
SafeCurves:

choosing safe curves for

elliptic-curve cryptography

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Tanja Lange

Technische Universiteit Eindhoven

http://safecurves.cr.yp.to



Cryptography

Public-key signatures:

e.g., RSA, DSA, ECDSA.

Some uses: signed OS updates,

SSL certificates, e-passports.

Public-key encryption:

e.g., RSA, DH, ECDH.

Some uses: SSL key exchange,

locked iPhone mail download.

Secret-key encryption:

e.g., AES, Salsa20.

Some uses: disk encryption,

bulk SSL encryption.



Why ECC?

“Index calculus”:

fastest method we know

to break original DH and RSA.

Long history, including

many major improvements:

1975, CFRAC;

1977, linear sieve (LS);

1982, quadratic sieve (QS);

1990, number-field sieve (NFS);

1994, function-field sieve (FFS);

2006, medium-prime FFS/NFS;

2013, xq � x FFS.

(FFS is not relevant to RSA.)



Also many smaller improvements:

� 100 scientific papers.

Costs of these algorithms for

breaking RSA-1024, RSA-2048:

� 2120, 2170, CFRAC;

� 2110, 2160, LS;

� 2100, 2150, QS;

� 280, 2112, NFS.



Also many smaller improvements:

� 100 scientific papers.

Costs of these algorithms for

breaking RSA-1024, RSA-2048:

� 2120, 2170, CFRAC;

� 2110, 2160, LS;

� 2100, 2150, QS;

� 280, 2112, NFS.

1986 Miller “Use of

elliptic curves in cryptography”:

“It is extremely unlikely

that an ‘index calculus’ attack

on the elliptic curve method

will ever be able to work.”



The clock

y

x

OO

//

This is the curve x2 + y2 = 1.

Warning:

This is not an elliptic curve.

“Elliptic curve” 6= “ellipse.”



Examples of points on this curve:



Examples of points on this curve:

(0; 1) = “12:00”.



Examples of points on this curve:

(0; 1) = “12:00”.

(0;�1) = “6:00”.



Examples of points on this curve:

(0; 1) = “12:00”.

(0;�1) = “6:00”.

(1; 0) = “3:00”.



Examples of points on this curve:

(0; 1) = “12:00”.

(0;�1) = “6:00”.

(1; 0) = “3:00”.

(�1; 0) = “9:00”.



Examples of points on this curve:

(0; 1) = “12:00”.

(0;�1) = “6:00”.

(1; 0) = “3:00”.

(�1; 0) = “9:00”.

(
p

3=4; 1=2) =



Examples of points on this curve:

(0; 1) = “12:00”.

(0;�1) = “6:00”.

(1; 0) = “3:00”.

(�1; 0) = “9:00”.

(
p

3=4; 1=2) = “2:00”.



Examples of points on this curve:

(0; 1) = “12:00”.

(0;�1) = “6:00”.

(1; 0) = “3:00”.

(�1; 0) = “9:00”.

(
p

3=4; 1=2) = “2:00”.

(1=2;�
p

3=4) =



Examples of points on this curve:

(0; 1) = “12:00”.

(0;�1) = “6:00”.

(1; 0) = “3:00”.

(�1; 0) = “9:00”.

(
p

3=4; 1=2) = “2:00”.

(1=2;�
p

3=4) = “5:00”.

(�1=2;�
p

3=4) =



Examples of points on this curve:

(0; 1) = “12:00”.

(0;�1) = “6:00”.

(1; 0) = “3:00”.

(�1; 0) = “9:00”.

(
p

3=4; 1=2) = “2:00”.

(1=2;�
p

3=4) = “5:00”.

(�1=2;�
p

3=4) = “7:00”.



Examples of points on this curve:

(0; 1) = “12:00”.

(0;�1) = “6:00”.

(1; 0) = “3:00”.

(�1; 0) = “9:00”.

(
p

3=4; 1=2) = “2:00”.

(1=2;�
p

3=4) = “5:00”.

(�1=2;�
p

3=4) = “7:00”.

(
p

1=2;
p

1=2) = “1:30”.

(3=5; 4=5). (�3=5; 4=5).



Examples of points on this curve:

(0; 1) = “12:00”.

(0;�1) = “6:00”.

(1; 0) = “3:00”.

(�1; 0) = “9:00”.

(
p

3=4; 1=2) = “2:00”.

(1=2;�
p

3=4) = “5:00”.

