Hyper-and-elliptic-curve

 cryptography(which is not the same as: hyperelliptic-curve cryptography and elliptic-curve cryptography)

Daniel J. Bernstein University of Illinois at Chicago \& Technische Universiteit Eindhoven

Joint work with:

Tanja Lange

Technische Universiteit Eindhoven

But first some context. . .

ECC security vs. ECDL security

Crypto view of ECDL problem:
Fix finite $k, E / k, P \in E(k)$.
Secret key: random $a \in \mathbf{Z} / \# \mathbf{Z} P$.
Public key: $a P$.
The ECDL problem: compute secret key from public key.

ECDL solution $\Rightarrow \mathrm{ECC}$ attack.

ECC security vs. ECDL security

Crypto view of ECDL problem:
Fix finite $k, E / k, P \in E(k)$.
Secret key: random $a \in \mathbf{Z} / \# \mathbf{Z} P$. Public key: $a P$.
The ECDL problem: compute secret key from public key.

ECDL solution $\Rightarrow \mathrm{ECC}$ attack.
ECC attack $\Rightarrow \mathrm{ECDL}$ solution?
Not necessarily!
Let's look at some examples.

Example 1: Kummer-line ECDH (1985 Miller). Bob has secret b; receives $X(A)$ from Alice; uses easy formulas to compute $X(b A)$; encrypts using $X(b A)$.

Example 1: Kummer-line ECDH (1985 Miller). Bob has secret b; receives $X(A)$ from Alice; uses easy formulas to compute $X(b A)$; encrypts using $X(b A)$. Twist attack: choose $A \in E(\bar{k})$, small \#ZA; learn b mod $\# \mathbf{Z} A$.

Example 1: Kummer-line ECDH (1985 Miller). Bob has secret b; receives $X(A)$ from Alice; uses easy formulas to compute $X(b A)$; encrypts using $X(b A)$. Twist attack: choose $A \in E(\bar{k})$, small $\# \mathbf{Z} A$; learn $b \bmod \# \mathbf{Z} A$.

Typically Bob checks $X(A) \in k$ but doesn't check $A \in E(k)$. Formulas also work for $A \in E^{\prime}(k)$ for appropriate twist E^{\prime} of E. Typically $\# E(k)$ is large prime but $\# E^{\prime}(k)$ has small factors.

Example 2: Censor scans network, terminates users who send many elements of $X(E(k))$.

2004 Möller: Fix twist-secure E.
Send $X(a P)$ or $X\left(a^{\prime} P^{\prime}\right)$.
Annoying: e.g., consider ECDH.
Same basic issue arises in random-number generation (see, e.g., 2006 Gjøsteen and 2006 Schoenmakers-Sidorenko), password-authenticated key exchange (e.g., 2001 Boyd-Montague-Nguyen, broken 2013), ID-based encryption, etc.

2013 Bernstein-Hamburg-
Krasnova-Lange "Elligator: Elliptic-curve points indistinguishable from uniform random strings":

Replace X with fast bijection between large $S \subseteq E(k)$ and, e.g., interval $\left\{0,1, \ldots, 2^{b}-1\right\}$.

Alice keeps generating a until $a P \in S$.

Two examples given in paper, both with $\# S \approx 0.5 \# E(k)$ for reasonable choices of k.
"Elligator 1",
reinterpreting and simplifying 2013 Fouque-Joux-Tibouchi:

Fix prime power $q \in 3+4 Z$; $s \in \mathbf{F}_{q}^{*}$ with
$\left(s^{2}-2\right)\left(s^{2}+2\right) \neq 0 ;$
$c=2 / s^{2} ; r=c+1 / c$;
$d=-(c+1)^{2} /(c-1)^{2}$.
Define $E: x^{2}+y^{2}=1+d x^{2} y^{2}$.
This is a complete Edwards curve.
For $\phi: \mathbf{F}_{q} \rightarrow E\left(\mathbf{F}_{q}\right)$ defined on next slide: the only preimages of $\phi(t)$ under ϕ are $\{t,-t\}$.
$\phi(\pm 1)=(0,1)$.
Otherwise $\phi(t)=(x, y)$ where
$u=(1-t) /(1+t)$,
$v=u^{5}+\left(r^{2}-2\right) u^{3}+u$,
$X=\chi(v) u$,
$Y=$
$(\chi(v) v)^{(q+1) / 4} \chi(v) \chi\left(u^{2}+1 / c^{2}\right)$,
$x=(c-1) s X(1+X) / Y$,
$y=\frac{r X-(1+X)^{2}}{r X+(1+X)^{2}}$.
"Elligator 2", 2013 Bernstein-Hamburg-Krasnova-Lange (restricted to the easiest case):

Fix prime power $q \in 1+4 Z$; non-square $u \in \mathbf{F}_{q}$;
$A, B \in \mathbf{F}_{q}^{*}$ with non-square $A^{2}-4 B ; \sqrt{ }: \mathbf{F}_{q}^{2} \rightarrow \mathbf{F}_{q}$ with $\sqrt{a^{2}} \in\{a,-a\}$.

Define $E: y^{2}=x^{3}+A x^{2}+B x$.
For $\psi: \mathbf{F}_{q} \rightarrow E\left(\mathbf{F}_{q}\right)$ defined on next slide: the only preimages of $\psi(t)$ under ψ are $\{t,-t\}$.
$\psi(0)=(0,0)$.
Otherwise $\psi(t)=(x, y)$ where
$v=-A /\left(1+u t^{2}\right)$,
$\epsilon=\chi\left(v^{3}+A v^{2}+B v\right)$,
$x=\epsilon v-(1-\epsilon) A / 2$,
$y=-\epsilon \sqrt{x^{3}+A x^{2}+B x}$.
Proofs, inverse maps, etc.: elligator.cr.yp.to

Asymptotic ECDL security

The original ECC advertising: Index calculus breaks RSA etc. in subexponential time. Scary! ECDL attack takes exp time.

Asymptotic ECDL security

The original ECC advertising: Index calculus breaks RSA etc. in subexponential time. Scary! ECDL attack takes exp time.

Reasonable conjecture \Rightarrow 2012 Petit-Quisquater using F4 solves ECDL_{2} in subexp time. Do we throw away ECC_{2} ?

Asymptotic ECDL security

The original ECC advertising:
Index calculus breaks RSA etc.
in subexponential time. Scary!
ECDL attack takes exp time.
Reasonable conjecture \Rightarrow
2012 Petit-Quisquater using F4
solves ECDL_{2} in subexp time.
Do we throw away ECC_{2} ?
Replace F4 with XL?
Tung Chou is investigating.

Asymptotic ECDL security

The original ECC advertising:
Index calculus breaks RSA etc.
in subexponential time. Scary!
ECDL attack takes exp time.
Reasonable conjecture \Rightarrow
2012 Petit-Quisquater using F4
solves ECDL_{2} in subexp time.
Do we throw away ECC_{2} ?
Replace F4 with XL?
Tung Chou is investigating.
Replace XL with Coppersmith to generalize ECC_{2} to ECC ?

Concrete ECDL security

Typical for real-world ECC: the "NIST P-256" curve E:
$y^{2}=x^{3}-3 x+a_{6}$ over \mathbf{F}_{q} where $q=2^{256}-2^{224}+2^{192}+2^{96}-1$, $a_{6}=410583637251521421293261$ 297800472684091144410159937 25554835256314039467401291.
$E\left(\mathbf{F}_{q}\right)$ has prime order ℓ. "NIST generator": $P=($ 4843956129390645175905258525
2797914202762949526041747995
844080717082404635286, . . 9).

