Understanding DNSCurve DNS in a nutshell

D. J. Bernstein 1| Browser — DNS:

twitter.com?

University of lllinois at Chicago &
Technische Universiteit Eindhoven

Disclaimer: | haven't
released DNSCurve software yet.

But you can try prototypes:
@mdempsky's DNSCurve cache,
@hhavt's CurveDNS server.

See also related projects: NaCl,
DNSCrypt, CurveCP, MinimalLT.
Varying release levels.

Understanding DNSCurve
D. J. Bernstein

University of lllinois at Chicago &
Technische Universiteit Eindhoven

DNS in a nutshell

1| Browser — DNS:

twitter.com?

2| DNS — browser:

Disclaimer: | haven't
released DNSCurve software yet.

But you can try prototypes:
@mdempsky's DNSCurve cache,
@hhavt's CurveDNS server.

See also related projects: NaCl,
DNSCrypt, CurveCP, MinimalLT.
Varying release levels.

twitter.com A 199.16.156.38

Understanding DNSCurve
D. J. Bernstein

University of lllinois at Chicago &
Technische Universiteit Eindhoven

DNS in a nutshell

1| Browser — DNS:

twitter.com?

2| DNS — browser:

Disclaimer: | haven't
released DNSCurve software yet.

But you can try prototypes:
@mdempsky's DNSCurve cache,
@hhavt's CurveDNS server.

See also related projects: NaCl,
DNSCrypt, CurveCP, MinimalLT.
Varying release levels.

twitter.com A 199.16.156.38

0l Admin = ns2.twitter.com:
twitter.com A 199.16.156.38

Understanding DNSCurve
D. J. Bernstein

University of lllinois at Chicago &
Technische Universiteit Eindhoven

DNS in a nutshell

1| Browser — DNS:

twitter.com?

2| DNS — browser:

Disclaimer: | haven't
released DNSCurve software yet.

But you can try prototypes:
@mdempsky's DNSCurve cache,
@hhavt's CurveDNS server.

See also related projects: NaCl,
DNSCrypt, CurveCP, MinimalLT.
Varying release levels.

twitter.com A 199.16.156.38

0l Admin = ns2.twitter.com:
twitter.com A 199.16.156.38

1| Browser — ns2.twitter.com:

twitter.com?

Understanding DNSCurve
D. J. Bernstein

University of lllinois at Chicago &
Technische Universiteit Eindhoven

DNS in a nutshell

1| Browser — DNS:

twitter.com?

2| DNS — browser:

Disclaimer: | haven't
released DNSCurve software yet.

But you can try prototypes:
@mdempsky's DNSCurve cache,
@hhavt's CurveDNS server.

See also related projects: NaCl,
DNSCrypt, CurveCP, MinimalLT.
Varying release levels.

twitter.com A 199.16.156.38

0l Admin = ns2.twitter.com:
twitter.com A 199.16.156.38

1| Browser — ns2.twitter.com:

twitter.com?

2lns2.twitter.com — browser:
twitter.com A 199.16.156.38

anding DNSCurve

rnstein

ty of lllinois at Chicago &
he Universiteit Eindhoven

er: | haven't

DNSCurve software yet.

can try prototypes:
sky's DNSCurve cache,
s CurveDNS server.

related projects: NaCl,
pt, CurveCP, MinimalT.
release levels.

DNS in a nutshell

1| Browser — DNS:

twitter.com?

2| DNS — browser:
twitter.com A 199.16.156.38

0l Admin — ns2.twitter.com:
twitter.com A 199.16.156.38

twitter.com?

2lns2.twitter.com — browser:
twitter.com A 199.16.156.38

1| Browser — ns2.twitter. com:

—3| com
twitte:

ns2...

|ISCurve

is at Chicago &
siteit Eindhoven

DNS in a nutshell

1

Browser — DNS:

twitter.com?

2

n't
e software yet.

‘ototypes:
Curve cache,
NS server.

ojects: NaCl,
_P, MinimalLT.
els.

DNS — browser:

twitter.com A 199.16.156.38

—3

0

Admin — ns2.twitter.com:

twitter.com A 199.16.156.38

1

Browser — ns2.twitter.com:

twitter.com?

2

ns?2.twitter.com — browser:

twitter.com A 199.16.156.38

com admin —

twitter.com NS

ns2...

A 204.13

g0 &
hoven

DNS in a nutshell

1

Browser — DNS:

twitter.com?

2

r yet.

he,

1Cl,
aLT.

DNS — browser:

twitter.com A 199.16.156.38

—3

0

Admin — ns2.twitter.com:

twitter.com A 199.16.156.38

1

Browser — ns2.twitter.com:

twitter.com?

2

ns2.twitter.com — browser:

twitter.com A 199.16.156.38

com admin — f.ns.co

twitter.com NS ns2...

ns2...

A 204.13.250.34

DNS in a nutshell

1

Browser — DNS:

twitter.com?

2

DNS — browser:

twitter.com A 199.16.156.38

—3

0

Admin — ns2.twitter.com:

twitter.com A 199.16.156.38

1

Browser — ns2.twitter.com:

twitter.com?

2

ns?2.twitter.com — browser:

twitter.com A 199.16.156.38

com admin — f.ns.com:

twitter.com NS ns2...

ns2...

