
1

Curve25519, Curve41417, E-521

D. J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Curve25519 mod p = 2255 � 19:

y2 = x3 + 486662x2 + x.

Equivalent to Edwards curve

x2 + y2 = 1 + (1� 1=121666)x2y2.

Curve41417 mod 2414 � 17:

x2 + y2 = 1 + 3617x2y2.

E-521 mod 2521 � 1:

x2 + y2 = 1� 376014x2y2.

2

Curve25519

Introduced in ECC 2005 talk

and PKC 2006 paper “New

Diffie–Hellman speed records.”

Main features listed in paper:

“extremely high speed”;

“no time variability”;

32-byte secret keys;

32-byte public keys;

“free key validation”;

“short code”.

The big picture:

Minimize tensions between

speed, simplicity, security.



1

Curve25519, Curve41417, E-521

D. J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Curve25519 mod p = 2255 � 19:

y2 = x3 + 486662x2 + x.

Equivalent to Edwards curve

x2 + y2 = 1 + (1� 1=121666)x2y2.

Curve41417 mod 2414 � 17:

x2 + y2 = 1 + 3617x2y2.

E-521 mod 2521 � 1:

x2 + y2 = 1� 376014x2y2.

2

Curve25519

Introduced in ECC 2005 talk

and PKC 2006 paper “New

Diffie–Hellman speed records.”

Main features listed in paper:

“extremely high speed”;

“no time variability”;

32-byte secret keys;

32-byte public keys;

“free key validation”;

“short code”.

The big picture:

Minimize tensions between

speed, simplicity, security.

3

Tension: a neutral example

How will implementors

compute a=b mod p?

Many books recommend Euclid.

Passes interoperability tests.

But variable time,

presumably a security problem.



1

Curve25519, Curve41417, E-521

D. J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Curve25519 mod p = 2255 � 19:

y2 = x3 + 486662x2 + x.

Equivalent to Edwards curve

x2 + y2 = 1 + (1� 1=121666)x2y2.

Curve41417 mod 2414 � 17:

x2 + y2 = 1 + 3617x2y2.

E-521 mod 2521 � 1:

x2 + y2 = 1� 376014x2y2.

2

Curve25519

Introduced in ECC 2005 talk

and PKC 2006 paper “New

Diffie–Hellman speed records.”

Main features listed in paper:

“extremely high speed”;

“no time variability”;

32-byte secret keys;

32-byte public keys;

“free key validation”;

“short code”.

The big picture:

Minimize tensions between

speed, simplicity, security.

3

Tension: a neutral example

How will implementors

compute a=b mod p?

Many books recommend Euclid.

Passes interoperability tests.

But variable time,

presumably a security problem.



1

Curve25519, Curve41417, E-521

D. J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Curve25519 mod p = 2255 � 19:

y2 = x3 + 486662x2 + x.

Equivalent to Edwards curve

x2 + y2 = 1 + (1� 1=121666)x2y2.

Curve41417 mod 2414 � 17:

x2 + y2 = 1 + 3617x2y2.

E-521 mod 2521 � 1:

x2 + y2 = 1� 376014x2y2.

2

Curve25519

Introduced in ECC 2005 talk

and PKC 2006 paper “New

Diffie–Hellman speed records.”

Main features listed in paper:

“extremely high speed”;

“no time variability”;

32-byte secret keys;

32-byte public keys;

“free key validation”;

“short code”.

The big picture:

Minimize tensions between

speed, simplicity, security.

3

Tension: a neutral example

How will implementors

compute a=b mod p?

Many books recommend Euclid.

Passes interoperability tests.

But variable time,

presumably a security problem.



2

Curve25519

Introduced in ECC 2005 talk

and PKC 2006 paper “New

Diffie–Hellman speed records.”

Main features listed in paper:

“extremely high speed”;

“no time variability”;

32-byte secret keys;

32-byte public keys;

“free key validation”;

“short code”.

The big picture:

Minimize tensions between

speed, simplicity, security.

3

Tension: a neutral example

How will implementors

compute a=b mod p?

Many books recommend Euclid.

Passes interoperability tests.

But variable time,

presumably a security problem.



2

Curve25519

Introduced in ECC 2005 talk

and PKC 2006 paper “New

Diffie–Hellman speed records.”

Main features listed in paper:

“extremely high speed”;

“no time variability”;

32-byte secret keys;

32-byte public keys;

“free key validation”;

“short code”.

The big picture:

Minimize tensions between

speed, simplicity, security.

3

Tension: a neutral example

How will implementors

compute a=b mod p?

Many books recommend Euclid.

Passes interoperability tests.

But variable time,

presumably a security problem.

Defense 1: Encourage

implementors to use abp�2.

Simpler than Euclid, fast enough.



2

Curve25519

Introduced in ECC 2005 talk

and PKC 2006 paper “New

Diffie–Hellman speed records.”

Main features listed in paper:

“extremely high speed”;

“no time variability”;

32-byte secret keys;

32-byte public keys;

“free key validation”;

“short code”.

The big picture:

Minimize tensions between

speed, simplicity, security.

3

Tension: a neutral example

How will implementors

compute a=b mod p?

Many books recommend Euclid.

Passes interoperability tests.

But variable time,

presumably a security problem.

Defense 1: Encourage

implementors to use abp�2.

Simpler than Euclid, fast enough.

But maybe implementor finds it

simplest to use a Euclid library,

and wants the Euclid speed.



2

Curve25519

Introduced in ECC 2005 talk

and PKC 2006 paper “New

Diffie–Hellman speed records.”

Main features listed in paper:

“extremely high speed”;

“no time variability”;

32-byte secret keys;

32-byte public keys;

“free key validation”;

“short code”.

The big picture:

Minimize tensions between

speed, simplicity, security.

3

Tension: a neutral example

How will implementors

compute a=b mod p?

Many books recommend Euclid.

Passes interoperability tests.

But variable time,

presumably a security problem.

Defense 1: Encourage

implementors to use abp�2.

Simpler than Euclid, fast enough.

But maybe implementor finds it

simplest to use a Euclid library,

and wants the Euclid speed.

4

Defense 2: Encourage

implementors to use tools to

verify constant-time behavior.

e.g. 2010 Langley “ctgrind”; 2013

Almeida–Barbosa–Pinto–Vieira.



2

Curve25519

Introduced in ECC 2005 talk

and PKC 2006 paper “New

Diffie–Hellman speed records.”

Main features listed in paper:

“extremely high speed”;

“no time variability”;

32-byte secret keys;

32-byte public keys;

“free key validation”;

“short code”.

The big picture:

Minimize tensions between

speed, simplicity, security.

3

Tension: a neutral example

How will implementors

compute a=b mod p?

Many books recommend Euclid.

Passes interoperability tests.

But variable time,

presumably a security problem.

Defense 1: Encourage

implementors to use abp�2.

Simpler than Euclid, fast enough.

But maybe implementor finds it

simplest to use a Euclid library,

and wants the Euclid speed.

4

Defense 2: Encourage

implementors to use tools to

verify constant-time behavior.

e.g. 2010 Langley “ctgrind”; 2013

Almeida–Barbosa–Pinto–Vieira.



2

Curve25519

Introduced in ECC 2005 talk

and PKC 2006 paper “New

Diffie–Hellman speed records.”

Main features listed in paper:

“extremely high speed”;

“no time variability”;

32-byte secret keys;

32-byte public keys;

“free key validation”;

“short code”.

The big picture:

Minimize tensions between

speed, simplicity, security.

3

Tension: a neutral example

How will implementors

compute a=b mod p?

Many books recommend Euclid.

Passes interoperability tests.

But variable time,

presumably a security problem.

Defense 1: Encourage

implementors to use abp�2.

Simpler than Euclid, fast enough.

But maybe implementor finds it

simplest to use a Euclid library,

and wants the Euclid speed.

4

Defense 2: Encourage

implementors to use tools to

verify constant-time behavior.

e.g. 2010 Langley “ctgrind”; 2013

Almeida–Barbosa–Pinto–Vieira.



3

Tension: a neutral example

How will implementors

compute a=b mod p?

Many books recommend Euclid.

Passes interoperability tests.

But variable time,

presumably a security problem.

Defense 1: Encourage

implementors to use abp�2.

Simpler than Euclid, fast enough.

But maybe implementor finds it

simplest to use a Euclid library,

and wants the Euclid speed.

4

Defense 2: Encourage

implementors to use tools to

verify constant-time behavior.

e.g. 2010 Langley “ctgrind”; 2013

Almeida–Barbosa–Pinto–Vieira.



3

Tension: a neutral example

How will implementors

compute a=b mod p?

Many books recommend Euclid.

Passes interoperability tests.

