert

abP into AES key.



Maybe we can break RNG for a.

Maybe we can grab a.

Hard if Alice discarded it.

Maybe we can modify aP .

Hard if Bob already knows it.

(Not compatible with discard ⇒
Alice, Bob use two DH layers.)

Maybe we can “break ECDL”:

compute a from aP .

Maybe we can “break ECDH”:

compute abP from aP; bP .

ECDL/ECDH difficulty

depends on curve E.

How did terrorists decide

which curve E to use?

How did terrorists decide

to use ECDH instead of

another public-key protocol?

How did terrorists decide

to use AES instead of

another secret-key cipher?

Did they screw up? (See TLS.)

Can we influence this?

Move towards more accurate

model of cryptography.

e.g. protocol ECDHV :

−1. Jerry generates E; P; S.

0. Public checks V (E; P; S) = 1.

1. Alice generates secret a,

sends aP on E.

2. Bob generates secret b,

sends bP on E.

3. Alice computes abP .

4. Bob computes abP .

5. Alice and Bob convert

abP into AES key.



Maybe we can break RNG for a.

Maybe we can grab a.

Hard if Alice discarded it.

Maybe we can modify aP .

Hard if Bob already knows it.

(Not compatible with discard ⇒
Alice, Bob use two DH layers.)

Maybe we can “break ECDL”:

compute a from aP .

Maybe we can “break ECDH”:

compute abP from aP; bP .

ECDL/ECDH difficulty

depends on curve E.

How did terrorists decide

which curve E to use?

How did terrorists decide

to use ECDH instead of

another public-key protocol?

How did terrorists decide

to use AES instead of

another secret-key cipher?

Did they screw up? (See TLS.)

Can we influence this?

Move towards more accurate

model of cryptography.

e.g. protocol ECDHV :

−1. Jerry generates E; P; S.

0. Public checks V (E; P; S) = 1.

1. Alice generates secret a,

sends aP on E.

2. Bob generates secret b,

sends bP on E.

3. Alice computes abP .

4. Bob computes abP .

5. Alice and Bob convert

abP into AES key.



ECDL/ECDH difficulty

depends on curve E.

How did terrorists decide

which curve E to use?

How did terrorists decide

to use ECDH instead of

another public-key protocol?

How did terrorists decide

to use AES instead of

another secret-key cipher?

Did they screw up? (See TLS.)

Can we influence this?

Move towards more accurate

model of cryptography.

e.g. protocol ECDHV :

−1. Jerry generates E; P; S.

0. Public checks V (E; P; S) = 1.

1. Alice generates secret a,

sends aP on E.

2. Bob generates secret b,

sends bP on E.

3. Alice computes abP .

4. Bob computes abP .

5. Alice and Bob convert

abP into AES key.



ECDL/ECDH difficulty

depends on curve E.

How did terrorists decide

which curve E to use?

How did terrorists decide

to use ECDH instead of

another public-key protocol?

How did terrorists decide

to use AES instead of

another secret-key cipher?

Did they screw up? (See TLS.)

Can we influence this?

Move towards more accurate

model of cryptography.

e.g. protocol ECDHV :

−1. Jerry generates E; P; S.

0. Public checks V (E; P; S) = 1.

1. Alice generates secret a,

sends aP on E.

2. Bob generates secret b,

sends bP on E.

3. Alice computes abP .

4. Bob computes abP .

5. Alice and Bob convert

abP into AES key.

What is V ?

Which curves will public accept?



ECDL/ECDH difficulty

depends on curve E.

How did terrorists decide

which curve E to use?

How did terrorists decide

to use ECDH instead of

another public-key protocol?

How did terrorists decide

to use AES instead of

another secret-key cipher?

Did they screw up? (See TLS.)

Can we influence this?

Move towards more accurate

model of cryptography.

e.g. protocol ECDHV :

−1. Jerry generates E; P; S.

0. Public checks V (E; P; S) = 1.

1. Alice generates secret a,

sends aP on E.

2. Bob generates secret b,

sends bP on E.

3. Alice computes abP .

4. Bob computes abP .

5. Alice and Bob convert

abP into AES key.

What is V ?

Which curves will public accept?



ECDL/ECDH difficulty

depends on curve E.

How did terrorists decide

which curve E to use?

How did terrorists decide

to use ECDH instead of

another public-key protocol?

How did terrorists decide

to use AES instead of

another secret-key cipher?

Did they screw up? (See TLS.)

Can we influence this?

Move towards more accurate

model of cryptography.

e.g. protocol ECDHV :

−1. Jerry generates E; P; S.

0. Public checks V (E; P; S) = 1.

1. Alice generates secret a,

sends aP on E.

2. Bob generates secret b,

sends bP on E.

3. Alice computes abP .

4. Bob computes abP .

5. Alice and Bob convert

abP into AES key.

What is V ?

Which curves will public accept?



Move towards more accurate

model of cryptography.

e.g. protocol ECDHV :

−1. Jerry generates E; P; S.

0. Public checks V (E; P; S) = 1.

1. Alice generates secret a,

sends aP on E.

2. Bob generates secret b,

sends bP on E.

3. Alice computes abP .

4. Bob computes abP .

5. Alice and Bob convert

abP into AES key.

What is V ?

Which curves will public accept?



Move towards more accurate

model of cryptography.

e.g. protocol ECDHV :

−1. Jerry generates E; P; S.

0. Public checks V (E; P; S) = 1.

1. Alice generates secret a,

sends aP on E.

2. Bob generates secret b,

sends bP on E.

3. Alice computes abP .

4. Bob computes abP .

5. Alice and Bob convert

abP into AES key.

What is V ?

Which curves will public accept?

What does Jerry do?

Will he accidentally help us?

How robust is this protocol?



Move towards more accurate

model of cryptography.

e.g. protocol ECDHV :

−1. Jerry generates E; P; S.

0. Public checks V (E; P; S) = 1.

1. Alice generates secret a,

sends aP on E.