A 204.13.250.34

DNS in a nutshell

1

Browser — DNS:

twitter.com?

2

DNS — browser:

twitter.com A 199.16.156.38

—3| com admin — f.ns.com:

twitter.com NS ns2...
ns2... A204.13.250.34

—?2| Browser —- f.ns.com:

0

Admin — ns2.twitter.com:

twitter.com A 199.16.156.38

1

Browser — ns2.twitter.com:

twitter.com?

2

ns?2.twitter.com — browser:

twitter.com A 199.16.156.38

twitter.com?

DNS in a nutshell

1

Browser — DNS:

twitter.com?

2

DNS — browser:

twitter.com A 199.16.156.38

—3| com admin — f.ns.com:

twitter.com NS ns2...
ns2... A204.13.250.34

—?2| Browser —- f.ns.com:

0

Admin — ns2.twitter.com:

twitter.com A 199.16.156.38

1

Browser — ns2.twitter.com:

twitter.com?

2

ns?2.twitter.com — browser:

twitter.com A 199.16.156.38

twitter.com?

—1|f.ns.com — browser:

twitter.com NS ns2...
ns2... A204.13.250.34

DNS in a nutshell

1

Browser — DNS:

twitter.com?

2

DNS — browser:

twitter.com A 199.16.156.38

—3| com admin — f.ns.com:

twitter.com NS ns2...
ns2... A204.13.250.34

—?2| Browser —- f.ns.com:

twitter.com?

—1|f.ns.com — browser:

0

Admin — ns2.twitter.com:

twitter.com A 199.16.156.38

1

Browser — ns2.twitter.com:

twitter.com?

2

ns?2.twitter.com — browser:

twitter.com A 199.16.156.38

twitter.com NS ns2...
ns2... A204.13.250.34

0| Twitter admin — ns2:
twitter.com A 199.16.156.38

DNS in a nutshell

1

Browser — DNS:

twitter.com?

2

DNS — browser:

twitter.com A 199.16.156.38

—3| com admin — f.ns.com:

twitter.com NS ns2...
ns2... A204.13.250.34

—?2| Browser —- f.ns.com:

twitter.com?

—1|f.ns.com — browser:

0

Admin — ns2.twitter.com:

twitter.com A 199.16.156.38

1

Browser — ns2.twitter.com:

twitter.com?

2

ns?2.twitter.com — browser:

twitter.com A 199.16.156.38

twitter.com NS ns2...
ns2... A204.13.250.34

0| Twitter admin — ns2:

twitter.com A 199.16.156.38

1| Browser — 204.13.250.34:

twitter.com?

DNS in a nutshell

1

Browser — DNS:

twitter.com?

2

DNS — browser:

twitter.com A 199.16.156.38

—3| com admin — f.ns.com:

twitter.com NS ns2...
ns2... A204.13.250.34

—?2| Browser —- f.ns.com:

twitter.com?

—1|f.ns.com — browser:

0

Admin — ns2.twitter.com:

twitter.com A 199.16.156.38

1

Browser — ns2.twitter.com:

twitter.com?

2

ns?2.twitter.com — browser:

twitter.com A 199.16.156.38

twitter.com NS ns2...
ns2... A204.13.250.34

0| Twitter admin — ns2:

twitter.com A 199.16.156.38

1| Browser — 204.13.250.34:

twitter.com?

21204.13.250.34 — browser:

twitter.com A 199.16.156.38

a nutshell

ser — DNS:

. com?

— browser:
~.com A 199.16.156.38

—3| com admin — f.ns.com:

twitter.com NS ns2. ..
ns2... A204.13.250.34

—?2| Browser — f.ns.com:

twitter.com?

n — ns2.twitter.com:
~.com A 199.16.156.38

ser — ns2.twitter. com:

. com?

-witter.com — browser:

~.com A 199.16.156.38

—1|f.ns.com — browser:

twitter.com NS ns2...
ns2... A204.13.250.34

0

Twitter admin — ns2:

twitter.com A 199.16.156.38

1

Browser — 204.13.250.34:

twitter.com?

2

204.13.250.34 — browser:

twitter.com A 199.16.156.38

Often e\

e Mayb
where
Has t

I
99.16.156.38

—3| com admin — f.ns.com:

twitter.com NS ns2...
ns2... A204.13.250.34

—2| Browser — f.ns.com:

twitter.com?

twitter.com:
090.16.156. 38

.twitter.com:

~om — browser:
00.16.156. 38

—1|f.ns.com — browser:

twitter.com NS ns2...
ns2... A204.13.250.34

0

Twitter admin — ns2:

twitter.com A 199.16.156.38

1

Browser — 204.13.250.34:

twitter.com?

2

204.13.250.34 — browser:

twitter.com A 199.16.156.38

Often even more <

e Maybe browser
where .com ser

Has to ask root

6.38

—3| com admin — f.ns.com:

twitter.com NS ns2. ..
ns2... A204.13.250.34

—2| Browser — f.ns.com:

twitter.com?

com:
6.38

T, COI.

JWSEY .

6.38

—1|f.ns.com — browser:

twitter.com NS ns2...
ns2... A204.13.250.34

0

Twitter admin — ns2:

twitter.com A 199.16.156.38

1

Browser — 204.13.250.34:

twitter.com?

