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Abstract

In this work, we study indistinguishability obfuscation and functional encryption for general circuits:
Indistinguishability obfuscation requires that given any two equivalent circuits C0 and C1 of similar

size, the obfuscations of C0 and C1 should be computationally indistinguishable.
In functional encryption, ciphertexts encrypt inputs x and keys are issued for circuits C. Using the

key SKC to decrypt a ciphertext CTx = Enc(x), yields the value C(x) but does not reveal anything else
about x. Furthermore, no collusion of secret key holders should be able to learn anything more than the
union of what they can each learn individually.

We give constructions for indistinguishability obfuscation and functional encryption that supports all
polynomial-size circuits. We accomplish this goal in three steps:

• We describe a candidate construction for indistinguishability obfuscation for NC1 circuits. The
security of this construction is based on a new algebraic hardness assumption. The candidate and
assumption use a simplified variant of multilinear maps, which we call Multilinear Jigsaw Puzzles.

• We show how to use indistinguishability obfuscation for NC1 together with Fully Homomorphic
Encryption (with decryption in NC1) to achieve indistinguishability obfuscation for all circuits.

• Finally, we show how to use indistinguishability obfuscation for circuits, public-key encryption,
and non-interactive zero knowledge to achieve functional encryption for all circuits. The func-
tional encryption scheme we construct also enjoys succinct ciphertexts, which enables several other
applications.

The first and fifth authors were supported in part from NSF grants 1228984, 1136174, 1118096, 1065276, 0916574 and 0830803,
a Xerox Faculty Research Award, a Google Faculty Research Award, an equipment grant from Intel, and an Okawa Foundation
Research Grant. The views expressed are those of the author and do not reflect the official policy or position of the National
Science Foundation, or the U.S. Government.

The second and third authors were supported by the Intelligence Advanced Research Projects Activity (IARPA) via
Department of Interior National Business Center (DoI/NBC) contract number D11PC20202. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright annotation thereon. Disclaimer:
The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or implied, of IARPA, DoI/NBC, or the U.S. Government.

The fourth author is supported by NSF Grant No.1017660.

The sixth author is supported by NSF CNS-0915361 and CNS-0952692, CNS-1228599, DARPA N11AP20006, Google

Faculty Research award, the Alfred P. Sloan Fellowship, Microsoft Faculty Fellowship, and Packard Foundation Fellowship.

i





Understanding Cryptography

mathematical problems

cryptographic primitives

protocols

library implementations

software applications

factoring, discrete log, . . .

RSA, Diffie-Hellman, DSA, AES, RC4, SHA-1, . . .

TLS, SSH, PGP, . . .

OpenSSL, BSAFE, NaCl, . . .

Apache, Firefox, Chrome, . . .



The Cryptopocalypse
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A quasi-polynomial algorithm for discrete logarithm

in finite fields of small characteristic
Improvements over FFS in small to medium characteristic

Razvan Barbulescu, Pierrick Gaudry, Antoine Joux, Emmanuel Thomé

1 Introduction
The discrete logarithm problem (DLP) was first proposed as a hard problem in cryptography in the seminal
article of Diffie and Hellman [DH76]. Since then, together with factorization, it has become one of the two
major pillars of public key cryptography. As a consequence, the problem of computing discrete logarithms has
attracted a lot of attention. From an exponential algorithm in 1976, the fastest DLP algorithms have been
greatly improved during the past 35 years. A first major progress was the realization that the DLP in finite
fields can be solved in subexponential time, i.e. L(1/2) where LN(α) = exp

(
O((logN)α(log logN)1−α)

)
.

The next step further reduced this to a heuristic L(1/3) running time in the full range of finite fields, from
fixed characteristic finite fields to prime fields [Adl79, Cop84, Gor93, Adl94, JL06, JLSV06].

Recently, practical and theoretical progress have been made [Jou13a, GGMZ13, Jou13b] with an emphasis
on small to medium characteristic finite fields and composite degree extensions. The most general and
efficient algorithm [Jou13b] gives a complexity of L(1/4 + o(1)) when the characteristic is smaller than the
square root of the extension degree. Among the ingredients of this approach, we find the use of a very
particular representation of the finite field; the use of the so-called systematic equation; and the use of
algebraic resolution of bilinear polynomial systems in the individual logarithm phase.

