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Curve25519 mod p = 2%°° — 10:
y? = z3 + 4866622° + z.

Equivalent to Edwards curve

22 +y° =1+ (1 —1/121666)z°y.

Curve41417 mod 244 — 17
z° + y° =14 3617z%y°.

E-521 mod 2221 — 1:
22 +y? = 1 — 37601422y,

Curve25519

Introduced in ECC 2005 talk
and PKC 2006 paper “New
Dithie—Hellman speed records.”

Main features listed in paper:

“extremely high speed”;
“no time variability” ;
32-byte secret keys;

32-byte public keys;

“free key validation”;
“short code’.

The big picture:
Minimize tensions between
speed, simplicity, security.
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NIST P-256 prime p is
2256 o 2224 4 2192 4+ 296 1

ECDSA standard specifies

reduction procedure given
an integer “A less than p?”

Write A as
(A1s, A1a, A13, A12, A11, A10, Ao,

Asg, A7, Ae, As, Ag, A3, As, A1, Ap),

meaning Y . A;23%.

Define
T;51; 52; 53; 54; D1; Do; D3; Dy
as

(A7, A6, As, Ay, A3, Ao, Ay, /
(A15, A14, A13, A12, A11, 0,0
(0, A1s, A14, A13, A12,0,0,0
(A15, A14,0,0,0, A19, Ag, Ag
(Ag, A13, A1s, A1a, A13, A11,
(A10, Ag, 0,0,0, Ar3, Arp, Ar
(A11,A9,0,0, A1s, A14, A13,
(A12,0, A10, Ag, A, A1s, A14
(A13,0, A11, A10, A9, 0, A1,

Compute T + 251 + 255 +
Sy — D1 — Dy — D3 — Dy.

Reduce modulo » “by addin
subtracting a few copies” of
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NIST P-256 prime p is
2256 o 2224 4 2192 4 296 _1

ECDSA standard specifies

reduction procedure given
an integer “A less than p?”

Write A as
(A1s, A14, A13, A12, A11, A10, Ao,

Asg, A7, Ae, As, Asg, Az, Ao, A1, Ao),

meaning Y . A;23%".

Define
T;51;52; 53; 54; D1; Dy; D3; Dy
as

(A7, Ae, As, A4, A3, A2, A1, Ap);
(A1s, A1, A13, A12, A11, 0,0, 0);
(0, A1, A14, A13, A12,0,0,0);
(A15, A14,0,0,0, A1g, Ag, Ag);
(As, A13, A1s, A14, A13, A11, A10, Ag);
(A10. A8, 0,0,0, A3, A12, A11);
(A11,A9,0,0, A5, A14, A13, A12);
(A12,0, A1p, Ag, Ag, A1s, A14, A13);
(A13,0, A11, A10, Ag, 0, A1s, A14).

Compute 7 + 2571 + 252 + 53 +
Sy, — D1 — Dy — D3 — Dy.

Reduce modulo » “by adding or
subtracting a few copies” of .
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4, A13, A12, A11, A10, Ao,

A6, As, Ag, Az, As, A1, Ap),

'y, A3

; $53;54; D1; Do; D3; Dy

Ae, As, A, Az, A, AL Ao);
A1s, A14, A13, A12, A11, 0,0, 0);
0, A1s, A1a, A13, A12,0,0,0);
A1s,A14,0,0,0, A1, Ag, Ag);

A10,As,0,0,0, A1z, A12, A11);
A11, A9, 0,0, A1s, A1, A13, A12);
A12,0, Aqg, Ag, Ag, A1s, A14, A13);
A13,0, A11, A10, A9, 0, A1s, A1s).

Compute T + 2571 4+ 252 + 53 +
Sy — D1 — Dy — D3 — Dy.

Reduce modulo » “by adding or
subtracting a few copies” of p.

