Hyper-and-elliptic-curve cryptography
(which is not the same as:
hyperelliptic-curve cryptography and elliptic-curve cryptography)

Daniel J. Bernstein University of Illinois at Chicago \& Technische Universiteit Eindhoven

Tanja Lange

Technische Universiteit Eindhoven

"Through our inefficient use of energy (gas guzzling vehicles, badly insulated buildings, poorly optimized crypto, etc) we needlessly throw away almost a third of the energy we use." -Greenpeace UK

"Through our inefficient use of energy (gas guzzling vehicles, badly insulated buildings, poorly optimized crypto, etc) we needlessly throw away almost a third of the energy we use." —Greenpeace UK (mostly)

DH speed records

Sandy Bridge cycles for highsecurity constant-time $a, P \mapsto a P$ ("?" if not SUPERCOP-verified):

2011 Bernstein-Duif-Lange-
Schwabe-Yang:
194036
2012 Hamburg:
153000?
2012 Longa-Sica:
137000?
2013 Bos-Costello-Hisil-
Lauter: 122716
2013 Oliveira-López-Aranha-
Rodríguez-Henríquez: 114800?
2013 Faz-Hernández-Longa-
Sánchez:
96000?
2014 Bernstein-Chuengsatiansup-Lange-Schwabe:

91320

Critical for 122716, 91320:
1986 Chudnovsky-Chudnovsky:
traditional Kummer surface
allows fast scalar mult.
14 M for $X(P) \mapsto X(2 P)$.
2006 Gaudry: even faster.
25M for $X(P), X(Q), X(Q-P)$
$\mapsto X(2 P), X(Q+P)$, including
6 M by surface coefficients.
2012 Gaudry-Schost:
1000000-CPU-hour computation
found secure small-coefficient surface over $\mathbf{F}_{2^{127}-1}$.
$\begin{array}{llllllll}x_{2} & y_{2} & z_{2} & t_{2} & x_{3} & y_{3} & z_{3} & t_{3}\end{array}$

Hadamard

$\times \times \times \times$
$\downarrow \quad \downarrow \quad \downarrow$
$\cdot \frac{a^{2}}{b^{2}} \cdot \frac{a^{2}}{c^{2}} \cdot \frac{a^{2}}{d^{2}}$
$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$
$\begin{array}{llllllll}x_{4} & y_{4} & z_{4} & t_{4} & x_{5} & y_{5} & z_{5} & t_{5}\end{array}$

Strategies to build dim-2 J/Fp with known $\# J\left(\mathbf{F}_{p}\right)$, large p :

	CM	Pila	new
fast build	yes	no	yes
any curve	no	yes	no
many curves	no	yes	yes
secure curves	yes	yes	yes
twist-secure	yes	yes	yes
Kummer	yes	yes	yes
small coeff	no	yes	yes
fastest DH	no	yes	yes
fastest keygen	no	no	yes
complete add	no	no	yes

Strategies to build dim-2 J/F ${ }_{p}$ with known $\# J\left(\mathbf{F}_{p}\right)$, large p :

	CM	Pila	Stn	new
fast build	yes	no	yes	yes
any curve	no	yes	no	no
many curves	no	yes	yes	yes
secure curves	yes	yes	yes	yes
twist-secure	yes	yes	yes	yes
Kummer	yes	yes	yes	yes
small coeff	no	yes	no	yes
fastest DH	no	yes	no	yes
fastest keygen	no	no	no	yes
complete add	no	no	no	yes

Hyper-and-elliptic-curve crypto

Typical example: Define
$H: y^{2}=(z-1)(z+1)(z+2)$

$$
(z-1 / 2)(z+3 / 2)(z-2 / 3)
$$

over \mathbf{F}_{p} with $p=2^{127}-309$;
$J=$ Jac H; traditional Summer surface K; traditional $X: J \rightarrow K$. Small K coeffs (20:1:20:40).

Hyper-and-elliptic-curve crypto

Typical example: Define
$H: y^{2}=(z-1)(z+1)(z+2)$

$$
(z-1 / 2)(z+3 / 2)(z-2 / 3)
$$

over \mathbf{F}_{p} with $p=2^{127}-309$;
$J=\mathrm{Jac} H$; traditional Summer surface K; traditional $X: J \rightarrow K$. Small K coeffs (20:1:20:40).

Warning: There are typos in the Rosenhain/Mumford/Kummer formulas in 2007 Gaudry, 2010 Cosset, 2013 Bos-Costello-Hisil-Lauter. We have simpler, computer-verified formulas.
$\# J\left(\mathbf{F}_{p}\right)=16 \ell$
where ℓ is the prime
18092513943330655534932966
40760748553649194606010814
289531455285792829679923.

Security $\approx 2^{125}$ against rho.
Order of ℓ in $(\mathbf{Z} / p)^{*}$ is
12152941675747802266549093
122563150387.

Twist security $\approx 2^{75}$.
(Want more twist security?
Switch to $p=2^{127}-94825$;
cofactors $16 \cdot 3269239,4$.)