In the present work, we present a new discrete logarithm algorithm, in the same vein as in [Jou13b] that
uses an asymptotically more efficient descent approach. The main result gives a quasi-polynomial heuristic
complexity for the DLP in finite field of small characteristic. By quasi-polynomial, we mean a complexity
of type nO(logn) where n is the bit-size of the cardinality of the finite field. Such a complexity is smaller
than any L(ε) for ε > 0. It remains super-polynomial in the size of the input, but offers a major asymptotic
improvement compared to L(1/4 + o(1)).

The key features of our algorithm are the following.
• We keep the field representation and the systematic equations of [Jou13b].

• The algorithmic building blocks are elementary. In particular, we avoid the use of Gröbner basis
algorithms.

• The complexity result relies on three key heuristics: the existence of a polynomials representation of
the appropriate form; the fact that the smoothness probabilities of some non-uniformly distributed
polynomials are similar to the probabilities for uniformly random polynomials of the same degree; and
the linear independence of some finite field elements related to the action of PGL2(Fq).

The heuristics are very close to the ones used in [Jou13b]. In addition to the arguments in favor of these
heuristics already given in [Jou13b], we performed some experiments to validate them on practical instances.

Although we insist on the case of finite fields of small characteristic, where quasi-polynomial complexity
is obtained, our new algorithm improves the complexity discrete logarithm computations in a much larger
range of finite fields.
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Fact: All the public-key crypto we use relies on three assumptions:

factoring integers into primes

discrete log modulo primes

discrete log in elliptic curve groups



factoring



discrete log modulo primes



elliptic curve discrete log

factoring



Discrete log over small characteristic fields
(Not actually used in any deployed crypto.)

• Factoring, discrete log have subexponential-time algorithms.

• No big algorithmic improvement since 1993.

• All progress has been Moore’s law, implementation details, etc.

Until December 2012:

2012-12-24 1175-bit and 1425-bit Joux
2013-02-11 F∗

21778 Joux
2013-02-19 F∗

21971 GGMZ
2013-02-20 L(1/4 + o(1), c) Joux
2013-03-22 F∗

24080 Joux
2013-04-11 F∗

26120 GGMZ
2013-05-21 F∗

26168 Joux

2013-06-18 nO(log n) algorithm for F∗
pn Barbulescu, Gaudry, Joux, Thomé
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Extrapolated impact of hypothetical factoring algorithm improvements

Current general-purpose factoring running time for integer N:

L((64/9)1/3, 1/3) = exp
(

(64/9)1/3(lnN)1/3 ∗ (ln lnN)2/3
)

Small-characteristic field DL improvement from L(1/3)→ L(1/4)→ nO(log n).

bit length of N
1024 2048 4096

current state → L((64/9)1/3, 1/3) 86 116 156
improved constant → L((32/9)1/3, 1/3) 68 92 124
improved exponent → L((64/9)1/4, 1/4) 49 63 81

bit-security of key



• Researchers in area agree that small-characteristic techniques can’t be adapted to
factoring or large primes

• Reminder that sometimes big progress can be made on old problems.

• There is no proof that factoring/discrete log are hard. (Polynomial heirarchy
would collapse if they were NP-hard.)

• Elliptic curve discrete log totally different story: index calculus unlikely to work.
(Already Miller 1986, Koblitz 2000.)

Some recommendations:

• Don’t hard-code algorithms or key sizes.∗ If you must, use conservative choices.

• Listen to cryptographers. This is old news.

• Think about adopting elliptic curves. (More on this later.)



January 2013

A user actually tries to use crypto!

. . . and fails. Close to #epicfail.

“It’s really annoying and complicated,
the encryption software.
. . . He kept harassing me,
but at some point he just got frustrated,
so he went to Laura.”

—Glenn Greenwald,
quoted in “How Laura Poitras helped Snowden spill his secrets”,

New York Times Magazine, 18 August 2013

Picture credit: Reuters via www.popularresistance.org
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February 2013: timing-padding-oracle attacks against TLS

This leaves a small timing channel, since MAC performance depends to

some extent on the size of the data fragment, but it is not believed

to be large enough to be exploitable, due to the large block size of

existing MACs and the small size of the timing signal.