(A7
(
(
(
(As, A13, A1s, A14, A13, A11, A10. Ag);
(
(
(
(

> =

nat Is

oop’



I P-256

D IS
+2% 1.

specifies
re given
than p2”

, A11, A10, Ao,

1, Az, Ao, A1, Ao),

3/

)1; Do; D3; Dy

(A7, Ae, As, A4, A3, A2, A1, Ao);
(A1s, A14, A13, A12, A11,0,0, 0);

(0, A1, A14, A13, A12,0,0,0);

(A15, A14,0,0,0, A1g, Ag, Ag);

(As, A13, A1s, A14, A13, A11, A10, A9g);
(A10.A8,0,0,0, A3, A12, A11);
(A11,A9,0,0, A5, A14, A13, A12);
(A12,0, A1p, Ag, Ag, A1s, A14, A13);
(A13,0, A11, A10, A9, 0, A1s, A14).

Compute 7 + 2571 + 252 + 53 +
Sy, — D1 — Dy — D3 — Dy.

Reduce modulo » “by adding or
subtracting a few copies” of .

> =

nat 1s “a few co

oop? Variable



Ao, As, As, Az, A, AL Ao);
A1s, A14, A13, A12, A11, 0,0, 0);
0, A1s, A1a, A13, A12,0,0,0);
A1s,A14,0,0,0, A1, Ag, Ag);

A10,As,0,0,0, A1z, A12, A11);
A11, A9, 0,0, A1s, A1, A13, A12);
A12,0, Aqg, Ag, Ag, A1s, A14, A13);
A13,0, A11, A10, A9, 0, A1s, A1s).

Compute T + 2571 + 252 + 53 +
Sy — D1 — Dy — D3 — Dy.

Reduce modulo » “by adding or
subtracting a few copies” of .

(A7
(
(
(
(As, A13, A1s, A14, A13, A11, A10. Ag);
(
(
(
(

> =

nat is “a few copies’ ?

oop? Variable time.



(A7, Ae, As, A4, A3, A2, A1, Ao);
(A1s, A14, A13, A12, A11,0,0, 0);

(0, A1, A14, A13, A12,0,0,0);

(A15, A14,0,0,0, A1g, Ag, Ag);

(As, A13, A1s, A14, A13, A11, A10, Ag);
(A10. A8, 0,0,0, A3, A12, A11);
(A11,A9,0,0, A5, A14, A13, A12);
(A12,0, A1p, Ag, Ag, A1s, A14, A13);
(A13,0, A11, A10, A9, 0, A1s, A1a).

Compute 7 + 2571 4+ 252 + 53 +
Sy, — D1 — Dy — D3 — Dy.

Reduce modulo » “by adding or
subtracting a few copies” of .

> =

nat is “a few copies” ?

oop? Variable time.



(A7, Ae, As, A4, A3, A2, A1, Ao);
(A1s, A14, A13, A12, A11,0,0, 0);

(0, A1, A14, A13, A12,0,0,0);

(A15, A14,0,0,0, A1g, Ag, Ag);

(As, A13, A1s, A14, A13, A11, A10, Ag);
(A10. A8, 0,0,0, A3, A12, A11);
(A11,A9,0,0, A5, A14, A13, A12);
(A12,0, A1p, Ag, Ag, A1s, A14, A13);
(A13,0, A11, A10, Ag, 0, A1s, A14).

Compute 7 + 2571 4+ 252 + 53 +
Sy, — D1 — Dy — D3 — Dy.

Reduce modulo » “by adding or
subtracting a few copies” of .

What is “a few copies” ?

A

oop? Variable time.

Correct but quite slow:

conda
conda
conda
conda
condc

cond

itiona
itiona
itiona
itiona
itiona
itiona

y ac
y ac

y ac
y Su
y Su
y Su

d 4p,
d 2p,

d »,
0 4p,

0 2p,

0 .



