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Cryptography

Public-key signatures:

e.g., RSA, DSA, ECDSA.

Some uses: signed OS updates,

SSL certificates, e-passports.

Public-key encryption:

e.g., RSA, DH, ECDH.

Some uses: SSL key exchange,

locked iPhone mail download.

Secret-key encryption:

e.g., AES, Salsa20.

Some uses: disk encryption,

bulk SSL encryption.



Why ECC?

“Index calculus”:

fastest method we know

to break original DH and RSA.

Long history, including

many major improvements:

1975, CFRAC;

1977, linear sieve (LS);

1982, quadratic sieve (QS);

1990, number-field sieve (NFS);

1994, function-field sieve (FFS);

2006, medium-prime FFS/NFS;

2013, xq � x FFS.

(FFS is not relevant to RSA.)



Also many smaller improvements:

� 100 scientific papers.

Costs of these algorithms for

breaking RSA-1024, RSA-2048:

� 2120, 2170, CFRAC;

� 2110, 2160, LS;

� 2100, 2150, QS;

� 280, 2112, NFS.
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Costs of these algorithms for

breaking RSA-1024, RSA-2048:

� 2120, 2170, CFRAC;

� 2110, 2160, LS;

� 2100, 2150, QS;

� 280, 2112, NFS.

1986 Miller “Use of

elliptic curves in cryptography”:

“It is extremely unlikely

that an ‘index calculus’ attack

on the elliptic curve method

will ever be able to work.”



The clock
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This is the curve x2 + y2 = 1.

Warning:

This is not an elliptic curve.

“Elliptic curve” 6= “ellipse.”
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1=2) = “1:30”.

(3=5; 4=5). (�3=5; 4=5).

(3=5;�4=5). (�3=5;�4=5).

(4=5; 3=5). (�4=5; 3=5).

(4=5;�3=5). (�4=5;�3=5).

Many more.
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x2 + y2 = 1, parametrized by
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�1
P2 = (x2; y2)�iiiiiii

P3 = (x3; y3)�PPPPPPP

x2 + y2 = 1, parametrized by

x = sin�, y = cos�. Recall

(sin(�1 + �2); cos(�1 + �2)) =

(sin�1 cos�2 + cos�1 sin�2;
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Clock addition without sin, cos:

y

x
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//

neutral = (0; 1)� P1 = (x1; y1)��������
P2 = (x2; y2)�iiiiiii

P3 = (x3; y3)�PPPPPPP

Use Cartesian coordinates for

addition. Addition formula

for the clock x2 + y2 = 1:

sum of (x1; y1) and (x2; y2) is

(x1y2 + y1x2; y1y2 � x1x2).
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Clocks over finite fields
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Clock(F7) =�
(x; y) 2 F7 � F7 : x2 + y2 = 1

	
.

Here F7 = f0; 1; 2; 3; 4; 5; 6g
= f0; 1; 2; 3;�3;�2;�1g
with arithmetic modulo 7.

e.g. 2 � 5 = 3 and 3=2 = 5 in F7.
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“Scalar multiplication”

on a clock:

Given integer n � 0

and clock point (x; y),

compute n(x; y).
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“Binary method”:

If n is even, compute n(x; y)

by doubling (n=2)(x; y).

Otherwise compute n(x; y)

by adding (x; y) to (n � 1)(x; y).

This is very fast.

But figuring out n

given (x; y) and n(x; y)

is much more difficult.

With 30 clock additions

we computed

n(1000; 2) = (947472; 736284)

for some 6-digit n.

Can you figure out n?



Clock cryptography

Standardize a large prime p

and some (x; y) 2 Clock(Fp).

Alice chooses big secret a.

Computes her public key a(x; y).

Bob chooses big secret b.

Computes his public key b(x; y).

Alice computes a(b(x; y)).

Bob computes b(a(x; y)).

They use this shared secret

to encrypt with AES-GCM etc.

Warning #1:

Many choices of p are bad!
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public key
a(x; y)
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=
fBob;Aliceg’s
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Warning #2:

Clocks aren’t elliptic!

Can use index calculus

to attack clock cryptography.

To match RSA-3072 security

need p � 21536.



Timing attacks

Attacker sees more than

a(x; y) and b(x; y).

Attacker sees time for

Alice to compute a(b(x; y)).

Often attacker can see

time for each operation

performed by Alice,

not just total time.

This reveals secret a.

Fix: constant-time code,

performing same operations

no matter what scalar is.



Addition on an elliptic curve

y

x
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//

neutral = (0; 1)�
P1 = (x1; y1)�����

P2 = (x2; y2)�fffff
P3 = (x3; y3)�[[[[[[

x2 + y2 = 1 � 30x2y2.

Sum of (x1; y1) and (x2; y2) is

((x1y2+y1x2)=(1�30x1x2y1y2),

(y1y2�x1x2)=(1+30x1x2y1y2)).



The clock again, for comparison:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)��������
P2 = (x2; y2)�iiiiiii

P3 = (x3; y3)�PPPPPPP

x2 + y2 = 1.

Sum of (x1; y1) and (x2; y2) is

(x1y2 + y1x2,

y1y2 � x1x2).



More elliptic curves

Choose an odd prime p.

Choose a non-square d 2 Fp.

f(x; y) 2 Fp � Fp :

x2 + y2 = 1 + dx2y2g
is a “complete Edwards curve”.

“The Edwards addition law”:

(x1; y1) + (x2; y2) = (x3; y3)

where

x3 =
x1y2 + y1x2

1 + dx1x2y1y2
,

y3 =
y1y2 � x1x2

1 � dx1x2y1y2
.