—RFC 5246, “The Transport Layer Security (TLS) Protocol, Version 1.2”, 2008

sessions per byte of cookie (with all the sessions being au-
tomatically generated). Note that the malware does not
need the ability to inject chosen plaintext into an existing
TLS session for this attack.

How the attacks work: Our new attacks exploit the fact that,
when badly formatted padding is encountered during decryp-
tion, a MAC check must still be performed on some data to pre-
vent the known timing attacks. But what data should be used
for that calculation? The TLS 1.1 and 1.2 RFCs recommend
checking the MAC as if there was a zero-length pad. As noted
in those RFCs:

This leaves a small timing channel, since MAC per-
formance depends to some extent on the size of the
data fragment, but it is not believed to be large
enough to be exploitable, due to the large block size of
existing MACs and the small size of the timing signal.

We confirm that there are indeed small timing differences,
but, contrary to what is written in the RFCs, they can be ex-
ploited. In short, provided there is a fortuitous alignment of
various factors such as the size of MAC tags, the block cipher’s
block size, and the number of header bytes, then there will be a
time difference in the time that it takes to process TLS records
having good and bad padding, and this difference will show
up in the time at which error messages appear on the network.
This timing side-channel can then be “wrangled” into reveal-
ing plaintext data via careful statistical analysis of multiple tim-
ing samples. As we shall show, other natural methods for han-
dling MAC checking in the event of bad padding also lead to
exploitable timing differences.

It is not clear to us whether the attacks we present here were
already known to the TLS community. We suspect not, in view
of the attacks’ complexity and the state-of-the-art in attacks at
the time of writing of the TLS 1.1 RFC. However, this ques-
tion seems moot in view of the fact that attacks exist for RFC-
compliant implementations and present a threat to the security
of TLS and DTLS.

Our new attacks demonstrate that properly implementing
MEE-TLS-CBC so as to avoid all exploitable timing differences
is in fact quite difficult, and is not achieved by any of the im-
plementations we examined. A complicating factor, in addition
to dealing with padding, is the need for careful sanity checking
of various fields during decryption. We provide a detailed pre-
scription for dealing with these issues. We also discuss other,
more easily-implemented countermeasures.

1.2 Disclosure (as at 27/02/2013)

Given the large number of affected implementations, we first
notified the IETF TLS Working Group chairs, the IETF Secu-
rity Area directors and the IRTF Crypto Forum Research Group
(CFRG) chairs of our attacks in November 2012. We then be-
gan the process of contacting individual vendors:
OpenSSL addressed the attacks in versions 1.0.1d, 1.0.0k and
0.9.8y, released 05/02/2013. See http://www.openssl.
org/news/secadv_20130205.txt for further details.
NSS addressed the attacks in version 3.14.3, released
15/02/2013. See https://developer.mozilla.org/

en-US/docs/NSS/NSS_3.14.3_release_notes for
further details.
Microsoft performed an investigation and determined that the
issue had been adequately addressed in previous modifications
to their TLS and DTLS implementations
Apple were notified of our attacks in December 2012. The sta-
tus of patch development by Apple is currently unknown.
GnuTLS corrected the programming errors in decryption that
we identified in version 3.1.6 (released 02/01/2013) and ad-
dressed the attacks in versions 2.12.23, 3.0.28 and 3.1.7, re-
leased 04/02/13.
PolarSSL addressed the attacks in version 1.2.5, released
03/02/13.
CyaSSL addressed the attacks in CyaSSL version 2.5.0, re-
leased 04/02/2013.
MatrixSSL addressed the attacks in version 3.4.1, released
06/02/13.
Opera addressed the attacks in Opera version 12.13, re-
leased 30/01/2013. For further details, see www.opera.com/
docs/changelogs/unified/1213/.
F5 were notified of the attacks in December 2012. They
have informed us that their TLS dataplane traffic is not vul-
nerable due to cryptographic offload, but that local manage-
ment ports and virtual editions may be vulnerable. For fur-
ther details, see http://support.f5.com/kb/en-us/
solutions/public/14000/100/sol14190.html.
BouncyCastle addressed the attacks in version 1.48 of the Java
library, released 10/02/2013. The C# version of BouncyCas-
tle was fixed in CVS at a similar time, and will be included in
release 1.8 at a later date.
Oracle (Java) addressed the attacks as part of a special critical
patch update of JavaSE, released 19/02/2013.