(A7, Ae, As, Ag, Az, Ao, A1, Ap); What is “a few copies” 7
(A15 A1a, A13, A1o, A11,0,0, O) A loop? Variable time.
(0, A1s, A14, A13, A12, 0,0, 0);
(
(

Correct but quite slow:
A1s, A14,0,0,0, Ajg, Ag, Ag);

Ag, A13, A1s, A14, A13, A11, A10, Ag);
(A10. A8, 0,0,0, A3, A12, A11);
(A11, A9, 0,0, A1s, A14, A13, A12);
(A12,0, A1p, Ag, Ag, A1s, A14, A13);
(A13,0, A11, A10, A9, 0, A1s, A1a).

conditionally add 4p,
conditionally add 2p,

conditionally add »p,
conditionally sub 4p,
conditionally sub 2p,

conditionally sub ».
Compute 7 + 2571 4+ 252 + 53 +

Delay until end of computation?
S, — D1 — Dy — D3 — Dy.

Trouble: “A less than p2”
Reduce modulo » “by adding or
subtracting a few copies” of .




(A7, As, As, Aa, Az, Ar. A1 Ao)
(A15, A4, A13, A12, A11,0,0,0);
(0, A1s, A14, A13, A12, 0,0, 0);
(A15, A14,0,0,0, A9, Ag, Ag);
(As

(Alo, Ag,0,0,0, A13, A12, A11);
(A11,A9,0,0, A5, A14, A13, A12);
(A12,0, A1p, Ag, Ag, A1s, A14, A13);
(A13,0, A11, A10, A9, 0, A1s, A1a).

Compute 7 + 2571 4+ 252 + 53 +
Sy, — D1 — Dy — D3 — Dy.

Reduce modulo » “by adding or
subtracting a few copies” of .

What is “a few copies” ?

A loop? Variable time.

Correct but quite slow:
conditionally add 4p,
conditionally add 2p,

conditionally add »p,
conditionally sub 4p,
conditionally sub 2p,

conditionally sub ».

Delay until end of computation?

Trouble: “A less than p2”

Even worse: what about platforms
where 232 isn't best radix?



As, Ag, Az, Ao, A1, Ag);

4, A13, A12, A11, 0,0, 0);

A1, A13, A12,0,0,0);
4,0,0,0, A10, Ag, Ag);

. A1s, A14, A13, A11, A10. Ag);
.0,0,0, A13, A12, A11);

0,0, A1s, A1, A13, A12);
A10, Ag, Ag, A1s, A14, A13);
A11, A10, A9, 0, A1s, A14).

e T 4+ 251 + 257 + 53 +
— Dy — D3 — Dy.

modulo p “by adding or
ing a few copies’ of p.

What is “a few copies” ?

A loop? Variable time.

Correct but quite slow:
conditionally add 4p,
conditionally add 2p,

conditionally add p,
conditionally sub 4p,
conditionally sub 2,

conditionally sub ».

Delay until end of computation?
Trouble: “A less than p?".

Even worse: what about platforms
where 232 isn't best radix?

The Mo

X2,22,X.
for 1 1
bit =
X2 ,x%X3
z2,Z3
x3,Z3

X2 ,22

4*xx:
X2 ,x3
z2,23

return



, Az, A1, Ao);

., A11,0,0,0);
112,0,0,0);

A13, A11, A10, Ag);
3, A12, A11);

A14, A13, A12);

3, A1, A1a, A13);
19,0, A1s, A14).

+ 257 + 53 +
)3 — Dy.

"by adding or
copies’ of .

What is “a few copies” ?

A loop? Variable time.

Correct but quite slow:
conditionally add 4p,
conditionally add 2p,

conditionally add »p,
conditionally sub 4p,
conditionally sub 2p,

conditionally sub ».

Delay until end of computation?
Trouble: “A less than p?".

Even worse: what about platforms
where 232 isn't best radix?

The Montgomery

x2,z22,x3,z3 = 1,
for 1 1n reverse
bit =1 & (n >
x2,x3 = cswap(
z2,z3 = cswap(
x3,z3 = ((x2*x
x1* (x2%*2z

x2,z2 = ((x272
Axx2%Z2% (x2°
x2,x3 = cswap(
z2,z3 = cswap(

return x2*xz2” (p-



What is “a few copies” ?