2

204.13.250.34 — browser:

twitter.com A 199.16.156.38

Often even more steps:

e Maybe browser doesn't k
where .com server Is.

Has to ask root server.

—3| com admin — f.ns.com:

twitter.com NS ns2...
ns2... A204.13.250.34

—2| Browser — f.ns.com:

twitter.com?

—1|f.ns.com — browser:

twitter.com NS ns2...
ns2... A204.13.250.34

0

Twitter admin — ns2:

twitter.com A 199.16.156.38

1

Browser — 204.13.250.34:

twitter.com?

2

204.13.250.34 — browser:

twitter.com A 199.16.156.38

Often even more steps:

e Maybe browser doesn’'t know
where .com server Is.

Has to ask root server.

—3| com admin — f.ns.com:

twitter.com NS ns2. ..
ns2... A204.13.250.34

—2| Browser — f.ns.com:

twitter.com?

—1|f.ns.com — browser:

twitter.com NS ns2...
ns2... A204.13.250.34

0

Twitter admin — ns2:

twitter.com A 199.16.156.38

1

Browser — 204.13.250.34:

twitter.com?

2

204.13.250.34 — browser:

twitter.com A 199.16.156.38

Often even more steps:

e Maybe browser doesn’'t know
where .com server Is.

Has to ask root server.

e twitter.com server name Is
actually ns2.p34.dynect.net.
Is browser allowed to accept
ns2.p34.dynect.net address
from the .com server?
Does it have to ask .net?

—3| com admin — f.ns.com:

twitter.com NS ns2. ..
ns2... A204.13.250.34

—2| Browser — f.ns.com:

twitter.com?

—1|f.ns.com — browser:

twitter.com NS ns2...
ns2... A204.13.250.34

0

Twitter admin — ns2:

twitter.com A 199.16.156.38

1

Browser — 204.13.250.34:

twitter.com?

2

204.13.250.34 — browser:

twitter.com A 199.16.156.38

Often even more steps:

e Maybe browser doesn’'t know
where .com server Is.

Has to ask root server.

e twitter.com server name Is
actually ns2.p34.dynect.net.
Is browser allowed to accept
ns2.p34.dynect.net address
from the .com server?
Does it have to ask .net?

e Browser actually pulls from
a laptop-wide DNS cache.
Or a site-wide DNS cache.

"admin — f.ns.com:

~.com NS ns2...
A 204.13.250.34

wser — f.ns.com:
. com?

s.com — browser:

~.com NS ns2...
A 204.13.250.34

er admin — ns2:
~.com A 199.16.156.38

ser — 204.13.250.34:

. com?

3.250.34 — browser:
~.com A 199.16.156.38

Often even more steps:

e Maybe browser doesn’'t know
where .com server Is.
Has to ask root server.

e twitter.com server name Is

actually ns2.p34.dynect.net.

Is browser allowed to accept
ns2.p34.dynect.net address
from the .com server?

Does it have to ask .net?

e Browser actually pulls from
a laptop-wide DNS cache.
Or a site-wide DNS cache.

DNS in

The usel
twitte:

The use
yull twe

oush twe

- f .ns.com:

ns2. ..
.250.34

.N1S . COI.

browser:

ns2. ..
.250.34

— NsS2:
090.16.156. 38

.13.250.34:

- browser:
00.16.156.38

Often even more steps:

e Maybe browser doesn’'t know
where .com server Is.

Has to ask root server.

e twitter.com server name Is

actually ns2.p34.dynect.net.

Is browser allowed to accept
ns2.p34.dynect.net address
from the .com server?

Does it have to ask .net?

e Browser actually pulls from
a laptop-wide DNS cache.
Or a site-wide DNS cache.

DNS in the real w

The user doesn't \

twitter.com's |P

The user wants to
oull tweets from T

bush tweets to Tw

6.38

6.38

Often even more steps:

e Maybe browser doesn’'t know
where .com server Is.
Has to ask root server.

e twitter.com server name Is

actually ns2.p34.dynect.net.

Is browser allowed to accept
ns2.p34.dynect.net address
from the .com server?

Does it have to ask .net?

e Browser actually pulls from
a laptop-wide DNS cache.
Or a site-wide DNS cache.

DNS in the real world

The user doesn’'t want
twitter.com's IP address.

The user wants to
oull tweets from Twitter,
bush tweets to Twitter.

Often even more steps:

e Maybe browser doesn’'t know
where .com server is.
Has to ask root server.

e twitter.com server name iIs

actually ns2.p34.dynect.net.

Is browser allowed to accept
ns2.p34.dynect.net address
from the .com server?

Does it have to ask .net?

e Browser actually pulls from
a laptop-wide DNS cache.
Or a site-wide DNS cache.

DNS in the real world

The user doesn’'t want
twitter.com's IP address.

The user wants to
oull tweets from Twitter,

bush tweets to Twitter.

Often even more steps:

e Maybe browser doesn’'t know

where .com server is.
Has to ask root server.

twitter.com server name IS

actually ns2.p34.dynect.net.

Is browser allowed to accept
ns2.p34.dynect.net address
from the .com server?

Does it have to ask .net?

e Browser actually pulls from

a laptop-wide DNS cache.
Or a site-wide DNS cache.

