
Understanding DNSCurve

D. J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Disclaimer: I haven’t

released DNSCurve software yet.

But you can try prototypes:

@mdempsky’s DNSCurve cache,

@hhavt’s CurveDNS server.

See also related projects: NaCl,

DNSCrypt, CurveCP, MinimaLT.

Varying release levels.

DNS in a nutshell

1 Browser ! DNS:

twitter.com?



Understanding DNSCurve

D. J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Disclaimer: I haven’t

released DNSCurve software yet.

But you can try prototypes:

@mdempsky’s DNSCurve cache,

@hhavt’s CurveDNS server.

See also related projects: NaCl,

DNSCrypt, CurveCP, MinimaLT.

Varying release levels.

DNS in a nutshell

1 Browser ! DNS:

twitter.com?

2 DNS ! browser:

twitter.com A 199.16.156.38



Understanding DNSCurve

D. J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Disclaimer: I haven’t

released DNSCurve software yet.

But you can try prototypes:

@mdempsky’s DNSCurve cache,

@hhavt’s CurveDNS server.

See also related projects: NaCl,

DNSCrypt, CurveCP, MinimaLT.

Varying release levels.

DNS in a nutshell

1 Browser ! DNS:

twitter.com?

2 DNS ! browser:

twitter.com A 199.16.156.38

0 Admin ! ns2.twitter.com:

twitter.com A 199.16.156.38



Understanding DNSCurve

D. J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Disclaimer: I haven’t

released DNSCurve software yet.

But you can try prototypes:

@mdempsky’s DNSCurve cache,

@hhavt’s CurveDNS server.

See also related projects: NaCl,

DNSCrypt, CurveCP, MinimaLT.

Varying release levels.

DNS in a nutshell

1 Browser ! DNS:

twitter.com?

2 DNS ! browser:

twitter.com A 199.16.156.38

0 Admin ! ns2.twitter.com:

twitter.com A 199.16.156.38

1 Browser ! ns2.twitter.com:

twitter.com?



Understanding DNSCurve

D. J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Disclaimer: I haven’t

released DNSCurve software yet.

But you can try prototypes:

@mdempsky’s DNSCurve cache,

@hhavt’s CurveDNS server.

See also related projects: NaCl,

DNSCrypt, CurveCP, MinimaLT.

Varying release levels.

DNS in a nutshell

1 Browser ! DNS:

twitter.com?

2 DNS ! browser:

twitter.com A 199.16.156.38

0 Admin ! ns2.twitter.com:

twitter.com A 199.16.156.38

1 Browser ! ns2.twitter.com:

twitter.com?

2 ns2.twitter.com ! browser:

twitter.com A 199.16.156.38



Understanding DNSCurve

D. J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Disclaimer: I haven’t

released DNSCurve software yet.

But you can try prototypes:

@mdempsky’s DNSCurve cache,

@hhavt’s CurveDNS server.

See also related projects: NaCl,

DNSCrypt, CurveCP, MinimaLT.

Varying release levels.

DNS in a nutshell

1 Browser ! DNS:

twitter.com?

2 DNS ! browser:

twitter.com A 199.16.156.38

0 Admin ! ns2.twitter.com:

twitter.com A 199.16.156.38

1 Browser ! ns2.twitter.com:

twitter.com?

2 ns2.twitter.com ! browser:

twitter.com A 199.16.156.38

�3 com admin ! f.ns.com:

twitter.com NS ns2...

ns2... A 204.13.250.34



Understanding DNSCurve

D. J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Disclaimer: I haven’t

released DNSCurve software yet.

But you can try prototypes:

@mdempsky’s DNSCurve cache,

@hhavt’s CurveDNS server.

See also related projects: NaCl,

DNSCrypt, CurveCP, MinimaLT.

Varying release levels.

DNS in a nutshell

1 Browser ! DNS:

twitter.com?

2 DNS ! browser:

twitter.com A 199.16.156.38

0 Admin ! ns2.twitter.com:

twitter.com A 199.16.156.38

1 Browser ! ns2.twitter.com:

twitter.com?

2 ns2.twitter.com ! browser:

twitter.com A 199.16.156.38

�3 com admin ! f.ns.com:

twitter.com NS ns2...

ns2... A 204.13.250.34



Understanding DNSCurve

D. J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Disclaimer: I haven’t

released DNSCurve software yet.

But you can try prototypes:

@mdempsky’s DNSCurve cache,

@hhavt’s CurveDNS server.

See also related projects: NaCl,

DNSCrypt, CurveCP, MinimaLT.

Varying release levels.

DNS in a nutshell

1 Browser ! DNS:

twitter.com?

