Curve25519, Curved1417, E-521

D. J. Bernstein
University of lllinois at Chicago &
Technische Universiteit Eindhoven

Curve25519 mod p = 2%°° — 10:
y? = z3 + 4866622° + z.

Equivalent to Edwards curve

22 +y° =1+ (1 —1/121666)z°y.

Curve41417 mod 244 — 17
z° + y° =14 3617z%y°.

E-521 mod 2221 — 1:
22 +y? = 1 — 37601422y,

Curve25519

Introduced in ECC 2005 talk
and PKC 2006 paper “New
Dithie—Hellman speed records.”

Main features listed in paper:

“extremely high speed”;
“no time variability” ;
32-byte secret keys;

32-byte public keys;

“free key validation”;
“short code’.

The big picture:
Minimize tensions between
speed, simplicity, security.

519, Curved1417, E-521

rnstein
ty of lllinois at Chicago &
he Universiteit Eindhoven

519 mod » = 2%°° — 19:
1 48666222 + .

nt to Edwards curve

=1+ (1 —1/121666)z>y>.

417 mod 2414 — 17
— 1+ 3617z°y~.

od 2221 — 1.
— 1 — 376014z2%y?.

Curve25519

Introduced in ECC 2005 talk
and PKC 2006 paper “New

Diffie—Hellman speed records.”

Main features listed in paper:
“extremely high speed”;

“no time variability” ;
32-byte secret keys;

32-byte public keys;

“free key validation”;
“short code’.

The big picture:
Minimize tensions between
speed, simplicity, security.

Tension:

How wil
compute

Many bc
Passes I
But vari
presuma

041417, E-521 Curve25519 Tension: a neutral

Introduced in ECC 2005 talk How will implemel

is at Chicago & and PKC 2006 paper “New compute a/b mod
siteit Eindhoven Ditfie—Hellman speed records.”

Many books recon

Main features listed in paper: Passes Interoperak

p = 2222 _ 10: “extremely high speed’; But variable time

z° 4 . “no time variability”; presumably a secu

ards curve 32- :)yte secret keys;

—1/121666)52y2. | O°PYte public keys;
free key validation”;

414 .
2 =1 “short code”.
L7$2y2.
The big picture:
1 Minimize tensions between

- 20,2
01427y~ speed, simplicity, security.

-521 Curve25519 Tension: a neutral example
Introduced in ECC 2005 talk How will implementors

1go & and PKC 2006 paper “New compute a/b mod p?

hoven Dithie—Hellman speed records. Many books recommend Ev
Main features listed in paper: Passes interoperability tests.

- 19: “extremely high speed”; But variable time,
“no time variability”; presumably a security proble

32-byte secret keys;

;6)a:2y2. 32-byte public keys;

“free key validation”;
“short code’.

The big picture:
Minimize tensions between
speed, simplicity, security.

Curve25519 Tension: a neutral example

Introduced in ECC 2005 talk How will implementors
and PKC 2006 paper “New compute a/b mod p?

Diffie—Hellman speed records. Many books recommend Euclid.

Main features listed in paper: Passes interoperability tests.
“extremely high speed”; But variable time,
“no time variability”; presumably a security problem.

32-byte secret keys;

32-byte public keys;

“free key validation”;
“short code’.

The big picture:
Minimize tensions between
speed, simplicity, security.

Curve25519 Tension: a neutral example

Introduced in ECC 2005 talk How will implementors
and PKC 2006 paper “New compute a/b mod p?

Diffie—Hellman speed records. Many books recommend Euclid.

Main features listed in paper: Passes interoperability tests.
“extremely high speed”; But variable time,
“no time variability”; presumably a security problem.

32-byte secret keys;

2 i 1 Defense 1: Encourage
"Dyte public keys, implementors to use abP 2.

free key validation”; Simpler than Euclid, fast enough.

“short code” .

The big picture:

Minimize tensions between
speed, simplicity, security.

Curve25519

Introduced in ECC 2005 talk
and PKC 2006 paper “New

Dithie—Hellman speed records.”

Main features listed in paper:

“extremely high speed”;
“no time variability” ;
32-byte secret keys;

32-byte public keys;

“free key validation”;
“short code’.

The big picture:
Minimize tensions between
speed, simplicity, security.

Tension: a neutral example

How will implementors
compute a/b mod p?

Many books recommend Euclid.
Passes interoperability tests.
But variable time,

presumably a security problem.

Defense 1: Encourage
implementors to use abP 2.
Simpler than Euclid, fast enough.

But maybe implementor finds it
simplest to use a Euclid library,
and wants the Euclid speed.

H1

ed in ECC 2005 talk
_ 2006 paper “New
ellman speed records.”

1tures listed in paper:
ely high speed”;

> varlability™ ;
secret keys;
public keys;

v validation”;

ode" .

picture:
e tensions between
simplicity, security.

Tension: a neutral example

How will implementors
compute a/b mod p?

Many books recommend Euclid.
Passes interoperability tests.
But variable time,

presumably a security problem.

Defense 1: Encourage
implementors to use abP 2.
Simpler than Euclid, fast enough.

But maybe implementor finds it
simplest to use a Euclid library,
and wants the Euclid speed.

Defense
impleme
verify cc
e.g. 2011
Almeida

. 2005 talk
ver “New

sed records.”

d In paper:
yeed' ' :

s between
- security.

Tension: a neutral example

How will implementors
compute a/b mod p?

Many books recommend Euclid.
Passes interoperability tests.
But variable time,

presumably a security problem.

Defense 1: Encourage
implementors to use abP 2.
Simpler than Euclid, fast enough.

But maybe implementor finds it
simplest to use a Euclid library,
and wants the Euclid speed.

Defense 2: Encoul
implementors to u
verify constant-tin
e.g. 2010 Langley
Almeida—Barbosa-

Tension: a neutral example

How will implementors
compute a/b mod p?

Many books recommend Euclid.
Passes interoperability tests.
But variable time,

presumably a security problem.

Defense 1: Encourage
implementors to use abP 2.

Simpler than Euclid, fast enough.

But maybe implementor finds it
simplest to use a Euclid library,
and wants the Euclid speed.

Defense 2: Encourage

implementors to use tools tc
verify constant-time behavic
e.g. 2010 Langley “ctgrind”
Almeida—Barbosa—Pinto—Vie

Tension: a neutral example

How will implementors
compute a/b mod p?

Many books recommend Euclid.
Passes interoperability tests.
But variable time,

presumably a security problem.

Defense 1: Encourage
implementors to use abP 2.
Simpler than Euclid, fast enough.

But maybe implementor finds it
simplest to use a Euclid library,
and wants the Euclid speed.

Defense 2: Encourage
Implementors to use tools to
verify constant-time behavior.

e.g. 2010 Langley “ctgrind™; 2013
Almeida—Barbosa—Pinto—Vieira.

Tension: a neutral example Defense 2: Encourage

. Implementors to use tools to
How will implementors

verity constant-time behavior.

e.g. 2010 Langley “ctgrind™; 2013

Many books recommend Euclid. Almeida—Barbosa—Pinto—Vieira.
Passes interoperability tests.

compute a/b mod p?

