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Sieving small integers i > 0

using primes 2; 3; 5; 7:

1
2 2
3 3
4 2 2
5 5
6 2 3
7 7
8 2 2 2
9 3 3

10 2 5
11
12 2 2 3
13
14 2 7
15 3 5
16 2 2 2 2
17
18 2 3 3
19
20 2 2 5

etc.



Sieving i and 611 + i for small i

using primes 2; 3; 5; 7:

1
2 2
3 3
4 2 2
5 5
6 2 3
7 7
8 2 2 2
9 3 3

10 2 5
11
12 2 2 3
13
14 2 7
15 3 5
16 2 2 2 2
17
18 2 3 3
19
20 2 2 5

612 2 2 3 3
613
614 2
615 3 5
616 2 2 2 7
617
618 2 3
619
620 2 2 5
621 3 3 3
622 2
623 7
624 2 2 2 2 3
625 5 5 5 5
626 2
627 3
628 2 2
629
630 2 3 3 5 7
631

etc.



Have complete factorization of

the “congruences” i(611 + i)

for some i’s.

14 � 625 = 21305471.

64 � 675 = 26335270.

75 � 686 = 21315273.

14 � 64 � 75 � 625 � 675 � 686

= 28345874 = (24325472)2.

gcd
�

611; 14 � 64 � 75� 24325472
	

= 47.

611 = 47 � 13.



Why did this find a factor of 611?

Was it just blind luck:

gcdf611; randomg = 47?



Why did this find a factor of 611?

Was it just blind luck:

gcdf611; randomg = 47?

No.

By construction 611 divides s2�t2
where s = 14 � 64 � 75

and t = 24325472.

So each prime >7 dividing 611

divides either s� t or s + t.

Not terribly surprising

(but not guaranteed in advance!)

that one prime divided s� t

and the other divided s + t.



Why did the first three

completely factored congruences

have square product?

Was it just blind luck?



Why did the first three

completely factored congruences

have square product?

Was it just blind luck?

Yes. The exponent vectors

(1; 0; 4; 1); (6; 3; 2; 0); (1; 1; 2; 3)

happened to have sum 0 mod 2.



Why did the first three

completely factored congruences

have square product?

Was it just blind luck?

Yes. The exponent vectors

(1; 0; 4; 1); (6; 3; 2; 0); (1; 1; 2; 3)

happened to have sum 0 mod 2.

But we didn’t need this luck!

Given long sequence of vectors,

quickly find

nonempty subsequence

with sum 0 mod 2.



This is linear algebra over F2.

Guaranteed to find subsequence

if number of vectors

exceeds length of each vector.

e.g. for n = 671:

1(n + 1) = 25315071;

4(n + 4) = 22335270;

15(n + 15) = 21315173;

49(n + 49) = 24325172;

64(n + 64) = 26315172.



This is linear algebra over F2.

Guaranteed to find subsequence

if number of vectors

exceeds length of each vector.

e.g. for n = 671:

1(n + 1) = 25315071;

4(n + 4) = 22335270;

15(n + 15) = 21315173;

49(n + 49) = 24325172;

64(n + 64) = 26315172.

F2-kernel of exponent matrix is

gen by (0 1 0 1 1) and (1 0 1 1 0);

e.g., 1(n+ 1)15(n+ 15)49(n+ 49)

is a square.



Plausible conjecture: Q sieve can

separate the odd prime divisors

of any n, not just 611.

Given n and parameter y:

1. Try to fully factor i(n + i)

into products of primes � y

for i 2 �1; 2; 3; : : : ; y2
	

.

2. Look for nonempty set of i’s

with i(n + i) completely factored

and with
Q
i
i(n + i) square.

3. Compute gcdfn; s� tg where

s =
Q
i
i and t =

rQ
i
i(n + i).



How large does y have to be

for this to find a square?



How large does y have to be

for this to find a square?

Let’s aim for number of

completely factored congruences

to exceed length of each vector,

guaranteeing a square.

(This is somewhat pessimistic;

smaller numbers usually work.)

Vector length � y=log y.

Will there be > y=log y

completely factored congruences

out of y2 congruences?



What’s chance of random i(n + i)

being y-smooth, i.e., completely

factored into primes � y?



What’s chance of random i(n + i)

being y-smooth, i.e., completely

factored into primes � y?

Consider, e.g., y = bn1=10c.
Uniform random integer in [1; y2]

has y-smoothness chance �0:306;

uniform random integer in [1; n]

has chance � 2:77 � 10�11.

Plausible conjecture:

y-smoothness chance of i(n + i)

is � 8:5 � 10�12.

Find � 8:5 � 10�12y2

fully factored congruences.



If n � 2340 and y = bn1=10c then

8:5 � 10�12y2 > 3y=log y, and

approximations seem fairly close,

so conjecturally the Q sieve

will find a square.

Find many independent squares

with negligible extra effort.