(�1=2;�
p

3=4) = “7:00”.

(
p

1=2;
p

1=2) = “1:30”.

(3=5; 4=5). (�3=5; 4=5).

(3=5;�4=5). (�3=5;�4=5).

(4=5; 3=5). (�4=5; 3=5).

(4=5;�3=5). (�4=5;�3=5).

Many more.



Addition on the clock:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)��������

�1
P2 = (x2; y2)�iiiiiii

P3 = (x3; y3)�PPPPPPP

x2 + y2 = 1, parametrized by

x = sin�, y = cos�.



Addition on the clock:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)��������

�1
P2 = (x2; y2)�iiiiiii

P3 = (x3; y3)�PPPPPPP

x2 + y2 = 1, parametrized by

x = sin�, y = cos�. Recall

(sin(�1 + �2); cos(�1 + �2)) =



Addition on the clock:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)��������

�1
P2 = (x2; y2)�iiiiiii

P3 = (x3; y3)�PPPPPPP

x2 + y2 = 1, parametrized by

x = sin�, y = cos�. Recall

(sin(�1 + �2); cos(�1 + �2)) =

(sin�1 cos�2 + cos�1 sin�2;



Addition on the clock:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)��������

�1
P2 = (x2; y2)�iiiiiii

P3 = (x3; y3)�PPPPPPP

x2 + y2 = 1, parametrized by

x = sin�, y = cos�. Recall

(sin(�1 + �2); cos(�1 + �2)) =

(sin�1 cos�2 + cos�1 sin�2;

cos�1 cos�2 � sin�1 sin�2).



Clock addition without sin, cos:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)��������
P2 = (x2; y2)�iiiiiii

P3 = (x3; y3)�PPPPPPP

Use Cartesian coordinates for

addition. Addition formula

for the clock x2 + y2 = 1:

sum of (x1; y1) and (x2; y2) is

(x1y2 + y1x2; y1y2 � x1x2).



Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;�
p

3=4)

= (�1=2;�
p

3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;�
p

3=4) + (�1; 0)

= (
p

3=4; 1=2) = “2:00”.

2

�
3

5
;

4

5

�
=

�
24

25
;

7

25

�
.



Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;�
p

3=4)

= (�1=2;�
p

3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;�
p

3=4) + (�1; 0)

= (
p

3=4; 1=2) = “2:00”.

2

�
3

5
;

4

5

�
=

�
24

25
;

7

25

�
.

3

�
3

5
;

4

5

�
=

�
117

125
;
�44

125

�
.



Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;�
p

3=4)

= (�1=2;�
p

3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;�
p

3=4) + (�1; 0)

= (
p

3=4; 1=2) = “2:00”.

2

�
3

5
;

4

5

�
=

�
24

25
;

7

25

�
.

3

�
3

5
;

4

5

�
=

�
117

125
;
�44

125

�
.

4

�
3

5
;

4

5

�
=

�
336

625
;
�527

625

�
.



Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;�
p

3=4)

= (�1=2;�
p

3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;�
p

3=4) + (�1; 0)

= (
p

3=4; 1=2) = “2:00”.

2

�
3

5
;

4

5

�
=

�
24

25
;

7

25

�
.

3

�
3

5
;

4

5

�
=

�
117

125
;
�44

125

�
.

4

�
3

5
;

4

5

�
=

�
336

625
;
�527

625

�
.

(x1; y1) + (0; 1) =



Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;�
p

3=4)

= (�1=2;�
p

3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;�
p

3=4) + (�1; 0)

= (
p

3=4; 1=2) = “2:00”.

2

�
3

5
;

4

5

�
=

�
24

25
;

7

25

�
.

3

�
3

5
;

4

5

�
=

�
117

125
;
�44

125

�
.

4

�
3

5
;

4

5

�
=

�
336

625
;
�527

625

�
.

(x1; y1) + (0; 1) = (x1; y1).



Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;�
p

3=4)

= (�1=2;�
p

3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;�
p

3=4) + (�1; 0)

= (
p

3=4; 1=2) = “2:00”.

2

�
3

5
;

4

5

�
=

�
24

25
;

7

25

�
.

3

�
3

5
;

4

5

�
=

�
117

125
;
�44

125

�
.

4

�
3

5
;

4

5

�
=

�
336

625
;
�527

625

�
.

(x1; y1) + (0; 1) = (x1; y1).