Textbook ECDL cost analysis:

$\approx \sqrt{\pi \ell / 2}$ group operations to
compute DL in order- ℓ group.
Negation map gains factor
$\approx \sqrt{2}$ for elliptic curves.
So $\approx 2^{128}$ group operations
to compute P-256 ECDL.

Textbook ECDL cost analysis:

$\approx \sqrt{\pi \ell / 2}$ group operations to
compute DL in order- ℓ group.
Negation map gains factor
$\approx \sqrt{2}$ for elliptic curves.
So $\approx 2^{128}$ group operations to compute P-256 ECDL.

This is the best algorithm that cryptanalysts have published for P-256 ECDL.

Textbook ECDL cost analysis:

$\approx \sqrt{\pi \ell / 2}$ group operations to
compute DL in order- ℓ group.
Negation map gains factor
$\approx \sqrt{2}$ for elliptic curves.
So $\approx 2^{128}$ group operations to compute P-256 ECDL.

This is the best algorithm that cryptanalysts have published for P-256 ECDL.

But is it the best algorithm that exists?

Standard definition of "best": minimize "time" (e.g., minimize total "time" over all inputs).

Many researchers have tried and failed to find better ECDL algorithms.

Standard conjecture:
For each $p \in[0,1]$, each P-256 ECDL algorithm with success probability $\geq p$ takes "time" $\geq 2^{128} p^{1 / 2}$.

Interlude regarding "time"

How much "time" does the following algorithm take?
def pidigit(n0,n1,n2):
if nO == 0:
if ni == 0:
if n2 == 0: return 3 return

1
if n2 == 0: return
4
return
1
if $\mathrm{n} 1==0:$
if n2 == 0: return 5
return
9
if n2 == 0: return 2
return

Students in algorithm courses learn to count executed "steps". Skipped branches take 0 "steps". This algorithm uses 4 "steps".

Students in algorithm courses learn to count executed "steps". Skipped branches take 0 "steps". This algorithm uses 4 "steps".

Generalization: There exists an algorithm that, given $n<2^{k}$, prints the nth digit of π using $k+1$ "steps".

Students in algorithm courses learn to count executed "steps". Skipped branches take 0 "steps".

This algorithm uses 4 "steps".
Generalization: There exists an algorithm that, given $n<2^{k}$, prints the nth digit of π using $k+1$ "steps".

Variant: There exists a 258"step" P-256 discrete-log attack (with 100% success probability).

Students in algorithm courses learn to count executed "steps". Skipped branches take 0 "steps".

This algorithm uses 4 "steps".
Generalization: There exists an algorithm that, given $n<2^{k}$, prints the nth digit of π using $k+1$ "steps".

Variant: There exists a 258"step" P-256 discrete-log attack (with 100% success probability). If "time" means "steps" then the standard conjectures are wrong.

1994 Bellare-Kilian-Rogaway: "We say that
A is a (t, q)-adversary if
A runs in at most t steps and makes at most q queries to \mathcal{O}."

1994 Bellare-Kilian-Rogaway:
"We say that
A is a (t, q)-adversary if
A runs in at most t steps and makes at most q queries to \mathcal{O}."

Oops: table-lookup attack has very small t.

Paper conjectured "useful" DES security bounds. Any reasonable interpretation of conjecture was false, given paper's definition.
Theorems in paper were vacuous.

2000 Bellare-Kilian-Rogaway:
"We fix some particular Random
Access Machine (RAM) as a model of computation. ... A's running time [means] A's actual execution time plus the length of A's description . . . This convention eliminates pathologies caused [by] arbitrarily large lookup tables ..."

2012 Bernstein-Lange:
There are more pathologies!
Assuming plausible heuristics,
overwhelmingly verified by
computer experiment:
There exists a P-256 ECDL algorithm that takes "time" $\approx 2^{85}$ and has success probability ≈ 1.
"Time" includes algorithm length.
Inescapable conclusion: The standard conjecture is false.