2. Bob generates secret b,

sends bP on E.

3. Alice computes abP .

4. Bob computes abP .

5. Alice and Bob convert

abP into AES key.

What is V ?

Which curves will public accept?

What does Jerry do?

Will he accidentally help us?

How robust is this protocol?

How secure is this protocol

if Jerry works for us?



Move towards more accurate

model of cryptography.

e.g. protocol ECDHV :

−1. Jerry generates E; P; S.

0. Public checks V (E; P; S) = 1.

1. Alice generates secret a,

sends aP on E.

2. Bob generates secret b,

sends bP on E.

3. Alice computes abP .

4. Bob computes abP .

5. Alice and Bob convert

abP into AES key.

What is V ?

Which curves will public accept?

What does Jerry do?

Will he accidentally help us?

How robust is this protocol?

How secure is this protocol

if Jerry works for us?

Traditional crypto literature

fails to formalize any of this.

Also fails to formalize

analogous questions about

selecting ciphers, protocols, etc.



Move towards more accurate

model of cryptography.

e.g. protocol ECDHV :

−1. Jerry generates E; P; S.

0. Public checks V (E; P; S) = 1.

1. Alice generates secret a,

sends aP on E.

2. Bob generates secret b,

sends bP on E.

3. Alice computes abP .

4. Bob computes abP .

5. Alice and Bob convert

abP into AES key.

What is V ?

Which curves will public accept?

What does Jerry do?

Will he accidentally help us?

How robust is this protocol?

How secure is this protocol

if Jerry works for us?

Traditional crypto literature

fails to formalize any of this.

Also fails to formalize

analogous questions about

selecting ciphers, protocols, etc.

Warmup: Manipulating curves

Extensive ECDL/ECDH literature:

Pollard rho breaks small E,

Pohlig–Hellman breaks most E,

MOV/FR breaks some E,

SmartASS breaks some E, etc.

V1: any curve surviving these

public criteria is acceptable.



Move towards more accurate

model of cryptography.

e.g. protocol ECDHV :

−1. Jerry generates E; P; S.

0. Public checks V (E; P; S) = 1.

1. Alice generates secret a,

sends aP on E.

2. Bob generates secret b,

sends bP on E.

3. Alice computes abP .

4. Bob computes abP .

5. Alice and Bob convert

abP into AES key.

What is V ?

Which curves will public accept?

What does Jerry do?

Will he accidentally help us?

How robust is this protocol?

How secure is this protocol

if Jerry works for us?

Traditional crypto literature

fails to formalize any of this.

Also fails to formalize

analogous questions about

selecting ciphers, protocols, etc.

Warmup: Manipulating curves

Extensive ECDL/ECDH literature:

Pollard rho breaks small E,

Pohlig–Hellman breaks most E,

MOV/FR breaks some E,

SmartASS breaks some E, etc.

V1: any curve surviving these

public criteria is acceptable.



Move towards more accurate

model of cryptography.

e.g. protocol ECDHV :

−1. Jerry generates E; P; S.

0. Public checks V (E; P; S) = 1.

1. Alice generates secret a,

sends aP on E.

2. Bob generates secret b,

sends bP on E.

3. Alice computes abP .

4. Bob computes abP .

5. Alice and Bob convert

abP into AES key.

What is V ?

Which curves will public accept?

What does Jerry do?

Will he accidentally help us?

How robust is this protocol?

How secure is this protocol

if Jerry works for us?

Traditional crypto literature

fails to formalize any of this.

Also fails to formalize

analogous questions about

selecting ciphers, protocols, etc.

Warmup: Manipulating curves

Extensive ECDL/ECDH literature:

Pollard rho breaks small E,

Pohlig–Hellman breaks most E,

MOV/FR breaks some E,

SmartASS breaks some E, etc.

V1: any curve surviving these

public criteria is acceptable.



What is V ?

Which curves will public accept?

What does Jerry do?

Will he accidentally help us?

How robust is this protocol?

How secure is this protocol

if Jerry works for us?

Traditional crypto literature

fails to formalize any of this.

Also fails to formalize

analogous questions about

selecting ciphers, protocols, etc.

Warmup: Manipulating curves

Extensive ECDL/ECDH literature:

Pollard rho breaks small E,

Pohlig–Hellman breaks most E,

MOV/FR breaks some E,

SmartASS breaks some E, etc.

V1: any curve surviving these

public criteria is acceptable.



What is V ?

Which curves will public accept?

What does Jerry do?

Will he accidentally help us?

How robust is this protocol?

How secure is this protocol

if Jerry works for us?

Traditional crypto literature

fails to formalize any of this.

Also fails to formalize

analogous questions about

selecting ciphers, protocols, etc.

Warmup: Manipulating curves

Extensive ECDL/ECDH literature:

Pollard rho breaks small E,

Pohlig–Hellman breaks most E,

MOV/FR breaks some E,

SmartASS breaks some E, etc.

V1: any curve surviving these

public criteria is acceptable.

Assume that we’ve figured out

how to break another curve E.

Jerry standardizes this curve.

Alice and Bob use it.



What is V ?

Which curves will public accept?

What does Jerry do?

Will he accidentally help us?

How robust is this protocol?

How secure is this protocol

if Jerry works for us?

Traditional crypto literature

fails to formalize any of this.

Also fails to formalize

analogous questions about

selecting ciphers, protocols, etc.

Warmup: Manipulating curves

Extensive ECDL/ECDH literature:

Pollard rho breaks small E,

Pohlig–Hellman breaks most E,

MOV/FR breaks some E,

SmartASS breaks some E, etc.

V1: any curve surviving these

public criteria is acceptable.

Assume that we’ve figured out

how to break another curve E.

Jerry standardizes this curve.

Alice and Bob use it.

Is V1 plausible?

Would terrorists really accept

any curve chosen by Jerry

that survives these criteria?



What is V ?

Which curves will public accept?

What does Jerry do?