But variable time,

presumably a security problem.

Defense 1: Encourage

implementors to use abp�2.

Simpler than Euclid, fast enough.

But maybe implementor finds it

simplest to use a Euclid library,

and wants the Euclid speed.

4

Defense 2: Encourage

implementors to use tools to

verify constant-time behavior.

e.g. 2010 Langley “ctgrind”; 2013

Almeida–Barbosa–Pinto–Vieira.

Defense 3: Encourage

implementors to use fractions

(e.g., “projective coordinates”).

Then Euclid speedup is negligible.



3

Tension: a neutral example

How will implementors

compute a=b mod p?

Many books recommend Euclid.

Passes interoperability tests.

But variable time,

presumably a security problem.

Defense 1: Encourage

implementors to use abp�2.

Simpler than Euclid, fast enough.

But maybe implementor finds it

simplest to use a Euclid library,

and wants the Euclid speed.

4

Defense 2: Encourage

implementors to use tools to

verify constant-time behavior.

e.g. 2010 Langley “ctgrind”; 2013

Almeida–Barbosa–Pinto–Vieira.

Defense 3: Encourage

implementors to use fractions

(e.g., “projective coordinates”).

Then Euclid speedup is negligible.

Defense 4: Choose curves that

naturally avoid all divisions.



3

Tension: a neutral example

How will implementors

compute a=b mod p?

Many books recommend Euclid.

Passes interoperability tests.

But variable time,

presumably a security problem.

Defense 1: Encourage

implementors to use abp�2.

Simpler than Euclid, fast enough.

But maybe implementor finds it

simplest to use a Euclid library,

and wants the Euclid speed.

4

Defense 2: Encourage

implementors to use tools to

verify constant-time behavior.

e.g. 2010 Langley “ctgrind”; 2013

Almeida–Barbosa–Pinto–Vieira.

Defense 3: Encourage

implementors to use fractions

(e.g., “projective coordinates”).

Then Euclid speedup is negligible.

Defense 4: Choose curves that

naturally avoid all divisions.

Seems incompatible with ECC.



3

Tension: a neutral example

How will implementors

compute a=b mod p?

Many books recommend Euclid.

Passes interoperability tests.

But variable time,

presumably a security problem.

Defense 1: Encourage

implementors to use abp�2.

Simpler than Euclid, fast enough.

But maybe implementor finds it

simplest to use a Euclid library,

and wants the Euclid speed.

4

Defense 2: Encourage

implementors to use tools to

verify constant-time behavior.

e.g. 2010 Langley “ctgrind”; 2013

Almeida–Barbosa–Pinto–Vieira.

Defense 3: Encourage

implementors to use fractions

(e.g., “projective coordinates”).

Then Euclid speedup is negligible.

Defense 4: Choose curves that

naturally avoid all divisions.

Seems incompatible with ECC.

The good news: curve choice

can resolve other tensions.



3

Tension: a neutral example

How will implementors

compute a=b mod p?

Many books recommend Euclid.

Passes interoperability tests.

But variable time,

presumably a security problem.

Defense 1: Encourage

implementors to use abp�2.

Simpler than Euclid, fast enough.

But maybe implementor finds it

simplest to use a Euclid library,

and wants the Euclid speed.

4

Defense 2: Encourage

implementors to use tools to

verify constant-time behavior.

e.g. 2010 Langley “ctgrind”; 2013

Almeida–Barbosa–Pinto–Vieira.

Defense 3: Encourage

implementors to use fractions

(e.g., “projective coordinates”).

Then Euclid speedup is negligible.

Defense 4: Choose curves that

naturally avoid all divisions.

Seems incompatible with ECC.

The good news: curve choice

can resolve other tensions.

5

Constant-time Curve25519

Imitate hardware in software.

Allocate constant number of bits

for each integer.

Always perform arithmetic

on all bits. Don’t skip bits.

e.g. If you’re adding a to b,

with 255 bits allocated for a

and 255 bits allocated for b:

allocate 256 bits for a + b.

e.g. If you’re multiplying a by b,

with 256 bits allocated for a

and 256 bits allocated for b:

allocate 512 bits for ab.



3

Tension: a neutral example

How will implementors

compute a=b mod p?

Many books recommend Euclid.

Passes interoperability tests.

But variable time,

presumably a security problem.

Defense 1: Encourage

implementors to use abp�2.

Simpler than Euclid, fast enough.

But maybe implementor finds it

simplest to use a Euclid library,

and wants the Euclid speed.

4

Defense 2: Encourage

implementors to use tools to

verify constant-time behavior.

e.g. 2010 Langley “ctgrind”; 2013

Almeida–Barbosa–Pinto–Vieira.

Defense 3: Encourage

implementors to use fractions

(e.g., “projective coordinates”).

Then Euclid speedup is negligible.

Defense 4: Choose curves that

naturally avoid all divisions.

Seems incompatible with ECC.

The good news: curve choice

can resolve other tensions.

5

Constant-time Curve25519

Imitate hardware in software.

Allocate constant number of bits

for each integer.

Always perform arithmetic

on all bits. Don’t skip bits.

e.g. If you’re adding a to b,

with 255 bits allocated for a

and 255 bits allocated for b:

allocate 256 bits for a + b.

e.g. If you’re multiplying a by b,

with 256 bits allocated for a

and 256 bits allocated for b:

allocate 512 bits for ab.



3

Tension: a neutral example

How will implementors

compute a=b mod p?

Many books recommend Euclid.

Passes interoperability tests.

But variable time,

presumably a security problem.

Defense 1: Encourage

implementors to use abp�2.

Simpler than Euclid, fast enough.

But maybe implementor finds it

simplest to use a Euclid library,

and wants the Euclid speed.

4

Defense 2: Encourage

implementors to use tools to

verify constant-time behavior.

e.g. 2010 Langley “ctgrind”; 2013

Almeida–Barbosa–Pinto–Vieira.

Defense 3: Encourage

implementors to use fractions

(e.g., “projective coordinates”).

Then Euclid speedup is negligible.

Defense 4: Choose curves that

naturally avoid all divisions.

Seems incompatible with ECC.

The good news: curve choice

can resolve other tensions.

5

Constant-time Curve25519

Imitate hardware in software.

Allocate constant number of bits

for each integer.

Always perform arithmetic

on all bits. Don’t skip bits.

e.g. If you’re adding a to b,

with 255 bits allocated for a

and 255 bits allocated for b:

allocate 256 bits for a + b.

e.g. If you’re multiplying a by b,

with 256 bits allocated for a

and 256 bits allocated for b:

allocate 512 bits for ab.



4

Defense 2: Encourage

implementors to use tools to

verify constant-time behavior.

e.g. 2010 Langley “ctgrind”; 2013

Almeida–Barbosa–Pinto–Vieira.

Defense 3: Encourage

implementors to use fractions

(e.g., “projective coordinates”).

Then Euclid speedup is negligible.

Defense 4: Choose curves that

naturally avoid all divisions.

Seems incompatible with ECC.

The good news: curve choice

can resolve other tensions.

5

Constant-time Curve25519

Imitate hardware in software.

Allocate constant number of bits

for each integer.

Always perform arithmetic

on all bits. Don’t skip bits.

e.g. If you’re adding a to b,

with 255 bits allocated for a

and 255 bits allocated for b:

allocate 256 bits for a + b.

e.g. If you’re multiplying a by b,

with 256 bits allocated for a

and 256 bits allocated for b:

allocate 512 bits for ab.



4

Defense 2: Encourage

implementors to use tools to

verify constant-time behavior.

e.g. 2010 Langley “ctgrind”; 2013

Almeida–Barbosa–Pinto–Vieira.

Defense 3: Encourage

implementors to use fractions

(e.g., “projective coordinates”).

Then Euclid speedup is negligible.

Defense 4: Choose curves that

naturally avoid all divisions.

Seems incompatible with ECC.

The good news: curve choice

can resolve other tensions.

5

Constant-time Curve25519

Imitate hardware in software.

Allocate constant number of bits

for each integer.

Always perform arithmetic

on all bits. Don’t skip bits.

e.g. If you’re adding a to b,

with 255 bits allocated for a

and 255 bits allocated for b:

allocate 256 bits for a + b.

e.g. If you’re multiplying a by b,

with 256 bits allocated for a

and 256 bits allocated for b:

allocate 512 bits for ab.

6

If (e.g.) 600 bits allocated for c:

Replace c with 19q + r where

r = c mod 2255, q =
�
c=2255

�
.

Allocate 350 bits for 19q + r.

This is the same modulo p.

Repeat same compression:

350 bits ! 256 bits.

Small enough for next mult.



