
Randomness generation

Daniel J. Bernstein, Tanja Lange

May 16, 2014

RDRAND: Just use it!

David Johnston, 2012 (emphasis added):

“That’s exactly why we put the new random number generator in
our processors. To solve the chronic problem of security software
systems lacking entropy. To provide secure random numbers even
in VMs on blades. The rules of RNGs change when you have a
3Gbps source of entropy, which we do. You can over-engineer the
downstream processing to ensure a reliable and sufficient supply
under worst case assumptions. It’s not to solve ‘seeding’ issues. It
provides both the entropy, the seeds and the PRNG in hardware.
So you can replace the whole shebang and eliminate software
PRNGs. Just use the output of the RDRAND instruction
wherever you need a random number.”

Daniel J. Bernstein and Tanja Lange Randomness generation

The developers are listening

Daniel J. Bernstein and Tanja Lange Randomness generation

But does RDRAND actually work? RTFM

“Intel 64 and IA-32 Architectures Software Developer’s Manual”,
Intel manual 325462, volume 1, page 7-24 (combined PDF page
177):

“Under heavy load, with multiple cores executing RDRAND in
parallel, it is possible, though unlikely, for the demand of random
numbers by software processes/threads to exceed the rate at which
the random number generator hardware can supply them. This will
lead to the RDRAND instruction returning no data transitorily.
The RDRAND instruction indicates the occurrence of this rare
situation by clearing the CF flag. . . . It is recommended that
software using the RDRAND instruction to get random numbers
retry for a limited number of iterations while RDRAND returns
CF=0 and complete when valid data is returned, indicated with
CF=1. This will deal with transitory underflows.”

Daniel J. Bernstein and Tanja Lange Randomness generation

RTFM, continued

#define SUCCESS 1

#define RETRY_LIMIT_EXCEEDED 0

#define RETRY_LIMIT 10

int get_random_64(unsigned __int 64 * arand)

{int i;

for (i = 0;i < RETRY_LIMIT;i++) {

if(_rdrand64_step(arand)) return SUCCESS;

}

return RETRY_LIMIT_EXCEEDED;

}

Daniel J. Bernstein and Tanja Lange Randomness generation

Does the Intel code work? RTFM, continued

“Runtime failures in the random number generator circuitry or
statistically anomalous data occurring by chance will be detected
by the self test hardware and flag the resulting data as being bad.
In such extremely rare cases, the RDRAND instruction will return
no data instead of bad data.”

Intel’s DRNG Software Implementation Guide, Revision 1.1:
“rare event that the DRNG fails during runtime”.

No quantification of “rare”.

Enter stay-dead state for one power-up out of every 10000?
Enter stay-dead state at certain voltages?
2013 Bernstein–Chang–Cheng–Chou–Heninger–Lange–van
Someren “Factoring RSA keys from certified smart cards:
Coppersmith in the wild” exploited such rare failures.

Daniel J. Bernstein and Tanja Lange Randomness generation

RDRAND conclusion: unsafe at any speed

If software keeps retrying: “busy loop”; software hangs.

If software ignores EXCEEDED: software uses “bad data”.

If software catches EXCEEDED: crypto dies.

What’s the backup plan? There is no backup plan!

Cryptography Research:
using RDRAND directly in applications is easy but
“the most prudent approach is always to combine any other
available entropy sources to avoid having a single point of failure.”

This is exactly what BSD’s /dev/urandom does.

Daniel J. Bernstein and Tanja Lange Randomness generation

RDRAND conclusion: unsafe at any speed

If software keeps retrying: “busy loop”; software hangs.

If software ignores EXCEEDED: software uses “bad data”.

If software catches EXCEEDED: crypto dies.

What’s the backup plan? There is no backup plan!

Cryptography Research:
using RDRAND directly in applications is easy but
“the most prudent approach is always to combine any other
available entropy sources to avoid having a single point of failure.”

This is exactly what BSD’s /dev/urandom does.

Daniel J. Bernstein and Tanja Lange Randomness generation

RDRAND conclusion: unsafe at any speed

If software keeps retrying: “busy loop”; software hangs.