. : Defense 3: Encourage
But variable time, &

. implementors to use fractions
presumably a security problem.

(e.g., “projective coordinates”).

Defense 1: Encourage Then Euclid speedup i1s negligible.
implementors to use abP 2.

Simpler than Euclid, fast enough.

But maybe implementor finds it
simplest to use a Euclid library,
and wants the Euclid speed.

Tension: a neutral example

How will implementors
compute a/b mod p?

Many books recommend Euclid.
Passes interoperability tests.
But variable time,

presumably a security problem.

Defense 1: Encourage
implementors to use abP 2.

Simpler than Euclid, fast enough.

But maybe implementor finds it
simplest to use a Euclid library,
and wants the Euclid speed.

Defense 2: Encourage
Implementors to use tools to
verify constant-time behavior.

e.g. 2010 Langley “ctgrind™; 2013
Almeida—Barbosa—Pinto—Vieira.

Defense 3: Encourage
implementors to use fractions
(e.g., “projective coordinates”).
Then Euclid speedup i1s negligible.

Defense 4: Choose curves that
naturally avoid all divisions.

Tension: a neutral example

How will implementors
compute a/b mod p?

Many books recommend Euclid.
Passes interoperability tests.
But variable time,

presumably a security problem.

Defense 1: Encourage
implementors to use abP 2.

Simpler than Euclid, fast enough.

But maybe implementor finds it
simplest to use a Euclid library,
and wants the Euclid speed.

Defense 2: Encourage
Implementors to use tools to
verify constant-time behavior.

e.g. 2010 Langley “ctgrind™; 2013
Almeida—Barbosa—Pinto—Vieira.

Defense 3: Encourage
implementors to use fractions
(e.g., “projective coordinates”).
Then Euclid speedup i1s negligible.

Defense 4: Choose curves that
naturally avoid all divisions.
Seems incompatible with ECC.

Tension: a neutral example

How will implementors
compute a/b mod p?

Many books recommend Euclid.
Passes interoperability tests.
But variable time,

presumably a security problem.

Defense 1: Encourage
implementors to use abP 2.

Simpler than Euclid, fast enough.

But maybe implementor finds it
simplest to use a Euclid library,
and wants the Euclid speed.

Defense 2: Encourage
Implementors to use tools to
verify constant-time behavior.

e.g. 2010 Langley “ctgrind™; 2013
Almeida—Barbosa—Pinto—Vieira.

Defense 3: Encourage
implementors to use fractions
(e.g., “projective coordinates”).
Then Euclid speedup i1s negligible.

Defense 4: Choose curves that
naturally avoid all divisions.
Seems incompatible with ECC.
The good news: curve choice
can resolve other tensions.

_a neutral example

| implementors
> a/b mod p?

boks recommend Euclid.
1teroperability tests.
able time,

bly a security problem.

1: Encourage
ntors to use abP 2.

than Euclid, fast enough.

'be implementor finds it
to use a Euclid library,
ts the Euclid speed.

Defense 2: Encourage
implementors to use tools to
verify constant-time behavior.

e.g. 2010 Langley “ctgrind™; 2013
Almeida—Barbosa—Pinto—Vieira.

Defense 3: Encourage
implementors to use fractions
(e.g., “projective coordinates”).
Then Euclid speedup 1s negligible.

Defense 4: Choose curves that
naturally avoid all divisions.
Seems incompatible with ECC.
The good news: curve choice
can resolve other tensions.

Constan

Imitate |

Allocate

for

each

Always |

on all bi

e.g.

wit

If yc
n 25°F

dNnad

255

allocate

e.g.

wit

If yc
n 25¢

dNna

256

allocate

example

1tors
ok

nmend Euclid.
ility tests.

)
1

rity problem.

rage
se abP 2.

d, fast enough.

1entor finds it
—uclid library,
lid speed.

Defense 2: Encourage
implementors to use tools to
verify constant-time behavior.

e.g. 2010 Langley “ctgrind™; 2013
Almeida—Barbosa—Pinto—Vieira.

Defense 3: Encourage
implementors to use fractions
(e.g., “projective coordinates”).
Then Euclid speedup i1s negligible.

Defense 4: Choose curves that
naturally avoid all divisions.
Seems incompatible with ECC.
The good news: curve choice
can resolve other tensions.

Constant-time Cul

Imitate hardware |
Allocate constant
for each integer.

Always perform ar
on all bits. Don't

e.g. If you're addir
with 255 bits alloc
and 255 bits alloc:
allocate 256 bits f

e.g. If you're mult
with 256 bits alloc
and 256 bits alloc:
allocate 512 bits f

clid.

m.

ough.

Is 1t
ary,

Defense 2: Encourage
implementors to use tools to
verify constant-time behavior.

e.g. 2010 Langley “ctgrind™; 2013
Almeida—Barbosa—Pinto—Vieira.

Defense 3: Encourage
implementors to use fractions
(e.g., “projective coordinates”).
Then Euclid speedup 1s negligible.

Defense 4: Choose curves that
naturally avoid all divisions.
Seems incompatible with ECC.
The good news: curve choice
can resolve other tensions.

Constant-time Curve25519

Imitate hardware in software

Allocate constant number o

for each integer.

Always perform arithmetic
on all bits. Don't skip bits.

e.g. If you're adding a to b,

wit

n 255 bits a

dNndad

255 bits al

located for a
ocated for b:

allocate 256 bits for a + 0.

e.g. |If you're multiplying a t

wit

n 256 bits a

dNna

256 bits al

located for a
ocated for b:

allocate 512 bits for ab.

Defense 2: Encourage
Implementors to use tools to
verify constant-time behavior.

e.g. 2010 Langley “ctgrind™; 2013
Almeida—Barbosa—Pinto—Vieira.

Defense 3: Encourage
implementors to use fractions
(e.g., “projective coordinates”).
Then Euclid speedup i1s negligible.

Defense 4: Choose curves that
naturally avoid all divisions.
Seems incompatible with ECC.
The good news: curve choice
can resolve other tensions.

Constant-time Curve25519

Imitate hardware in software.
Allocate constant number of bits
for each integer.

Always perform arithmetic
on all bits. Don't skip bits.

e.g. If you're adding a to b,
with 255 bits allocated for a
and 255 bits allocated for 6:
allocate 256 bits for a + 0.

e.g. If you're multiplying a by b,
with 256 bits allocated for a
and 256 bits allocated for b:
allocate 512 bits for ab.

2. Encourage

ntors to use tools to
nstant-time behavior.

0 Langley “ctgrind”; 2013
—Barbosa—Pinto—Vieira.

3: Encourage

ntors to use fractions
rojective coordinates”).
iclid speedup is negligible.

4: Choose curves that
s avoid all divisions.
wcompatible with ECC.
d news: curve choice
lve other tensions.

Constant-time Curve25519

Imitate hardware in software.
Allocate constant number of bits
for each integer.

Always perform arithmetic
on all bits. Don't skip bits.

e.g. |If you're adding a to b,
with 255 bits allocated for a
and 255 bits allocated for 6:
allocate 256 bits for a + 6.

e.g. If you're multiplying a by b,
with 256 bits allocated for a
and 256 bits allocated for b:
allocate 512 bits for ab.