Will he accidentally help us?

How robust is this protocol?

How secure is this protocol

if Jerry works for us?

Traditional crypto literature

fails to formalize any of this.

Also fails to formalize

analogous questions about

selecting ciphers, protocols, etc.

Warmup: Manipulating curves

Extensive ECDL/ECDH literature:

Pollard rho breaks small E,

Pohlig–Hellman breaks most E,

MOV/FR breaks some E,

SmartASS breaks some E, etc.

V1: any curve surviving these

public criteria is acceptable.

Assume that we’ve figured out

how to break another curve E.

Jerry standardizes this curve.

Alice and Bob use it.

Is V1 plausible?

Would terrorists really accept

any curve chosen by Jerry

that survives these criteria?



What is V ?

Which curves will public accept?

What does Jerry do?

Will he accidentally help us?

How robust is this protocol?

How secure is this protocol

if Jerry works for us?

Traditional crypto literature

fails to formalize any of this.

Also fails to formalize

analogous questions about

selecting ciphers, protocols, etc.

Warmup: Manipulating curves

Extensive ECDL/ECDH literature:

Pollard rho breaks small E,

Pohlig–Hellman breaks most E,

MOV/FR breaks some E,

SmartASS breaks some E, etc.

V1: any curve surviving these

public criteria is acceptable.

Assume that we’ve figured out

how to break another curve E.

Jerry standardizes this curve.

Alice and Bob use it.

Is V1 plausible?

Would terrorists really accept

any curve chosen by Jerry

that survives these criteria?



Warmup: Manipulating curves

Extensive ECDL/ECDH literature:

Pollard rho breaks small E,

Pohlig–Hellman breaks most E,

MOV/FR breaks some E,

SmartASS breaks some E, etc.

V1: any curve surviving these

public criteria is acceptable.

Assume that we’ve figured out

how to break another curve E.

Jerry standardizes this curve.

Alice and Bob use it.

Is V1 plausible?

Would terrorists really accept

any curve chosen by Jerry

that survives these criteria?



Warmup: Manipulating curves

Extensive ECDL/ECDH literature:

Pollard rho breaks small E,

Pohlig–Hellman breaks most E,

MOV/FR breaks some E,

SmartASS breaks some E, etc.

V1: any curve surviving these

public criteria is acceptable.

Assume that we’ve figured out

how to break another curve E.

Jerry standardizes this curve.

Alice and Bob use it.

Is V1 plausible?

Would terrorists really accept

any curve chosen by Jerry

that survives these criteria?

Example showing plausibility:

French ANSSI FRP256V1 (2011)

is a random-looking curve

that survives these criteria

and has no other justification.



Warmup: Manipulating curves

Extensive ECDL/ECDH literature:

Pollard rho breaks small E,

Pohlig–Hellman breaks most E,

MOV/FR breaks some E,

SmartASS breaks some E, etc.

V1: any curve surviving these

public criteria is acceptable.

Assume that we’ve figured out

how to break another curve E.

Jerry standardizes this curve.

Alice and Bob use it.

Is V1 plausible?

Would terrorists really accept

any curve chosen by Jerry

that survives these criteria?

Example showing plausibility:

French ANSSI FRP256V1 (2011)

is a random-looking curve

that survives these criteria

and has no other justification.

Earlier example:

Chinese OSCCA SM2 (2010).



Warmup: Manipulating curves

Extensive ECDL/ECDH literature:

Pollard rho breaks small E,

Pohlig–Hellman breaks most E,

MOV/FR breaks some E,

SmartASS breaks some E, etc.

V1: any curve surviving these

public criteria is acceptable.

Assume that we’ve figured out

how to break another curve E.

Jerry standardizes this curve.

Alice and Bob use it.

Is V1 plausible?

Would terrorists really accept

any curve chosen by Jerry

that survives these criteria?

Example showing plausibility:

French ANSSI FRP256V1 (2011)

is a random-looking curve

that survives these criteria

and has no other justification.

Earlier example:

Chinese OSCCA SM2 (2010).

Manipulating seeds

V2: curve must satisfy the public

criteria, and Jerry must provide

a “seed” s such that E = H(s).

Examples: ANSI X9.62 (1999)

“selecting an elliptic curve

verifiably at random”; Certicom

SEC 2 1.0 (2000) “verifiably

random parameters offer

some additional conservative

features”—“parameters cannot

be predetermined”; NIST FIPS

186-2 (2000); ANSI X9.63 (2001);

Certicom SEC 2 2.0 (2010).



Warmup: Manipulating curves

Extensive ECDL/ECDH literature:

Pollard rho breaks small E,

Pohlig–Hellman breaks most E,

MOV/FR breaks some E,

SmartASS breaks some E, etc.

V1: any curve surviving these

public criteria is acceptable.

Assume that we’ve figured out

how to break another curve E.

Jerry standardizes this curve.

Alice and Bob use it.

Is V1 plausible?

Would terrorists really accept

any curve chosen by Jerry

that survives these criteria?

Example showing plausibility:

French ANSSI FRP256V1 (2011)

is a random-looking curve

that survives these criteria

and has no other justification.

Earlier example:

Chinese OSCCA SM2 (2010).

Manipulating seeds

V2: curve must satisfy the public

criteria, and Jerry must provide

a “seed” s such that E = H(s).

Examples: ANSI X9.62 (1999)

“selecting an elliptic curve

verifiably at random”; Certicom

SEC 2 1.0 (2000) “verifiably

random parameters offer

some additional conservative

features”—“parameters cannot

be predetermined”; NIST FIPS

186-2 (2000); ANSI X9.63 (2001);

Certicom SEC 2 2.0 (2010).



Warmup: Manipulating curves

Extensive ECDL/ECDH literature:

Pollard rho breaks small E,

Pohlig–Hellman breaks most E,

MOV/FR breaks some E,

SmartASS breaks some E, etc.

V1: any curve surviving these

public criteria is acceptable.