2 DNS ! browser:

twitter.com A 199.16.156.38

0 Admin ! ns2.twitter.com:

twitter.com A 199.16.156.38

1 Browser ! ns2.twitter.com:

twitter.com?

2 ns2.twitter.com ! browser:

twitter.com A 199.16.156.38

�3 com admin ! f.ns.com:

twitter.com NS ns2...

ns2... A 204.13.250.34



DNS in a nutshell

1 Browser ! DNS:

twitter.com?

2 DNS ! browser:

twitter.com A 199.16.156.38

0 Admin ! ns2.twitter.com:

twitter.com A 199.16.156.38

1 Browser ! ns2.twitter.com:

twitter.com?

2 ns2.twitter.com ! browser:

twitter.com A 199.16.156.38

�3 com admin ! f.ns.com:

twitter.com NS ns2...

ns2... A 204.13.250.34



DNS in a nutshell

1 Browser ! DNS:

twitter.com?

2 DNS ! browser:

twitter.com A 199.16.156.38

0 Admin ! ns2.twitter.com:

twitter.com A 199.16.156.38

1 Browser ! ns2.twitter.com:

twitter.com?

2 ns2.twitter.com ! browser:

twitter.com A 199.16.156.38

�3 com admin ! f.ns.com:

twitter.com NS ns2...

ns2... A 204.13.250.34

�2 Browser ! f.ns.com:

twitter.com?



DNS in a nutshell

1 Browser ! DNS:

twitter.com?

2 DNS ! browser:

twitter.com A 199.16.156.38

0 Admin ! ns2.twitter.com:

twitter.com A 199.16.156.38

1 Browser ! ns2.twitter.com:

twitter.com?

2 ns2.twitter.com ! browser:

twitter.com A 199.16.156.38

�3 com admin ! f.ns.com:

twitter.com NS ns2...

ns2... A 204.13.250.34

�2 Browser ! f.ns.com:

twitter.com?

�1 f.ns.com ! browser:

twitter.com NS ns2...

ns2... A 204.13.250.34



DNS in a nutshell

1 Browser ! DNS:

twitter.com?

2 DNS ! browser:

twitter.com A 199.16.156.38

0 Admin ! ns2.twitter.com:

twitter.com A 199.16.156.38

1 Browser ! ns2.twitter.com:

twitter.com?

2 ns2.twitter.com ! browser:

twitter.com A 199.16.156.38

�3 com admin ! f.ns.com:

twitter.com NS ns2...

ns2... A 204.13.250.34

�2 Browser ! f.ns.com:

twitter.com?

�1 f.ns.com ! browser:

twitter.com NS ns2...

ns2... A 204.13.250.34

0 Twitter admin ! ns2:

twitter.com A 199.16.156.38



DNS in a nutshell

1 Browser ! DNS:

twitter.com?

2 DNS ! browser:

twitter.com A 199.16.156.38

0 Admin ! ns2.twitter.com:

twitter.com A 199.16.156.38

1 Browser ! ns2.twitter.com:

twitter.com?

2 ns2.twitter.com ! browser:

twitter.com A 199.16.156.38

�3 com admin ! f.ns.com:

twitter.com NS ns2...

ns2... A 204.13.250.34

�2 Browser ! f.ns.com:

twitter.com?

�1 f.ns.com ! browser:

twitter.com NS ns2...

ns2... A 204.13.250.34

0 Twitter admin ! ns2:

twitter.com A 199.16.156.38

1 Browser ! 204.13.250.34:

twitter.com?



DNS in a nutshell

1 Browser ! DNS:

twitter.com?

2 DNS ! browser:

twitter.com A 199.16.156.38

0 Admin ! ns2.twitter.com:

twitter.com A 199.16.156.38

1 Browser ! ns2.twitter.com:

twitter.com?

2 ns2.twitter.com ! browser:

twitter.com A 199.16.156.38

�3 com admin ! f.ns.com:

twitter.com NS ns2...

ns2... A 204.13.250.34

�2 Browser ! f.ns.com:

twitter.com?

�1 f.ns.com ! browser:

twitter.com NS ns2...

ns2... A 204.13.250.34

0 Twitter admin ! ns2:

twitter.com A 199.16.156.38

1 Browser ! 204.13.250.34:

twitter.com?

2 204.13.250.34 ! browser:

twitter.com A 199.16.156.38



DNS in a nutshell

1 Browser ! DNS:

twitter.com?

2 DNS ! browser:

twitter.com A 199.16.156.38

0 Admin ! ns2.twitter.com:

twitter.com A 199.16.156.38

1 Browser ! ns2.twitter.com:

twitter.com?