DNS in the real world

The user doesn’'t want
twitter.com's IP address.

The user wants to
oull tweets from Twitter,

bush tweets to Twitter.

The big picture:
DNS is just one small part
of any real Internet protocol.

Typical examples:
HTTP starts with DNS.
SMTP starts with DNS.
SSH starts with DNS.

/eén more steps:

e browser doesn't know
. COom Server Is.

o ask root server.

cer . com server name IS

lly ns2.p34.dynect .net.

wser allowed to accept
034 .dynect .net address
the .com server?

it have to ask .net?

ser actually pulls from
op-wide DNS cache.
site-wide DNS cache.

DNS in the real world

The user doesn’'t want
twitter.com's IP address.

The user wants to
oull tweets from Twitter,

bush tweets to T witter.

The big picture:
DNS is just one small part

of any real Internet protocol.

Typical examples:
HTTP starts with DNS.
SMTP starts with DNS.
SSH starts with DNS.

Real Int
User ask

teps:

doesn’'t know
vVer IS.
- server.

erver name IS

34 .dynect .net.

/ied to accept
ct.net address
server’?

ask .net?

y pulls from

)NS cache.
JNS cache.

DNS in the real world

The user doesn’'t want
twitter.com's IP address.

The user wants to
oull tweets from Twitter,

bush tweets to Twitter.

The big picture:
DNS is just one small part

of any real Internet protocol.

Typical examples:
HTTP starts with DNS.
SMTP starts with DNS.
SSH starts with DNS.

Real Internet prot:
User asks browser

NOW

S iS

C.net.

2pt
ldress

v

DNS in the real world

The user doesn’'t want
twitter.com's IP address.

The user wants to
oull tweets from Twitter,

bush tweets to T witter.

The big picture:
DNS is just one small part

of any real Internet protocol.

Typical examples:
HTTP starts with DNS.
SMTP starts with DNS.
SSH starts with DNS.

Real Internet protocol exam
User asks browser for

DNS in the real world

The user doesn’'t want
twitter.com's IP address.

The user wants to
oull tweets from Twitter,

bush tweets to Twitter.

The big picture:
DNS is just one small part

of any real Internet protocol.

Typical examples:
HTTP starts with DNS.
SMTP starts with DNS.
SSH starts with DNS.

Real Internet protocol example:
User asks browser for

DNS in the real world

The user doesn’'t want
twitter.com's IP address.

The user wants to
oull tweets from Twitter,

bush tweets to Twitter.

The big picture:
DNS is just one small part

of any real Internet protocol.

Typical examples:
HTTP starts with DNS.
SMTP starts with DNS.
SSH starts with DNS.

Real Internet protocol example:
User asks browser for
http://theguardian. com.

DNS in the real world

The user doesn’'t want
twitter.com's IP address.

The user wants to
oull tweets from Twitter,

bush tweets to Twitter.

The big picture:
DNS is just one small part

of any real Internet protocol.

Typical examples:
HTTP starts with DNS.
SMTP starts with DNS.
SSH starts with DNS.

Real Internet protocol example:
User asks browser for
http://theguardian. com.

Many levels of redirection:

root DNS +—

.com DNS

.theguardian.com DNS
http://theguardian.com —
http://www.theguardian.com
http://www.theguardian.com/uk.

And then the hard work begins:
browser receives page,
displays page for user.

the real world

r doesn’t want
~.com's |IP address.

r wants to
ots from Twitter,
sets to [witter.

picture:
just one small part

eal Internet protocol.

examples:

tarts with DNS.
tarts with DNS.
rts with DNS.

Real Internet protocol example:
User asks browser for
http://theguardian. com.

Many levels of redirection:

root DNS

.com DNS

.theguardian.com DNS
http://theguardian.com —
http://www.theguardian.com
http://www.theguardian.com/uk.

And then the hard work begins:
browser receives page,
displays page for user.

What dc

Crypto g
Integrity
for the |

Security
IS 1rrelev

protect |

orld

nvant

" address.

‘witter,
/itter.

small part

1et protocol.

DNS.
DNS.
NS.

Real Internet protocol example:
User asks browser for

http://theguardian. com.

Many levels of redirection:

root DNS +—

.com DNS

.theguardian.com DNS
http://theguardian.com —
http://www.theguardian.com
http://www.theguardian.com/uk.

And then the hard work begins:
browser receives page,
displays page for user.

What does DNS s

Crypto goals: con
integrity, and avai
for the user’s cor

Security for IP ad
s Irrelevant unless
protect user comn

Real Internet protocol example: What does DNS security me
User asks browser for

Crypto goals: confidentiality
http://theguardian. com.

integrity, and availability
Many levels of redirection: for the user’'s communicat
root DNS —

.com DNS
.theguardian.com DNS

Security for IP addresses
Is Irrelevant unless 1t helps

protect user communication
http://theguardian.com —

[http://www.theguardian.com >
col. http://www.theguardian.com/uk.

And then the hard work begins:
browser receives page,
displays page for user.