In addition, a number of other companies and organisations
were given advance notice of the attacks prior to them being
made public.

We will continue to update this section as the disclosure pro-
cess progresses.

1.3 Further Details on Related Work

TLS, and in particular the TLS Handshake Protocol, has
been the subject of much analysis using a variety of security
paradigms, see for example [29, 18, 27, 5]. In general, these
analyses are at too high a level of abstraction to capture our
attacks.

Padding oracle attacks began with Vaudenay [37], who
showed that the presence of a padding oracle, that is, an ora-
cle telling an attacker whether the padding was correctly for-
matted or not, could be leveraged to build a decryption capa-
bility. Canvel et al. [6] showed that such an oracle could be
obtained for the then-current version of OpenSSL by exploiting
a timing difference in TLS decryption processing. In essence,
in OpenSSL, if the padding was incorrectly formatted, then no
MAC check was performed, while if the padding was correct,
then the MAC check was done. In turn, this meant faster pro-
duction of an error message in the “invalid padding” case than
in the “valid padding” case. Thus the padding oracle was re-
vealed through a timing side-channel. A complication for full
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—AlFardan and Paterson,
“Lucky Thirteen: breaking the TLS and DTLS record protocols”,

IEEE Symposium on Security and Privacy 2013
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February 2013: TLS algorithm agility to the rescue!

Typical vendor response:

To mitigate this vulnerability, configure the client-side SSL
profile to prefer RC4-SHA ciphers.

Successful upgrade: RC4 was used for >50% of TLS traffic in February 2013.
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March 2013: attacks against RC4 in TLS

306 22nd USENIX Security Symposium USENIX Association

We hope that this work will help spur the adoption of
TLS 1.2 and its authenticated encryption algorithms, as
well as the transition from WPA to (the hopefully more
secure) WPA2.

1.1 Overview of Results

We present two plaintext recovery attacks on RC4 that
are exploitable in specific but realistic circumstances
when this cipher is used for encryption in TLS. Both at-
tacks require a fixed plaintext to be RC4-encrypted and
transmitted many times in succession (in the same, or in
multiple independent RC4 keystreams). Interesting can-
didates for such plaintexts include passwords and, in the
setting of secure web browsing, HTTP cookies.

A statistical analysis of ciphertexts forms the core of
our attacks. We stress that the attacks are ciphertext-
only: no sophisticated timing measurement is needed on
the part of the adversary, the attacker does not need to be
located close to the server, and no packet injection capa-
bility is required (all premises for Lucky 13). Instead, it
suffices for the adversary to record encrypted traffic for
later offline analysis. Provoking the required repeated
encryption and transmission of the target plaintext, how-
ever, might require more explicit action: e.g., resetting
TCP connections or guiding the victim to a website with
specially prepared JavaScript (see examples below).

Since both our attacks require large amounts of cipher-
text, their practical relevance could be questioned. How-
ever, they do show that the strength of RC4 in TLS is
much lower than the employed 128-bit key would sug-
gest. We freely admit that our attacks are not particularly
deep, nor sophisticated: they only require an understand-
ing of how TLS uses RC4, solid statistics on the biases
in RC4 keystreams, and some experience of how modern
browsers handle cookies. We consider it both surprising
and alarming that such simple attacks are possible for
such an important and heavily-studied protocol as TLS.
We further discuss the implications of our attack in Sec-
tion 6 and in the full version of this paper [4].

1.1.1 Our single-byte bias attack

Our first attack targets the initial 256 bytes of RC4 ci-
phertext. It is fixed-plaintext and multi-session, meaning
that it requires a fixed sequence of plaintext bytes to be
independently encrypted under a large number of (ran-
dom) keys. This setting corresponds to what is called a
“broadcast attack” in [17, 15, 23]. As we argue below,
such attacks are a realistic attack vector in TLS. Observe
that, in TLS, the first 36 bytes of the RC4 keystream are
used to encrypt a TLS Handshake Finished message.
This message is not fixed across TLS sessions. As a con-
sequence, our methods can be applied only to recover up