Assume that we’ve figured out

how to break another curve E.

Jerry standardizes this curve.

Alice and Bob use it.

Is V1 plausible?

Would terrorists really accept

any curve chosen by Jerry

that survives these criteria?

Example showing plausibility:

French ANSSI FRP256V1 (2011)

is a random-looking curve

that survives these criteria

and has no other justification.

Earlier example:

Chinese OSCCA SM2 (2010).

Manipulating seeds

V2: curve must satisfy the public

criteria, and Jerry must provide

a “seed” s such that E = H(s).

Examples: ANSI X9.62 (1999)

“selecting an elliptic curve

verifiably at random”; Certicom

SEC 2 1.0 (2000) “verifiably

random parameters offer

some additional conservative

features”—“parameters cannot

be predetermined”; NIST FIPS

186-2 (2000); ANSI X9.63 (2001);

Certicom SEC 2 2.0 (2010).



Is V1 plausible?

Would terrorists really accept

any curve chosen by Jerry

that survives these criteria?

Example showing plausibility:

French ANSSI FRP256V1 (2011)

is a random-looking curve

that survives these criteria

and has no other justification.

Earlier example:

Chinese OSCCA SM2 (2010).

Manipulating seeds

V2: curve must satisfy the public

criteria, and Jerry must provide

a “seed” s such that E = H(s).

Examples: ANSI X9.62 (1999)

“selecting an elliptic curve

verifiably at random”; Certicom

SEC 2 1.0 (2000) “verifiably

random parameters offer

some additional conservative

features”—“parameters cannot

be predetermined”; NIST FIPS

186-2 (2000); ANSI X9.63 (2001);

Certicom SEC 2 2.0 (2010).



Is V1 plausible?

Would terrorists really accept

any curve chosen by Jerry

that survives these criteria?

Example showing plausibility:

French ANSSI FRP256V1 (2011)

is a random-looking curve

that survives these criteria

and has no other justification.

Earlier example:

Chinese OSCCA SM2 (2010).

Manipulating seeds

V2: curve must satisfy the public

criteria, and Jerry must provide

a “seed” s such that E = H(s).

Examples: ANSI X9.62 (1999)

“selecting an elliptic curve

verifiably at random”; Certicom

SEC 2 1.0 (2000) “verifiably

random parameters offer

some additional conservative

features”—“parameters cannot

be predetermined”; NIST FIPS

186-2 (2000); ANSI X9.63 (2001);

Certicom SEC 2 2.0 (2010).

What exactly is H?

NIST defines curve E as

y2 = x3 − 3x + b where

b2c = −27; c is a hash of s;

hash is SHA-1 concatenation.



Is V1 plausible?

Would terrorists really accept

any curve chosen by Jerry

that survives these criteria?

Example showing plausibility:

French ANSSI FRP256V1 (2011)

is a random-looking curve

that survives these criteria

and has no other justification.

Earlier example:

Chinese OSCCA SM2 (2010).

Manipulating seeds

V2: curve must satisfy the public

criteria, and Jerry must provide

a “seed” s such that E = H(s).

Examples: ANSI X9.62 (1999)

“selecting an elliptic curve

verifiably at random”; Certicom

SEC 2 1.0 (2000) “verifiably

random parameters offer

some additional conservative

features”—“parameters cannot

be predetermined”; NIST FIPS

186-2 (2000); ANSI X9.63 (2001);

Certicom SEC 2 2.0 (2010).

What exactly is H?

NIST defines curve E as

y2 = x3 − 3x + b where

b2c = −27; c is a hash of s;

hash is SHA-1 concatenation.



Is V1 plausible?

Would terrorists really accept

any curve chosen by Jerry

that survives these criteria?

Example showing plausibility:

French ANSSI FRP256V1 (2011)

is a random-looking curve

that survives these criteria

and has no other justification.

Earlier example:

Chinese OSCCA SM2 (2010).

Manipulating seeds

V2: curve must satisfy the public

criteria, and Jerry must provide

a “seed” s such that E = H(s).

Examples: ANSI X9.62 (1999)

“selecting an elliptic curve

verifiably at random”; Certicom

SEC 2 1.0 (2000) “verifiably

random parameters offer

some additional conservative

features”—“parameters cannot

be predetermined”; NIST FIPS

186-2 (2000); ANSI X9.63 (2001);

Certicom SEC 2 2.0 (2010).

What exactly is H?

NIST defines curve E as

y2 = x3 − 3x + b where

b2c = −27; c is a hash of s;

hash is SHA-1 concatenation.



Manipulating seeds

V2: curve must satisfy the public

criteria, and Jerry must provide

a “seed” s such that E = H(s).

Examples: ANSI X9.62 (1999)

“selecting an elliptic curve

verifiably at random”; Certicom

SEC 2 1.0 (2000) “verifiably

random parameters offer

some additional conservative

features”—“parameters cannot

be predetermined”; NIST FIPS

186-2 (2000); ANSI X9.63 (2001);

Certicom SEC 2 2.0 (2010).

What exactly is H?

NIST defines curve E as

y2 = x3 − 3x + b where

b2c = −27; c is a hash of s;

hash is SHA-1 concatenation.



Manipulating seeds

V2: curve must satisfy the public

criteria, and Jerry must provide

a “seed” s such that E = H(s).

Examples: ANSI X9.62 (1999)

“selecting an elliptic curve

verifiably at random”; Certicom

SEC 2 1.0 (2000) “verifiably

random parameters offer

some additional conservative

features”—“parameters cannot

be predetermined”; NIST FIPS

186-2 (2000); ANSI X9.63 (2001);

Certicom SEC 2 2.0 (2010).

What exactly is H?

NIST defines curve E as

y2 = x3 − 3x + b where

b2c = −27; c is a hash of s;

hash is SHA-1 concatenation.

But clearly public will accept

other choices of H.

Examples: Brainpool (2005)

uses c = g3=h2 where

g and h are separate hashes.