4

Defense 2: Encourage

implementors to use tools to

verify constant-time behavior.

e.g. 2010 Langley “ctgrind”; 2013

Almeida–Barbosa–Pinto–Vieira.

Defense 3: Encourage

implementors to use fractions

(e.g., “projective coordinates”).

Then Euclid speedup is negligible.

Defense 4: Choose curves that

naturally avoid all divisions.

Seems incompatible with ECC.

The good news: curve choice

can resolve other tensions.

5

Constant-time Curve25519

Imitate hardware in software.

Allocate constant number of bits

for each integer.

Always perform arithmetic

on all bits. Don’t skip bits.

e.g. If you’re adding a to b,

with 255 bits allocated for a

and 255 bits allocated for b:

allocate 256 bits for a + b.

e.g. If you’re multiplying a by b,

with 256 bits allocated for a

and 256 bits allocated for b:

allocate 512 bits for ab.

6

If (e.g.) 600 bits allocated for c:

Replace c with 19q + r where

r = c mod 2255, q =
�
c=2255

�
.

Allocate 350 bits for 19q + r.

This is the same modulo p.

Repeat same compression:

350 bits ! 256 bits.

Small enough for next mult.



4

Defense 2: Encourage

implementors to use tools to

verify constant-time behavior.

e.g. 2010 Langley “ctgrind”; 2013

Almeida–Barbosa–Pinto–Vieira.

Defense 3: Encourage

implementors to use fractions

(e.g., “projective coordinates”).

Then Euclid speedup is negligible.

Defense 4: Choose curves that

naturally avoid all divisions.

Seems incompatible with ECC.

The good news: curve choice

can resolve other tensions.

5

Constant-time Curve25519

Imitate hardware in software.

Allocate constant number of bits

for each integer.

Always perform arithmetic

on all bits. Don’t skip bits.

e.g. If you’re adding a to b,

with 255 bits allocated for a

and 255 bits allocated for b:

allocate 256 bits for a + b.

e.g. If you’re multiplying a by b,

with 256 bits allocated for a

and 256 bits allocated for b:

allocate 512 bits for ab.

6

If (e.g.) 600 bits allocated for c:

Replace c with 19q + r where

r = c mod 2255, q =
�
c=2255

�
.

Allocate 350 bits for 19q + r.

This is the same modulo p.

Repeat same compression:

350 bits ! 256 bits.

Small enough for next mult.



5

Constant-time Curve25519

Imitate hardware in software.

Allocate constant number of bits

for each integer.

Always perform arithmetic

on all bits. Don’t skip bits.

e.g. If you’re adding a to b,

with 255 bits allocated for a

and 255 bits allocated for b:

allocate 256 bits for a + b.

e.g. If you’re multiplying a by b,

with 256 bits allocated for a

and 256 bits allocated for b:

allocate 512 bits for ab.

6

If (e.g.) 600 bits allocated for c:

Replace c with 19q + r where

r = c mod 2255, q =
�
c=2255

�
.

Allocate 350 bits for 19q + r.

This is the same modulo p.

Repeat same compression:

350 bits ! 256 bits.

Small enough for next mult.



5

Constant-time Curve25519

Imitate hardware in software.

Allocate constant number of bits

for each integer.

Always perform arithmetic

on all bits. Don’t skip bits.

e.g. If you’re adding a to b,

with 255 bits allocated for a

and 255 bits allocated for b:

allocate 256 bits for a + b.

e.g. If you’re multiplying a by b,

with 256 bits allocated for a

and 256 bits allocated for b:

allocate 512 bits for ab.

6

If (e.g.) 600 bits allocated for c:

Replace c with 19q + r where

r = c mod 2255, q =
�
c=2255

�
.

Allocate 350 bits for 19q + r.

This is the same modulo p.

Repeat same compression:

350 bits ! 256 bits.

Small enough for next mult.

To completely reduce 256 bits

mod p, do two iterations of

constant-time conditional sub.

One conditional sub:

replace c with c� (1� s)p

where s is sign bit in c� p.



5

Constant-time Curve25519

Imitate hardware in software.

Allocate constant number of bits

for each integer.

Always perform arithmetic

on all bits. Don’t skip bits.

e.g. If you’re adding a to b,

with 255 bits allocated for a

and 255 bits allocated for b:

allocate 256 bits for a + b.

e.g. If you’re multiplying a by b,

with 256 bits allocated for a

and 256 bits allocated for b:

allocate 512 bits for ab.

6

If (e.g.) 600 bits allocated for c:

Replace c with 19q + r where

r = c mod 2255, q =
�
c=2255

�
.

Allocate 350 bits for 19q + r.

This is the same modulo p.

Repeat same compression:

350 bits ! 256 bits.

Small enough for next mult.

To completely reduce 256 bits

mod p, do two iterations of

constant-time conditional sub.

One conditional sub:

replace c with c� (1� s)p

where s is sign bit in c� p.

7

Constant-time NIST P-256

NIST P-256 prime p is

2256 � 2224 + 2192 + 296 � 1.

ECDSA standard specifies

reduction procedure given

an integer “A less than p2”:

Write A as

(A15; A14; A13; A12; A11; A10; A9;

A8; A7; A6; A5; A4; A3; A2; A1; A0),

meaning
P

i Ai2
32i.

Define

T ;S1;S2;S3;S4;D1;D2;D3;D4

as



5

Constant-time Curve25519

Imitate hardware in software.

Allocate constant number of bits

for each integer.

Always perform arithmetic

on all bits. Don’t skip bits.

e.g. If you’re adding a to b,

with 255 bits allocated for a

and 255 bits allocated for b:

allocate 256 bits for a + b.

e.g. If you’re multiplying a by b,

with 256 bits allocated for a

and 256 bits allocated for b:

allocate 512 bits for ab.

6

If (e.g.) 600 bits allocated for c:

Replace c with 19q + r where

r = c mod 2255, q =
�
c=2255

�
.

Allocate 350 bits for 19q + r.

This is the same modulo p.

Repeat same compression:

350 bits ! 256 bits.

Small enough for next mult.

To completely reduce 256 bits

mod p, do two iterations of

constant-time conditional sub.

One conditional sub:

replace c with c� (1� s)p

where s is sign bit in c� p.

7

Constant-time NIST P-256

NIST P-256 prime p is

2256 � 2224 + 2192 + 296 � 1.

ECDSA standard specifies

reduction procedure given

an integer “A less than p2”:

Write A as

(A15; A14; A13; A12; A11; A10; A9;

A8; A7; A6; A5; A4; A3; A2; A1; A0),

meaning
P

i Ai2
32i.

Define

T ;S1;S2;S3;S4;D1;D2;D3;D4

as



5

Constant-time Curve25519

Imitate hardware in software.

Allocate constant number of bits

for each integer.

Always perform arithmetic

on all bits. Don’t skip bits.

e.g. If you’re adding a to b,

with 255 bits allocated for a

and 255 bits allocated for b:

allocate 256 bits for a + b.

e.g. If you’re multiplying a by b,

with 256 bits allocated for a

and 256 bits allocated for b:

allocate 512 bits for ab.

6

If (e.g.) 600 bits allocated for c:

Replace c with 19q + r where

r = c mod 2255, q =
�
c=2255

�
.

Allocate 350 bits for 19q + r.

This is the same modulo p.

Repeat same compression:

350 bits ! 256 bits.

Small enough for next mult.

To completely reduce 256 bits

mod p, do two iterations of

constant-time conditional sub.

One conditional sub:

replace c with c� (1� s)p

where s is sign bit in c� p.

7

Constant-time NIST P-256

NIST P-256 prime p is

2256 � 2224 + 2192 + 296 � 1.

ECDSA standard specifies

reduction procedure given

an integer “A less than p2”:

Write A as

(A15; A14; A13; A12; A11; A10; A9;

A8; A7; A6; A5; A4; A3; A2; A1; A0),

meaning
P

i Ai2
32i.

Define

T ;S1;S2;S3;S4;D1;D2;D3;D4

as



6

If (e.g.) 600 bits allocated for c:

Replace c with 19q + r where

r = c mod 2255, q =
�
c=2255

�
.

Allocate 350 bits for 19q + r.

This is the same modulo p.

Repeat same compression:

350 bits ! 256 bits.

Small enough for next mult.

To completely reduce 256 bits

mod p, do two iterations of

constant-time conditional sub.

One conditional sub:

replace c with c� (1� s)p

where s is sign bit in c� p.

7

Constant-time NIST P-256

NIST P-256 prime p is

2256 � 2224 + 2192 + 296 � 1.

ECDSA standard specifies

reduction procedure given

an integer “A less than p2”:

Write A as

(A15; A14; A13; A12; A11; A10; A9;

A8; A7; A6; A5; A4; A3; A2; A1; A0),

meaning
P

i Ai2
32i.

