
1

Curve25519, Curve41417, E-521

D. J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Curve25519 mod p = 2255 � 19:

y2 = x3 + 486662x2 + x.

Equivalent to Edwards curve

x2 + y2 = 1 + (1� 1=121666)x2y2.

Curve41417 mod 2414 � 17:

x2 + y2 = 1 + 3617x2y2.

E-521 mod 2521 � 1:

x2 + y2 = 1� 376014x2y2.
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Curve25519

Introduced in ECC 2005 talk

and PKC 2006 paper “New

Diffie–Hellman speed records.”

Main features listed in paper:

“extremely high speed”;

“no time variability”;

32-byte secret keys;

32-byte public keys;

“free key validation”;

“short code”.

The big picture:

Minimize tensions between

speed, simplicity, security.
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Tension: a neutral example

How will implementors

compute a=b mod p?

Many books recommend Euclid.

Passes interoperability tests.

But variable time,

presumably a security problem.
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Constant-time Curve25519

Imitate hardware in software.

Allocate constant number of bits

for each integer.

Always perform arithmetic

on all bits. Don’t skip bits.

e.g. If you’re adding a to b,

with 255 bits allocated for a

and 255 bits allocated for b:

allocate 256 bits for a + b.

e.g. If you’re multiplying a by b,

with 256 bits allocated for a

and 256 bits allocated for b:

allocate 512 bits for ab.
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r = c mod 2255, q =
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.
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This is the same modulo p.
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350 bits ! 256 bits.

Small enough for next mult.
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Constant-time NIST P-256

NIST P-256 prime p is

2256 � 2224 + 2192 + 296 � 1.

ECDSA standard specifies

reduction procedure given

an integer “A less than p2”:

Write A as

(A15; A14; A13; A12; A11; A10; A9;

A8; A7; A6; A5; A4; A3; A2; A1; A0),

meaning
P

i Ai2
32i.

Define

T ;S1;S2;S3;S4;D1;D2;D3;D4

as
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The Montgomery ladder

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):

bit = 1 & (n >> i)

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

x3,z3 = ((x2*x3-z2*z3)^2,

x1*(x2*z3-z2*x3)^2)

x2,z2 = ((x2^2-z2^2)^2,

4*x2*z2*(x2^2+A*x2*z2+z2^2))

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

return x2*z2^(p-2)
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Core 2, Athlon 64.

2009 Costigan–Schwabe: Cell.

2011 Bernstein–Duif–Lange–

Schwabe–Yang: Nehalem etc.

2012 Bernstein–Schwabe: NEON.

2014 Langley–Moon: various

newer Intel chips.
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Core 2, Athlon 64.

2009 Costigan–Schwabe: Cell.

2011 Bernstein–Duif–Lange–

Schwabe–Yang: Nehalem etc.

2012 Bernstein–Schwabe: NEON.

2014 Langley–Moon: various

newer Intel chips.
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14

2011 Bernstein–Duif–Lange–

Schwabe–Yang: Ed25519,

reusing Curve25519 for signatures.

2013 Bernstein–Janssen–Lange–

Schwabe: TweetNaCl.

2014 Chen–Hsu–Lin–Schwabe–

Tsai–Wang–Yang–Yang:

“Verifying Curve25519 software.”

http://en.wikipedia.org/wiki

/Curve25519#Notable_uses

lists Apple’s iOS, OpenSSH,

TextSecure, Tor, et al.

Much longer list maintained by

Nicolai Brown (IANIX).

15

2013.08: Silent Circle

requests non-NIST curve

at higher security level.

Bernstein–Lange: Curve41417.

Now Silent Circle’s default.



14

2011 Bernstein–Duif–Lange–

Schwabe–Yang: Ed25519,

reusing Curve25519 for signatures.

2013 Bernstein–Janssen–Lange–

Schwabe: TweetNaCl.

2014 Chen–Hsu–Lin–Schwabe–

Tsai–Wang–Yang–Yang:

“Verifying Curve25519 software.”

http://en.wikipedia.org/wiki

/Curve25519#Notable_uses

lists Apple’s iOS, OpenSSH,

TextSecure, Tor, et al.

Much longer list maintained by

Nicolai Brown (IANIX).

15

2013.08: Silent Circle

requests non-NIST curve

at higher security level.

Bernstein–Lange: Curve41417.

Now Silent Circle’s default.



14

2011 Bernstein–Duif–Lange–

Schwabe–Yang: Ed25519,

reusing Curve25519 for signatures.

2013 Bernstein–Janssen–Lange–

Schwabe: TweetNaCl.

2014 Chen–Hsu–Lin–Schwabe–

Tsai–Wang–Yang–Yang:

“Verifying Curve25519 software.”

http://en.wikipedia.org/wiki

/Curve25519#Notable_uses

lists Apple’s iOS, OpenSSH,

TextSecure, Tor, et al.

Much longer list maintained by

Nicolai Brown (IANIX).

15

2013.08: Silent Circle

requests non-NIST curve

at higher security level.

Bernstein–Lange: Curve41417.

Now Silent Circle’s default.

Bernstein–Lange, independently

Hamburg, independently Aranha–

Barreto–Pereira–Ricardini: E-521.



14

2011 Bernstein–Duif–Lange–

Schwabe–Yang: Ed25519,

reusing Curve25519 for signatures.

2013 Bernstein–Janssen–Lange–

Schwabe: TweetNaCl.

2014 Chen–Hsu–Lin–Schwabe–

Tsai–Wang–Yang–Yang:

“Verifying Curve25519 software.”

http://en.wikipedia.org/wiki

/Curve25519#Notable_uses

lists Apple’s iOS, OpenSSH,

TextSecure, Tor, et al.

Much longer list maintained by

Nicolai Brown (IANIX).

15

2013.08: Silent Circle

requests non-NIST curve

at higher security level.

Bernstein–Lange: Curve41417.

Now Silent Circle’s default.

Bernstein–Lange, independently

Hamburg, independently Aranha–

Barreto–Pereira–Ricardini: E-521.

More options hurt simplicity;

do they really help security?

Note that typical claims

regarding AES-ECC “balance”

disregard multiple users;

lucky attacks; quantum attacks.