A loop? Variable time.

Correct but quite slow:
conditionally add 4p,
conditionally add 2p,

conditionally add p,
conditionally sub 4p,
conditionally sub 2,

conditionally sub ».

Delay until end of computation?
Trouble: “A less than p?".

Even worse: what about platforms
where 232 isn't best radix?

The Montgomery ladder

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range (2

bit =
x2,x%X3
z2,Z3
x3,Z3

X2 ,22

1 & (n > i)

= cswap(x2,x3,bit
= cswap(z2,z3,bit
= ((x2%x3-z2%z3)"
x1* (x2%23-2z2%x3) "~
= ((x272-z2"2) "2,

Axx2%72% (X2 " 2+A*x2% 72

xX2,x3
z2,23

= cswap(x2,x3,bit
= cswap(z2,z3,bit

return x2*z2” (p-2)



What is “a few copies” ?

A loop? Variable time.

Correct but quite slow:

conda
conda
conda
conda
condc

condc

itiona
itiona
itiona
itiona
itiona
itiona

y ac
y ac

y ac
y Su
y Su
y Su

d 4p,
d 2p,

d »,
0 4p,

0 2p,

0 .

Delay until end of computation?
Trouble: “A less than p?".

Even worse: what about platforms
where 232 isn't best radix?

The Montgomery ladder

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):

bit =1 & (n > i)

x2,x3 = cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)
x3,2z3 = ((x2*x3-22%23) "2,

x1* (x2%z3-z2*xx3) "2)
x2,z2 = ((x2°2-z2"2)"2,
Axx2xz2% (X2 2+A*xx2%xZz2+2272) )
x2,x3 = cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)
return x2*xz2" (p-2)

10



“a few copies’ ?
Variable time.

but quite slow:
nally add 4p,
nally add 2p,

nally add o,
nally sub 4p,
nally sub 2p,

nally sub p.

1til end of computation?
“A less than p?".

rse: what about platforms

32 isn't best radix?

The Montgomery ladder

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):

bit =
x2,x%X3
z2,Z3
x3,Z3

X2 ,22

Axx2%72% (x2"2+A*x2%22+22"2) )

xX2,x3
z2,23

1 & (n > i)

= cswap(x2,x3,bit)
= cswap(z2,z3,bit)
= ((x2*x3-z2%z3) "2,
x1* (x2%2z3-z2%x3) "2)
= ((x272-z2"2) "2,

= cswap(x2,x3,bit)
= cswap(z2,z3,bit)

return x2*z2” (p-2)

10
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when A:



time.
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The Montgomery ladder

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):
bit =1 & (n > i)
x2,x3 = cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)
x3,2z3 = ((x2*x3-22%23) "2,

x1* (x2%z3-z2*x3) "2)
x2,z2 = ((x2°2-z2"2)"2,
Axx2xz2% (X2 2+A*xx2%xZz2+2272) )

x2,x3 = cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)

return x2*xz2" (p-2)

10

Simple; fast; alwa
computes scalar n
on y2 = 3 + Az?
when A2 — 4 is no
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The Montgomery ladder

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):
bit =1 & (n >> i)
x2,x3 = cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)
x3,z3 = ((x2*x3-22%23) "2,

x1* (x2%2z3-z2%x3) "2)
x2,z2 = ((x2°2-z2"2)"2,
Axx2%xz2% (X272+A*xx2%xZz2+2272) )

x2,x3 = cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)

return x2*z2” (p-2)

10

Simple; fast; always
computes scalar multiplicati
ony? =z3+ Az + ¢
when A% — 4 is non-square.