If (e.g.)
Replace
r=-cm
Allocate
This i1s t

Repeat ¢
350 bits
Small er

rage

se tools to

1e behavior.
“ctgrind”; 2013
-Pinto—Vieira.

rage
se fractions
oordinates”).
lup Is negligible.

> curves that
divisions.

le with ECC.

urve choice

L ensions.

Constant-time Curve25519

Imitate hardware in software.
Allocate constant number of bits
for each integer.

Always perform arithmetic
on all bits. Don't skip bits.

e.g. If you're adding a to b,
with 255 bits allocated for a
and 255 bits allocated for 6:
allocate 256 bits for a + 0.

e.g. If you're multiplying a by b,
with 256 bits allocated for a
and 256 bits allocated for 6:
allocate 512 bits for ab.

It

(e.g.) 600 bits a

Replace ¢ with 19,

r
A

T

— ¢ mod 22°°, q
locate 350 bits f

1S 1S the same r

Repeat same com,
350 bits — 256 bi
Small enough for |

r.
2013
ra.

1S

igible.

1at

Constant-time Curve25519

Imitate hardware in software.

Allocate constant number of bits

for each integer.

Always perform arithmetic
on all bits. Don't skip bits.

e.g. If you're adding a to b,

wit

n 255 bits a

dNnad

255 bits al

located for a
ocated for b:

allocate 256 bits for a + 0.

e.g. If you're multiplying a by b,

wit

n 256 bits a

dNna

256 bits al

located for a
ocated for b:

allocate 512 bits for ab.

If (e.g.) 600 bits allocated f
Replace ¢ with 199 + r whe
r = cmod 2%°°, g = |¢/2%>
Allocate 350 bits for 19qg + ;
This is the same modulo p.

Repeat same compression:
350 bits — 256 bits.
Small enough for next mult.

Constant-time Curve25519

Imitate hardware in software.
Allocate constant number of bits
for each integer.

Always perform arithmetic
on all bits. Don't skip bits.

e.g. If you're adding a to b,
with 255 bits allocated for a
and 255 bits allocated for 6:
allocate 256 bits for a + 0.

e.g. If you're multiplying a by b,
with 256 bits allocated for a
and 256 bits allocated for 6:
allocate 512 bits for ab.

If (e.g.) 600 bits allocated for c:
Replace ¢ with 199 + r where
r = ¢ mod 2222, g = {c/2255J.
Allocate 350 bits for 19q + r.

This is the same modulo p.

Repeat same compression:
350 bits — 256 bits.
Small enough for next mult.

Constant-time Curve25519

Imitate hardware in software.

Allocate constant number of bits

for each integer.

Always perform arithmetic
on all bits. Don't skip bits.

e.g. If you're adding a to b,

wit

n 255 bits a

dNd

255 bits al

located for a
ocated for b:

allocate 256 bits for a + 6.

e.g. If you're multiplying a by b,

wit

n 256 bits a

dNdG

256 bits al

located for a
ocated for b:

allocate 512 bits for ab.

If (e.g.) 600 bits allocated for c:
Replace ¢ with 199 + r where
r = ¢ mod 2222, g = {c/2255J.
Allocate 350 bits for 19q + r.

This is the same modulo p.

Repeat same compression:
350 bits — 256 bits.
Small enough for next mult.

To completely reduce 256 bits
mod p, do two iterations of
constant-time conditional sub.

One conditional sub:
replace ¢ with ¢ — (1 — s)p
where s Is sign bit in ¢ — p.

t-time Curve25519

nardware in software.

constant number of bits

Integer.

yerform arithmetic
ts. Don't skip bits.

u're adding a to b,

) bits a
bits al

located for a
ocated for b:

256 bits for a + 6.

u're multiplying a by b,

) bits a
bits al

located for a
ocated for b:

512 bits for ab.

If (e.g.) 600 bits allocated for c:

Replace ¢ with 199 + r w

NEre

r = ¢ mod 2%°°, g — Lc/2255J.

Repeat same compression
350 bits — 256 bits.

Allocate 350 bits for 199 + r.
This Is the same modulo p.

Small enough for next mult.

To completely reduce 256 bits

mod p, do two iterations of

constant-time conditional

One conditional sub:

sub.

replace ¢ with ¢ — (1 — s)p

where s Is sign bit in ¢ — p.

Constan

NIST P-
2256 _ 9

ECDSA

reductio
an integ

Write A
(A1s, Aq
Ag, A7,

meaning

Define
T;51;5

dS

ve2b5h19

n software.
number of bits

ithmetic
skip bits.

g a to b,
ated for a
yted for b:
or a + 0.

iplying a by b,
ated for a
yted for b:

or ab.

If (e.g.) 600 bits allocated for c:
Replace ¢ with 199 + r where

r = ¢ mod 222, g = {c/2255J.
Allocate 350 bits for 19qg + r.
This is the same modulo p.

Repeat same compression:
350 bits — 256 bits.
Small enough for next mult.

To completely reduce 256 bits
mod p, do two iterations of
constant-time conditional sub.

One conditional sub:
replace ¢ with ¢ — (1 — s)p
where s Is sign bit in ¢ — p.

Constant-time NIE

NIST P-256 prime
2256 o 2224 4 2192

ECDSA standard

reduction procedu
an integer “A less

Write A as
(A1s, A14, A13, A1
Ag, A7, Ag, As, A

meaning Y . A;2%

Define
T;51;52;53; 54;

dS

f bits

y b,

It

(e.g.) 600 bits allocated for c:

Replace ¢ with 199 + r where

T
A

T

= cmod 2%°, g = |¢/2%°].
locate 350 bits for 19q + 7.

nis Is the same modulo p.

Repeat same compression:
350 bits — 256 bits.
Small enough for next mult.

To completely reduce 256 bits

mod p, do two iterations of

constant-time conditional sub.

One conditional sub:

replace ¢ with ¢ — (1 — s)p

where s Is sign bit in ¢ — p.

Constant-time NIST P-256

NIST P-256 prime p is
2256 - 2224 4 2192 4+ 296 _

ECDSA standard specifies

reduction procedure given
an integer "A less than p?":

Write A as

(A1s, A14, A13, A2, A11, A10
Ag. A7 As. As. As. A, Ao,

meaning Y . A;23%.

Define
T:51;50;53;54; D1; Dy; D3
as

If (e.g.) 600 bits allocated for c: Constant-time NIST P-256
Replace ¢ with 199 + r where
r = cmod 2°°°, q = |c/2°|.
Allocate 350 bits for 19qg + r.
This is the same modulo ». ECDSA standard specifies

NIST P-256 prime p is
2256 o 2224 4 2192 4 296 _1

| reduction procedure given
Repeat same compression:

350 bits — 256 bits.

Small enough for next mult. Write A as
(A15, A1a, A13, A12, A11, A0, Ao,

Ag, A7, Ae, As, A4, A3, A2, A1, Ao),
meaning . A;23%".

an integer “A less than p2":

To completely reduce 256 bits
mod p, do two iterations of
constant-time conditional sub.