NIST FIPS 186-4 (2013) requires

an “approved hash function, as

specified in FIPS 180”;

no longer allows SHA-1!



Manipulating seeds

V2: curve must satisfy the public

criteria, and Jerry must provide

a “seed” s such that E = H(s).

Examples: ANSI X9.62 (1999)

“selecting an elliptic curve

verifiably at random”; Certicom

SEC 2 1.0 (2000) “verifiably

random parameters offer

some additional conservative

features”—“parameters cannot

be predetermined”; NIST FIPS

186-2 (2000); ANSI X9.63 (2001);

Certicom SEC 2 2.0 (2010).

What exactly is H?

NIST defines curve E as

y2 = x3 − 3x + b where

b2c = −27; c is a hash of s;

hash is SHA-1 concatenation.

But clearly public will accept

other choices of H.

Examples: Brainpool (2005)

uses c = g3=h2 where

g and h are separate hashes.

NIST FIPS 186-4 (2013) requires

an “approved hash function, as

specified in FIPS 180”;

no longer allows SHA-1!

1999 Scott: “Consider now the

possibility that one in a million

of all curves have an exploitable

structure that ‘they’ know about,

but we don’t. Then ‘they’ simply

generate a million random seeds

until they find one that generates

one of ‘their’ curves. Then they

get us to use them.”



Manipulating seeds

V2: curve must satisfy the public

criteria, and Jerry must provide

a “seed” s such that E = H(s).

Examples: ANSI X9.62 (1999)

“selecting an elliptic curve

verifiably at random”; Certicom

SEC 2 1.0 (2000) “verifiably

random parameters offer

some additional conservative

features”—“parameters cannot

be predetermined”; NIST FIPS

186-2 (2000); ANSI X9.63 (2001);

Certicom SEC 2 2.0 (2010).

What exactly is H?

NIST defines curve E as

y2 = x3 − 3x + b where

b2c = −27; c is a hash of s;

hash is SHA-1 concatenation.

But clearly public will accept

other choices of H.

Examples: Brainpool (2005)

uses c = g3=h2 where

g and h are separate hashes.

NIST FIPS 186-4 (2013) requires

an “approved hash function, as

specified in FIPS 180”;

no longer allows SHA-1!

1999 Scott: “Consider now the

possibility that one in a million

of all curves have an exploitable

structure that ‘they’ know about,

but we don’t. Then ‘they’ simply

generate a million random seeds

until they find one that generates

one of ‘their’ curves. Then they

get us to use them.”



Manipulating seeds

V2: curve must satisfy the public

criteria, and Jerry must provide

a “seed” s such that E = H(s).

Examples: ANSI X9.62 (1999)

“selecting an elliptic curve

verifiably at random”; Certicom

SEC 2 1.0 (2000) “verifiably

random parameters offer

some additional conservative

features”—“parameters cannot

be predetermined”; NIST FIPS

186-2 (2000); ANSI X9.63 (2001);

Certicom SEC 2 2.0 (2010).

What exactly is H?

NIST defines curve E as

y2 = x3 − 3x + b where

b2c = −27; c is a hash of s;

hash is SHA-1 concatenation.

But clearly public will accept

other choices of H.

Examples: Brainpool (2005)

uses c = g3=h2 where

g and h are separate hashes.

NIST FIPS 186-4 (2013) requires

an “approved hash function, as

specified in FIPS 180”;

no longer allows SHA-1!

1999 Scott: “Consider now the

possibility that one in a million

of all curves have an exploitable

structure that ‘they’ know about,

but we don’t. Then ‘they’ simply

generate a million random seeds

until they find one that generates

one of ‘their’ curves. Then they

get us to use them.”



What exactly is H?

NIST defines curve E as

y2 = x3 − 3x + b where

b2c = −27; c is a hash of s;

hash is SHA-1 concatenation.

But clearly public will accept

other choices of H.

Examples: Brainpool (2005)

uses c = g3=h2 where

g and h are separate hashes.

NIST FIPS 186-4 (2013) requires

an “approved hash function, as

specified in FIPS 180”;

no longer allows SHA-1!

1999 Scott: “Consider now the

possibility that one in a million

of all curves have an exploitable

structure that ‘they’ know about,

but we don’t. Then ‘they’ simply

generate a million random seeds

until they find one that generates

one of ‘their’ curves. Then they

get us to use them.”



What exactly is H?

NIST defines curve E as

y2 = x3 − 3x + b where

b2c = −27; c is a hash of s;

hash is SHA-1 concatenation.

But clearly public will accept

other choices of H.

Examples: Brainpool (2005)

uses c = g3=h2 where

g and h are separate hashes.

NIST FIPS 186-4 (2013) requires

an “approved hash function, as

specified in FIPS 180”;

no longer allows SHA-1!

1999 Scott: “Consider now the

possibility that one in a million

of all curves have an exploitable

structure that ‘they’ know about,

but we don’t. Then ‘they’ simply

generate a million random seeds

until they find one that generates

one of ‘their’ curves. Then they

get us to use them.”

New: Optimized this computation

using Keccak on cluster of 41

GTX780 GPUs. In 7 hours found

“secure+twist-secure” b = 0x

BADA55ECD8BBEAD3ADD6C534F92197DE

B47FCEB9BE7E0E702A8D1DD56B5D0B0C.



What exactly is H?

NIST defines curve E as

y2 = x3 − 3x + b where

b2c = −27; c is a hash of s;

hash is SHA-1 concatenation.

But clearly public will accept

other choices of H.

Examples: Brainpool (2005)

uses c = g3=h2 where

g and h are separate hashes.

NIST FIPS 186-4 (2013) requires

an “approved hash function, as

specified in FIPS 180”;

no longer allows SHA-1!

1999 Scott: “Consider now the

possibility that one in a million

of all curves have an exploitable

structure that ‘they’ know about,

but we don’t. Then ‘they’ simply

generate a million random seeds

until they find one that generates

one of ‘their’ curves. Then they

get us to use them.”