(x1; y1) + (�x1; y1) =



Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;�
p

3=4)

= (�1=2;�
p

3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;�
p

3=4) + (�1; 0)

= (
p

3=4; 1=2) = “2:00”.

2

�
3

5
;

4

5

�
=

�
24

25
;

7

25

�
.

3

�
3

5
;

4

5

�
=

�
117

125
;
�44

125

�
.

4

�
3

5
;

4

5

�
=

�
336

625
;
�527

625

�
.

(x1; y1) + (0; 1) = (x1; y1).

(x1; y1) + (�x1; y1) = (0; 1).



Clocks over finite fields

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�

�
��

�

�

�

�

Clock(F7) =�
(x; y) 2 F7 � F7 : x2 + y2 = 1

	
.

Here F7 = f0; 1; 2; 3; 4; 5; 6g
= f0; 1; 2; 3;�3;�2;�1g
with arithmetic modulo 7.

e.g. 2 � 5 = 3 and 3=2 = 5 in F7.



Larger example: Clock(F1000003).

Examples of addition

on Clock(F1000003):

2(1000; 2) = (4000; 7).



Larger example: Clock(F1000003).

Examples of addition

on Clock(F1000003):

2(1000; 2) = (4000; 7).

4(1000; 2) = (56000; 97).



Larger example: Clock(F1000003).

Examples of addition

on Clock(F1000003):

2(1000; 2) = (4000; 7).

4(1000; 2) = (56000; 97).

8(1000; 2) = (863970; 18817).



Larger example: Clock(F1000003).

Examples of addition

on Clock(F1000003):

2(1000; 2) = (4000; 7).

4(1000; 2) = (56000; 97).

8(1000; 2) = (863970; 18817).

16(1000; 2) = (549438; 156853).



Larger example: Clock(F1000003).

Examples of addition

on Clock(F1000003):

2(1000; 2) = (4000; 7).

4(1000; 2) = (56000; 97).

8(1000; 2) = (863970; 18817).

16(1000; 2) = (549438; 156853).

17(1000; 2) = (951405; 877356).



Larger example: Clock(F1000003).

Examples of addition

on Clock(F1000003):

2(1000; 2) = (4000; 7).

4(1000; 2) = (56000; 97).

8(1000; 2) = (863970; 18817).

16(1000; 2) = (549438; 156853).

17(1000; 2) = (951405; 877356).

“Scalar multiplication”

on a clock:

Given integer n � 0

and clock point (x; y),

compute n(x; y).



“Binary method”:

If n is even, compute n(x; y)

by doubling (n=2)(x; y).

Otherwise compute n(x; y)

by adding (x; y) to (n � 1)(x; y).

This is very fast.



“Binary method”:

If n is even, compute n(x; y)

by doubling (n=2)(x; y).

Otherwise compute n(x; y)

by adding (x; y) to (n � 1)(x; y).

This is very fast.

But figuring out n

given (x; y) and n(x; y)

is much more difficult.

With 30 clock additions

we computed

n(1000; 2) = (947472; 736284)

for some 6-digit n.

Can you figure out n?



Clock cryptography

Standardize a large prime p

and some (x; y) 2 Clock(Fp).

Alice chooses big secret a.

Computes her public key a(x; y).

Bob chooses big secret b.

Computes his public key b(x; y).

Alice computes a(b(x; y)).

Bob computes b(a(x; y)).

They use this shared secret

to encrypt with AES-GCM etc.

Warning #1:

Many choices of p are bad!



Alice’s
secret key a

��

��

Bob’s
secret key b

��

��

Alice’s
public key
a(x; y)

&&LLLLLLL

Bob’s
public key
b(x; y)

xxrrrrrrr

fAlice;Bobg’s
shared secret
ab(x; y)

=
fBob;Aliceg’s
shared secret
ba(x; y)



Alice’s
secret key a

��

��

Bob’s
secret key b

��

��

Alice’s
public key
a(x; y)

&&LLLLLLL

Bob’s
public key
b(x; y)

xxrrrrrrr

fAlice;Bobg’s
shared secret
ab(x; y)

=
fBob;Aliceg’s
shared secret
ba(x; y)

Warning #2:

Clocks aren’t elliptic!

Can use index calculus

to attack clock cryptography.

To match RSA-3072 security

need p � 21536.



Timing attacks

Attacker sees more than

a(x; y) and b(x; y).

Attacker sees time for

Alice to compute a(b(x; y)).