.. Define
One conditional sub: G Sy Sa Sa Dy Do Da: D
replace ¢ with ¢ — (1 — s)p as, y 92,93, 94, V1, 2, V3, 4

where s Is sign bit in ¢ — p.

600 bits allocated for c:
¢ with 199 4+ r where
0d 2255, g = [¢/2255].
350 bits for 19q + r.
he same modulo p.

s5ame compression:
— 256 bits.
ough for next mult.

pletely reduce 256 bits
do two iterations of
-time conditional sub.

ditional sub:
> with ¢ — (1 — s)p
IS sign bit in ¢ — p.

Constant-time NIST P-256

NIST P-256 prime p is
2256 o 2224 4 2192 4+ 296 1

ECDSA standard specifies

reduction procedure given
an integer "A less than p?":

Write A as
(A1s, A14, A13, A12, A11, A10, Ao,

Asg, A7, As, As, Ag, A3, As, A1, Ap),

meaning Y . A;23%.

Define
T;51; 52; 53; 54; D1; Do; D3; Dy
as

Reduce
subtract

6 7
llocated for c: Constant-time NIST P-256 (A7, Ag, As, Ag, A:
1t sk NIST P-256 prime p is (A5, A14, A1z, Av:
,: LC/2 J 2256 o 2224 4 2192 4 296 1 (O A15, A14 A13 /
or 19q + 7. (A1s5,A14,0,0,0, £
nodulo p. ECDSA standard specifies (Ag, A13, A1s, A4
| reduction procedure given (A1p, Ag,0,0,0, A
oression: . N Iy |
an integer “A less than p“": (A11, Ag, 0,0, Ats,
ts.
next mult Write A as (A12: Or A].Or A91 A:
e D56 bite (A1s, A14, A13, A12, A11, A10, Ao, (413, 0, A11, Ao, 4
: A81A71A61A51A41A31A21A11AO)1 CompUte T—|_2S]_
rations of meaning Z | A'232i S D D [
ditional sub. v | s HFLT e
b Define Reduce modulo p
| T 51; 52; 53; 54; D1; D2; D3; Dy subtracting a few
(1—s)p e
inc—mo.

or C.

[€

JItS

Constant-time NIST P-256

NIST P-256 prime p is
2256 o 2224 4 2192 4+ 296 1

ECDSA standard specifies

reduction procedure given
an integer “A less than p?”

Write A as
(A1s, A1a, A13, A12, A11, A10, Ao,

Asg, A7, Ae, As, Ag, A3, As, A1, Ap),

meaning Y . A;23%.

Define
T;51; 52; 53; 54; D1; Do; D3; Dy
as

(A7, A6, As, Ay, A3, Ao, Ay, /
(A15, A14, A13, A12, A11, 0,0
(0, A1s, A14, A13, A12,0,0,0
(A15, A14,0,0,0, A19, Ag, Ag
(Ag, A13, A1s, A1a, A13, A11,
(A10, Ag, 0,0,0, Ar3, Arp, Ar
(A11,A9,0,0, A1s, A14, A13,
(A12,0, A10, Ag, A, A1s, A14
(A13,0, A11, A10, A9, 0, A1,

Compute T + 251 + 255 +
Sy — D1 — Dy — D3 — Dy.

Reduce modulo » “by addin
subtracting a few copies” of

Constant-time NIST P-256

NIST P-256 prime p is
2256 o 2224 4 2192 4 296 _1

ECDSA standard specifies

reduction procedure given
an integer “A less than p?”

Write A as
(A1s, A14, A13, A12, A11, A10, Ao,

Asg, A7, Ae, As, Asg, Az, Ao, A1, Ao),

meaning Y . A;23%".

Define
T;51;52; 53; 54; D1; Dy; D3; Dy
as

(A7, Ae, As, A4, A3, A2, A1, Ap);
(A1s, A1, A13, A12, A11, 0,0, 0);
(0, A1, A14, A13, A12,0,0,0);
(A15, A14,0,0,0, A1g, Ag, Ag);
(As, A13, A1s, A14, A13, A11, A10, Ag);
(A10. A8, 0,0,0, A3, A12, A11);
(A11,A9,0,0, A5, A14, A13, A12);
(A12,0, A1p, Ag, Ag, A1s, A14, A13);
(A13,0, A11, A10, Ag, 0, A1s, A14).

Compute 7 + 2571 + 252 + 53 +
Sy, — D1 — Dy — D3 — Dy.

Reduce modulo » “by adding or
subtracting a few copies” of .

t-time NIST P-256

256 prime p Is

standard specifies
n procedure given
r “A less than pz”

as
4, A13, A12, A11, A10, Ao,

A6, As, Ag, Az, As, A1, Ap),

'y, A3

; $53;54; D1; Do; D3; Dy

Ae, As, A, Az, A, AL Ao);
A1s, A14, A13, A12, A11, 0,0, 0);
0, A1s, A1a, A13, A12,0,0,0);
A1s,A14,0,0,0, A1, Ag, Ag);

A10,As,0,0,0, A1z, A12, A11);
A11, A9, 0,0, A1s, A1, A13, A12);
A12,0, Aqg, Ag, Ag, A1s, A14, A13);
A13,0, A11, A10, A9, 0, A1s, A1s).

Compute T + 2571 4+ 252 + 53 +
Sy — D1 — Dy — D3 — Dy.

Reduce modulo » “by adding or
subtracting a few copies” of p.

(A7
(
(
(
(As, A13, A1s, A14, A13, A11, A10. Ag);
(
(
(
(

> =

nat Is

oop’

I P-256

D IS
+2% 1.

specifies
re given
than p2”

, A11, A10, Ao,

1, Az, Ao, A1, Ao),

3/

)1; Do; D3; Dy

(A7, Ae, As, A4, A3, A2, A1, Ao);
(A1s, A14, A13, A12, A11,0,0, 0);

(0, A1, A14, A13, A12,0,0,0);

(A15, A14,0,0,0, A1g, Ag, Ag);

(As, A13, A1s, A14, A13, A11, A10, A9g);
(A10.A8,0,0,0, A3, A12, A11);
(A11,A9,0,0, A5, A14, A13, A12);
(A12,0, A1p, Ag, Ag, A1s, A14, A13);
(A13,0, A11, A10, A9, 0, A1s, A14).

Compute 7 + 2571 + 252 + 53 +
Sy, — D1 — Dy — D3 — Dy.

Reduce modulo » “by adding or
subtracting a few copies” of .

> =

nat 1s “a few co

oop? Variable

Ao, As, As, Az, A, AL Ao);
A1s, A14, A13, A12, A11, 0,0, 0);
0, A1s, A1a, A13, A12,0,0,0);
A1s,A14,0,0,0, A1, Ag, Ag);

A10,As,0,0,0, A1z, A12, A11);
A11, A9, 0,0, A1s, A1, A13, A12);
A12,0, Aqg, Ag, Ag, A1s, A14, A13);
A13,0, A11, A10, A9, 0, A1s, A1s).