New: Optimized this computation

using Keccak on cluster of 41

GTX780 GPUs. In 7 hours found

“secure+twist-secure” b = 0x

BADA55ECD8BBEAD3ADD6C534F92197DE

B47FCEB9BE7E0E702A8D1DD56B5D0B0C.

Manipulating NUMS numbers

Brainpool standard:

“The choice of the seeds

from which the [NIST] curve

parameters have been derived is

not motivated leaving an essential

part of the security analysis

open. : : :

Verifiably pseudo-random.

The [Brainpool] curves shall be

generated in a pseudo-random

manner using seeds that are

generated in a systematic and

comprehensive way.”



What exactly is H?

NIST defines curve E as

y2 = x3 − 3x + b where

b2c = −27; c is a hash of s;

hash is SHA-1 concatenation.

But clearly public will accept

other choices of H.

Examples: Brainpool (2005)

uses c = g3=h2 where

g and h are separate hashes.

NIST FIPS 186-4 (2013) requires

an “approved hash function, as

specified in FIPS 180”;

no longer allows SHA-1!

1999 Scott: “Consider now the

possibility that one in a million

of all curves have an exploitable

structure that ‘they’ know about,

but we don’t. Then ‘they’ simply

generate a million random seeds

until they find one that generates

one of ‘their’ curves. Then they

get us to use them.”

New: Optimized this computation

using Keccak on cluster of 41

GTX780 GPUs. In 7 hours found

“secure+twist-secure” b = 0x

BADA55ECD8BBEAD3ADD6C534F92197DE

B47FCEB9BE7E0E702A8D1DD56B5D0B0C.

Manipulating NUMS numbers

Brainpool standard:

“The choice of the seeds

from which the [NIST] curve

parameters have been derived is

not motivated leaving an essential

part of the security analysis

open. : : :

Verifiably pseudo-random.

The [Brainpool] curves shall be

generated in a pseudo-random

manner using seeds that are

generated in a systematic and

comprehensive way.”



What exactly is H?

NIST defines curve E as

y2 = x3 − 3x + b where

b2c = −27; c is a hash of s;

hash is SHA-1 concatenation.

But clearly public will accept

other choices of H.

Examples: Brainpool (2005)

uses c = g3=h2 where

g and h are separate hashes.

NIST FIPS 186-4 (2013) requires

an “approved hash function, as

specified in FIPS 180”;

no longer allows SHA-1!

1999 Scott: “Consider now the

possibility that one in a million

of all curves have an exploitable

structure that ‘they’ know about,

but we don’t. Then ‘they’ simply

generate a million random seeds

until they find one that generates

one of ‘their’ curves. Then they

get us to use them.”

New: Optimized this computation

using Keccak on cluster of 41

GTX780 GPUs. In 7 hours found

“secure+twist-secure” b = 0x

BADA55ECD8BBEAD3ADD6C534F92197DE

B47FCEB9BE7E0E702A8D1DD56B5D0B0C.

Manipulating NUMS numbers

Brainpool standard:

“The choice of the seeds

from which the [NIST] curve

parameters have been derived is

not motivated leaving an essential

part of the security analysis

open. : : :

Verifiably pseudo-random.

The [Brainpool] curves shall be

generated in a pseudo-random

manner using seeds that are

generated in a systematic and

comprehensive way.”



1999 Scott: “Consider now the

possibility that one in a million

of all curves have an exploitable

structure that ‘they’ know about,

but we don’t. Then ‘they’ simply

generate a million random seeds

until they find one that generates

one of ‘their’ curves. Then they

get us to use them.”

New: Optimized this computation

using Keccak on cluster of 41

GTX780 GPUs. In 7 hours found

“secure+twist-secure” b = 0x

BADA55ECD8BBEAD3ADD6C534F92197DE

B47FCEB9BE7E0E702A8D1DD56B5D0B0C.

Manipulating NUMS numbers

Brainpool standard:

“The choice of the seeds

from which the [NIST] curve

parameters have been derived is

not motivated leaving an essential

part of the security analysis

open. : : :

Verifiably pseudo-random.

The [Brainpool] curves shall be

generated in a pseudo-random

manner using seeds that are

generated in a systematic and

comprehensive way.”



1999 Scott: “Consider now the

possibility that one in a million

of all curves have an exploitable

structure that ‘they’ know about,

but we don’t. Then ‘they’ simply

generate a million random seeds

until they find one that generates

one of ‘their’ curves. Then they

get us to use them.”

New: Optimized this computation

using Keccak on cluster of 41

GTX780 GPUs. In 7 hours found

“secure+twist-secure” b = 0x

BADA55ECD8BBEAD3ADD6C534F92197DE

B47FCEB9BE7E0E702A8D1DD56B5D0B0C.

Manipulating NUMS numbers

Brainpool standard:

“The choice of the seeds

from which the [NIST] curve

parameters have been derived is

not motivated leaving an essential

part of the security analysis

open. : : :

Verifiably pseudo-random.

The [Brainpool] curves shall be

generated in a pseudo-random

manner using seeds that are

generated in a systematic and

comprehensive way.”

Wikipedia: “In cryptography,

nothing up my sleeve numbers

are any numbers which, by their

construction, are above suspicion

of hidden properties.”

Microsoft “NUMS” curves (2014):

“generated deterministically

from the security level”.

Albertini–Aumasson–Eichlseder–

Mendel–Schläffer “Malicious

hashing” (2014): “constants

in hash functions are normally

expected to be identifiable as

nothing-up-your-sleeve numbers”.



1999 Scott: “Consider now the

possibility that one in a million

of all curves have an exploitable

structure that ‘they’ know about,

but we don’t. Then ‘they’ simply

generate a million random seeds

until they find one that generates

one of ‘their’ curves. Then they

get us to use them.”