Real Internet protocol example: What does DNS security mean?
User asks browser for

' e N Crypto goals: confidentiality,
ttp://theguardian. com. integrity, and availability

Many levels of redirection: for the user’'s communication.
root DNS —

.com DNS
.theguardian.com DNS

Security for IP addresses
Is Irrelevant unless 1t helps

protect user communication.
http://theguardian.com —

http://www.theguardian.com
http://www.theguardian.com/uk.

And then the hard work begins:
browser receives page,
displays page for user.

Real Internet protocol example:
User asks browser for

http://theguardian. com.

Many levels of redirection:

root DNS +—

.com DNS

.theguardian.com DNS
http://theguardian.com —
http://www.theguardian.com

http://www.theguardian.com/uk.

And then the hard work begins:
browser receives page,
displays page for user.

What does DNS security mean?

Crypto goals: confidentiality,
integrity, and availability
for the user’'s communication.

Security for IP addresses
Is Irrelevant unless 1t helps

protect user communication.

Consider DNSSEC marketing:
isc.org is “signed” by DNSSEC.

Real Internet protocol example:
User asks browser for
http://theguardian. com.

Many levels of redirection:

root DNS +—

.com DNS

.theguardian.com DNS
http://theguardian.com —
http://www.theguardian.com

http://www.theguardian.com/uk.

And then the hard work begins:
browser receives page,
displays page for user.

What does DNS security mean?

Crypto goals: confidentiality,
integrity, and availability
for the user’'s communication.

Security for IP addresses
Is Irrelevant unless 1t helps

protect user communication.

Consider DNSSEC marketing:
isc.org is “signed” by DNSSEC.

Reality: What DNSSEC signs

Is an |P-address redirection:
isc.org A 149.20.64.69.
This is meaningless for users.

arnet protocol example:
s browser for

'theguardian. com.

vels of redirection:

S —

NS —

yrdian.com DNS —
'theguardian.com —

‘'www .theguardian.com

‘'www . theguardian.com/uk.

n the hard work begins:
recelves page,
page for user.

What does DNS security mean?

Crypto goals: confidentiality,

integrity, and availability
for the user’'s communication.

Security for IP addresses
Is Irrelevant unless 1t helps
protect user communication.

Consider DNSSEC marketing:

isc.org is “signed” by DNSSEC.

Reality: What DNSSEC signs

Is an |P-address redirection:
isc.org A 149.20.64.69.

This is meaningless for users.

Example

“You ca
Our DN
by a Hai
in a fort
protecte
Signing
3 out of
by VeriS

bcol example:
for

1ian. comn.

Irection:

m DNS —

lian.com —

yuardian. com

ruardian. com/uk.

- work begins:
age,
Iser.

What does DNS security mean?

Crypto goals: confidentiality,
integrity, and availability
for the user’'s communication.

Security for IP addresses
Is Irrelevant unless 1t helps

protect user communication.

Consider DNSSEC marketing:

isc.org is “signed” by DNSSEC.

Reality: What DNSSEC signs

Is an |P-address redirection:
isc.org A 149.20.64.69.

This is meaningless for users.

Example of bogus

“You can't trust ©
Our DNS data is ¢
by a Hardware Se
in a fortress in Mc
protected by mact
Signing procedure
3 out of 16 smart
by VeriSign Trust

ple:

.com

.com/uk.

ns:

What does DNS security mean?

Crypto goals: confidentiality,

integrity, and availability
for the user’'s communication.

Security for IP addresses
Is Irrelevant unless 1t helps

protect user communication.

Consider DNSSEC marketing:

isc.org is “signed” by DNSSEC.

Reality: What DNSSEC signs

Is an |P-address redirection:
isc.org A 149.20.64.69.

This is meaningless for users.

Example of bogus “security”

“You can't trust online serve
Our DNS data is signed offl
by a Hardware Security Moc
in a fortress in Maryland
protected by machine guns.
Signing procedure requires
3 out of 16 smart cards helc
by VeriSign Trust Managers

What does DNS security mean?

Crypto goals: confidentiality,
integrity, and availability
for the user’s communication.

Security for IP addresses
Is Irrelevant unless 1t helps

protect user communication.

Consider DNSSEC marketing:

isc.org is “signed” by DNSSEC.

Reality: What DNSSEC signs

Is an |P-address redirection:
isc.org A 149.20.64.69.

This is meaningless for users.

Example of bogus “security”:

“You can't trust online servers.
Our DNS data is signed offline
by a Hardware Security Module
in a fortress in Maryland
protected by machine guns.
Signing procedure requires

3 out of 16 smart cards held

by VeriSign Trust Managers.”

What does DNS security mean?

Crypto goals: confidentiality,
integrity, and availability
for the user’s communication.

Security for IP addresses
Is Irrelevant unless 1t helps
protect user communication.

Consider DNSSEC marketing:

isc.org is “signed” by DNSSEC.

Reality: What DNSSEC signs

Is an |P-address redirection:
isc.org A 149.20.64.69.
This is meaningless for users.

Example of bogus “security”:

“You can't trust online servers.
Our DNS data is signed offline
by a Hardware Security Module
in a fortress in Maryland
protected by machine guns.
Signing procedure requires

3 out of 16 smart cards held

by VeriSign Trust Managers.”

Does this protect users? No!
The web server is online,

and most web pages are dynamic.
The mail server is online.