Compute T + 2571 + 252 + 53 +
Sy — D1 — Dy — D3 — Dy.

Reduce modulo » “by adding or
subtracting a few copies” of .

(A7
(
(
(
(As, A13, A1s, A14, A13, A11, A10. Ag);
(
(
(
(

> =

nat is “a few copies’ ?

oop? Variable time.

(A7, Ae, As, A4, A3, A2, A1, Ao);
(A1s, A14, A13, A12, A11,0,0, 0);

(0, A1, A14, A13, A12,0,0,0);

(A15, A14,0,0,0, A1g, Ag, Ag);

(As, A13, A1s, A14, A13, A11, A10, Ag);
(A10. A8, 0,0,0, A3, A12, A11);
(A11,A9,0,0, A5, A14, A13, A12);
(A12,0, A1p, Ag, Ag, A1s, A14, A13);
(A13,0, A11, A10, A9, 0, A1s, A1a).

Compute 7 + 2571 4+ 252 + 53 +
Sy, — D1 — Dy — D3 — Dy.

Reduce modulo » “by adding or
subtracting a few copies” of .

> =

nat is “a few copies” ?

oop? Variable time.

(A7, Ae, As, A4, A3, A2, A1, Ao);
(A1s, A14, A13, A12, A11,0,0, 0);

(0, A1, A14, A13, A12,0,0,0);

(A15, A14,0,0,0, A1g, Ag, Ag);

(As, A13, A1s, A14, A13, A11, A10, Ag);
(A10. A8, 0,0,0, A3, A12, A11);
(A11,A9,0,0, A5, A14, A13, A12);
(A12,0, A1p, Ag, Ag, A1s, A14, A13);
(A13,0, A11, A10, Ag, 0, A1s, A14).

Compute 7 + 2571 4+ 252 + 53 +
Sy, — D1 — Dy — D3 — Dy.

Reduce modulo » “by adding or
subtracting a few copies” of .

What is “a few copies” ?

A

oop? Variable time.

Correct but quite slow:

conda
conda
conda
conda
condc

cond

itiona
itiona
itiona
itiona
itiona
itiona

y ac
y ac

y ac
y Su
y Su
y Su

d 4p,
d 2p,

d »,
0 4p,

0 2p,

0 .

(A7, Ae, As, Ag, Az, Ao, A1, Ap); What is “a few copies” 7
(A15 A1a, A13, A1o, A11,0,0, O) A loop? Variable time.
(0, A1s, A14, A13, A12, 0,0, 0);
(
(

Correct but quite slow:
A1s, A14,0,0,0, Ajg, Ag, Ag);

Ag, A13, A1s, A14, A13, A11, A10, Ag);
(A10. A8, 0,0,0, A3, A12, A11);
(A11, A9, 0,0, A1s, A14, A13, A12);
(A12,0, A1p, Ag, Ag, A1s, A14, A13);
(A13,0, A11, A10, A9, 0, A1s, A1a).

conditionally add 4p,
conditionally add 2p,

conditionally add »p,
conditionally sub 4p,
conditionally sub 2p,

conditionally sub ».
Compute 7 + 2571 4+ 252 + 53 +

Delay until end of computation?
S, — D1 — Dy — D3 — Dy.

Trouble: “A less than p2”
Reduce modulo » “by adding or
subtracting a few copies” of .

(A7, As, As, Aa, Az, Ar. A1 Ao)
(A15, A4, A13, A12, A11,0,0,0);
(0, A1s, A14, A13, A12, 0,0, 0);
(A15, A14,0,0,0, A9, Ag, Ag);
(As

(Alo, Ag,0,0,0, A13, A12, A11);
(A11,A9,0,0, A5, A14, A13, A12);
(A12,0, A1p, Ag, Ag, A1s, A14, A13);
(A13,0, A11, A10, A9, 0, A1s, A1a).

Compute 7 + 2571 4+ 252 + 53 +
Sy, — D1 — Dy — D3 — Dy.

Reduce modulo » “by adding or
subtracting a few copies” of .

What is “a few copies” ?

A loop? Variable time.

Correct but quite slow:
conditionally add 4p,
conditionally add 2p,

conditionally add »p,
conditionally sub 4p,
conditionally sub 2p,

conditionally sub ».

Delay until end of computation?

Trouble: “A less than p2”

Even worse: what about platforms
where 232 isn't best radix?

As, Ag, Az, Ao, A1, Ag);

4, A13, A12, A11, 0,0, 0);

A1, A13, A12,0,0,0);
4,0,0,0, A10, Ag, Ag);

. A1s, A14, A13, A11, A10. Ag);
.0,0,0, A13, A12, A11);

0,0, A1s, A1, A13, A12);
A10, Ag, Ag, A1s, A14, A13);
A11, A10, A9, 0, A1s, A14).

e T 4+ 251 + 257 + 53 +
— Dy — D3 — Dy.

modulo p “by adding or
ing a few copies’ of p.

What is “a few copies” ?

A loop? Variable time.

Correct but quite slow:
conditionally add 4p,
conditionally add 2p,

conditionally add p,
conditionally sub 4p,
conditionally sub 2,

conditionally sub ».

Delay until end of computation?
Trouble: “A less than p?".

Even worse: what about platforms
where 232 isn't best radix?

The Mo

X2,22,X.
for 1 1
bit =
X2 ,x%X3
z2,Z3
x3,Z3

X2 ,22

4*xx:
X2 ,x3
z2,23

return

, Az, A1, Ao);

., A11,0,0,0);
112,0,0,0);

A13, A11, A10, Ag);
3, A12, A11);

A14, A13, A12);

3, A1, A1a, A13);
19,0, A1s, A14).

+ 257 + 53 +
)3 — Dy.

"by adding or
copies’ of .

What is “a few copies” ?

A loop? Variable time.

Correct but quite slow:
conditionally add 4p,
conditionally add 2p,

conditionally add »p,
conditionally sub 4p,
conditionally sub 2p,

conditionally sub ».

Delay until end of computation?
Trouble: “A less than p?".

Even worse: what about platforms
where 232 isn't best radix?

The Montgomery

x2,z22,x3,z3 = 1,
for 1 1n reverse
bit =1 & (n >
x2,x3 = cswap(
z2,z3 = cswap(
x3,z3 = ((x2*x
x1* (x2%*2z

x2,z2 = ((x272
Axx2%Z2% (x2°
x2,x3 = cswap(
z2,z3 = cswap(

return x2*xz2” (p-

What is “a few copies” ?

A loop? Variable time.

Correct but quite slow:
conditionally add 4p,
conditionally add 2p,

conditionally add p,
conditionally sub 4p,
conditionally sub 2,

conditionally sub ».

Delay until end of computation?
Trouble: “A less than p?".

Even worse: what about platforms
where 232 isn't best radix?

The Montgomery ladder

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range (2

bit =
x2,x%X3
z2,Z3
x3,Z3

X2 ,22

1 & (n > i)

= cswap(x2,x3,bit
= cswap(z2,z3,bit
= ((x2%x3-z2%z3)"
x1* (x2%23-2z2%x3) "~
= ((x272-z2"2) "2,

Axx2%72% (X2 " 2+A*x2% 72

xX2,x3
z2,23

= cswap(x2,x3,bit
= cswap(z2,z3,bit

return x2*z2” (p-2)

What is “a few copies” ?