New: Optimized this computation

using Keccak on cluster of 41

GTX780 GPUs. In 7 hours found

“secure+twist-secure” b = 0x

BADA55ECD8BBEAD3ADD6C534F92197DE

B47FCEB9BE7E0E702A8D1DD56B5D0B0C.

Manipulating NUMS numbers

Brainpool standard:

“The choice of the seeds

from which the [NIST] curve

parameters have been derived is

not motivated leaving an essential

part of the security analysis

open. : : :

Verifiably pseudo-random.

The [Brainpool] curves shall be

generated in a pseudo-random

manner using seeds that are

generated in a systematic and

comprehensive way.”

Wikipedia: “In cryptography,

nothing up my sleeve numbers

are any numbers which, by their

construction, are above suspicion

of hidden properties.”

Microsoft “NUMS” curves (2014):

“generated deterministically

from the security level”.

Albertini–Aumasson–Eichlseder–

Mendel–Schläffer “Malicious

hashing” (2014): “constants

in hash functions are normally

expected to be identifiable as

nothing-up-your-sleeve numbers”.



1999 Scott: “Consider now the

possibility that one in a million

of all curves have an exploitable

structure that ‘they’ know about,

but we don’t. Then ‘they’ simply

generate a million random seeds

until they find one that generates

one of ‘their’ curves. Then they

get us to use them.”

New: Optimized this computation

using Keccak on cluster of 41

GTX780 GPUs. In 7 hours found

“secure+twist-secure” b = 0x

BADA55ECD8BBEAD3ADD6C534F92197DE

B47FCEB9BE7E0E702A8D1DD56B5D0B0C.

Manipulating NUMS numbers

Brainpool standard:

“The choice of the seeds

from which the [NIST] curve

parameters have been derived is

not motivated leaving an essential

part of the security analysis

open. : : :

Verifiably pseudo-random.

The [Brainpool] curves shall be

generated in a pseudo-random

manner using seeds that are

generated in a systematic and

comprehensive way.”

Wikipedia: “In cryptography,

nothing up my sleeve numbers

are any numbers which, by their

construction, are above suspicion

of hidden properties.”

Microsoft “NUMS” curves (2014):

“generated deterministically

from the security level”.

Albertini–Aumasson–Eichlseder–

Mendel–Schläffer “Malicious

hashing” (2014): “constants

in hash functions are normally

expected to be identifiable as

nothing-up-your-sleeve numbers”.



Manipulating NUMS numbers

Brainpool standard:

“The choice of the seeds

from which the [NIST] curve

parameters have been derived is

not motivated leaving an essential

part of the security analysis

open. : : :

Verifiably pseudo-random.

The [Brainpool] curves shall be

generated in a pseudo-random

manner using seeds that are

generated in a systematic and

comprehensive way.”

Wikipedia: “In cryptography,

nothing up my sleeve numbers

are any numbers which, by their

construction, are above suspicion

of hidden properties.”

Microsoft “NUMS” curves (2014):

“generated deterministically

from the security level”.

Albertini–Aumasson–Eichlseder–

Mendel–Schläffer “Malicious

hashing” (2014): “constants

in hash functions are normally

expected to be identifiable as

nothing-up-your-sleeve numbers”.



Manipulating NUMS numbers

Brainpool standard:

“The choice of the seeds

from which the [NIST] curve

parameters have been derived is

not motivated leaving an essential

part of the security analysis

open. : : :

Verifiably pseudo-random.

The [Brainpool] curves shall be

generated in a pseudo-random

manner using seeds that are

generated in a systematic and

comprehensive way.”

Wikipedia: “In cryptography,

nothing up my sleeve numbers

are any numbers which, by their

construction, are above suspicion

of hidden properties.”

Microsoft “NUMS” curves (2014):

“generated deterministically

from the security level”.

Albertini–Aumasson–Eichlseder–

Mendel–Schläffer “Malicious

hashing” (2014): “constants

in hash functions are normally

expected to be identifiable as

nothing-up-your-sleeve numbers”.

New: We generated a BADA55

curve “BADA55-VPR-224”

with a Brainpool-like explanation.



Manipulating NUMS numbers

Brainpool standard:

“The choice of the seeds

from which the [NIST] curve

parameters have been derived is

not motivated leaving an essential

part of the security analysis

open. : : :

Verifiably pseudo-random.

The [Brainpool] curves shall be

generated in a pseudo-random

manner using seeds that are

generated in a systematic and

comprehensive way.”

Wikipedia: “In cryptography,

nothing up my sleeve numbers

are any numbers which, by their

construction, are above suspicion

of hidden properties.”

Microsoft “NUMS” curves (2014):

“generated deterministically

from the security level”.

Albertini–Aumasson–Eichlseder–

Mendel–Schläffer “Malicious

hashing” (2014): “constants

in hash functions are normally

expected to be identifiable as

nothing-up-your-sleeve numbers”.

New: We generated a BADA55

curve “BADA55-VPR-224”

with a Brainpool-like explanation.



Manipulating NUMS numbers

Brainpool standard:

“The choice of the seeds

from which the [NIST] curve

parameters have been derived is

not motivated leaving an essential

part of the security analysis

open. : : :

Verifiably pseudo-random.

The [Brainpool] curves shall be

generated in a pseudo-random

manner using seeds that are

generated in a systematic and

comprehensive way.”

Wikipedia: “In cryptography,

nothing up my sleeve numbers

are any numbers which, by their

construction, are above suspicion

of hidden properties.”

Microsoft “NUMS” curves (2014):

“generated deterministically

from the security level”.

Albertini–Aumasson–Eichlseder–

Mendel–Schläffer “Malicious

hashing” (2014): “constants

in hash functions are normally

expected to be identifiable as

nothing-up-your-sleeve numbers”.

New: We generated a BADA55

curve “BADA55-VPR-224”

with a Brainpool-like explanation.



Wikipedia: “In cryptography,

nothing up my sleeve numbers

are any numbers which, by their

construction, are above suspicion

of hidden properties.”