If software ignores EXCEEDED: software uses “bad data”.

If software catches EXCEEDED: crypto dies.

What’s the backup plan? There is no backup plan!

Cryptography Research:
using RDRAND directly in applications is easy but
“the most prudent approach is always to combine any other
available entropy sources to avoid having a single point of failure.”

This is exactly what BSD’s /dev/urandom does.

Daniel J. Bernstein and Tanja Lange Randomness generation

RDRAND conclusion: unsafe at any speed

If software keeps retrying: “busy loop”; software hangs.

If software ignores EXCEEDED: software uses “bad data”.

If software catches EXCEEDED: crypto dies.

What’s the backup plan?

There is no backup plan!

Cryptography Research:
using RDRAND directly in applications is easy but
“the most prudent approach is always to combine any other
available entropy sources to avoid having a single point of failure.”

This is exactly what BSD’s /dev/urandom does.

Daniel J. Bernstein and Tanja Lange Randomness generation

RDRAND conclusion: unsafe at any speed

If software keeps retrying: “busy loop”; software hangs.

If software ignores EXCEEDED: software uses “bad data”.

If software catches EXCEEDED: crypto dies.

What’s the backup plan? There is no backup plan!

Cryptography Research:
using RDRAND directly in applications is easy but
“the most prudent approach is always to combine any other
available entropy sources to avoid having a single point of failure.”

This is exactly what BSD’s /dev/urandom does.

Daniel J. Bernstein and Tanja Lange Randomness generation

RDRAND conclusion: unsafe at any speed

If software keeps retrying: “busy loop”; software hangs.

If software ignores EXCEEDED: software uses “bad data”.

If software catches EXCEEDED: crypto dies.

What’s the backup plan? There is no backup plan!

Cryptography Research:
using RDRAND directly in applications is easy but
“the most prudent approach is always to combine any other
available entropy sources to avoid having a single point of failure.”

This is exactly what BSD’s /dev/urandom does.

Daniel J. Bernstein and Tanja Lange Randomness generation

RDRAND conclusion: unsafe at any speed

If software keeps retrying: “busy loop”; software hangs.

If software ignores EXCEEDED: software uses “bad data”.

If software catches EXCEEDED: crypto dies.

What’s the backup plan? There is no backup plan!

Cryptography Research:
using RDRAND directly in applications is easy but
“the most prudent approach is always to combine any other
available entropy sources to avoid having a single point of failure.”

This is exactly what BSD’s /dev/urandom does.

Daniel J. Bernstein and Tanja Lange Randomness generation

Does RDRAND actually work properly?

[7] D. J. Johnston, ”Mircoarchitecture Specification (MAS) for
PP-DRNG,” Intel Corporation (unpublished), V1.4, 2009.

[8] C. E. Dike, ”3 Gbps Binary RNG Entropy Source,” Intel
Corporation (unpublished), 2011.

[9] C. E. Dike and S. Gueron, ”Digital Symmetric Random Number
Generator Mathematics,” Intel Corporation (unpublished), 2009.

(References from “Analysis of Intel’s Ivy Bridge Digital Random
Number Generator Prepared for Intel” by Mike Hamburg, Paul
Kocher, and Mark E. Marson. Cryptography Research, Inc.)

Daniel J. Bernstein and Tanja Lange Randomness generation

Does RDRAND actually work properly?

[7] D. J. Johnston, ”Mircoarchitecture Specification (MAS) for
PP-DRNG,” Intel Corporation (unpublished), V1.4, 2009.

[8] C. E. Dike, ”3 Gbps Binary RNG Entropy Source,” Intel
Corporation (unpublished), 2011.

[9] C. E. Dike and S. Gueron, ”Digital Symmetric Random Number
Generator Mathematics,” Intel Corporation (unpublished), 2009.

(References from “Analysis of Intel’s Ivy Bridge Digital Random
Number Generator Prepared for Intel” by Mike Hamburg, Paul
Kocher, and Mark E. Marson. Cryptography Research, Inc.)