The Montgomery ladder

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):
bit =1 & (n > i)
x2,x3 = cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)
x3,2z3 = ((x2*x3-22%23) "2,

x1* (x2%z3-z2*x3) "2)
x2,z2 = ((x2°2-z2"2)"2,
Axx2%xz2% (X2 2+A*xx2%xZz2+2272) )

x2,x3 = cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)

return x2*xz2" (p-2)

10

Simple; fast; always
computes scalar multiplication
ony? =z3+ Az + ¢

when A% — 4 is non-square.

11



The Montgomery ladder

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):
bit =1 & (n > i)
x2,x3 = cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)
x3,2z3 = ((x2*x3-22%23) "2,

x1* (x2%z3-z2*x3) "2)
x2,z2 = ((x2°2-z2"2)"2,
Axx2%xz2% (X2 2+A*xx2%xZz2+2272) )

x2,x3 = cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)

return x2*xz2" (p-2)

10
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Simple; fast; always

computes scalar multiplication
ony? =z3+ Az + ¢
when A% — 4 is non-square.

With some extra lines

can compute (z,y) output
given (z,y) input.

But simpler to use just z,
as proposed by 1985 Miller.



The Montgomery ladder

x2,z2,x3,z3 = 1,0,x1,1
for i in reversed(range(255)):

bit =1 & (n >> i)

x2,x3 = cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)
x3,2z3 = ((x2*x3-22%23) "2,

x1* (x2%z3-z2*x3) "2)
x2,z2 = ((x2°2-z2"2)"2,
Axx2%xz2% (X2 2+A*xx2%xZz2+2272) )
x2,x3 = cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)
return x2*xz2" (p-2)

10

11
Simple; fast; always

computes scalar multiplication
ony? =z3+ Az + ¢
when A% — 4 is non-square.

With some extra lines

can compute (z,y) output
given (z,y) input.

But simpler to use just z,
as proposed by 1985 Miller.

Adaptations to NIST curves

are much slower; not as simple;
not proven to always work.
Other scalar-mult methods:
proven but much more complex.



ntgomery ladder

3,z3 = 1,0,x1,1

n reversed(range (255)):
1 & (n > i)

= cswap(x2,x3,bit)

= cswap(z2,z3,bit)

= ((x2*x3-z2%z3) "2,
x1* (x2%2z3-z2%x3) "2)

= ((x272-z2"2) "2,
2%Z2% (X227 2+A*xx2%Zz2+2272) )
= cswap(x2,x3,bit)

= cswap(z2,z3,bit)
x2%z2" (p-2)

10

Simple; fast; always
computes scalar multiplication
ony? =z3+ Az + ¢

when A% — 4 is non-square.

With some extra lines

can compute (z,y) output
given (z,y) input.

But simpler to use just z,
as proposed by 1985 Miller.

Adaptations to NIST curves

are much slower; not as simple;
not proven to always work.
Other scalar-mult methods:
proven but much more complex.
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d(range (255)):
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x2,%x3,bit)
z2,z3,bit)
3-z2%z3) "2,
3-z2*x3) "2)
-z272) "2,
2+A*xx2%xz2+2272))
x2,x3,bit)
z2,z3,bit)

2)
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Simple; fast; always
computes scalar multiplication
ony? =z3+ Az + ¢

when A% — 4 is non-square.

With some extra lines

can compute (z,y) output
given (z,y) input.

But simpler to use just z,
as proposed by 1985 Miller.

Adaptations to NIST curves

are much slower; not as simple;
not proven to always work.
Other scalar-mult methods:
proven but much more complex.
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Simple; fast; always
computes scalar multiplication
ony? =z3+ Az + ¢

when A% — 4 is non-square.

With some extra lines

can compute (z,y) output
given (z,y) input.

But simpler to use just z,
as proposed by 1985 Miller.

Adaptations to NIST curves

are much slower; not as simple;
not proven to always work.
Other scalar-mult methods:
proven but much more complex.