If gcd turns out to be 1,

try the next square.

Conjecturally always works:

splits odd n into

prime-power factors.



How about y � n1=u

for larger u?

Uniform random integer in [1; n]

has n1=u-smoothness chance

roughly u�u.

Plausible conjecture:

Q sieve succeeds

with y = bn1=uc
for all n � u(1+o(1))u2

;

here o(1) is as u!1.



How about

letting u grow with n?

Given n, try sequence of y’s

in geometric progression

until Q sieve works;

e.g., increasing powers of 2.

Plausible conjecture: final y 2
exp

q�
1
2 + o(1)

�
logn log logn,

u 2
p

(2 + o(1))logn= log logn.

Cost of Q sieve is a power of y,

hence subexponential in n.



More generally, if y 2
exp

q�
1
2c + o(1)

�
logn log logn,

conjectured y-smoothness chance

is 1=yc+o(1).

Find enough smooth congruences

by changing the range of i’s:

replace y2 with yc+1+o(1) =

exp

r�
(c+1)2+o(1)

2c

�
logn log logn.

Increasing c past 1

increases number of i’s but

reduces linear-algebra cost.

So linear algebra never dominates

when y is chosen properly.



Improving smoothness chances

Smoothness chance of i(n + i)

degrades as i grows.

Smaller for i � y2 than for i � y.

Crude analysis: i(n + i) grows.

� yn if i � y;

� y2n if i � y2.

More careful analysis:

n + i doesn’t degrade, but

i is always smooth for i � y,

only 30% chance for i � y2.

Can we select congruences

to avoid this degradation?



Choose q, square of large prime.

Choose a “q-sublattice” of i’s:

arithmetic progression of i’s

where q divides each i(n + i).

e.g. progression q � (n mod q),

2q � (n mod q), 3q � (n mod q),

etc.

Check smoothness of

generalized congruence i(n + i)=q

for i’s in this sublattice.

e.g. check whether i; (n+i)=q are

smooth for i = q � (n mod q) etc.

Try many large q’s.

Rare for i’s to overlap.



e.g. n = 314159265358979323:

Original Q sieve:

i n + i

1 314159265358979324

2 314159265358979325

3 314159265358979326

Use 9972-sublattice,

i 2 802458 + 994009Z:

i (n + i)=9972

802458 316052737309

1796467 316052737310

2790476 316052737311



Crude analysis: Sublattices

eliminate the growth problem.

Have practically unlimited supply

of generalized congruences

(q�(n mod q))
n+q�(n mod q)

q
between 0 and n.

More careful analysis: Sublattices

are even better than that!

For q � n1=2 have

i � (n + i)=q � n1=2 � yu=2

so smoothness chance is roughly

(u=2)�u=2(u=2)�u=2 = 2u=uu,

2u times larger than before.



Even larger improvements

from changing polynomial i(n+i).

“Quadratic sieve” (QS) uses

i2 � n with i � p
n;

have i2 � n � n1=2+o(1),

much smaller than n.

“MPQS” improves o(1)

using sublattices: (i2 � n)=q.

But still � n1=2.

“Number-field sieve” (NFS)

achieves no(1).



Generalizing beyond Q

The Q sieve is a special case of

the number-field sieve.

Recall how the Q sieve

factors 611:

Form a square

as product of i(i + 611j)

for several pairs (i; j):

14(625) � 64(675) � 75(686)

= 44100002.

gcdf611; 14 � 64 � 75� 4410000g
= 47.



The Q(
p

14) sieve

factors 611 as follows:

Form a square

as product of (i + 25j)(i +
p

14j)

for several pairs (i; j):

(�11 + 3 � 25)(�11 + 3
p

14)

� (3 + 25)(3 +
p

14)

= (112� 16
p

14)2.

Compute

s = (�11 + 3 � 25) � (3 + 25),

t = 112� 16 � 25,

gcdf611; s� tg = 13.



Why does this work?

Answer: Have ring morphism

Z[
p

14] ! Z=611,
p

14 7! 25,

since 252 = 14 in Z=611.

Apply ring morphism to square:

(�11 + 3 � 25)(�11 + 3 � 25)

� (3 + 25)(3 + 25)

= (112� 16 � 25)2 in Z=611.

i.e. s2 = t2 in Z=611.

Unsurprising to find factor.



Diagram of ring morphisms:

Q[x]
x 7!

p
14 // Q[

p
14] = Q(

p
14)

Z[x]

OO

x 7!
p

14 // Z[
p

14]

OO

p
147!25
��

Z=611

Z[x] uses poly arithmetic on�
i0x

0 + i1x
1 + � � � : all im 2 Z

	
;

Z[
p

14] uses R arithmetic on�
i0 + i1

p
14 : i0; i1 2 Z

	
;

Z=611 uses arithmetic mod 611

on f0; 1; : : : ; 610g.