A loop? Variable time.

Correct but quite slow:

conda
conda
conda
conda
condc

condc

itiona
itiona
itiona
itiona
itiona
itiona

y ac
y ac

y ac
y Su
y Su
y Su

d 4p,
d 2p,

d »,
0 4p,

0 2p,

0 .

Delay until end of computation?
Trouble: “A less than p?".

Even worse: what about platforms
where 232 isn't best radix?

The Montgomery ladder

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):

bit =1 & (n > i)

x2,x3 = cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)
x3,2z3 = ((x2*x3-22%23) "2,

x1* (x2%z3-z2*xx3) "2)
x2,z2 = ((x2°2-z2"2)"2,
Axx2xz2% (X2 2+A*xx2%xZz2+2272))
x2,x3 = cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)
return x2*xz2" (p-2)

10

“a few copies’ ?
Variable time.

but quite slow:
nally add 4p,
nally add 2p,

nally add o,
nally sub 4p,
nally sub 2p,

nally sub p.

1til end of computation?
“A less than p?".

rse: what about platforms

32 isn't best radix?

The Montgomery ladder

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):

bit =
x2,x%X3
z2,Z3
x3,Z3

X2 ,22

Axx2%72% (x2"2+A*x2%22+22"2))

xX2,x3
z2,23

1 & (n > i)

= cswap(x2,x3,bit)
= cswap(z2,z3,bit)
= ((x2*x3-z2%z3) "2,
x1* (x2%2z3-z2%x3) "2)
= ((x272-z2"2) "2,

= cswap(x2,x3,bit)
= cswap(z2,z3,bit)

return x2*z2” (p-2)

10

Simple;

compute
on y2 =
when A:

time.

D,
).

computation?
han p2".

about platforms
st radix?

The Montgomery ladder

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):
bit =1 & (n > i)
x2,x3 = cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)
x3,2z3 = ((x2*x3-22%23) "2,

x1* (x2%z3-z2*x3) "2)
x2,z2 = ((x2°2-z2"2)"2,
Axx2xz2% (X2 2+A*xx2%xZz2+2272))

x2,x3 = cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)

return x2*xz2" (p-2)

10

Simple; fast; alwa
computes scalar n
on y2 = 3 + Az?
when A2 — 4 is no

on?

tforms

The Montgomery ladder

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):
bit =1 & (n >> i)
x2,x3 = cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)
x3,z3 = ((x2*x3-22%23) "2,

x1* (x2%2z3-z2%x3) "2)
x2,z2 = ((x2°2-z2"2)"2,
Axx2%xz2% (X272+A*xx2%xZz2+2272))

x2,x3 = cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)

return x2*z2” (p-2)

10

Simple; fast; always
computes scalar multiplicati
ony? =z3+ Az + ¢
when A% — 4 is non-square.

The Montgomery ladder

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):
bit =1 & (n > i)
x2,x3 = cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)
x3,2z3 = ((x2*x3-22%23) "2,

x1* (x2%z3-z2*x3) "2)
x2,z2 = ((x2°2-z2"2)"2,
Axx2%xz2% (X2 2+A*xx2%xZz2+2272))

x2,x3 = cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)

return x2*xz2" (p-2)

10

Simple; fast; always
computes scalar multiplication
ony? =z3+ Az + ¢

when A% — 4 is non-square.

11

The Montgomery ladder

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):
bit =1 & (n > i)
x2,x3 = cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)
x3,2z3 = ((x2*x3-22%23) "2,

x1* (x2%z3-z2*x3) "2)
x2,z2 = ((x2°2-z2"2)"2,
Axx2%xz2% (X2 2+A*xx2%xZz2+2272))

x2,x3 = cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)

return x2*xz2" (p-2)

10

11
Simple; fast; always

computes scalar multiplication
ony? =z3+ Az + ¢
when A% — 4 is non-square.

With some extra lines

can compute (z,y) output
given (z,y) input.

But simpler to use just z,
as proposed by 1985 Miller.

The Montgomery ladder

x2,z2,x3,z3 = 1,0,x1,1
for i in reversed(range(255)):

bit =1 & (n >> i)

x2,x3 = cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)
x3,2z3 = ((x2*x3-22%23) "2,

x1* (x2%z3-z2*x3) "2)
x2,z2 = ((x2°2-z2"2)"2,
Axx2%xz2% (X2 2+A*xx2%xZz2+2272))
x2,x3 = cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)
return x2*xz2" (p-2)

10

11
Simple; fast; always

computes scalar multiplication
ony? =z3+ Az + ¢
when A% — 4 is non-square.

With some extra lines

can compute (z,y) output
given (z,y) input.

But simpler to use just z,
as proposed by 1985 Miller.

Adaptations to NIST curves

are much slower; not as simple;
not proven to always work.
Other scalar-mult methods:
proven but much more complex.

ntgomery ladder

3,z3 = 1,0,x1,1

n reversed(range (255)):
1 & (n > i)

= cswap(x2,x3,bit)

= cswap(z2,z3,bit)

= ((x2*x3-z2%z3) "2,
x1* (x2%2z3-z2%x3) "2)

= ((x272-z2"2) "2,
2%Z2% (X227 2+A*xx2%Zz2+2272))
= cswap(x2,x3,bit)

= cswap(z2,z3,bit)
x2%z2" (p-2)

10

Simple; fast; always
computes scalar multiplication
ony? =z3+ Az + ¢

when A% — 4 is non-square.

With some extra lines

can compute (z,y) output
given (z,y) input.

But simpler to use just z,
as proposed by 1985 Miller.

Adaptations to NIST curves

are much slower; not as simple;
not proven to always work.
Other scalar-mult methods:
proven but much more complex.

11

"Hey, yc
that

No need
Curve2b

ladder

O,x1,1

d(range (255)):
> i)
x2,%x3,bit)
z2,z3,bit)
3-z2%z3) "2,
3-z2*x3) "2)
-z272) "2,
2+A*xx2%xz2+2272))
x2,x3,bit)
z2,z3,bit)

2)

10

Simple; fast; always
computes scalar multiplication
ony? =z3+ Az + ¢

when A% — 4 is non-square.

With some extra lines

can compute (z,y) output
given (z,y) input.

But simpler to use just z,
as proposed by 1985 Miller.

Adaptations to NIST curves

are much slower; not as simple;
not proven to always work.
Other scalar-mult methods:
proven but much more complex.

11

“Hey, you forgot t
that 7 1s on the ¢

No need to check.
Curve25519 is twi

10

55)) :

Simple; fast; always
computes scalar multiplication
ony? =z3+ Az + ¢

when A% — 4 is non-square.

With some extra lines

can compute (z,y) output
given (z,y) input.

But simpler to use just z,
as proposed by 1985 Miller.

Adaptations to NIST curves

are much slower; not as simple;
not proven to always work.
Other scalar-mult methods:
proven but much more complex.