Our recommendations to fix the flawed security definitions, conjectures, proofs:

1. Switch from "time" to circuit $A T$.
(Related, online soon:
Improved $A T$ exponents for batch NFS.)

Our recommendations to fix the flawed security definitions, conjectures, proofs:

1. Switch from "time" to circuit $A T$.
(Related, online soon:
Improved $A T$ exponents for batch NFS.)
2. Formalize constructivity.

Our recommendations to fix the flawed security definitions, conjectures, proofs:

1. Switch from "time" to circuit $A T$.
(Related, online soon:
Improved AT exponents for batch NFS.)
2. Formalize constructivity. More details and attacks: cr.yp.to/nonuniform.html

DH speed records

Sandy Bridge cycles for highsecurity constant-time $a, P \mapsto a P$ ("?" if not SUPERCOP-verified):

2011 Bernstein-Duif-Lange-
Schwabe-Yang:
194120
2012 Hamburg:
153000?
2012 Longa-Sica:
137000?
2013 Bos-Costello-Hisil-
Lauter: 122728
2013 Oliveira-López-Aranha-
Rodríguez-Henríquez: 114800?
2013 Faz-Hernández-Longa-
Sánchez:
96000?
2014 Bernstein-Chuengsatiansup-Lange-Schwabe:

91460

Critical for 122728, 91460:
1986 Chudnovsky-Chudnovsky:
traditional Kummer surface
allows fast scalar mult.
14 M for $X(P) \mapsto X(2 P)$.
2006 Gaudry: even faster.
25M for $X(P), X(Q), X(Q-P)$
$\mapsto X(2 P), X(Q+P)$, including
6 M by surface coefficients.
2012 Gaudry-Schost:
1000000-CPU-hour computation
found secure small-coefficient surface over $\mathbf{F}_{2^{127}-1}$.
$\begin{array}{llllllll}x_{2} & y_{2} & z_{2} & t_{2} & x_{3} & y_{3} & z_{3} & t_{3}\end{array}$

$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$

Hyper-and-elliptic-curve crypto

Typical example: Define H :
$y^{2}=(z-1)(z+1)(z+2)$

$$
(z-1 / 2)(z+3 / 2)(z-2 / 3)
$$

over \mathbf{F}_{p} with $p=2^{127}-309$;
$J=$ Jac H; traditional Summer surface K; traditional $X: J \rightarrow K$. Small K coeffs (20:1:20:40).

Hyper-and-elliptic-curve crypto

Typical example: Define H :
$y^{2}=(z-1)(z+1)(z+2)$

$$
(z-1 / 2)(z+3 / 2)(z-2 / 3)
$$

over \mathbf{F}_{p} with $p=2^{127}-309$;
$J=$ Jac H; traditional Summer surface K; traditional $X: J \rightarrow K$.
Small K coeffs (20:1:20:40).
Warning: There are errors in the Rosenhain/Mumford/Kummer formulas in 2007 Gaudry, 2010
Cosset, 2013 Bos-Costello-Hisil-Lauter. We have simpler, computer-verified formulas.

Define $\mathbf{F}_{p^{2}}=\mathbf{F}_{p}[i] /\left(i^{2}+1\right)$;
$r=(7+4 i)^{2}=33+56 i$;
$s=159+56 i ; \omega=\sqrt{-384}$;
$C: y^{2}=r x^{6}+s x^{4}+\bar{s} x^{2}+\bar{r}$.

Define $\mathbf{F}_{p^{2}}=\mathbf{F}_{p}[i] /\left(i^{2}+1\right)$;
$r=(7+4 i)^{2}=33+56 i$;
$s=159+56 i ; \omega=\sqrt{-384}$;
$C: y^{2}=r x^{6}+s x^{4}+\bar{s} x^{2}+\bar{r}$.
$(x, y) \mapsto\left(x^{2}, y\right)$ takes C to E : $y^{2}=r x^{3}+s x^{2}+\bar{s} x+\bar{r}$.