Define

T ;S1;S2;S3;S4;D1;D2;D3;D4

as



6

If (e.g.) 600 bits allocated for c:

Replace c with 19q + r where

r = c mod 2255, q =
�
c=2255

�
.

Allocate 350 bits for 19q + r.

This is the same modulo p.

Repeat same compression:

350 bits ! 256 bits.

Small enough for next mult.

To completely reduce 256 bits

mod p, do two iterations of

constant-time conditional sub.

One conditional sub:

replace c with c� (1� s)p

where s is sign bit in c� p.

7

Constant-time NIST P-256

NIST P-256 prime p is

2256 � 2224 + 2192 + 296 � 1.

ECDSA standard specifies

reduction procedure given

an integer “A less than p2”:

Write A as

(A15; A14; A13; A12; A11; A10; A9;

A8; A7; A6; A5; A4; A3; A2; A1; A0),

meaning
P

i Ai2
32i.

Define

T ;S1;S2;S3;S4;D1;D2;D3;D4

as

8

(A7; A6; A5; A4; A3; A2; A1; A0);

(A15; A14; A13; A12; A11; 0; 0; 0);

(0; A15; A14; A13; A12; 0; 0; 0);

(A15; A14; 0; 0; 0; A10; A9; A8);

(A8; A13; A15; A14; A13; A11; A10; A9);

(A10; A8; 0; 0; 0; A13; A12; A11);

(A11; A9; 0; 0; A15; A14; A13; A12);

(A12; 0; A10; A9; A8; A15; A14; A13);

(A13; 0; A11; A10; A9; 0; A15; A14).

Compute T + 2S1 + 2S2 + S3 +

S4 �D1 �D2 �D3 �D4.

Reduce modulo p “by adding or

subtracting a few copies” of p.



6

If (e.g.) 600 bits allocated for c:

Replace c with 19q + r where

r = c mod 2255, q =
�
c=2255

�
.

Allocate 350 bits for 19q + r.

This is the same modulo p.

Repeat same compression:

350 bits ! 256 bits.

Small enough for next mult.

To completely reduce 256 bits

mod p, do two iterations of

constant-time conditional sub.

One conditional sub:

replace c with c� (1� s)p

where s is sign bit in c� p.

7

Constant-time NIST P-256

NIST P-256 prime p is

2256 � 2224 + 2192 + 296 � 1.

ECDSA standard specifies

reduction procedure given

an integer “A less than p2”:

Write A as

(A15; A14; A13; A12; A11; A10; A9;

A8; A7; A6; A5; A4; A3; A2; A1; A0),

meaning
P

i Ai2
32i.

Define

T ;S1;S2;S3;S4;D1;D2;D3;D4

as

8

(A7; A6; A5; A4; A3; A2; A1; A0);

(A15; A14; A13; A12; A11; 0; 0; 0);

(0; A15; A14; A13; A12; 0; 0; 0);

(A15; A14; 0; 0; 0; A10; A9; A8);

(A8; A13; A15; A14; A13; A11; A10; A9);

(A10; A8; 0; 0; 0; A13; A12; A11);

(A11; A9; 0; 0; A15; A14; A13; A12);

(A12; 0; A10; A9; A8; A15; A14; A13);

(A13; 0; A11; A10; A9; 0; A15; A14).

Compute T + 2S1 + 2S2 + S3 +

S4 �D1 �D2 �D3 �D4.

Reduce modulo p “by adding or

subtracting a few copies” of p.



6

If (e.g.) 600 bits allocated for c:

Replace c with 19q + r where

r = c mod 2255, q =
�
c=2255

�
.

Allocate 350 bits for 19q + r.

This is the same modulo p.

Repeat same compression:

350 bits ! 256 bits.

Small enough for next mult.

To completely reduce 256 bits

mod p, do two iterations of

constant-time conditional sub.

One conditional sub:

replace c with c� (1� s)p

where s is sign bit in c� p.

7

Constant-time NIST P-256

NIST P-256 prime p is

2256 � 2224 + 2192 + 296 � 1.

ECDSA standard specifies

reduction procedure given

an integer “A less than p2”:

Write A as

(A15; A14; A13; A12; A11; A10; A9;

A8; A7; A6; A5; A4; A3; A2; A1; A0),

meaning
P

i Ai2
32i.

Define

T ;S1;S2;S3;S4;D1;D2;D3;D4

as

8

(A7; A6; A5; A4; A3; A2; A1; A0);

(A15; A14; A13; A12; A11; 0; 0; 0);

(0; A15; A14; A13; A12; 0; 0; 0);

(A15; A14; 0; 0; 0; A10; A9; A8);

(A8; A13; A15; A14; A13; A11; A10; A9);

(A10; A8; 0; 0; 0; A13; A12; A11);

(A11; A9; 0; 0; A15; A14; A13; A12);

(A12; 0; A10; A9; A8; A15; A14; A13);

(A13; 0; A11; A10; A9; 0; A15; A14).

Compute T + 2S1 + 2S2 + S3 +

S4 �D1 �D2 �D3 �D4.

Reduce modulo p “by adding or

subtracting a few copies” of p.



7

Constant-time NIST P-256

NIST P-256 prime p is

2256 � 2224 + 2192 + 296 � 1.

ECDSA standard specifies

reduction procedure given

an integer “A less than p2”:

Write A as

(A15; A14; A13; A12; A11; A10; A9;

A8; A7; A6; A5; A4; A3; A2; A1; A0),

meaning
P

i Ai2
32i.

Define

T ;S1;S2;S3;S4;D1;D2;D3;D4

as

8

(A7; A6; A5; A4; A3; A2; A1; A0);

(A15; A14; A13; A12; A11; 0; 0; 0);

(0; A15; A14; A13; A12; 0; 0; 0);

(A15; A14; 0; 0; 0; A10; A9; A8);

(A8; A13; A15; A14; A13; A11; A10; A9);

(A10; A8; 0; 0; 0; A13; A12; A11);

(A11; A9; 0; 0; A15; A14; A13; A12);

(A12; 0; A10; A9; A8; A15; A14; A13);

(A13; 0; A11; A10; A9; 0; A15; A14).

Compute T + 2S1 + 2S2 + S3 +

S4 �D1 �D2 �D3 �D4.

Reduce modulo p “by adding or

subtracting a few copies” of p.



7

Constant-time NIST P-256

NIST P-256 prime p is

2256 � 2224 + 2192 + 296 � 1.

ECDSA standard specifies

reduction procedure given

an integer “A less than p2”:

Write A as

(A15; A14; A13; A12; A11; A10; A9;

A8; A7; A6; A5; A4; A3; A2; A1; A0),

meaning
P

i Ai2
32i.

Define

T ;S1;S2;S3;S4;D1;D2;D3;D4

as

8

(A7; A6; A5; A4; A3; A2; A1; A0);

(A15; A14; A13; A12; A11; 0; 0; 0);

(0; A15; A14; A13; A12; 0; 0; 0);

(A15; A14; 0; 0; 0; A10; A9; A8);

(A8; A13; A15; A14; A13; A11; A10; A9);

(A10; A8; 0; 0; 0; A13; A12; A11);

(A11; A9; 0; 0; A15; A14; A13; A12);

(A12; 0; A10; A9; A8; A15; A14; A13);

(A13; 0; A11; A10; A9; 0; A15; A14).

Compute T + 2S1 + 2S2 + S3 +

S4 �D1 �D2 �D3 �D4.

Reduce modulo p “by adding or

subtracting a few copies” of p.

9

What is “a few copies”?

A loop? Variable time.



7

Constant-time NIST P-256

NIST P-256 prime p is

2256 � 2224 + 2192 + 296 � 1.

ECDSA standard specifies

reduction procedure given

an integer “A less than p2”:

Write A as

(A15; A14; A13; A12; A11; A10; A9;

A8; A7; A6; A5; A4; A3; A2; A1; A0),

meaning
P

i Ai2
32i.

Define

T ;S1;S2;S3;S4;D1;D2;D3;D4

as

8

(A7; A6; A5; A4; A3; A2; A1; A0);

(A15; A14; A13; A12; A11; 0; 0; 0);

(0; A15; A14; A13; A12; 0; 0; 0);

(A15; A14; 0; 0; 0; A10; A9; A8);

(A8; A13; A15; A14; A13; A11; A10; A9);

(A10; A8; 0; 0; 0; A13; A12; A11);

(A11; A9; 0; 0; A15; A14; A13; A12);

(A12; 0; A10; A9; A8; A15; A14; A13);

(A13; 0; A11; A10; A9; 0; A15; A14).