11

"Hey, you forgot to check
that 71 1s on the curvel”

No need to check.
Curve25519 is twist-secure

Simple; fast; always
computes scalar multiplication
ony? =z3+ Az + ¢

when A% — 4 is non-square.

With some extra lines

can compute (z,y) output
given (z,y) input.

But simpler to use just z,
as proposed by 1985 Miller.

Adaptations to NIST curves
are much slower; not as simple;
not proven to always work.
Other scalar-mult methods:

proven but much more complex.

11

"Hey, you forgot to check
that 7 1s on the curvel”

No need to check.
Curve25519 is twist-secure.

12

Simple; fast; always
computes scalar multiplication
ony? =z3+ Az + ¢

when A% — 4 is non-square.

With some extra lines

can compute (z,y) output
given (z,y) input.

But simpler to use just z,
as proposed by 1985 Miller.

Adaptations to NIST curves

are much slower; not as simple;
not proven to always work.
Other scalar-mult methods:
proven but much more complex.

11

"Hey, you forgot to check
that 7 1s on the curvel”

No need to check.
Curve25519 is twist-secure.

“This textbook tells me

to start the Montgomery ladder
from the top bit set in n!”
(Exploited in, e.g., 2011
Brumley—Tuveri "Remote timing
attacks are still practical”.)

The Curve25519 DH function
takes 2224 < n < 2290
so this iIs still constant-time.

12

fast; always

s scalar multiplication
3+ Az +

' — 4 is non-square.

me extra lines
pute (z,y) output

,Y) input.
vler to use just z,

sed by 1985 Miller.

ions to NIST curves

h slower; not as simple;
en to always work.
alar-mult methods:

)ut much more complex.

11

"Hey, you forgot to check
that 71 1s on the curvel”

No need to check.
Curve25519 is twist-secure.

“This textbook tells me

to start the Montgomery ladder
from the top bit set in n!”
(Exploited in, e.g., 2011
Brumley—Tuveri “Remote timing
attacks are still practical”.)

The Curve25519 DH function
takes 224 < n < 2229,

so this is still constant-time.

12

Subsequ

More CiL

2007 Ga
Core 2,

2009 Co

2011 Be
Schwabe

2012 Be
2014 La

newer In

2014 M.
2014 Sa

yS
wultiplication

+z
n-square.

Ines
) output
' just z,

85 Miller.

ST curves

1ot as simple;

yS work.
methods:

more complex.

11

“"Hey, you forgot to check
that 7 1s on the curvel”

No need to check.
Curve25519 is twist-secure.

“This textbook tells me

to start the Montgomery ladder
from the top bit set in n!”
(Exploited in, e.g., 2011
Brumley—Tuveri “Remote timing
attacks are still practical”.)

The Curve25519 DH function
takes 2224 < n < 2290
so this iIs still constant-time.

12

Subsequent develc

More Curve25519

2007 Gaudry—Tho
Core 2, Athlon 64

2009 Costigan—Sc|

2011 Bernstein—D
Schwabe—Yang: N

2012 Bernstein—Sc

2014 Langley—Mo«
newer Intel chips.

2014 Mahé—Chauy
2014 Sasdrich—Gu

on

ple;

slex.

11

"Hey, you forgot to check
that =71 1s on the curvel”

No need to check.
Curve25519 is twist-secure.

“This textbook tells me

to start the Montgomery ladder
from the top bit set in n!”
(Exploited in, e.g., 2011
Brumley—Tuveri “Remote timing
attacks are still practical”.)

The Curve25519 DH function
takes 22°% < n < 229,

so this is still constant-time.

12

Subsequent developments

More Curve25519 implemen

2007 Gauc

ry—Thomé: tunec

Core 2, At

nlon 64.

2009 Costigan—Schwabe: Ce

2011 Bernstein—Duif-Lange-
Schwabe—Yang: Nehalem et

2012 Bernstein—Schwabe: N

2014 Lang
newer Inte

ey—Moon: variou

chips.

2014 Mahé—Chauvet: GPUs

2014 Sasdrich—Guneysu: FP

"Hey, you forgot to check
that 7 1s on the curvel”

No need to check.
Curve25519 is twist-secure.

“This textbook tells me

to start the Montgomery ladder
from the top bit set in n!”
(Exploited in, e.g., 2011
Brumley—Tuveri “Remote timing
attacks are still practical”.)

The Curve25519 DH function
takes 2224 < n < 2290
so this iIs still constant-time.

12

13
Subsequent developments

More Curve25519 implementations:

2007 Gaudry—Thomé: tuned for
Core 2, Athlon 64.

2009 Costigan—Schwabe: Cell.

2011 Bernstein—Duif-Lange—
Schwabe—Yang: Nehalem etc.

2012 Bernstein—Schwabe: NEON.

2014 Langley—Moon: various

newer Intel chips.
2014 Mahé—Chauvet: GPUs.
2014 Sasdrich—Guneysu: FPGAs.

u forgot to check
Is on the curvel”

to check.
519 iIs twist-secure.

xtbook tells me

the Montgomery ladder
 top bit set in n!”

ed In, e.g., 2011

—Tuveri “Remote timing
are still practical”.)

ve25519 DH function

5 still constant-time.

12

Subsequent developments

More Curve25519 implementations:

2007 Gaudry—Thomé: tuned for
Core 2, Athlon 64.

2009 Costigan—Schwabe: Cell.

2011 Bernstein—Duif-Lange—
Schwabe—Yang: Nehalem etc.

2012 Bernstein—Schwabe: NEON.

2014 Langley—Moon: various

newer Intel chips.
2014 Mahé—Chauvet: GPUs.

2014 Sasdrich—Guneysu: FPGAs.

13

2011 Be

Schwabe
reusing |

2013 Be
Schwabe

2014 Ch
Tsal—\W:
“Verifyir

http://
/Curve:
lists Apy
TextSec

Much lo

Nicolai |

o check

“urve!”

st-secure.

Is me

romery ladder
et in n!”
2011

Remote timing
actical”.)

JH function
2255

tant-time.

12

13
Subsequent developments

More Curve25519 implementations:

2007 Gaudry—Thomé: tuned for
Core 2, Athlon 64.

2009 Costigan—Schwabe: Cell.

2011 Bernstein—Duif-Lange—
Schwabe—Yang: Nehalem etc.

2012 Bernstein—Schwabe: NEON.

2014 Langley—Moon: various

newer Intel chips.
2014 Mahé—Chauvet: GPUs.
2014 Sasdrich—Guneysu: FPGAs.

2011 Bernstein—-D
Schwabe—Yang: E

reusing Curve2b51

2013 Bernstein—Jz
Schwabe: TweetN

2014 Chen—Hsu-L
Tsal-Wang—Yang-
“Verifying Curve2!

http://en.wikij
/Curve25519#No
lists Apple's i10S,
TextSecure, Tor, €

Much longer list n
Nicolai Brown (IA

Ider

ning

n

12 13
Subsequent developments

More Curve25519 implementations:

2007 Gaudry—Thomé: tuned for
Core 2, Athlon 64.

2009 Costigan—Schwabe: Cell.

2011 Bernstein—Duif-Lange—
Schwabe—Yang: Nehalem etc.

2012 Bernstein—Schwabe: NEON.

2014 Langley—Moon: various

newer Intel chips.
2014 Mahé—Chauvet: GPUs.
2014 Sasdrich—Guneysu: FPGAs.