Fast point-counting

Define $\mathbf{F}_{p^{2}}=\mathbf{F}_{p}[i] /\left(i^{2}+1\right)$;
$r=(7+4 i)^{2}=33+56 i$;
$s=159+56 i ; \omega=\sqrt{-384}$;
$C: y^{2}=r x^{6}+s x^{4}+\bar{s} x^{2}+\bar{r}$.

Fast point-counting

Define $\mathbf{F}_{p^{2}}=\mathbf{F}_{p}[i] /\left(i^{2}+1\right)$;
$r=(7+4 i)^{2}=33+56 i$;
$s=159+56 i ; \omega=\sqrt{-384}$;
$C: y^{2}=r x^{6}+s x^{4}+\bar{s} x^{2}+\bar{r}$.
$(x, y) \mapsto\left(x^{2}, y\right)$ takes C to E : $y^{2}=r x^{3}+s x^{2}+\bar{s} x+\bar{r}$.

Fast point-counting

Define $\mathbf{F}_{p^{2}}=\mathbf{F}_{p}[i] /\left(i^{2}+1\right)$;
$r=(7+4 i)^{2}=33+56 i$;
$s=159+56 i ; \omega=\sqrt{-384}$;
C : $y^{2}=r x^{6}+s x^{4}+\bar{s} x^{2}+\bar{r}$.
$(x, y) \mapsto\left(x^{2}, y\right)$ takes C to E : $y^{2}=r x^{3}+s x^{2}+\bar{s} x+\bar{r}$.
$(x, y) \mapsto\left(1 / x^{2}, y / x^{3}\right)$ takes C to $y^{2}=\bar{r} x^{3}+\bar{s} x^{2}+s x+r$.

Fast point-counting

Define $\mathbf{F}_{p^{2}}=\mathbf{F}_{p}[i] /\left(i^{2}+1\right)$;
$r=(7+4 i)^{2}=33+56 i$;
$s=159+56 i ; \omega=\sqrt{-384}$;
$C: y^{2}=r x^{6}+s x^{4}+\bar{s} x^{2}+\bar{r}$.
$(x, y) \mapsto\left(x^{2}, y\right)$ takes C to E : $y^{2}=r x^{3}+s x^{2}+\bar{s} x+\bar{r}$.
$(x, y) \mapsto\left(1 / x^{2}, y / x^{3}\right)$ takes C to $y^{2}=\bar{r} x^{3}+\bar{s} x^{2}+s x+r$.
$(z, y) \mapsto\left(\frac{1+i z}{1-i z}, \frac{\omega y}{(1-i z)^{3}}\right)$ takes H over $\mathbf{F}_{p^{2}}$ to C.
J is isogenous to
Weil restriction W of E, so
computing $\# J\left(\mathbf{F}_{p}\right)$ is fast.
J is isogenous to
Weil restriction W of E, so
computing $\# J\left(\mathbf{F}_{p}\right)$ is fast.
2003 Scholten:
this strategy for
building many genus-2 curves
with fast point-counting.
J is isogenous to
Weil restriction W of E, so computing $\# J\left(\mathbf{F}_{p}\right)$ is fast.

2003 Scholten:
this strategy for
building many genus-2 curves
with fast point-counting.
Handles all elliptic curves
over $\mathbf{F}_{p^{2}}$ with full 2-torsion
(and more elliptic curves).
Geometrically: all elliptic curves;
codim 1 in hyperelliptic curves.

New: not just point-counting
Alice generates secret $a \in \mathbf{Z}$. Bob generates secret $b \in \mathbf{Z}$.

Alice computes $a G \in E\left(\mathbf{F}_{p^{2}}\right)$ using standard $G \in E\left(\mathbf{F}_{p^{2}}\right)$. Top speed: Edwards coordinates.

Alice sends $a G$ to Bob.
Bob views $a G$ in $W\left(\boldsymbol{F}_{p}\right)$, applies isogeny $W\left(\mathbf{F}_{p}\right) \rightarrow J\left(\mathbf{F}_{p}\right)$, computes $b(a G)$ in $J\left(\mathbf{F}_{p}\right)$.
Top speed: Kummer coordinates.

In general: use isogenies
$\iota: W \rightarrow J$ and $\iota^{\prime}: J \rightarrow W$ to
dynamically move computations between $E\left(\mathbf{F}_{p^{2}}\right)$ and $J\left(\mathbf{F}_{p}\right)$.

But do we have fast formulas for ι^{\prime} and for dual isogeny ι ?

In general: use isogenies
$\iota: W \rightarrow J$ and $\iota^{\prime}: J \rightarrow W$ to
dynamically move computations between $E\left(\mathbf{F}_{p^{2}}\right)$ and $J\left(\mathbf{F}_{p}\right)$.

But do we have fast formulas for ι^{\prime} and for dual isogeny ι ?