Compute T + 2S1 + 2S2 + S3 +

S4 �D1 �D2 �D3 �D4.

Reduce modulo p “by adding or

subtracting a few copies” of p.

9

What is “a few copies”?

A loop? Variable time.



7

Constant-time NIST P-256

NIST P-256 prime p is

2256 � 2224 + 2192 + 296 � 1.

ECDSA standard specifies

reduction procedure given

an integer “A less than p2”:

Write A as

(A15; A14; A13; A12; A11; A10; A9;

A8; A7; A6; A5; A4; A3; A2; A1; A0),

meaning
P

i Ai2
32i.

Define

T ;S1;S2;S3;S4;D1;D2;D3;D4

as

8

(A7; A6; A5; A4; A3; A2; A1; A0);

(A15; A14; A13; A12; A11; 0; 0; 0);

(0; A15; A14; A13; A12; 0; 0; 0);

(A15; A14; 0; 0; 0; A10; A9; A8);

(A8; A13; A15; A14; A13; A11; A10; A9);

(A10; A8; 0; 0; 0; A13; A12; A11);

(A11; A9; 0; 0; A15; A14; A13; A12);

(A12; 0; A10; A9; A8; A15; A14; A13);

(A13; 0; A11; A10; A9; 0; A15; A14).

Compute T + 2S1 + 2S2 + S3 +

S4 �D1 �D2 �D3 �D4.

Reduce modulo p “by adding or

subtracting a few copies” of p.

9

What is “a few copies”?

A loop? Variable time.



8

(A7; A6; A5; A4; A3; A2; A1; A0);

(A15; A14; A13; A12; A11; 0; 0; 0);

(0; A15; A14; A13; A12; 0; 0; 0);

(A15; A14; 0; 0; 0; A10; A9; A8);

(A8; A13; A15; A14; A13; A11; A10; A9);

(A10; A8; 0; 0; 0; A13; A12; A11);

(A11; A9; 0; 0; A15; A14; A13; A12);

(A12; 0; A10; A9; A8; A15; A14; A13);

(A13; 0; A11; A10; A9; 0; A15; A14).

Compute T + 2S1 + 2S2 + S3 +

S4 �D1 �D2 �D3 �D4.

Reduce modulo p “by adding or

subtracting a few copies” of p.

9

What is “a few copies”?

A loop? Variable time.



8

(A7; A6; A5; A4; A3; A2; A1; A0);

(A15; A14; A13; A12; A11; 0; 0; 0);

(0; A15; A14; A13; A12; 0; 0; 0);

(A15; A14; 0; 0; 0; A10; A9; A8);

(A8; A13; A15; A14; A13; A11; A10; A9);

(A10; A8; 0; 0; 0; A13; A12; A11);

(A11; A9; 0; 0; A15; A14; A13; A12);

(A12; 0; A10; A9; A8; A15; A14; A13);

(A13; 0; A11; A10; A9; 0; A15; A14).

Compute T + 2S1 + 2S2 + S3 +

S4 �D1 �D2 �D3 �D4.

Reduce modulo p “by adding or

subtracting a few copies” of p.

9

What is “a few copies”?

A loop? Variable time.

Correct but quite slow:

conditionally add 4p,

conditionally add 2p,

conditionally add p,

conditionally sub 4p,

conditionally sub 2p,

conditionally sub p.



8

(A7; A6; A5; A4; A3; A2; A1; A0);

(A15; A14; A13; A12; A11; 0; 0; 0);

(0; A15; A14; A13; A12; 0; 0; 0);

(A15; A14; 0; 0; 0; A10; A9; A8);

(A8; A13; A15; A14; A13; A11; A10; A9);

(A10; A8; 0; 0; 0; A13; A12; A11);

(A11; A9; 0; 0; A15; A14; A13; A12);

(A12; 0; A10; A9; A8; A15; A14; A13);

(A13; 0; A11; A10; A9; 0; A15; A14).

Compute T + 2S1 + 2S2 + S3 +

S4 �D1 �D2 �D3 �D4.

Reduce modulo p “by adding or

subtracting a few copies” of p.

9

What is “a few copies”?

A loop? Variable time.

Correct but quite slow:

conditionally add 4p,

conditionally add 2p,

conditionally add p,

conditionally sub 4p,

conditionally sub 2p,

conditionally sub p.

Delay until end of computation?

Trouble: “A less than p2”.



8

(A7; A6; A5; A4; A3; A2; A1; A0);

(A15; A14; A13; A12; A11; 0; 0; 0);

(0; A15; A14; A13; A12; 0; 0; 0);

(A15; A14; 0; 0; 0; A10; A9; A8);

(A8; A13; A15; A14; A13; A11; A10; A9);

(A10; A8; 0; 0; 0; A13; A12; A11);

(A11; A9; 0; 0; A15; A14; A13; A12);

(A12; 0; A10; A9; A8; A15; A14; A13);

(A13; 0; A11; A10; A9; 0; A15; A14).

Compute T + 2S1 + 2S2 + S3 +

S4 �D1 �D2 �D3 �D4.

Reduce modulo p “by adding or

subtracting a few copies” of p.

9

What is “a few copies”?

A loop? Variable time.

Correct but quite slow:

conditionally add 4p,

conditionally add 2p,

conditionally add p,

conditionally sub 4p,

conditionally sub 2p,

conditionally sub p.

Delay until end of computation?

Trouble: “A less than p2”.

Even worse: what about platforms

where 232 isn’t best radix?



8

(A7; A6; A5; A4; A3; A2; A1; A0);

(A15; A14; A13; A12; A11; 0; 0; 0);

(0; A15; A14; A13; A12; 0; 0; 0);

(A15; A14; 0; 0; 0; A10; A9; A8);

(A8; A13; A15; A14; A13; A11; A10; A9);

(A10; A8; 0; 0; 0; A13; A12; A11);

(A11; A9; 0; 0; A15; A14; A13; A12);

(A12; 0; A10; A9; A8; A15; A14; A13);

(A13; 0; A11; A10; A9; 0; A15; A14).

Compute T + 2S1 + 2S2 + S3 +

S4 �D1 �D2 �D3 �D4.

Reduce modulo p “by adding or

subtracting a few copies” of p.

9

What is “a few copies”?

A loop? Variable time.

Correct but quite slow:

conditionally add 4p,

conditionally add 2p,

conditionally add p,

conditionally sub 4p,

conditionally sub 2p,

conditionally sub p.

Delay until end of computation?

Trouble: “A less than p2”.

Even worse: what about platforms

where 232 isn’t best radix?

10

The Montgomery ladder

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):

bit = 1 & (n >> i)

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

x3,z3 = ((x2*x3-z2*z3)^2,

x1*(x2*z3-z2*x3)^2)

x2,z2 = ((x2^2-z2^2)^2,

4*x2*z2*(x2^2+A*x2*z2+z2^2))

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

return x2*z2^(p-2)



8

(A7; A6; A5; A4; A3; A2; A1; A0);

(A15; A14; A13; A12; A11; 0; 0; 0);

(0; A15; A14; A13; A12; 0; 0; 0);

(A15; A14; 0; 0; 0; A10; A9; A8);

(A8; A13; A15; A14; A13; A11; A10; A9);

(A10; A8; 0; 0; 0; A13; A12; A11);

(A11; A9; 0; 0; A15; A14; A13; A12);

(A12; 0; A10; A9; A8; A15; A14; A13);

(A13; 0; A11; A10; A9; 0; A15; A14).

Compute T + 2S1 + 2S2 + S3 +

S4 �D1 �D2 �D3 �D4.

Reduce modulo p “by adding or

subtracting a few copies” of p.

9

What is “a few copies”?

A loop? Variable time.

Correct but quite slow:

conditionally add 4p,

conditionally add 2p,

conditionally add p,

conditionally sub 4p,

conditionally sub 2p,

conditionally sub p.

Delay until end of computation?

Trouble: “A less than p2”.

Even worse: what about platforms

where 232 isn’t best radix?

10

The Montgomery ladder

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):

bit = 1 & (n >> i)

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

x3,z3 = ((x2*x3-z2*z3)^2,

x1*(x2*z3-z2*x3)^2)

x2,z2 = ((x2^2-z2^2)^2,

4*x2*z2*(x2^2+A*x2*z2+z2^2))

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

return x2*z2^(p-2)



8

(A7; A6; A5; A4; A3; A2; A1; A0);

(A15; A14; A13; A12; A11; 0; 0; 0);

(0; A15; A14; A13; A12; 0; 0; 0);

(A15; A14; 0; 0; 0; A10; A9; A8);

(A8; A13; A15; A14; A13; A11; A10; A9);

(A10; A8; 0; 0; 0; A13; A12; A11);

(A11; A9; 0; 0; A15; A14; A13; A12);

(A12; 0; A10; A9; A8; A15; A14; A13);

(A13; 0; A11; A10; A9; 0; A15; A14).