2011 Bernstein—Duif-Lange-
Schwabe-Yang: Ed25519,
reusing Curve25519 for sign.

2013 Bernstein—Janssen—Lar
Schwabe: TweetNaCl.

2014 Chen—Hsu—Lin—Schwal
Tsai-Wang—Yang—Yang:
“Verifying Curve25519 softw

http://en.wikipedia. or;
/Curve25519#Notable_us:
lists Apple’s i0S, OpenSSH,
TextSecure, Tor, et al.

Much longer list maintained
Nicolai Brown (IANIX).

Subsequent developments

More Curve25519 implementations:

2007 Gaudry—Thomé: tuned for
Core 2, Athlon 64.

2009 Costigan—Schwabe: Cell.

2011 Bernstein—Duif-Lange—
Schwabe—Yang: Nehalem etc.

2012 Bernstein—Schwabe: NEON.

2014 Langley—Moon: various

newer Intel chips.
2014 Mahé—Chauvet: GPUs.

2014 Sasdrich—Guneysu: FPGAs.

13

2011 Bernstein—Duif-Lange—
Schwabe-Yang: Ed25519,
reusing Curve25519 for signatures.

2013 Bernstein—Janssen—Lange—
Schwabe: TweetNaCl.

2014 Chen—Hsu—Lin—Schwabe-
Tsai-Wang—Yang—Yang:
“Verifying Curve25519 software.”

http://en.wikipedia.org/wiki
/Curve25519#Notable_uses

lists Apple’s 10S, OpenSSH,
TextSecure, Tor, et al.

Much longer list maintained by
ai Brown (1ANIX).

Nico

14

ent developments

Irve25519 implementations:

udry—Thomé: tuned for
Athlon 64.

stigan—Schwabe: Cell.

rnstein—Duif-Lange—
—Yang: Nehalem etc.

rnstein—Schwabe: NEON.

ngley—Moon: various

tel chips.
yhé—Chauvet: GPUs.
sdrich—Guneysu: FPGAs.

13

14
2011 Bernstein—Duif-Lange—

Schwabe-Yang: Ed25519,
reusing Curve25519 for signatures.

2013 Bernstein—Janssen—Lange—
Schwabe: TweetNaCl.

2014 Chen—Hsu—Lin—Schwabe-
Tsai-Wang—Yang—Yang:
“Verifying Curve25519 software.”

http://en.wikipedia.org/wiki
/Curve25519#Notable_uses

lists Apple’s i0S, OpenSSH,
TextSecure, Tor, et al.

Much longer list maintained by
Nicolai Brown (IANIX).

2013.08

requests
at highe

Bernstel
Now Sile

pments

implementations:

mé: tuned for

nwabe: Cell.

uif—-Lange—
lehalem etc.

hwabe: NEON.

oN: various

et: GPUs.
neysu: FPGAs.

13

14
2011 Bernstein—Duif-Lange—

Schwabe-Yang: Ed25519,
reusing Curve25519 for signatures.

2013 Bernstein—Janssen—Lange—
Schwabe: TweetNaCl.

2014 Chen—Hsu—Lin—Schwabe-
Tsai-Wang—Yang—Yang:
“Verifying Curve25519 software.”

http://en.wikipedia.org/wiki
/Curve25519#Notable_uses

lists Apple’s 10S, OpenSSH,
TextSecure, Tor, et al.

Much longer list maintained by
Nicolai Brown (IANIX).

2013.08: Silent Ci
requests non-NIST
at higher security

Bernstein—Lange:
Now Silent Circle’

tations:

| for

GA:s.

13

14
2011 Bernstein—Duif-Lange—

Schwabe-Yang: Ed25519,
reusing Curve25519 for signatures.

2013 Bernstein—Janssen—Lange—
Schwabe: TweetNaCl.

2014 Chen—Hsu—Lin—Schwabe-
Tsai-Wang—Yang—Yang:
“Verifying Curve25519 software.”

http://en.wikipedia.org/wiki
/Curve25519#Notable_uses

lists Apple’s i0S, OpenSSH,
TextSecure, Tor, et al.

Much longer list maintained by
Nicolai Brown (IANIX).

2013.08: Silent Circle
requests non-NIST curve
at higher security level.

Bernstein—Lange: Curve4l4
Now Silent Circle's default.

2011 Bernstein—Duif-Lange—
Schwabe-Yang: Ed25519,
reusing Curve25519 for signatures.

2013 Bernstein—Janssen—Lange—
Schwabe: TweetNaCl.

2014 Chen—Hsu—Lin—Schwabe-
Tsai-Wang—Yang—Yang:
“Verifying Curve25519 software.”

http://en.wikipedia.org/wiki
/Curve25519#Notable_uses

lists Apple’s 10S, OpenSSH,
TextSecure, Tor, et al.

Much longer list maintained by
Nicolai Brown (IANIX).

14

2013.08: Silent Circle
requests non-NIST curve
at higher security level.

Bernstein—Lange: Curve41417.

Now Silent Circle's default.

15

14 15

2011 Bernstein—Duif-Lange— 2013.08: Silent Circle
Schwabe-Yang: Ed25519, requests non-NIST curve

reusing Curve25519 for signatures. at higher security level.

2013 Bernstein—Janssen—Lange— Bernstein—Lange: Curve41417.
Schwabe: TweetNaCl. Now Silent Circle's default.

2014 Chen—Hsu—Lin—Schwabe- Bernstein—Lange, independently
Tsai-Wang—Yang—Yang: Hamburg, independently Aranha-
“Verifying Curve25519 software.” Barreto—Pereira—Ricardini: E-521.

http://en.wikipedia.org/wiki
/Curve25519#Notable_uses

lists Apple’s 10S, OpenSSH,
TextSecure, Tor, et al.

Much longer list maintained by
Nicolai Brown (IANIX).

2011 Bernstein—Duif-Lange—
Schwabe-Yang: Ed25519,
reusing Curve25519 for signatures.

2013 Bernstein—Janssen—Lange—
Schwabe: TweetNaCl.

2014 Chen—Hsu—Lin—Schwabe-
Tsai-Wang—Yang—Yang:
“Verifying Curve25519 software.”

http://en.wikipedia.org/wiki
/Curve25519#Notable_uses

lists Apple’s 10S, OpenSSH,
TextSecure, Tor, et al.

Much longer list maintained by
Nicolai Brown (IANIX).

14

15
2013.08: Silent Circle

requests non-NIST curve
at higher security level.

Bernstein—Lange: Curved41417.
Now Silent Circle's default.

Bernstein—Lange, independently

Hamburg, independently Aranha—
Barreto—Pereira—Ricardini: E-521.

More options hurt simplicity;
do they really help security?
Note that typical claims
regarding AES-ECC “balance”
disregard multiple users;

lucky attacks; quantum attacks.