The shell server is online.

es DNS security mean?

roals: confidentiality,

, and availability
user’s communication.

for IP addresses
ant unless it helps
Iser communication.

- DNSSEC marketing:

r is “signed” by DNSSEC.

What DNSSEC signs

address redirection:
r A 149.20.64.69.

neaningless for users.

Example of bogus “security”:

“You can't trust online servers.
Our DNS data is signed offline
by a Hardware Security Module

T

a fortress in Maryland

protected by machine guns.

Signing procedure requires

3

out of 16 smart cards held

by VeriSign Trust Managers.”

Does this protect users? No!

The web server is online,

and most web pages are dynamic.

T
T

ne mail server is online.

ne shell server is online.

Occasiot
broadca:

so offlin
might he

ecurity mean?

Identiality,
ability
nmunication.

1resses
1t helps
yunication.

- marketing:

d" by DNSSEC.

SSEC signs
direction:
0.64.609.
s for users.

Example of bogus “security”:

“You can't trust online servers.
Our DNS data is signed offline
by a Hardware Security Module

N

a fortress in Maryland

protected by machine guns.

Signing procedure requires

3

out of 16 smart cards held

by VeriSign Trust Managers.”

Does this protect users? No!

The web server is online,

and most web pages are dynamic.

T
T

ne mail server is online.

ne shell server i1s online.

Occasionally user
broadcast+static

so offline creation
might help protect

an’

ion.

J .

SSEC.

1S

Example of bogus “security”:

“You can't trust online servers.
Our DNS data is signed offline
by a Hardware Security Module

T

a fortress in Maryland

protected by machine guns.

Signing procedure requires

3

out of 16 smart cards held

by VeriSign Trust Managers.”

Does this protect users? No!

The web server is online,

and most web pages are dynamic.

T
T

ne mail server is online.

ne shell server is online.

Occasionally user data is
broadcast+static+single-soL

so offline creation and signir
might help protect integrity.

Example of bogus “security”:

“You can't trust online servers.
Our DNS data is signed offline
by a Hardware Security Module

N

a fortress in Maryland

protected by machine guns.

Signing procedure requires

3

out of 16 smart cards held

by VeriSign Trust Managers.”

Does this protect users? No!

The web server is online,

and most web pages are dynamic.

T
T

ne mail server is online.

ne shell server i1s online.

Occasionally user data is
broadcast+static+single-source,

so offline creation and signing
might help protect integrity.

Example of bogus “security”:

“You can't trust online servers.
Our DNS data is signed offline
by a Hardware Security Module

N

a fortress in Maryland

protected by machine guns.

Signing procedure requires

3

out of 16 smart cards held

by VeriSign Trust Managers.”

Does this protect users? No!

The web server is online,

and most web pages are dynamic.

T
T

ne mail server is online.

ne shell server i1s online.

Occasionally user data is

broadcast+static+single-source,

so offline creation and signing

might help protect integrity.

But this Is a rare corner case.
Offline creation and signing:
impossible for most user data.

Example of bogus “security”:

“You can't trust online servers.
Our DNS data is signed offline
by a Hardware Security Module

in a fortress in Maryland

protected by machine guns.

Signing procedure requires

3

out of 16 smart cards held

by VeriSign Trust Managers.”

Does this protect users? No!

The web server is online,

and most web pages are dynamic.

T
T

ne mail server is online.

ne shell server i1s online.

Occasionally user data is
broadcast+static+single-source,

so offline creation and signing
might help protect integrity.

But this Is a rare corner case.
Offline creation and signing:
impossible for most user data.

By insisting on signatures,
DNSSEC creates problems for
ookups of dynamic DNS data;

ookups of nonexistent names;
speed; robustness; availability;

freshness; confidentiality.
Analogy: imagine HTTPSEC.

' of bogus “security’:

n't trust online servers.
S data is signed offline
-dware Security Module
ress In Maryland

d by machine guns.
procedure requires

16 smart cards held
ign Trust Managers."

s protect users? No!
) server Is online,

t web pages are dynamic.

1l server i1s online.
Il server is online.

Occasionally user data is
broadcast+static+single-source,

so offline creation and signing
might help protect integrity.

But this is a rare corner case.
Offline creation and signing:

impossible for most user data.

By insisting on signatures,
DNSSEC creates problems for
ookups of dynamic DNS data;

ookups of nonexistent names;
speed; robustness; availability;

freshness; confidentiality.
Analogy: imagine HTTPSEC.

DNSCur

“security’ :

nline servers.
signed offline
urity Module
ryland

line guns.
requires

cards held
Managers."

users? Nol

> online,

es are dynamic.
5 online.

s online.

Occasionally user data is
broadcast+static+single-source,

so offline creation and signing
might help protect integrity.

But this Is a rare corner case.
Offline creation and signing:

impossible for most user data.

By insisting on signatures,
DNSSEC creates problems for
ookups of dynamic DNS data;

ookups of nonexistent names;
speed; robustness; availability;
freshness; confidentiality.

Analogy: imagine HTTPSEC.

DNSCurve, Curve!

YS.
ne

lule

\amic.

Occasionally user data is
broadcast+static+single-source,

so offline creation and signing
might help protect integrity.

But this is a rare corner case.
Offline creation and signing:

impossible for most user data.