Microsoft “NUMS” curves (2014):

“generated deterministically

from the security level”.

Albertini–Aumasson–Eichlseder–

Mendel–Schläffer “Malicious

hashing” (2014): “constants

in hash functions are normally

expected to be identifiable as

nothing-up-your-sleeve numbers”.

New: We generated a BADA55

curve “BADA55-VPR-224”

with a Brainpool-like explanation.



Wikipedia: “In cryptography,

nothing up my sleeve numbers

are any numbers which, by their

construction, are above suspicion

of hidden properties.”

Microsoft “NUMS” curves (2014):

“generated deterministically

from the security level”.

Albertini–Aumasson–Eichlseder–

Mendel–Schläffer “Malicious

hashing” (2014): “constants

in hash functions are normally

expected to be identifiable as

nothing-up-your-sleeve numbers”.

New: We generated a BADA55

curve “BADA55-VPR-224”

with a Brainpool-like explanation.

We actually generated

>1000000 curves, each having

a Brainpool-like explanation.



Wikipedia: “In cryptography,

nothing up my sleeve numbers

are any numbers which, by their

construction, are above suspicion

of hidden properties.”

Microsoft “NUMS” curves (2014):

“generated deterministically

from the security level”.

Albertini–Aumasson–Eichlseder–

Mendel–Schläffer “Malicious

hashing” (2014): “constants

in hash functions are normally

expected to be identifiable as

nothing-up-your-sleeve numbers”.

New: We generated a BADA55

curve “BADA55-VPR-224”

with a Brainpool-like explanation.

We actually generated

>1000000 curves, each having

a Brainpool-like explanation.

Example of underlying flexibility:

Brainpool generates seeds from

exp(1) and primes from arctan(1);

MD5 generates constants from

sin(1); BADA55-VPR-224

generated a seed from cos(1).



Wikipedia: “In cryptography,

nothing up my sleeve numbers

are any numbers which, by their

construction, are above suspicion

of hidden properties.”

Microsoft “NUMS” curves (2014):

“generated deterministically

from the security level”.

Albertini–Aumasson–Eichlseder–

Mendel–Schläffer “Malicious

hashing” (2014): “constants

in hash functions are normally

expected to be identifiable as

nothing-up-your-sleeve numbers”.

New: We generated a BADA55

curve “BADA55-VPR-224”

with a Brainpool-like explanation.

We actually generated

>1000000 curves, each having

a Brainpool-like explanation.

Example of underlying flexibility:

Brainpool generates seeds from

exp(1) and primes from arctan(1);

MD5 generates constants from

sin(1); BADA55-VPR-224

generated a seed from cos(1).

Most material in this talk

was drawn from this paper:

How to

manipulate curve standards:

a white paper for the black hat

Daniel J. Bernstein

Tung Chou

Chitchanok Chuengsatiansup

Andreas Hülsing

Tanja Lange

Ruben Niederhagen

Christine van Vredendaal

safecurves.cr.yp.to

/bada55.html



Wikipedia: “In cryptography,

nothing up my sleeve numbers

are any numbers which, by their

construction, are above suspicion

of hidden properties.”

Microsoft “NUMS” curves (2014):

“generated deterministically

from the security level”.

Albertini–Aumasson–Eichlseder–

Mendel–Schläffer “Malicious

hashing” (2014): “constants

in hash functions are normally

expected to be identifiable as

nothing-up-your-sleeve numbers”.

New: We generated a BADA55

curve “BADA55-VPR-224”

with a Brainpool-like explanation.

We actually generated

>1000000 curves, each having

a Brainpool-like explanation.

Example of underlying flexibility:

Brainpool generates seeds from

exp(1) and primes from arctan(1);

MD5 generates constants from

sin(1); BADA55-VPR-224

generated a seed from cos(1).

Most material in this talk

was drawn from this paper:

How to

manipulate curve standards:

a white paper for the black hat

Daniel J. Bernstein

Tung Chou

Chitchanok Chuengsatiansup

Andreas Hülsing

Tanja Lange

Ruben Niederhagen

Christine van Vredendaal

safecurves.cr.yp.to

/bada55.html



Wikipedia: “In cryptography,

nothing up my sleeve numbers

are any numbers which, by their

construction, are above suspicion

of hidden properties.”

Microsoft “NUMS” curves (2014):

“generated deterministically

from the security level”.

Albertini–Aumasson–Eichlseder–

Mendel–Schläffer “Malicious

hashing” (2014): “constants

in hash functions are normally

expected to be identifiable as

nothing-up-your-sleeve numbers”.

New: We generated a BADA55

curve “BADA55-VPR-224”

with a Brainpool-like explanation.

We actually generated

>1000000 curves, each having

a Brainpool-like explanation.

Example of underlying flexibility:

Brainpool generates seeds from

exp(1) and primes from arctan(1);

MD5 generates constants from

sin(1); BADA55-VPR-224

generated a seed from cos(1).

Most material in this talk

was drawn from this paper:

How to

manipulate curve standards:

a white paper for the black hat

Daniel J. Bernstein

Tung Chou

Chitchanok Chuengsatiansup

Andreas Hülsing

Tanja Lange

Ruben Niederhagen

Christine van Vredendaal

safecurves.cr.yp.to

/bada55.html



New: We generated a BADA55

curve “BADA55-VPR-224”

with a Brainpool-like explanation.

We actually generated

>1000000 curves, each having

a Brainpool-like explanation.

Example of underlying flexibility:

Brainpool generates seeds from

exp(1) and primes from arctan(1);

MD5 generates constants from

sin(1); BADA55-VPR-224

generated a seed from cos(1).

Most material in this talk

was drawn from this paper:

How to

manipulate curve standards:

a white paper for the black hat

Daniel J. Bernstein

Tung Chou

Chitchanok Chuengsatiansup

Andreas Hülsing

Tanja Lange

Ruben Niederhagen

Christine van Vredendaal

safecurves.cr.yp.to

/bada55.html