Daniel J. Bernstein and Tanja Lange Randomness generation

Design (from CRI report)

Daniel J. Bernstein and Tanja Lange Randomness generation

Entropy Source (from CRI report)

Daniel J. Bernstein and Tanja Lange Randomness generation

Design (from CRI report)

“It uses the counter mode CTR DRBG construction as defined in
[2], with AES-128 as the block cipher.”

Daniel J. Bernstein and Tanja Lange Randomness generation

Intel assurances – David Johnston

I’ve examined my own RNG with electron microscopes and
picoprobes. So I and a number of test engineers know full well that
the design hasn’t been subverted. For security critical systems,
having multiple entropy sources is a good defense against a single
source being subverted. But if an Intel processor were to be
subverted, there are better things to attack, like the microcode or
memory protection or caches. We put a lot of effort into keeping
them secure, but as with any complex system it’s impossible to
know that you’ve avoided all possible errors, so maintaining the
security of platforms is an ongoing battle. [..] But the implication
at the top of this thread is that we were leaned on by the
government to undermine our own security features. I know for a
fact that I was not leant on by anyone to do that. X9.82 took my
contributions and NIST is taking about half my contributions, but
maybe they’re slowly coming around to my way of thinking on
online entropy testing. If I ultimately succeed in getting those
specs to be sane, we better hope that I am sane.

Daniel J. Bernstein and Tanja Lange Randomness generation

Scary Paper of the Year: Stealthy Dopant-Level Hardware
Trojans
by Becker, Regazzoni, Paar, and Burleson, CHES 2013

Daniel J. Bernstein and Tanja Lange Randomness generation

Linux use of RDRAND
-rw-r--r-- H. Peter Anvin 2012-07-27 22:26 random.c:

/*

* In case the hash function has some recognizable output

* pattern, we fold it in half. Thus, we always feed back

* twice as much data as we output.

*/

hash.w[0] ^= hash.w[3];

hash.w[1] ^= hash.w[4];

hash.w[2] ^= rol32(hash.w[2], 16);

/*

* If we have a architectural hardware random number

* generator, mix that in, too.

*/

for (i = 0; i < LONGS(EXTRACT_SIZE); i++) {

unsigned long v;

if (!arch_get_random_long(&v))

break;

hash.l[i] ^= v;

}

memcpy(out, &hash, EXTRACT_SIZE);

memset(&hash, 0, sizeof(hash));Daniel J. Bernstein and Tanja Lange Randomness generation

RDRAND backdoor proof of concept – Taylor Hornby

“The way RDRAND is being used in kernels <= 3.12.3 allows it to
cancel out the other entropy. See extract buf().”
“if I make RDRAND return [EDX] ^ 0x41414141, /dev/urandom
output will be all ’A’.” Full thread

Daniel J. Bernstein and Tanja Lange Randomness generation

https://twitter.com/DefuseSec/status/408975222163795969/photo/1

Updated in Linux repository (Dec 2013)

/*

* If we have an architectural hardware random number

* generator, use it for SHA’s initial vector

*/

sha_init(hash.w);

for (i = 0; i < LONGS(20); i++) {

unsigned long v;

if (!arch_get_random_long(&v))

break;

hash.l[i] = v;

}

/* Generate a hash across the pool,

* 16 words (512 bits) at a time */

spin_lock_irqsave(&r->lock, flags);

for (i = 0; i < r->poolinfo->poolwords; i += 16)

sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);

Daniel J. Bernstein and Tanja Lange Randomness generation

Would you like to audit this?
2013-12-17 21:16 Theodore Ts’o o [dev] [origin/dev] random: use the architectural HWRNG for~

2013-12-06 21:28 Greg Price o random: clarify bits/bytes in wakeup thresholds

2013-12-07 09:49 Greg Price o random: entropy_bytes is actually bits

2013-12-05 19:32 Greg Price o random: simplify accounting code

2013-12-05 19:19 Greg Price o random: tighten bound on random_read_wakeup_thresh

2013-11-29 20:09 Greg Price o random: forget lock in lockless accounting

2013-11-29 15:56 Greg Price o random: simplify accounting logic

2013-11-29 15:50 Greg Price o random: fix comment on "account"