Compute T + 2S1 + 2S2 + S3 +

S4 �D1 �D2 �D3 �D4.

Reduce modulo p “by adding or

subtracting a few copies” of p.

9

What is “a few copies”?

A loop? Variable time.

Correct but quite slow:

conditionally add 4p,

conditionally add 2p,

conditionally add p,

conditionally sub 4p,

conditionally sub 2p,

conditionally sub p.

Delay until end of computation?

Trouble: “A less than p2”.

Even worse: what about platforms

where 232 isn’t best radix?

10

The Montgomery ladder

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):

bit = 1 & (n >> i)

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

x3,z3 = ((x2*x3-z2*z3)^2,

x1*(x2*z3-z2*x3)^2)

x2,z2 = ((x2^2-z2^2)^2,

4*x2*z2*(x2^2+A*x2*z2+z2^2))

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

return x2*z2^(p-2)



9

What is “a few copies”?

A loop? Variable time.

Correct but quite slow:

conditionally add 4p,

conditionally add 2p,

conditionally add p,

conditionally sub 4p,

conditionally sub 2p,

conditionally sub p.

Delay until end of computation?

Trouble: “A less than p2”.

Even worse: what about platforms

where 232 isn’t best radix?

10

The Montgomery ladder

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):

bit = 1 & (n >> i)

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

x3,z3 = ((x2*x3-z2*z3)^2,

x1*(x2*z3-z2*x3)^2)

x2,z2 = ((x2^2-z2^2)^2,

4*x2*z2*(x2^2+A*x2*z2+z2^2))

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

return x2*z2^(p-2)



9

What is “a few copies”?

A loop? Variable time.

Correct but quite slow:

conditionally add 4p,

conditionally add 2p,

conditionally add p,

conditionally sub 4p,

conditionally sub 2p,

conditionally sub p.

Delay until end of computation?

Trouble: “A less than p2”.

Even worse: what about platforms

where 232 isn’t best radix?

10

The Montgomery ladder

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):

bit = 1 & (n >> i)

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

x3,z3 = ((x2*x3-z2*z3)^2,

x1*(x2*z3-z2*x3)^2)

x2,z2 = ((x2^2-z2^2)^2,

4*x2*z2*(x2^2+A*x2*z2+z2^2))

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

return x2*z2^(p-2)

11

Simple; fast; always

computes scalar multiplication

on y2 = x3 + Ax2 + x

when A2 � 4 is non-square.



9

What is “a few copies”?

A loop? Variable time.

Correct but quite slow:

conditionally add 4p,

conditionally add 2p,

conditionally add p,

conditionally sub 4p,

conditionally sub 2p,

conditionally sub p.

Delay until end of computation?

Trouble: “A less than p2”.

Even worse: what about platforms

where 232 isn’t best radix?

10

The Montgomery ladder

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):

bit = 1 & (n >> i)

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

x3,z3 = ((x2*x3-z2*z3)^2,

x1*(x2*z3-z2*x3)^2)

x2,z2 = ((x2^2-z2^2)^2,

4*x2*z2*(x2^2+A*x2*z2+z2^2))

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

return x2*z2^(p-2)

11

Simple; fast; always

computes scalar multiplication

on y2 = x3 + Ax2 + x

when A2 � 4 is non-square.



9

What is “a few copies”?

A loop? Variable time.

Correct but quite slow:

conditionally add 4p,

conditionally add 2p,

conditionally add p,

conditionally sub 4p,

conditionally sub 2p,

conditionally sub p.

Delay until end of computation?

Trouble: “A less than p2”.

Even worse: what about platforms

where 232 isn’t best radix?

10

The Montgomery ladder

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):

bit = 1 & (n >> i)

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

x3,z3 = ((x2*x3-z2*z3)^2,

x1*(x2*z3-z2*x3)^2)

x2,z2 = ((x2^2-z2^2)^2,

4*x2*z2*(x2^2+A*x2*z2+z2^2))

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

return x2*z2^(p-2)

11

Simple; fast; always

computes scalar multiplication

on y2 = x3 + Ax2 + x

when A2 � 4 is non-square.



10

The Montgomery ladder

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):

bit = 1 & (n >> i)

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

x3,z3 = ((x2*x3-z2*z3)^2,

x1*(x2*z3-z2*x3)^2)

x2,z2 = ((x2^2-z2^2)^2,

4*x2*z2*(x2^2+A*x2*z2+z2^2))

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

return x2*z2^(p-2)

11

Simple; fast; always

computes scalar multiplication

on y2 = x3 + Ax2 + x

when A2 � 4 is non-square.



10

The Montgomery ladder

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):

bit = 1 & (n >> i)

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

x3,z3 = ((x2*x3-z2*z3)^2,

x1*(x2*z3-z2*x3)^2)

x2,z2 = ((x2^2-z2^2)^2,

4*x2*z2*(x2^2+A*x2*z2+z2^2))

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

return x2*z2^(p-2)

11

Simple; fast; always

computes scalar multiplication

on y2 = x3 + Ax2 + x

when A2 � 4 is non-square.

With some extra lines

can compute (x; y) output

given (x; y) input.

But simpler to use just x,

as proposed by 1985 Miller.



10

The Montgomery ladder

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):

bit = 1 & (n >> i)

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

x3,z3 = ((x2*x3-z2*z3)^2,

x1*(x2*z3-z2*x3)^2)

x2,z2 = ((x2^2-z2^2)^2,

4*x2*z2*(x2^2+A*x2*z2+z2^2))

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

return x2*z2^(p-2)

11

Simple; fast; always

computes scalar multiplication

on y2 = x3 + Ax2 + x

when A2 � 4 is non-square.

With some extra lines

can compute (x; y) output

given (x; y) input.

But simpler to use just x,

as proposed by 1985 Miller.

Adaptations to NIST curves

are much slower; not as simple;

not proven to always work.

Other scalar-mult methods:

proven but much more complex.



10

The Montgomery ladder

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):

bit = 1 & (n >> i)

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

x3,z3 = ((x2*x3-z2*z3)^2,

x1*(x2*z3-z2*x3)^2)

x2,z2 = ((x2^2-z2^2)^2,

4*x2*z2*(x2^2+A*x2*z2+z2^2))

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

return x2*z2^(p-2)

11

Simple; fast; always

computes scalar multiplication

on y2 = x3 + Ax2 + x

when A2 � 4 is non-square.

With some extra lines

can compute (x; y) output

given (x; y) input.

But simpler to use just x,

as proposed by 1985 Miller.

Adaptations to NIST curves

are much slower; not as simple;

not proven to always work.

Other scalar-mult methods:

proven but much more complex.

12

“Hey, you forgot to check

that x1 is on the curve!”

No need to check.

Curve25519 is twist-secure.



10

The Montgomery ladder

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):

bit = 1 & (n >> i)

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

x3,z3 = ((x2*x3-z2*z3)^2,

x1*(x2*z3-z2*x3)^2)

x2,z2 = ((x2^2-z2^2)^2,

4*x2*z2*(x2^2+A*x2*z2+z2^2))

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

return x2*z2^(p-2)

11

Simple; fast; always

computes scalar multiplication

on y2 = x3 + Ax2 + x

when A2 � 4 is non-square.

With some extra lines

can compute (x; y) output

given (x; y) input.

But simpler to use just x,

as proposed by 1985 Miller.

Adaptations to NIST curves

are much slower; not as simple;

not proven to always work.

Other scalar-mult methods:

proven but much more complex.

12

“Hey, you forgot to check

that x1 is on the curve!”

No need to check.

Curve25519 is twist-secure.



10

The Montgomery ladder

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):

bit = 1 & (n >> i)

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

x3,z3 = ((x2*x3-z2*z3)^2,

x1*(x2*z3-z2*x3)^2)

x2,z2 = ((x2^2-z2^2)^2,

4*x2*z2*(x2^2+A*x2*z2+z2^2))

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

return x2*z2^(p-2)

11

Simple; fast; always

computes scalar multiplication

on y2 = x3 + Ax2 + x

when A2 � 4 is non-square.

With some extra lines

can compute (x; y) output

given (x; y) input.

But simpler to use just x,

as proposed by 1985 Miller.

Adaptations to NIST curves

are much slower; not as simple;

not proven to always work.

Other scalar-mult methods:

proven but much more complex.

12

“Hey, you forgot to check

that x1 is on the curve!”

No need to check.

Curve25519 is twist-secure.



11

Simple; fast; always

computes scalar multiplication

on y2 = x3 + Ax2 + x

when A2 � 4 is non-square.