Generalize from (x2 � 14; 25)

to (f;m) with irred f 2 Z[x],

m 2 Z, f(m) 2 nZ.

Write d = deg f ,

f = fdx
d + � � �+ f1x

1 + f0x
0.

Can take fd = 1 for simplicity,

but larger fd allows

better parameter selection.

Pick � 2 C, root of f .

Then fd� is a root of

monic g = fd�1
d f(x=fd) 2 Z[x].



Q(�) =

8><
>:
r0 + r1� + r2�

2 +

� � �+ rd�1�
d�1:

r0; : : : ; rd�1 2 Q

9>=
>;

O =

�
algebraic integers

in Q(�)

�
OO

Z[fd�] =

8<
:
i0 + i1fd� +

� � �+ id�1f
d�1
d �d�1:

i0; : : : ; id�1 2 Z

9=
;

OO

fd� 7!fdm
��

Z=n = f0; 1; : : : ; n� 1g



Build square in Q(�) from

congruences (i� jm)(i� j�)

with iZ + jZ = Z and j > 0.

Could replace i� jx by

higher-deg irred in Z[x];

quadratics seem fairly small

for some number fields.

But let’s not bother.

Say we have a squareQ
(i;j)2S(i� jm)(i� j�)

in Q(�); now what?



Q
(i� jm)(i� j�)f2

d

is a square in O,

ring of integers of Q(�).

Multiply by g0(fd�)2,

putting square root into Z[fd�]:

compute r with r2 = g0(fd�)2�Q
(i� jm)(i� j�)f2

d .

Then apply the ring morphism

' : Z[fd�] ! Z=n taking

fd� to fdm. Compute gcdfn;
'(r)� g0(fdm)

Q
(i� jm)fdg.

In Z=n have '(r)2 =

g0(fdm)2Q(i� jm)2f2
d .



How to find square product

of congruences (i� jm)(i� j�)?

Start with congruences for,

e.g., y2 pairs (i; j).

Look for y-smooth congruences:

y-smooth i� jm and

y-smooth fd norm(i� j�) =

fdi
d + � � �+ f0j

d = jdf(i=j).

Find enough smooth congruences.

Perform linear algebra on

exponent vectors mod 2.



Exponent vectors have

many “rational” components,

many “algebraic” components,

a few “character” components.

One rational component

for each prime p � y.

Value ordp(i� jm).

One rational component for �1.

Value 0 if i� jm > 0,

value 1 if i� jm < 0.

If
Q

(i� jm) is a square

then vectors add to 0

in rational components.



One algebraic component

for each pair (p; r) such that

p is a prime � y;

fd =2 pZ; disc f =2 pZ;

r 2 Fp; f(r) = 0 in Fp.

Value 0 if i� jr =2 pZ;

otherwise ordp(jdf(i=j)).

This is the same as

the valuation of i� j�

at the prime pO + (fd�� fdr)O.

Recall that iZ + jZ = Z,

so no higher-degree primes.



One character component

for each pair (p; r) with

p in a short range above y.

Value 0 if i� jr is a

square in Fp, else 1.

If
Q

(i� j�) is a square

then vectors add to 0

in algebraic components

and character components.



Conversely, consider vectors

adding to 0 in all components.
Q

(i� jm) must be a square.

Is
Q

(i� j�) a square?

Ideal
Q

(i� j�)O must be

square outside fd disc f .

What about primes in fd disc f?

Even if ideal is square,

is square root principal?

Even if ideal is generated

by square of element,

does square equal
Q

(i� j�)?



Obstruction group is small,

conjecturally very small.

“(fd disc f)-Selmer group.”

A few characters

suffice to generate dual,

forcing
Q

(i� j�)

to be a square.

Can be quite sloppy here;

easy to redo linear algebra

with more characters if

non-square is encountered.



Sublattices

Consider a sublattice

of pairs (i; j) where

q divides jdf(i=j).

Assume squarish lattice.

(i� jm)jdf(i=j)

expands by factor q(d+1)=2

before division by q.

Number of sublattice elements

within any particular bound

on (i� jm)jdf(i=j)

is proportional to q�(d�1)=(d+1).



Compared to just using q = 1,

conjecturally obtain y4=(d+1)+o(1)

times as many congruences

by using sublattices for

all y-smooth integers q � y2.

Separately consider

i� jm and jdf(i=j)=q

for more precise analysis.

Limit congruences accordingly,

increasing smoothness chances.



Multiple number fields

Assume that f + x�m 2 Z[x]

is also irred.

Pick � 2 C, root of f + x�m.

Two congruences for (i; j):

(i�jm)(i�j�); (i�jm)(i�j�).

Expand exponent vectors to

handle both Q(�) and Q(�).

Merge smoothness tests

by testing i� jm first,

aborting if i� jm not smooth.

Can use many number fields:

f + 2(x�m) etc.