to 220 bytes of the TLS application plaintext.
Our attack exploits statistical biases occurring in the

first 256 bytes of RC4 keystream. Such biases, i.e., devi-
ations from uniform in the distributions of the keystream
bytes at certain positions, have been reported and the-
oretically analyzed by [17], [15], and [23]. The corre-
sponding authors also propose algorithms to exploit such
biases for plaintext recovery. In this paper, we discuss
shortcomings of their algorithms, empirically obtain a
complete view of all single-byte biases occurring in the
first 256 keystream positions, and propose a generalized
algorithm that fully exploits all these biases for advanced
plaintext recovery. As a side result of our research, in
Section 3.1 we report on significant biases in the RC4
keystream that seemingly follow specific patterns and
that have not been identified or analysed previously.

For concreteness, we describe how our single-byte
bias attack could be applied to recover cookies in HTTPS
traffic. Crucial here is to find an automated mechanism
for efficiently generating a large number of encryptions
of the target cookie. In line with the scenario employed
by the BEAST and Lucky 13 attacks against CBC-mode
encryption in TLS [3, 10], a candidate mechanism is
for JavaScript malware downloaded from an attacker-
controlled website and running in the victim’s browser
to repeatedly send HTTPS requests to a remote server.
The corresponding cookies are automatically included in
each of these requests in a predictable location, and can
thus be targeted in our attack. If client and server are
configured to use TLS session resumption, the renewal of
RC4 keys could be arranged to happen with particularly
high frequency — as required for our attack to be suc-
cessful.5 Alternatively, the attacker can cause the TLS
session to be terminated after the target encrypted cookie
is sent; the browser will automatically establish a new
TLS session when the next HTTPS request is sent.

As a second example, consider the case where IMAP
passwords6 are attacked. In a setup where an email client
regularly connects to an IMAP server for (password-
authenticated) mail retrieval, let the adversary reset the
TCP connection between client and server immediately
after the encrypted password is transmitted. In some
client configurations this might trigger an automatic re-
sumption of the session, including a retransmission of the
(encrypted) password. If this is the case, the adversary
is in the position to harvest a large set of independently
encrypted copies of the password —one per reset— pre-
cisely fulfilling the precondition of our attack.

Our single-byte bias attack is on the verge of prac-
ticality. In our experiments, the first 40 bytes of TLS
application data after the Finished message were re-
covered with a success rate of over 50% per byte, using
226 sessions. With 232 sessions, the per-byte success rate
is more than 96% for the first 220 bytes (and is 100%

2

—AlFardan, Bernstein, Paterson, Poettering, Schuldt,
“On the security of RC4 in TLS”,

USENIX Security Symposium 2013



Taiwan Citizen Digital Certificate
Government-issued smart cards allow citizens to

• file income taxes,
• update car registrations,
• transact with government agencies,
• interact with companies (e.g. Chunghwa Telecom) online.

FIPS-140 and Common Criteria Level 4+ certified.



As reported at 29C3:

Collected 3 million certificiates with RSA public keys.

Factored 103 keys using GCD algorithm:

N1 = pq1 N2 = pq2

gcd(N1,N2) = p

Oops, bad RNG. End of story?



Most commonly shared factor appears 46 times

c0000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

000000000000000000000000000002f9



Next most common factor appears 7 times

c9242492249292499249492449242492

24929249924949244924249224929249

92494924492424922492924992494924

492424922492924992494924492424e5



Factoring RSA keys from certified smart cards: Coppersmith in the wild
Daniel J. Bernstein, Yun-An Chang, Chen-Mou Cheng, Li-Ping Chou, Nadia Heninger, Tanja Lange, and Nicko
van Someren. Asiacrypt 2013.

Factored 80 more keys using guessing, trial
division, and nifty math tricks.

• Nontrivial GCD is not the only way
RSA can fail with bad randomness.

• Faulty hardware RNG in Renesas
AE45C1 microcontroller.

• Failure of some Chunghwa Telecom
HiCOS PKI smart cards to
post-process output.