With some extra lines

can compute (x; y) output

given (x; y) input.

But simpler to use just x,

as proposed by 1985 Miller.

Adaptations to NIST curves

are much slower; not as simple;

not proven to always work.

Other scalar-mult methods:

proven but much more complex.

12

“Hey, you forgot to check

that x1 is on the curve!”

No need to check.

Curve25519 is twist-secure.



11

Simple; fast; always

computes scalar multiplication

on y2 = x3 + Ax2 + x

when A2 � 4 is non-square.

With some extra lines

can compute (x; y) output

given (x; y) input.

But simpler to use just x,

as proposed by 1985 Miller.

Adaptations to NIST curves

are much slower; not as simple;

not proven to always work.

Other scalar-mult methods:

proven but much more complex.

12

“Hey, you forgot to check

that x1 is on the curve!”

No need to check.

Curve25519 is twist-secure.

“This textbook tells me

to start the Montgomery ladder

from the top bit set in n!”

(Exploited in, e.g., 2011

Brumley–Tuveri “Remote timing

attacks are still practical”.)

The Curve25519 DH function

takes 2254 � n < 2255,

so this is still constant-time.



11

Simple; fast; always

computes scalar multiplication

on y2 = x3 + Ax2 + x

when A2 � 4 is non-square.

With some extra lines

can compute (x; y) output

given (x; y) input.

But simpler to use just x,

as proposed by 1985 Miller.

Adaptations to NIST curves

are much slower; not as simple;

not proven to always work.

Other scalar-mult methods:

proven but much more complex.

12

“Hey, you forgot to check

that x1 is on the curve!”

No need to check.

Curve25519 is twist-secure.

“This textbook tells me

to start the Montgomery ladder

from the top bit set in n!”

(Exploited in, e.g., 2011

Brumley–Tuveri “Remote timing

attacks are still practical”.)

The Curve25519 DH function

takes 2254 � n < 2255,

so this is still constant-time.

13

Subsequent developments

More Curve25519 implementations:

2007 Gaudry–Thomé: tuned for

Core 2, Athlon 64.

2009 Costigan–Schwabe: Cell.

2011 Bernstein–Duif–Lange–

Schwabe–Yang: Nehalem etc.

2012 Bernstein–Schwabe: NEON.

2014 Langley–Moon: various

newer Intel chips.

2014 Mahé–Chauvet: GPUs.

2014 Sasdrich–Güneysu: FPGAs.



11

Simple; fast; always

computes scalar multiplication

on y2 = x3 + Ax2 + x

when A2 � 4 is non-square.

With some extra lines

can compute (x; y) output

given (x; y) input.

But simpler to use just x,

as proposed by 1985 Miller.

Adaptations to NIST curves

are much slower; not as simple;

not proven to always work.

Other scalar-mult methods:

proven but much more complex.

12

“Hey, you forgot to check

that x1 is on the curve!”

No need to check.

Curve25519 is twist-secure.

“This textbook tells me

to start the Montgomery ladder

from the top bit set in n!”

(Exploited in, e.g., 2011

Brumley–Tuveri “Remote timing

attacks are still practical”.)

The Curve25519 DH function

takes 2254 � n < 2255,

so this is still constant-time.

13

Subsequent developments

More Curve25519 implementations:

2007 Gaudry–Thomé: tuned for

Core 2, Athlon 64.

2009 Costigan–Schwabe: Cell.

2011 Bernstein–Duif–Lange–

Schwabe–Yang: Nehalem etc.

2012 Bernstein–Schwabe: NEON.

2014 Langley–Moon: various

newer Intel chips.

2014 Mahé–Chauvet: GPUs.

2014 Sasdrich–Güneysu: FPGAs.



11

Simple; fast; always

computes scalar multiplication

on y2 = x3 + Ax2 + x

when A2 � 4 is non-square.

With some extra lines

can compute (x; y) output

given (x; y) input.

But simpler to use just x,

as proposed by 1985 Miller.

Adaptations to NIST curves

are much slower; not as simple;

not proven to always work.

Other scalar-mult methods:

proven but much more complex.

12

“Hey, you forgot to check

that x1 is on the curve!”

No need to check.

Curve25519 is twist-secure.

“This textbook tells me

to start the Montgomery ladder

from the top bit set in n!”

(Exploited in, e.g., 2011

Brumley–Tuveri “Remote timing

attacks are still practical”.)

The Curve25519 DH function

takes 2254 � n < 2255,

so this is still constant-time.

13

Subsequent developments

More Curve25519 implementations:

2007 Gaudry–Thomé: tuned for

Core 2, Athlon 64.

2009 Costigan–Schwabe: Cell.

2011 Bernstein–Duif–Lange–

Schwabe–Yang: Nehalem etc.

2012 Bernstein–Schwabe: NEON.

2014 Langley–Moon: various

newer Intel chips.

2014 Mahé–Chauvet: GPUs.

2014 Sasdrich–Güneysu: FPGAs.



12

“Hey, you forgot to check

that x1 is on the curve!”

No need to check.

Curve25519 is twist-secure.

“This textbook tells me

to start the Montgomery ladder

from the top bit set in n!”

(Exploited in, e.g., 2011

Brumley–Tuveri “Remote timing

attacks are still practical”.)

The Curve25519 DH function

takes 2254 � n < 2255,

so this is still constant-time.

13

Subsequent developments

More Curve25519 implementations:

2007 Gaudry–Thomé: tuned for

Core 2, Athlon 64.

2009 Costigan–Schwabe: Cell.

2011 Bernstein–Duif–Lange–

Schwabe–Yang: Nehalem etc.

2012 Bernstein–Schwabe: NEON.

2014 Langley–Moon: various

newer Intel chips.

2014 Mahé–Chauvet: GPUs.

2014 Sasdrich–Güneysu: FPGAs.



12

“Hey, you forgot to check

that x1 is on the curve!”

No need to check.

Curve25519 is twist-secure.

“This textbook tells me

to start the Montgomery ladder

from the top bit set in n!”

(Exploited in, e.g., 2011

Brumley–Tuveri “Remote timing

attacks are still practical”.)

The Curve25519 DH function

takes 2254 � n < 2255,

so this is still constant-time.

13

Subsequent developments

More Curve25519 implementations:

2007 Gaudry–Thomé: tuned for

Core 2, Athlon 64.

2009 Costigan–Schwabe: Cell.

2011 Bernstein–Duif–Lange–

Schwabe–Yang: Nehalem etc.

2012 Bernstein–Schwabe: NEON.

2014 Langley–Moon: various

newer Intel chips.

2014 Mahé–Chauvet: GPUs.

2014 Sasdrich–Güneysu: FPGAs.

14

2011 Bernstein–Duif–Lange–

Schwabe–Yang: Ed25519,

reusing Curve25519 for signatures.

2013 Bernstein–Janssen–Lange–

Schwabe: TweetNaCl.

2014 Chen–Hsu–Lin–Schwabe–

Tsai–Wang–Yang–Yang:

“Verifying Curve25519 software.”

http://en.wikipedia.org/wiki

/Curve25519#Notable_uses

lists Apple’s iOS, OpenSSH,

TextSecure, Tor, et al.

Much longer list maintained by

Nicolai Brown (IANIX).



12

“Hey, you forgot to check

that x1 is on the curve!”

No need to check.

Curve25519 is twist-secure.

“This textbook tells me

to start the Montgomery ladder

from the top bit set in n!”

(Exploited in, e.g., 2011

Brumley–Tuveri “Remote timing

attacks are still practical”.)

The Curve25519 DH function

takes 2254 � n < 2255,

so this is still constant-time.

13

Subsequent developments

More Curve25519 implementations:

2007 Gaudry–Thomé: tuned for

Core 2, Athlon 64.

2009 Costigan–Schwabe: Cell.

2011 Bernstein–Duif–Lange–

Schwabe–Yang: Nehalem etc.

2012 Bernstein–Schwabe: NEON.

2014 Langley–Moon: various

newer Intel chips.

2014 Mahé–Chauvet: GPUs.

2014 Sasdrich–Güneysu: FPGAs.

14

2011 Bernstein–Duif–Lange–

Schwabe–Yang: Ed25519,

reusing Curve25519 for signatures.

2013 Bernstein–Janssen–Lange–

Schwabe: TweetNaCl.

2014 Chen–Hsu–Lin–Schwabe–

Tsai–Wang–Yang–Yang:

“Verifying Curve25519 software.”

http://en.wikipedia.org/wiki

/Curve25519#Notable_uses

lists Apple’s iOS, OpenSSH,

TextSecure, Tor, et al.

Much longer list maintained by

Nicolai Brown (IANIX).