11

"Hey, you forgot to check
that 71 1s on the curvel”

No need to check.
Curve25519 is twist-secure



Simple; fast; always
computes scalar multiplication
ony? =z3+ Az + ¢

when A% — 4 is non-square.

With some extra lines

can compute (z,y) output
given (z,y) input.

But simpler to use just z,
as proposed by 1985 Miller.

Adaptations to NIST curves
are much slower; not as simple;
not proven to always work.
Other scalar-mult methods:

proven but much more complex.
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"Hey, you forgot to check
that 7 1s on the curvel”

No need to check.
Curve25519 is twist-secure.
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Simple; fast; always
computes scalar multiplication
ony? =z3+ Az + ¢

when A% — 4 is non-square.

With some extra lines

can compute (z,y) output
given (z,y) input.

But simpler to use just z,
as proposed by 1985 Miller.

Adaptations to NIST curves

are much slower; not as simple;
not proven to always work.
Other scalar-mult methods:
proven but much more complex.

11

"Hey, you forgot to check
that 7 1s on the curvel”

No need to check.
Curve25519 is twist-secure.

“This textbook tells me

to start the Montgomery ladder
from the top bit set in n!”
(Exploited in, e.g., 2011
Brumley—Tuveri "Remote timing
attacks are still practical”.)

The Curve25519 DH function
takes 2224 < n < 2290
so this iIs still constant-time.

12
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“This textbook tells me
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(Exploited in, e.g., 2011
Brumley—Tuveri “Remote timing
attacks are still practical”.)

The Curve25519 DH function
takes 2224 < n < 2290
so this iIs still constant-time.

12

Subsequent develc

More Curve25519

2007 Gaudry—Tho
Core 2, Athlon 64

2009 Costigan—Sc|

2011 Bernstein—D
Schwabe—Yang: N

2012 Bernstein—Sc

2014 Langley—Mo«
newer Intel chips.

2014 Mahé—Chauy
2014 Sasdrich—Gu



on

ple;

slex.

11

"Hey, you forgot to check
that =71 1s on the curvel”

No need to check.
Curve25519 is twist-secure.

“This textbook tells me

to start the Montgomery ladder
from the top bit set in n!”
(Exploited in, e.g., 2011
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that 7 1s on the curvel”

No need to check.
Curve25519 is twist-secure.

“This textbook tells me

to start the Montgomery ladder
from the top bit set in n!”
(Exploited in, e.g., 2011
Brumley—Tuveri “Remote timing
attacks are still practical”.)

The Curve25519 DH function
takes 2224 < n < 2290
so this iIs still constant-time.
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Subsequent developments

More Curve25519 implementations:

2007 Gaudry—Thomé: tuned for
Core 2, Athlon 64.

2009 Costigan—Schwabe: Cell.

2011 Bernstein—Duif-Lange—
Schwabe—Yang: Nehalem etc.

2012 Bernstein—Schwabe: NEON.

2014 Langley—Moon: various

newer Intel chips.
2014 Mahé—Chauvet: GPUs.
2014 Sasdrich—Guneysu: FPGAs.
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2011 Bernstein—Duif-Lange— 2013.08: Silent Circle
Schwabe-Yang: Ed25519, requests non-NIST curve

reusing Curve25519 for signatures. at higher security level.

2013 Bernstein—Janssen—Lange— Bernstein—Lange: Curve41417.
Schwabe: TweetNaCl. Now Silent Circle's default.

2014 Chen—Hsu—Lin—Schwabe- Bernstein—Lange, independently
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“Verifying Curve25519 software.” Barreto—Pereira—Ricardini: E-521.
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2013.08: Silent Circle

requests non-NIST curve
at higher security level.

Bernstein—Lange: Curved41417.
Now Silent Circle's default.

Bernstein—Lange, independently

Hamburg, independently Aranha—
Barreto—Pereira—Ricardini: E-521.

More options hurt simplicity;
do they really help security?
Note that typical claims
regarding AES-ECC “balance”
disregard multiple users;

lucky attacks; quantum attacks.