June 19, 2013, Meanwhile at the NSA

The SIMON and SPECK Families of
Lightweight Block Ciphers

Ray Beaulieu and Douglas Shors and
Jason Smith and Stefan
Treatman-Clark and Bryan Weeks and
Louis Wingers.

http://eprint.iacr.org/2013/404

4 follow-up papers on ePrint ⇒ success on distracting the cryptographers.

http://eprint.iacr.org/2013/404
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July 2013: TweetNaCl

The NaCl library in 100 tweets!
https://twitter.com/tweetnacl

Advertisement:
Hear more about NaCl tomorrow at
You-Broke-The-Internet assembly
Operating systems session.

2013-12-29 13:00 Hall E

https://twitter.com/tweetnacl
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TLS RSA Key Exchange
Why forward secrecy is important

hello

certificate, public RSA key

RSAEncRSAkey (AES key)

AESEncAESkey (website contents)

An adversary with Lavabit’s private key can

• impersonate Lavabit.com to anyone

• decrypt traffic from now on and from any point in the past.



TLS Diffie-Hellman Key Exchange
Why forward secrecy is important

hello, g x

g y , certificate, public RSA key

RSASignRSAkey (g x , g y )

AESEncgxy (website contents)

An adversary with Lavabit’s private key can

• impersonate Lavabit.com to anyone

Forward secrecy: cannot retroactively decrypt historical traffic if the private keys were
forgotten.



Your Homework:

• If you’re an end-user, a website enables forward
secrecy if you see a cipher suite with DHE
(Diffie-Hellman ephemeral) or ECDHE
(elliptic-curve Diffie-Hellman ephemeral).

ccc.de has enabled forward secrecy.

ccc.de


• If you run a website, enable forward secrecy!
See e.g. https://bettercrypto.org

microsoft.com does not offer forward secrecy.

• If you build a privacy tool, use end-to-end
crypto.

https://bettercrypto.org
microsoft.com




August 2013: MEGAMOS crypto

Baris Ege, Flavio Garcia, Roel Verdult
break VW car immobilizers.

Paper stopped from being published
since it contained ”secret” crypto
algorithm.



August 2013: CRYPTO Rump session

Using full-disk encryption
Email with PGP
Elliptic curves in your browser
for forward secrecy

Hardware tokens for crypto
Using bitcoins to pay
Everybody use CRYPTO
Screw the NSA

Full song: http://www.youtube.com/watch?v=0ricox_ozb4

http://www.youtube.com/watch?v=0ricox_ozb4


Scary Paper of the Year: Stealthy Dopant-Level Hardware Trojans
by Becker, Regazzoni, Paar, and Burleson, CHES 2013



DUAL EC RNG: history part I

Earliest public source (?) June 2004, draft of ANSI X9.82:

ϕ gives all but the top 16 bits ⇒ about 215 points sQ match given string.
Claim:



DUAL EC RNG: common public history part II

Various public warning signals:

• Gjøsteen (March 2006): output sequence is biased.
“While the practical impact of these results are modest, it is hard to see how
these flaws would be acceptable in a pseudo-random bit generator based on
symmetric cryptographic primitives. They should not be accepted in a generator
based on number-theoretic assumptions.”

• Brown (March 2006): security “proof”
“This proof makes essential use of Q being random.” If d with dQ = P is known
then dRi = Si+1, concludes that there might be distinguisher.

• Sidorenko & Schoenmakers (May 2006): output sequence is even more biased.
Answer: Too late to change, already implemented.

• Shumow & Ferguson (August 2007): Backdoor if d is known.

• NIST standard gets appendix about choosing points verifiably at random,
continues to recommend fixed P and Q.



September 2013: NSA Bullrun program

Later NYT names Dual EC DRBG. . . but surely nobody uses that piece of shit?!

NIST’s DRBG Validation List: RSA’s BSAFE has Dual EC DRBG enabled and default.

NIST re-opens discussions on SP800.90; recommmends against using Dual EC.
RSA suggests changing default in BSAFE.

http://csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgval.html
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How expensive is using the backdoor?
Rereading the standard:
“ x(A) is the x-coordinate of the point A on the curve, given in affine coordinates. An
implementation may choose to represent points internally using other coordinate
systems; for instance, when efficiency is a primary concern. In this case, a point shall
be translated back to affine coordinates before x() is applied.”

Given ri = ϕ(x(siQ)), ri+1 = ϕ(x(si+1Q)), and NSA backdoor d = logP(Q).