Often attacker can see

time for each operation

performed by Alice,

not just total time.

This reveals secret a.

Fix: constant-time code,

performing same operations

no matter what scalar is.



Addition on an elliptic curve

y

x

OO

//

neutral = (0; 1)�
P1 = (x1; y1)�����

P2 = (x2; y2)�fffff
P3 = (x3; y3)�[[[[[[

x2 + y2 = 1 � 30x2y2.

Sum of (x1; y1) and (x2; y2) is

((x1y2+y1x2)=(1�30x1x2y1y2),

(y1y2�x1x2)=(1+30x1x2y1y2)).



The clock again, for comparison:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)��������
P2 = (x2; y2)�iiiiiii

P3 = (x3; y3)�PPPPPPP

x2 + y2 = 1.

Sum of (x1; y1) and (x2; y2) is

(x1y2 + y1x2,

y1y2 � x1x2).



More elliptic curves

Choose an odd prime p.

Choose a non-square d 2 Fp.

f(x; y) 2 Fp � Fp :

x2 + y2 = 1 + dx2y2g
is a “complete Edwards curve”.

“The Edwards addition law”:

(x1; y1) + (x2; y2) = (x3; y3)

where

x3 =
x1y2 + y1x2

1 + dx1x2y1y2
,

y3 =
y1y2 � x1x2

1 � dx1x2y1y2
.



“Hey, there are divisions

in the Edwards addition law!

What if the denominators are 0?”



“Hey, there are divisions

in the Edwards addition law!

What if the denominators are 0?”

Answer: Can prove that

the denominators are never 0.

Addition law is complete.



“Hey, there are divisions

in the Edwards addition law!

What if the denominators are 0?”

Answer: Can prove that

the denominators are never 0.

Addition law is complete.

This proof relies on

choosing non-square d.



“Hey, there are divisions

in the Edwards addition law!

What if the denominators are 0?”

Answer: Can prove that

the denominators are never 0.

Addition law is complete.

This proof relies on

choosing non-square d.

If we instead choose square d:

curve is still elliptic, and

addition seems to work,

but there are failure cases,

often exploitable by attackers.

Safe code is more complicated.



A safe example

Choose p = 2255 � 19.

Choose d = 121665=121666;

this is non-square in Fp.

x2 + y2 = 1 + dx2y2

is a safe curve for ECC.



A safe example

Choose p = 2255 � 19.

Choose d = 121665=121666;

this is non-square in Fp.

x2 + y2 = 1 + dx2y2

is a safe curve for ECC.

�x2 + y2 = 1 � dx2y2

is another safe curve

using the same p and d.



A safe example

Choose p = 2255 � 19.

Choose d = 121665=121666;

this is non-square in Fp.

x2 + y2 = 1 + dx2y2

is a safe curve for ECC.

�x2 + y2 = 1 � dx2y2

is another safe curve

using the same p and d.

Actually, the second curve

is the first curve in disguise:

replace x in first curve

by
p�1 � x, using

p�1 2 Fp.



Even more elliptic curves

Edwards curves:

x2 + y2 = 1 + dx2y2.

Twisted Edwards curves:

ax2 + y2 = 1 + dx2y2.

Weierstrass curves:

v2 = u3 + au + b.

Montgomery curves:

bv2 = u3 + au2 + u.

Many relationships:

e.g., substitute x = u=v,

y = (u� 1)=(u + 1) in Edwards

to obtain Montgomery.



Addition on Weierstrass curves

v2 = u3 + au + b:



Addition on Weierstrass curves

v2 = u3 + au + b:

for u1 6= u2, (u1; v1) + (u2; v2) =

(u3; v3) with u3 = �2 � u1 � u2,

v3 = �(u1 � u3) � v1,

� = (v2 � v1)=(u2 � u1); for

v1 6= 0, (u1; v1) + (u1; v1) =

(u3; v3) with u3 = �2 � u1 � u2,

v3 = �(u1 � u3) � v1,

� = (3u2
1 + a)=2v1;

(u1; v1) + (u1;�v1) = 1;

(u1; v1) + 1 = (u1; v1);

1 + (u2; v2) = (u2; v2);

1 + 1 = 1.