2013-11-29 15:02 Greg Price o random: simplify loop in random_read

2013-11-29 14:59 Greg Price o random: fix description of get_random_bytes

2013-11-29 14:58 Greg Price o random: fix comment on proc_do_uuid

2013-11-29 14:58 Greg Price o random: fix typos / spelling errors in comments

2013-11-16 10:19 Linus Torvalds M-| Merge tag ’random_for_linus’ of git://git.kernel.org/pub~

2013-11-03 18:24 Theodore Ts’o | o [random_for_linus] random: add debugging code to detect ~

2013-11-03 16:40 Theodore Ts’o | o random: initialize the last_time field in struct timer_r~

2013-11-03 07:56 Theodore Ts’o | o random: don’t zap entropy count in rand_initialize()

2013-11-03 06:54 Theodore Ts’o | o random: printk notifications for urandom pool initializa~

2013-11-03 00:15 Theodore Ts’o | o random: make add_timer_randomness() fill the nonblocking~

2013-10-03 12:02 Theodore Ts’o | o random: convert DEBUG_ENT to tracepoints

2013-10-03 01:08 Theodore Ts’o | o random: push extra entropy to the output pools

2013-10-02 21:10 Theodore Ts’o | o random: drop trickle mode

2013-09-22 16:04 Theodore Ts’o | o random: adjust the generator polynomials in the mixing f~

2013-09-22 15:24 Theodore Ts’o | o random: speed up the fast_mix function by a factor of fo~

2013-09-22 15:14 Theodore Ts’o | o random: cap the rate which the /dev/urandom pool gets re~

2013-09-21 19:42 Theodore Ts’o | o random: optimize the entropy_store structure

2013-09-12 14:27 Theodore Ts’o | o random: optimize spinlock use in add_device_randomness()

2013-09-12 14:10 Theodore Ts’o | o random: fix the tracepoint for get_random_bytes(_arch)

2013-09-10 23:16 H. Peter Anvin | o random: account for entropy loss due to overwrites

2013-09-10 23:16 H. Peter Anvin | o random: allow fractional bits to be tracked

2013-09-10 23:16 H. Peter Anvin | o random: statically compute poolbitshift, poolbytes, pool~

2013-09-21 18:06 Theodore Ts’o | o random: mix in architectural randomness earlier in extra~

2013-11-11 12:20 Hannes Frederic S~ o | random32: add prandom_reseed_late() and call when nonblo~

2013-10-10 12:31 Linus Torvalds M-| Merge tag ’random_for_linus’ of git://git.kernel.org/pub~

2013-09-21 13:58 Theodore Ts’o | o random: allow architectures to optionally define random_~

2013-09-10 10:52 Theodore Ts’o | o random: run random_int_secret_init() run after all late_~

2013-08-30 09:39 Martin Schwidefsky o | Remove GENERIC_HARDIRQ config option

2013-06-13 19:37 Joe Perches o-| char: Convert use of typedef ctl_table to struct ctl_tab~

2013-05-24 15:55 Jiri Kosina o random: fix accounting race condition with lockless irq en~

2013-05-24 15:55 Jarod Wilson o drivers/char/random.c: fix priming of last_data

2013-04-30 15:27 Andy Shevchenko o lib/string_helpers: introduce generic string_unescape

Daniel J. Bernstein and Tanja Lange Randomness generation

What would we like to see?

I Cryptographers can help here!

I Easy part: Stream cipher generates randomness from seed.
With big seed, safe to have output overwrite old seed.

I Hard part: Need comprehensible mechanism
to securely merge entropy sources into seed.

I Some sources are bad. Is full hashing really necessary?

I Some sources are influenced or controlled by attacker.
Is protection against malice possible?

I Maybe helpful:
Some malicious sources have limited time and space.
Concatenate independent hashes of several sources,
apply many rounds of wide permutation, then truncate?

Daniel J. Bernstein and Tanja Lange Randomness generation