1. Expand ri to candidate Qi = siQ, [50% chance; if fail move on to next candidate]

2. compute candidate Pi+1 = dQi and candidate si+1 = ϕ(x(Pi+1))

3. check, ϕ(x(si+1Q)) against ri+1. [if fail, goto 1.; else most likely done!]

Timings on i7 M620 Core
missing 16 bits 24 bits 32 bits

1 core 20s 85m 15d4h

64k cores 20s

From the standard:
“For performance reasons, the value of
outlen should be set to the maximum
value as provided in Table 4.”
Don’t give us fewer bits!
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September 2013: SHA-3 controversy erupts



How about the NIST curves?

May 2013, Bernstein & Lange: “Security dangers of the NIST curves”

Green: “Flipside: What if NIST/NSA
know a weakness in 1/10000000
curves? NIST searches space for
curves at ‘arent’ vulnerable.”

September 2013
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SafeCurves: choosing safe curves for elliptic-curve cryptography

All known security
criteria for elliptic
curves, machine verified.

Elligator: undetectable
curve points.

New Curve3617.

Also: can the curve be
backdoored?

http://safecurves.

cr.yp.to

http://safecurves.cr.yp.to
http://safecurves.cr.yp.to
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Bitcoin goes mainstream, bringing ECDSA with it

August 2013: Android Java RNG vulnerability blamed for bitcoin thefts

1HKywxiL4JziqXrzLKhmB6a74ma6kxbSDj has stolen 59 bitcoin from addresses using
repeated ECDSA signature randomness.



October 2013: MUSCULAR

Official Google statement:
“We are outraged”

Unofficial Google statement:
“Fuck these guys.”

SSL crypto not great – but even worse when it’s circumvented.
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Meanwhile at the NSA II





December 2013: trouble with XCB disk-encryption standard
10 Conclusion

In this paper we took a close look at XCB. Based on the study we can conclude the following:

1. XCBv2 as specified in [12] is not secure as a TES. We found an easy distinguishing attack on XCBv2. The
attack works because of a faulty padding scheme, and there seems to be no easy way to fix this problem.
However, if the inputs to XCBv2 are such that their lengths are multiples of the block length of the block
cipher, then our attack does not work. For this restricted message space XCBv2fb (the full block version of
XCBv2) is secure.

2. Even for the restricted message space, XCBv2fb (possibly) does not have the security bound as claimed
in [12]. This is due to the fact that the proof of the security theorem in [12] is wrong. The error stems from a
faulty calculation of collision probabilities in the inc function. We point out the mistake by showing concrete
examples where that the bound on the collision probabilities in the inc function as given in [12] are violated.
These examples are highly motivated by a prior study in [9].

3. We provide a corrected security analysis for XCBv2fb which is supported by a detailed proof. The correct
security bound that can be proved for XCBv2fb is worse than that claimed in [12].

4. XCBv1 does not suffer from the weaknesses as in XCBv2. The distinguishing attack which we present for
XCBv2 does not work for XCBv1. XCBv1 (as specified in [11]) is a secure TES. There was no proof of the
fact that XCBv1 is secure. We provide the first proof of security for XCBv1 along with a concrete security
bound.

5. XCBv2 was derived as a small modification of XCBv1. The authors said that the modifications were made to
enable easy analysis [12]. Though it is not very clear to us, how these modifications help in the analysis. Our
analysis reveals that any modification in an existing cryptographic scheme should be done with utmost care,
even an innocent looking change may have a grave impact on the security of the scheme.

6. XCBv2 is a part of the standard IEEE Std 1619.2-2010. Our analysis puts into serious doubts the method-
ology adopted by the working group for formulating the standard. We are surprised that an international
standardization committee for a cryptographic scheme overlooked some important security issues, which were
not so difficult to detect. Thus, our analysis of XCB indicates that contrary to the popular convention of
blindly adopting standards, the outcomes of standardization efforts should also be critically analyzed before
deploying them in a real application.
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December 2013: acoustic attacks against GnuPG

Acoustic cryptanalysis = power analysis with acoustic transmission of power signal.
News: 4096-bit GnuPG RSA keys extracted in one hour.