Addition on Weierstrass curves

v2 = u3 + au + b:

for u1 6= u2, (u1; v1) + (u2; v2) =

(u3; v3) with u3 = �2 � u1 � u2,

v3 = �(u1 � u3) � v1,

� = (v2 � v1)=(u2 � u1); for

v1 6= 0, (u1; v1) + (u1; v1) =

(u3; v3) with u3 = �2 � u1 � u2,

v3 = �(u1 � u3) � v1,

� = (3u2
1 + a)=2v1;

(u1; v1) + (u1;�v1) = 1;

(u1; v1) + 1 = (u1; v1);

1 + (u2; v2) = (u2; v2);

1 + 1 = 1.

Messy to implement and test.



Much nicer than Weierstrass:

Montgomery-curve ECDH using

the “Montgomery ladder”—

our recommended method for

Diffie–Hellman key exchange

(e.g., for forward secrecy).

Montgomery ladder works

only with u-coordinates

of curve points P .

Montgomery ladder computes

nP and (n + 1)P recursively from

bn=2cP and (bn=2c + 1)P

using one bit of n

with no branches.



Curve selection

Many different standards:

1999 ANSI X9.62.

2000 IEEE P1363.

2000 SEC 2.

2000 NIST FIPS 186-2.

2001 ANSI X9.63.

2005 Brainpool.

2005 NSA Suite B.

2011 ANSSI FRP256V1.

Our new evaluation site:

http://safecurves.cr.yp.to



Avoiding known attacks

The curve must be elliptic.

The number of curve points

must be divisible by

a large prime number `.

Standard attacks take time
p
`.

` � 2200 is adequate;

` � 2256 is conservative.

` must not divide

p; p� 1; p2 � 1;

p3 � 1; : : : ; p20 � 1.

This guarantees that there are

no “transfers” to clocks etc.



Avoiding unnecessary structure

Simplify the security story:

avoid possible attack vectors

even if no attacks are known.

Require large “CM field

discriminant”. See, e.g.,

SafeCurves.

Brainpool, Suite B, ANSSI,

SafeCurves: require prime p.

Brainpool and SafeCurves:

prohibit ` dividing

pk � 1 for each k < (`� 1)=100.



Rigidity

Another conceivable source

of security problems:

� there’s another attack against

a small fraction of curves;

� public ECC cryptanalysis

has missed this attack;

� the attacker has

figured out this attack;

� the attacker has manipulated

choices of standard curves

to allow the attack.



NIST curves claim to be

“verifiably random”:

y2 = x3 � 3x + b where

b is derived from

SHA-1 hash of a public seed.



NIST curves claim to be

“verifiably random”:

y2 = x3 � 3x + b where

b is derived from

SHA-1 hash of a public seed.

But is the seed actually random?

Attacker could have tried

many seeds to find a curve with

a one-in-a-billion weakness.

Not “verifiable” at all!



NIST curves claim to be

“verifiably random”:

y2 = x3 � 3x + b where

b is derived from

SHA-1 hash of a public seed.

But is the seed actually random?

Attacker could have tried

many seeds to find a curve with

a one-in-a-billion weakness.

Not “verifiable” at all!

ANSSI response: use our

“random” curve instead.



Rigidity limits number of curves

that can be generated

by a curve-generation process.

Brainpool, somewhat rigid:

b is some sort of hash

of digits of � and e.



Rigidity limits number of curves

that can be generated

by a curve-generation process.

Brainpool, somewhat rigid:

b is some sort of hash

of digits of � and e.

Not completely explained:

why this particular hash?

why � and not
p

2? etc.

But not much flexibility.



Rigidity limits number of curves

that can be generated

by a curve-generation process.

Brainpool, somewhat rigid:

b is some sort of hash

of digits of � and e.

Not completely explained:

why this particular hash?

why � and not
p

2? etc.

But not much flexibility.

Our recommendation, fully rigid:

b is smallest positive integer

passing explained criteria.



ECC security

Covered so far:

hard to compute ECC user’s

secret key from public key.

But real-world ECC

is still being broken!

ECC implementations

� produce incorrect results

for some rare inputs;

� leak secret data

for input points off curve;

� leak secret data

through timing;

etc. Attackers exploit this.



Better choices of curves

allow simple implementations

to be secure implementations.

This is the primary

motivation for SafeCurves.



Better choices of curves

allow simple implementations

to be secure implementations.

This is the primary

motivation for SafeCurves.

Example of new requirement:

twist security.

If curve isn’t twist-secure:

Twist attacks break

ladder implementations

that don’t check whether

input point is on curve.

Security-simplicity conflict.