“Hey, there are divisions
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What if the denominators are 0?”
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“Hey, there are divisions

in the Edwards addition law!

What if the denominators are 0?”

Answer: Can prove that

the denominators are never 0.

Addition law is complete.

This proof relies on

choosing non-square d.

If we instead choose square d:

curve is still elliptic, and

addition seems to work,

but there are failure cases,

often exploitable by attackers.

Safe code is more complicated.
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A safe example

Choose p = 2255 � 19.

Choose d = 121665=121666;

this is non-square in Fp.

x2 + y2 = 1 + dx2y2

is a safe curve for ECC.

�x2 + y2 = 1 � dx2y2

is another safe curve

using the same p and d.

Actually, the second curve

is the first curve in disguise:

replace x in first curve

by
p�1 � x, using

p�1 2 Fp.



Even more elliptic curves

Edwards curves:

x2 + y2 = 1 + dx2y2.

Twisted Edwards curves:

ax2 + y2 = 1 + dx2y2.

Weierstrass curves:

v2 = u3 + au + b.

Montgomery curves:

bv2 = u3 + au2 + u.

Many relationships:

e.g., substitute x = u=v,

y = (u� 1)=(u + 1) in Edwards

to obtain Montgomery.



Addition on Weierstrass curves

v2 = u3 + au + b:



Addition on Weierstrass curves

v2 = u3 + au + b:

for u1 6= u2, (u1; v1) + (u2; v2) =

(u3; v3) with u3 = �2 � u1 � u2,

v3 = �(u1 � u3) � v1,

� = (v2 � v1)=(u2 � u1); for

v1 6= 0, (u1; v1) + (u1; v1) =

(u3; v3) with u3 = �2 � u1 � u2,

v3 = �(u1 � u3) � v1,

� = (3u2
1 + a)=2v1;

(u1; v1) + (u1;�v1) = 1;

(u1; v1) + 1 = (u1; v1);

1 + (u2; v2) = (u2; v2);

1 + 1 = 1.



Addition on Weierstrass curves

v2 = u3 + au + b:

for u1 6= u2, (u1; v1) + (u2; v2) =

(u3; v3) with u3 = �2 � u1 � u2,

v3 = �(u1 � u3) � v1,

� = (v2 � v1)=(u2 � u1); for

v1 6= 0, (u1; v1) + (u1; v1) =

(u3; v3) with u3 = �2 � u1 � u2,

v3 = �(u1 � u3) � v1,

� = (3u2
1 + a)=2v1;

(u1; v1) + (u1;�v1) = 1;

(u1; v1) + 1 = (u1; v1);

1 + (u2; v2) = (u2; v2);

1 + 1 = 1.

Messy to implement and test.



Much nicer than Weierstrass:

Montgomery-curve ECDH using

the “Montgomery ladder”—

our recommended method for

Diffie–Hellman key exchange

(e.g., for forward secrecy).

Montgomery ladder works

only with u-coordinates

of curve points P .

Montgomery ladder computes

nP and (n + 1)P recursively from

bn=2cP and (bn=2c + 1)P

using one bit of n

with no branches.



Curve selection

Many different standards:

1999 ANSI X9.62.

2000 IEEE P1363.

2000 SEC 2.

2000 NIST FIPS 186-2.

2001 ANSI X9.63.

2005 Brainpool.

2005 NSA Suite B.

2011 ANSSI FRP256V1.

Our new evaluation site:

http://safecurves.cr.yp.to



Avoiding known attacks

The curve must be elliptic.

The number of curve points

must be divisible by

a large prime number `.

Standard attacks take time
p
`.

` � 2200 is adequate;

` � 2256 is conservative.

` must not divide

p; p� 1; p2 � 1;

p3 � 1; : : : ; p20 � 1.

This guarantees that there are

no “transfers” to clocks etc.



Avoiding unnecessary structure

Simplify the security story:

avoid possible attack vectors

even if no attacks are known.

Require large “CM field

discriminant”. See, e.g.,

SafeCurves.

Brainpool, Suite B, ANSSI,

SafeCurves: require prime p.

Brainpool and SafeCurves:

prohibit ` dividing

pk � 1 for each k < (`� 1)=100.



Rigidity

Another conceivable source

of security problems:

� there’s another attack against

a small fraction of curves;

� public ECC cryptanalysis

has missed this attack;

� the attacker has

figured out this attack;

� the attacker has manipulated

choices of standard curves

to allow the attack.



NIST curves claim to be
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y2 = x3 � 3x + b where

b is derived from

SHA-1 hash of a public seed.
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Not “verifiable” at all!

ANSSI response: use our

“random” curve instead.
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Rigidity limits number of curves

that can be generated

by a curve-generation process.

Brainpool, somewhat rigid:

b is some sort of hash

of digits of � and e.

Not completely explained:

why this particular hash?

why � and not
p

2? etc.

But not much flexibility.

Our recommendation, fully rigid:

b is smallest positive integer

passing explained criteria.



ECC security

Covered so far:

hard to compute ECC user’s

secret key from public key.

But real-world ECC

is still being broken!

ECC implementations

� produce incorrect results

for some rare inputs;

� leak secret data

for input points off curve;

� leak secret data

through timing;

etc. Attackers exploit this.
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This is the primary
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Better choices of curves

allow simple implementations

to be secure implementations.

This is the primary

motivation for SafeCurves.

Example of new requirement:

twist security.

If curve isn’t twist-secure:

Twist attacks break

ladder implementations

that don’t check whether

input point is on curve.

Security-simplicity conflict.