Figure 5: Parabolic microphone: Brüel&Kjær 4145 microphone capsule and 2669 preamplifier, in front
of a transparent parabolic reflector (56 cm diameter), using a self-built attachment, on a tripod.

Figure 6: Parabolic microphone (same as in Figure 5), attached to the portable measurement setup (in a
padded briefcase), attacking a target laptop from a distance of 4 meters. Full key extraction is possible
in this configuration and distance (see Section 5.4).
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—Genkin, Shamir, Tromer,
“RSA key extraction via low-bandwidth acoustic cryptanalysis”,

18 December 2013



December 2013: acoustic attacks against GnuPG

Acoustic cryptanalysis = power analysis with acoustic transmission of power signal.
News: 4096-bit GnuPG RSA keys extracted in one hour.

Figure 4: Physical setup of a key recovery attack. A mobile phone (Samsung Note II) is placed 30 cm
from a target laptop. The phone’s internal microphone points towards the laptop’s fan vents. Full key
extraction is possible in this configuration and distance (see Section 5.4).

crophone. The specifications of the microphone, amplification, filtering and A2D hardware were not
available to us. We observe that sensitivity is lower, and noise is higher than in the above setups. Fre-
quency response is also very limited: upper bounded by the 24 kHz Nyquist frequency (48 kS/s sample
rate), and in practice much lower due to transducer and filter design (recall that cellular speech codecs
filter out audio beyond 4 kHz).

2.4 Distant acquisition

Parabolic microphones. The range of our attack can be greatly enhanced by using a parabolic
reflector, which focuses incoming planar sound waves into a single focal point. To this end, we placed
the Brüel&Kjær 4145 microphone capsule at the focal point of a parabolic reflector (plastic, 56 cm
diameter, 10 cm focal distance, $40 from eBay), held by a self-built holder (see Figure 5). As discussed
in Section 5.4, this increases the effective range of our key extraction attacks from 1 meter to 4 meters
(see Figure 6).
Laser vibrometers. We conjecture that laser microphones and laser vibrometers will greatly increase
the effective range of attacks, given an optical line of sight to a reflecting surface on, or near, the target
computer. This will be studied in future works.
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information technology systems to trust that their data, including their 

financial transactions, will not be altered or stolen. Encryption-related 

software, including pervasive examples such as Secure Sockets Layer (SSL) 

and Public Key Infrastructure (PKI), is essential to online commerce and 

user authentication. It is part of the underpinning of current 

communications networks.  Indeed, in light of the massive increase in 

cyber-crime and intellectual property theft on-line, the use of encryption 

should be greatly expanded to protect not only data in transit, but also data 

at rest on networks, in storage, and in the cloud. 

We are aware of recent allegations that the United States Government 

has intentionally introduced “backdoors” into commercially available 

software, enabling decryption of apparently secure software. We are also 

aware that some people have expressed concern that such “backdoors” 

could be discovered and used by criminal cartels and other governments, 

and hence that some commercially available software is not trustworthy 

today.  

Upon review, however, we are unaware of any vulnerability created 

by the US Government in generally available commercial software that 

puts users at risk of criminal hackers or foreign governments decrypting 

their data. Moreover, it appears that in the vast majority of generally used, 

commercially available encryption software, there is no vulnerability, or 

“backdoor,” that makes it possible for the US Government or anyone else 

to achieve unauthorized access.174  

                                                           
174 Any cryptographic algorithm can become exploitable if implemented incorrectly or used improperly. 

December 2013: Obama’s NSA review panel report



Some wild speculation left undenied by the previous denial:
The NSA could have

• backdoored the Dual-EC DRBG and only they have the secret key.

• backdoored the NIST curves and only they have the secret key and computational
power needed in the backdoor.

• introduced vulnerabilities or backdoors into cryptographic software such as
OpenSSL which are free software and thus not commercially available.

• introduced vulnerabilities or backdoors into Windows, OS X, and Red Hat, only
three commerically available OSes out of hundreds on the market.

• introduced backdoors into cryptographic hardware such as the Intel hardware RNG
or crypto instructions.

• modified 100% of generally available commercial software to disable encryption
whenever possible.

• a backdoor/”key escrow” feature allowing “lawful access” to any AES-encrypted
data.



December 2013





Hat tip @nymble.



Snippets from the patent