By insisting on signatures,
DNSSEC creates problems for
ookups of dynamic DNS data;

ookups of nonexistent names:
speed; robustness; availability;
freshness; confidentiality.

Analogy: imagine HT TPSEC.

DNSCurve, CurveCP, etc.

Occasionally user data is
broadcast+static+single-source,

so offline creation and signing
might help protect integrity.

But this Is a rare corner case.
Offline creation and signing:

impossible for most user data.

By insisting on signatures,
DNSSEC creates problems for
ookups of dynamic DNS data;

ookups of nonexistent names;
speed; robustness; availability;

freshness; confidentiality.
Analogy: imagine HTTPSEC.

DNSCurve, CurveCP, etc.

Occasionally user data is
broadcast+static+single-source,

so offline creation and signing
might help protect integrity.

But this Is a rare corner case.
Offline creation and signing:

impossible for most user data.

By insisting on signatures,
DNSSEC creates problems for
ookups of dynamic DNS data;

ookups of nonexistent names;
speed; robustness; availability;

freshness; confidentiality.
Analogy: imagine HTTPSEC.

DNSCurve, CurveCP, etc.

Most Internet connections today
have no cryptographic protection.

Occasionally user data is
broadcast+static+single-source,

so offline creation and signing
might help protect integrity.

But this Is a rare corner case.
Offline creation and signing:

impossible for most user data.

By insisting on signatures,
DNSSEC creates problems for
ookups of dynamic DNS data;

ookups of nonexistent names;
speed; robustness; availability;

freshness; confidentiality.
Analogy: imagine HTTPSEC.

DNSCurve, CurveCP, etc.

Most Internet connections today
have no cryptographic protection.

The big plan: replace
DNS with DNSCurve,

TCP with CurveCP,
HTTP with HT TPCurve, etc.

Occasionally user data is
broadcast+static+single-source,

so offline creation and signing
might help protect integrity.

But this Is a rare corner case.
Offline creation and signing:

impossible for most user data.

By insisting on signatures,
DNSSEC creates problems for
ookups of dynamic DNS data;

ookups of nonexistent names;
speed; robustness; availability;

freshness; confidentiality.
Analogy: imagine HTTPSEC.

DNSCurve, CurveCP, etc.

Most Internet connections today
have no cryptographic protection.

The big plan: replace
DNS with DNSCurve,

TCP with CurveCP,
HTTP with HT TPCurve, etc.

All client data is authenticated +
encrypted to server's public key
from client’s public key.

All server data is authenticated +
encrypted to client’s public key
from server's public key.

1ally user data is
st+static+single-source,
2 creation and signing
|p protect integrity.

IS a rare corner case.
creation and signing:

ble for most user data.

Ing on signatures,

_ creates problems for
of dynamic DNS data;
of nonexistent names;
bbustness; availability;
s; confidentiality.

. imagine HTTPSEC.

DNSCurve, CurveCP, etc.

Most Internet connections today
have no cryptographic protection.

The big plan: replace

DNS with DNSCurve,

TCP with CurveCP,

HTTP with HT TPCurve, etc.

All client data is authenticated +
encrypted to server’s public key
from client’s public key.

All server data is authenticated +
encrypted to client’s public key
from server's public key.

Crypto |
to netwc

Each pa
encrypte
Each pa
decrypte
after it |

data is
-single-source,
and signing
Integrity.

orner case.
ind signing:

ost user data.

natures,
roblems for
c DNS data;
tent names;
availability;
itiality.
HTTPSEC.

DNSCurve, CurveCP, etc.

Most Internet connections today
have no cryptographic protection.

The big plan: replace

DNS with DNSCurve,

TCP with CurveCP,

HTTP with HT TPCurve, etc.

All client data is authenticated +
encrypted to server's public key
from client’s public key.

All server data is authenticated +
encrypted to client’s public key
from server's public key.

Crypto layer is ver
to network layer.

Each packet is aut
encrypted just bef
Each packet is ver
decrypted immedi:
after it is received

rce,
18

(v

1g:

Jata.

¢

DNSCurve, CurveCP, etc.

Most Internet connections today
have no cryptographic protection.

The big plan: replace

DNS with DNSCurve,

TCP with CurveCP,

HTTP with HT TPCurve, etc.

All client data is authenticated +
encrypted to server’s public key
from client’s public key.

All server data is authenticated +
encrypted to client’s public key
from server's public key.

Crypto layer is very close
to network layer.

Each packet is authenticate
encrypted just before it Is se
Each packet is verified +
decrypted immediately
after it is received.

DNSCurve, CurveCP, etc.

Most Internet connections today
have no cryptographic protection.

The big plan: replace

DNS with DNSCurve,

TCP with CurveCP,

HTTP with HT TPCurve, etc.

All client data is authenticated +
encrypted to server's public key
from client’s public key.

All server data is authenticated +
encrypted to client’s public key
from server's public key.

Crypto layer is very close
to network layer.

Each packet is authenticated +
encrypted just before it is sent.
Each packet is verified +
decrypted immediately

after it is received.

DNSCurve, CurveCP, etc.

Most Internet connections today
have no cryptographic protection.

The big plan: replace

DNS with DNSCurve,

TCP with CurveCP,

HTTP with HT TPCurve, etc.

