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How does server obtain

client’s public key?

Client sends it with first packet.

How does client obtain

server’s public key?

Client already had mechanism

to obtain server address.

Server sneaks public key

into that mechanism.

No extra packets.

Serious crypto for each packet,

but state-of-the-art crypto

(Curve25519, Salsa20, Poly1305)

easily keeps up with the network.