Scholten: Define $\phi: H \rightarrow E$ as $(z, y) \mapsto\left(\frac{(1+i z)^{2}}{(1-i z)^{2}}, \frac{\omega y}{(1-i z)^{3}}\right)$.

Composition of $\phi_{2}:\left(P_{1}, P_{2}\right) \mapsto$ $\phi\left(P_{1}\right)+\phi\left(P_{2}\right)$ and standard $E \rightarrow W$ is composition of standard $H \times H \rightarrow J$ and some $\iota^{\prime}: J \rightarrow W$.

The conventional continuation:

1. Prove that ι^{\prime} is an isogeny by analyzing fibers of ϕ_{2}.
2. Observe that $\iota \circ \iota^{\prime}=2$
for some isogeny ι.
3. Compute formulas for ι^{\prime} : take
$P_{i}=\left(z_{i}, y_{i}\right)$ on $H: y^{2}=f(z)$
$\operatorname{over} \mathbf{F}_{p}\left(z_{1}, z_{2}\right)\left[y_{1}, y_{2}\right]$
$/\left(y_{1}^{2}-f\left(z_{1}\right), y_{2}^{2}-f\left(z_{2}\right)\right)$;
compose definition of ϕ
with addition formulas on E; eliminate $z_{1}, z_{2}, y_{1}, y_{2}$ in favor of Mumford coordinates.
4. Simplify formulas for ι^{\prime} using, e.g., 2006 Monagan-Pearce "rational simplification" method.
5. Find ι : norm-conorm etc.
6. Simplify formulas for ι^{\prime} using, e.g., 2006 Monagan-Pearce "rational simplification" method.
7. Find ι : norm-conorm etc.

Much easier: We applied ϕ_{2} to random points in $H\left(\mathbf{F}_{p}\right) \times H\left(\mathbf{F}_{p}\right)$, interpolated coefficients of ι^{\prime}.
Similarly interpolated formulas for ι; verified composition.

Easy computer calculation. "Wasting brain power
is bad for the environment."

New: small coefficients

K defined by 3 coeffs.
Only 2 degrees of freedom in E.
Can't expect small-height coeffs.
... unless everything lifts to \mathbf{Q}.

New: small coefficients
K defined by 3 coeffs.
Only 2 degrees of freedom in E.
Cant expect small-height coeffs.
... unless everything lifts to \mathbf{Q}.
Choose non-square $\Delta \in \mathbf{Q}$;
distinct squares $\rho_{1}, \rho_{2}, \rho_{3}$
of norm-1 elements of $\mathbf{Q}(\sqrt{\Delta})$;
$r \in \mathbf{Q}(\sqrt{\Delta})$ with $-\rho_{1} \rho_{2} \rho_{3}=\bar{r} / r$.
Define $s=-r\left(\rho_{1}+\rho_{2}+\rho_{3}\right)$.
Then $r x^{3}+s x^{2}+\bar{s} x+\bar{r}=$
$r\left(x-\rho_{1}\right)\left(x-\rho_{2}\right)\left(x-\rho_{3}\right)$.

Choose $\beta \in \mathbf{Q}(\sqrt{\Delta})$ with $\beta \notin \mathbf{Q}$ and $(\bar{\beta} / \beta)^{2} \notin\left\{\rho_{1}, \rho_{2}, \rho_{3}\right\}$.

Then the Scholten curve
$\left(r \bar{\beta}^{6}+s \bar{\beta}^{4} \beta^{2}+\bar{s} \bar{\beta}^{2} \beta^{4}+\bar{r} \beta^{6}\right) y^{2}=$ $r(1-\bar{\beta} z)^{6}+s(1-\bar{\beta} z)^{4}(1-\beta z)^{2}+$
$\bar{s}(1-\bar{\beta} z)^{2}(1-\beta z)^{4}+\bar{r}(1-\beta z)^{6}$ has full 2-torsion over \mathbf{Q}.

In many cases corresponding
Rosenhain parameters λ, μ, ν
have $\frac{\lambda \mu}{\nu}$ and $\frac{\mu(\mu-1)(\lambda-\nu)}{\nu(\nu-1)(\lambda-\mu)}$ both squares in \mathbf{Q}, so K is defined over \mathbf{Q}. (Degenerate cases: see paper.)

Example: Choose $\Delta=-1$;
$\rho_{1}=(i)^{2}, \rho_{2}=((3+4 i) / 5)^{2}$,
$\rho_{3}=((5+12 i) / 13)^{2} ; r=33+56 i$,
$s=159+56 i, \beta=i$.
One Rosenhain choice is
$\lambda=10, \mu=5 / 8, \nu=25$.
Then $\frac{\lambda \mu}{\nu}=\frac{1}{2^{2}}$
and $\frac{\mu(\mu-1)(\lambda-\nu)}{\nu(\nu-1)(\lambda-\mu)}=\frac{1}{40^{2}}$.

Larger example:

$r=8648575-15615600 i$,
$s=-40209279-33245520 i ;$
coeffs (6137 : 833 : $2275: 2275$).