All client data is authenticated +
encrypted to server's public key
from client’s public key.

All server data is authenticated +
encrypted to client’s public key
from server's public key.

Crypto layer is very close
to network layer.

Each packet is authenticated +
encrypted just before it is sent.
Each packet is verified +
decrypted immediately

after it is received.

Much less invasive than DNSSEC
for DNS protocol, DNS databases,

DNS implementations.
Also easy for HT TP etc.

DNSCurve, CurveCP, etc.

Most Internet connections today
have no cryptographic protection.

The big plan: replace

DNS with DNSCurve,

TCP with CurveCP,

HTTP with HT TPCurve, etc.

All client data is authenticated +
encrypted to server's public key
from client’s public key.

All server data is authenticated +
encrypted to client’s public key
from server's public key.

Crypto layer is very close
to network layer.

Each packet is authenticated +
encrypted just before it is sent.
Each packet is verified +
decrypted immediately

after it is received.

Much less invasive than DNSSEC
for DNS protocol, DNS databases,

DNS implementations.
Also easy for HT TP etc.

Separate authenticator on every
packet also improves availability.
No more RST attacks.

ve, CurveCP, etc.

ernet connections today
cryptographic protection.

olan: replace

‘h DNSCurve,
h CurveCP,
vith HT TPCurve, etc.

t data Is authenticated +
d to server's public key
nt's public key.

r data is authenticated +
d to client's public key
ver's public key.

Crypto layer is very close
to network layer.

Each packet is authenticated +
encrypted just before it is sent.
Each packet is verified +
decrypted immediately

after it is received.

Much less invasive than DNSSEC
for DNS protocol, DNS databases,

DNS implementations.
Also easy for HT TP etc.

Separate authenticator on every
packet also improves availability.
No more RST attacks.

How do¢
client's |

_P, etc.

nections today
phic protection.

ace

rve,

P,

’Curve, etc.

uthenticated +
r's public key
C key.

yuthenticated +
t's public key
C key.

Crypto layer is very close
to network layer.

Each packet is authenticated +
encrypted just before it is sent.
Each packet is verified +
decrypted immediately

after it is received.

Much less invasive than DNSSEC
for DNS protocol, DNS databases,

DNS implementations.
Also easy for HT TP etc.

Separate authenticator on every
packet also improves availability.
No more RST attacks.

How does server ¢
client’s public key’

oday
ction.

ed +
key

ted +
key

Crypto layer is very close
to network layer.

Each packet is authenticated +
encrypted just before it is sent.
Each packet is verified +
decrypted immediately

after it is received.

Much less invasive than DNSSEC
for DNS protocol, DNS databases,

DNS implementations.
Also easy for HT TP etc.

Separate authenticator on every
packet also improves availability.
No more RST attacks.

How does server obtain
client’s public key?

Crypto layer is very close
to network layer.

Each packet is authenticated +
encrypted just before it is sent.
Each packet is verified +
decrypted immediately

after it is received.

Much less invasive than DNSSEC
for DNS protocol, DNS databases,

DNS implementations.
Also easy for HT TP etc.

Separate authenticator on every
packet also improves availability.
No more RST attacks.

How does server obtain
client’s public key?

Crypto layer is very close
to network layer.

Each packet is authenticated +
encrypted just before it is sent.
Each packet is verified +
decrypted immediately

after it is received.

Much less invasive than DNSSEC
for DNS protocol, DNS databases,

DNS implementations.
Also easy for HT TP etc.

Separate authenticator on every
packet also improves availability.
No more RST attacks.

How does server obtain
client’s public key?
Client sends it with first packet.

Crypto layer is very close
to network layer.

Each packet is authenticated +
encrypted just before it is sent.
Each packet is verified +
decrypted immediately

after it is received.

Much less invasive than DNSSEC
for DNS protocol, DNS databases,

DNS implementations.
Also easy for HT TP etc.

Separate authenticator on every
packet also improves availability.
No more RST attacks.

How does server obtain
client’s public key?
Client sends it with first packet.

How does client obtain
server's public key?

Crypto layer is very close
to network layer.

Each packet is authenticated +
encrypted just before it is sent.
Each packet is verified +
decrypted immediately

after it is received.

Much less invasive than DNSSEC
for DNS protocol, DNS databases,

DNS implementations.
Also easy for HT TP etc.

Separate authenticator on every
packet also improves availability.
No more RST attacks.

How does server obtain
client’s public key?
Client sends it with first packet.

How does client obtain
server's public key?

Client already had mechanism
to obtain server address.
Server sneaks public key

into that mechanism.

Crypto layer is very close

to network layer.

Each packet is authenticated +

encrypted just before it is sent.

Each packet is verified +

decrypted immediately

after it Is received.

Much less invasive than DNSSEC

for DNS protocol, DNS databases,
DNS implementations.

A

so easy for HT TP etc.

Separate authenticator on every

packet also improves availability.
No more RST attacks.

How does server obtain
client’s public key?
Client sends it with first packet.

How does client obtain
server's public key?

Client already had mechanism
to obtain server address.
Server sneaks public key

into that mechanism.

No extra packets.
Serious crypto for each packet,
but state-of-the-art crypto

(Curve25519, Salsa20, Poly1305)
easily keeps up with the network.