12

“Hey, you forgot to check

that x1 is on the curve!”

No need to check.

Curve25519 is twist-secure.

“This textbook tells me

to start the Montgomery ladder

from the top bit set in n!”

(Exploited in, e.g., 2011

Brumley–Tuveri “Remote timing

attacks are still practical”.)

The Curve25519 DH function

takes 2254 � n < 2255,

so this is still constant-time.

13

Subsequent developments

More Curve25519 implementations:

2007 Gaudry–Thomé: tuned for

Core 2, Athlon 64.

2009 Costigan–Schwabe: Cell.

2011 Bernstein–Duif–Lange–

Schwabe–Yang: Nehalem etc.

2012 Bernstein–Schwabe: NEON.

2014 Langley–Moon: various

newer Intel chips.

2014 Mahé–Chauvet: GPUs.

2014 Sasdrich–Güneysu: FPGAs.

14

2011 Bernstein–Duif–Lange–

Schwabe–Yang: Ed25519,

reusing Curve25519 for signatures.

2013 Bernstein–Janssen–Lange–

Schwabe: TweetNaCl.

2014 Chen–Hsu–Lin–Schwabe–

Tsai–Wang–Yang–Yang:

“Verifying Curve25519 software.”

http://en.wikipedia.org/wiki

/Curve25519#Notable_uses

lists Apple’s iOS, OpenSSH,

TextSecure, Tor, et al.

Much longer list maintained by

Nicolai Brown (IANIX).



13

Subsequent developments

More Curve25519 implementations:

2007 Gaudry–Thomé: tuned for

Core 2, Athlon 64.

2009 Costigan–Schwabe: Cell.

2011 Bernstein–Duif–Lange–

Schwabe–Yang: Nehalem etc.

2012 Bernstein–Schwabe: NEON.

2014 Langley–Moon: various

newer Intel chips.

2014 Mahé–Chauvet: GPUs.

2014 Sasdrich–Güneysu: FPGAs.

14

2011 Bernstein–Duif–Lange–

Schwabe–Yang: Ed25519,

reusing Curve25519 for signatures.

2013 Bernstein–Janssen–Lange–

Schwabe: TweetNaCl.

2014 Chen–Hsu–Lin–Schwabe–

Tsai–Wang–Yang–Yang:

“Verifying Curve25519 software.”

http://en.wikipedia.org/wiki

/Curve25519#Notable_uses

lists Apple’s iOS, OpenSSH,

TextSecure, Tor, et al.

Much longer list maintained by

Nicolai Brown (IANIX).



13

Subsequent developments

More Curve25519 implementations:

2007 Gaudry–Thomé: tuned for

Core 2, Athlon 64.

2009 Costigan–Schwabe: Cell.

2011 Bernstein–Duif–Lange–

Schwabe–Yang: Nehalem etc.

2012 Bernstein–Schwabe: NEON.

2014 Langley–Moon: various

newer Intel chips.

2014 Mahé–Chauvet: GPUs.

2014 Sasdrich–Güneysu: FPGAs.

14

2011 Bernstein–Duif–Lange–

Schwabe–Yang: Ed25519,

reusing Curve25519 for signatures.

2013 Bernstein–Janssen–Lange–

Schwabe: TweetNaCl.

2014 Chen–Hsu–Lin–Schwabe–

Tsai–Wang–Yang–Yang:

“Verifying Curve25519 software.”

http://en.wikipedia.org/wiki

/Curve25519#Notable_uses

lists Apple’s iOS, OpenSSH,

TextSecure, Tor, et al.

Much longer list maintained by

Nicolai Brown (IANIX).

15

2013.08: Silent Circle

requests non-NIST curve

at higher security level.

Bernstein–Lange: Curve41417.

Now Silent Circle’s default.



13

Subsequent developments

More Curve25519 implementations:

2007 Gaudry–Thomé: tuned for

Core 2, Athlon 64.

2009 Costigan–Schwabe: Cell.

2011 Bernstein–Duif–Lange–

Schwabe–Yang: Nehalem etc.

2012 Bernstein–Schwabe: NEON.

2014 Langley–Moon: various

newer Intel chips.

2014 Mahé–Chauvet: GPUs.

2014 Sasdrich–Güneysu: FPGAs.

14

2011 Bernstein–Duif–Lange–

Schwabe–Yang: Ed25519,

reusing Curve25519 for signatures.

2013 Bernstein–Janssen–Lange–

Schwabe: TweetNaCl.

2014 Chen–Hsu–Lin–Schwabe–

Tsai–Wang–Yang–Yang:

“Verifying Curve25519 software.”

http://en.wikipedia.org/wiki

/Curve25519#Notable_uses

lists Apple’s iOS, OpenSSH,

TextSecure, Tor, et al.

Much longer list maintained by

Nicolai Brown (IANIX).

15

2013.08: Silent Circle

requests non-NIST curve

at higher security level.

Bernstein–Lange: Curve41417.

Now Silent Circle’s default.



13

Subsequent developments

More Curve25519 implementations:

2007 Gaudry–Thomé: tuned for

Core 2, Athlon 64.

2009 Costigan–Schwabe: Cell.

2011 Bernstein–Duif–Lange–

Schwabe–Yang: Nehalem etc.

2012 Bernstein–Schwabe: NEON.

2014 Langley–Moon: various

newer Intel chips.

2014 Mahé–Chauvet: GPUs.

2014 Sasdrich–Güneysu: FPGAs.

14

2011 Bernstein–Duif–Lange–

Schwabe–Yang: Ed25519,

reusing Curve25519 for signatures.

2013 Bernstein–Janssen–Lange–

Schwabe: TweetNaCl.

2014 Chen–Hsu–Lin–Schwabe–

Tsai–Wang–Yang–Yang:

“Verifying Curve25519 software.”

http://en.wikipedia.org/wiki

/Curve25519#Notable_uses

lists Apple’s iOS, OpenSSH,

TextSecure, Tor, et al.

Much longer list maintained by

Nicolai Brown (IANIX).

15

2013.08: Silent Circle

requests non-NIST curve

at higher security level.

Bernstein–Lange: Curve41417.

Now Silent Circle’s default.



14

2011 Bernstein–Duif–Lange–

Schwabe–Yang: Ed25519,

reusing Curve25519 for signatures.

2013 Bernstein–Janssen–Lange–

Schwabe: TweetNaCl.

2014 Chen–Hsu–Lin–Schwabe–

Tsai–Wang–Yang–Yang:

“Verifying Curve25519 software.”

http://en.wikipedia.org/wiki

/Curve25519#Notable_uses

lists Apple’s iOS, OpenSSH,

TextSecure, Tor, et al.

Much longer list maintained by

Nicolai Brown (IANIX).

15

2013.08: Silent Circle

requests non-NIST curve

at higher security level.

Bernstein–Lange: Curve41417.

Now Silent Circle’s default.



14

2011 Bernstein–Duif–Lange–

Schwabe–Yang: Ed25519,

reusing Curve25519 for signatures.

2013 Bernstein–Janssen–Lange–

Schwabe: TweetNaCl.

2014 Chen–Hsu–Lin–Schwabe–

Tsai–Wang–Yang–Yang:

“Verifying Curve25519 software.”

http://en.wikipedia.org/wiki

/Curve25519#Notable_uses

lists Apple’s iOS, OpenSSH,

TextSecure, Tor, et al.

Much longer list maintained by

Nicolai Brown (IANIX).

15

2013.08: Silent Circle

requests non-NIST curve

at higher security level.

Bernstein–Lange: Curve41417.

Now Silent Circle’s default.

Bernstein–Lange, independently

Hamburg, independently Aranha–

Barreto–Pereira–Ricardini: E-521.



14

2011 Bernstein–Duif–Lange–

Schwabe–Yang: Ed25519,

reusing Curve25519 for signatures.

2013 Bernstein–Janssen–Lange–

Schwabe: TweetNaCl.

2014 Chen–Hsu–Lin–Schwabe–

Tsai–Wang–Yang–Yang:

“Verifying Curve25519 software.”

http://en.wikipedia.org/wiki

/Curve25519#Notable_uses

lists Apple’s iOS, OpenSSH,

TextSecure, Tor, et al.

Much longer list maintained by

Nicolai Brown (IANIX).

15

2013.08: Silent Circle

requests non-NIST curve

at higher security level.

Bernstein–Lange: Curve41417.

Now Silent Circle’s default.

Bernstein–Lange, independently

Hamburg, independently Aranha–

Barreto–Pereira–Ricardini: E-521.

More options hurt simplicity;

do they really help security?

Note that typical claims

regarding AES-ECC “balance”

disregard multiple users;

lucky attacks; quantum attacks.