Define $\mathbf{F}_{p^{2}}=\mathbf{F}_{p}[i] /\left(i^{2}+1\right)$;
$r=(7+4 i)^{2}=33+56 i$;
$s=159+56 i ; \omega=\sqrt{-384}$;
$C: y^{2}=r x^{6}+s x^{4}+\bar{s} x^{2}+\bar{r}$.
$(x, y) \mapsto\left(x^{2}, y\right)$ takes C to E : $y^{2}=r x^{3}+s x^{2}+\bar{s} x+\bar{r}$.
$(x, y) \mapsto\left(1 / x^{2}, y / x^{3}\right)$ takes C to $y^{2}=\bar{r} x^{3}+\bar{s} x^{2}+s x+r$.

Define $\mathbf{F}_{p^{2}}=\mathbf{F}_{p}[i] /\left(i^{2}+1\right)$;
$r=(7+4 i)^{2}=33+56 i$;
$s=159+56 i ; \omega=\sqrt{-384}$;
$C: y^{2}=r x^{6}+s x^{4}+\bar{s} x^{2}+\bar{r}$.
$(x, y) \mapsto\left(x^{2}, y\right)$ takes C to E : $y^{2}=r x^{3}+s x^{2}+\bar{s} x+\bar{r}$.
$(x, y) \mapsto\left(1 / x^{2}, y / x^{3}\right)$ takes C to $y^{2}=\bar{r} x^{3}+\bar{s} x^{2}+s x+r$.
$(z, y) \mapsto\left(\frac{1+i z}{1-i z}, \frac{\omega y}{(1-i z)^{3}}\right)$
takes H over $\mathbf{F}_{p^{2}}$ to C.
J is isogenous to
Weil restriction W of E, so computing $\# J\left(\mathbf{F}_{p}\right)$ is fast. Here $\# J\left(\mathbf{F}_{p}\right)=16 \cdot$ prime; also reasonably twist-secure.
J is isogenous to
Weil restriction W of E, so computing $\# J\left(\mathbf{F}_{p}\right)$ is fast. Here $\# J\left(\mathbf{F}_{p}\right)=16 \cdot$ prime; also reasonably twist-secure.

2003 Scholten:
this strategy for
building genus-2 curves
with fast point-counting.
J is isogenous to
Weil restriction W of E, so computing $\# J\left(\mathbf{F}_{p}\right)$ is fast. Here $\# J\left(\mathbf{F}_{p}\right)=16 \cdot$ prime; also reasonably twist-secure.

2003 Scholten:
this strategy for
building genus-2 curves
with fast point-counting.
What's new here:

1. Small Kummer coefficients.

Requires lifting Scholten to \mathbf{Q}.
2. Explicit formulas for isogenies
$\iota: W \rightarrow J$ and $\iota^{\prime}: J \rightarrow W$
with $\iota \circ \iota^{\prime}=2$.
2. Explicit formulas for isogenies $\iota: W \rightarrow J$ and $\iota^{\prime}: J \rightarrow W$ with $\iota \circ \iota^{\prime}=2$.

We took random points
in $H\left(\mathbf{F}_{p}\right) \times H\left(\mathbf{F}_{p}\right)$;
applied $H\left(\mathbf{F}_{p}\right) \rightarrow C\left(\mathbf{F}_{p^{2}}\right)$
$\rightarrow E\left(\mathbf{F}_{p^{2}}\right)=W\left(\mathbf{F}_{p}\right)$;
interpolated formulas for ι^{\prime}.
Similarly interpolated formulas
for ι; verified composition.
Easy computer calculation. "Wasting brain power is bad for the environment."
3. Using isogenies to dynamically move computations between $E\left(\mathbf{F}_{p^{2}}\right)$ and $J\left(\mathbf{F}_{p}\right)$.
e.g. Generate keys using
fast formulas for E.
Compute shared secrets using
fast formulas for K.
For more information:
see our talk at ANTS!
Paper coming soon.