2 ns2.twitter.com ! browser:

twitter.com A 199.16.156.38

�3 com admin ! f.ns.com:

twitter.com NS ns2...

ns2... A 204.13.250.34

�2 Browser ! f.ns.com:

twitter.com?

�1 f.ns.com ! browser:

twitter.com NS ns2...

ns2... A 204.13.250.34

0 Twitter admin ! ns2:

twitter.com A 199.16.156.38

1 Browser ! 204.13.250.34:

twitter.com?

2 204.13.250.34 ! browser:

twitter.com A 199.16.156.38

Often even more steps:

� Maybe browser doesn’t know

where .com server is.

Has to ask root server.



DNS in a nutshell

1 Browser ! DNS:

twitter.com?

2 DNS ! browser:

twitter.com A 199.16.156.38

0 Admin ! ns2.twitter.com:

twitter.com A 199.16.156.38

1 Browser ! ns2.twitter.com:

twitter.com?

2 ns2.twitter.com ! browser:

twitter.com A 199.16.156.38

�3 com admin ! f.ns.com:

twitter.com NS ns2...

ns2... A 204.13.250.34

�2 Browser ! f.ns.com:

twitter.com?

�1 f.ns.com ! browser:

twitter.com NS ns2...

ns2... A 204.13.250.34

0 Twitter admin ! ns2:

twitter.com A 199.16.156.38

1 Browser ! 204.13.250.34:

twitter.com?

2 204.13.250.34 ! browser:

twitter.com A 199.16.156.38

Often even more steps:

� Maybe browser doesn’t know

where .com server is.

Has to ask root server.



DNS in a nutshell

1 Browser ! DNS:

twitter.com?

2 DNS ! browser:

twitter.com A 199.16.156.38

0 Admin ! ns2.twitter.com:

twitter.com A 199.16.156.38

1 Browser ! ns2.twitter.com:

twitter.com?

2 ns2.twitter.com ! browser:

twitter.com A 199.16.156.38

�3 com admin ! f.ns.com:

twitter.com NS ns2...

ns2... A 204.13.250.34

�2 Browser ! f.ns.com:

twitter.com?

�1 f.ns.com ! browser:

twitter.com NS ns2...

ns2... A 204.13.250.34

0 Twitter admin ! ns2:

twitter.com A 199.16.156.38

1 Browser ! 204.13.250.34:

twitter.com?

2 204.13.250.34 ! browser:

twitter.com A 199.16.156.38

Often even more steps:

� Maybe browser doesn’t know

where .com server is.

Has to ask root server.



�3 com admin ! f.ns.com:

twitter.com NS ns2...

ns2... A 204.13.250.34

�2 Browser ! f.ns.com:

twitter.com?

�1 f.ns.com ! browser:

twitter.com NS ns2...

ns2... A 204.13.250.34

0 Twitter admin ! ns2:

twitter.com A 199.16.156.38

1 Browser ! 204.13.250.34:

twitter.com?

2 204.13.250.34 ! browser:

twitter.com A 199.16.156.38

Often even more steps:

� Maybe browser doesn’t know

where .com server is.

Has to ask root server.



�3 com admin ! f.ns.com:

twitter.com NS ns2...

ns2... A 204.13.250.34

�2 Browser ! f.ns.com:

twitter.com?

�1 f.ns.com ! browser:

twitter.com NS ns2...

ns2... A 204.13.250.34

0 Twitter admin ! ns2:

twitter.com A 199.16.156.38

1 Browser ! 204.13.250.34:

twitter.com?

2 204.13.250.34 ! browser:

twitter.com A 199.16.156.38

Often even more steps:

� Maybe browser doesn’t know

where .com server is.

Has to ask root server.

� twitter.com server name is

actually ns2.p34.dynect.net.

Is browser allowed to accept

ns2.p34.dynect.net address

from the .com server?

Does it have to ask .net?



�3 com admin ! f.ns.com:

twitter.com NS ns2...

ns2... A 204.13.250.34

�2 Browser ! f.ns.com:

twitter.com?

�1 f.ns.com ! browser:

twitter.com NS ns2...

ns2... A 204.13.250.34

0 Twitter admin ! ns2:

twitter.com A 199.16.156.38

1 Browser ! 204.13.250.34:

twitter.com?

2 204.13.250.34 ! browser:

twitter.com A 199.16.156.38

Often even more steps:

� Maybe browser doesn’t know

where .com server is.

Has to ask root server.

� twitter.com server name is

actually ns2.p34.dynect.net.

Is browser allowed to accept

ns2.p34.dynect.net address

from the .com server?

Does it have to ask .net?

� Browser actually pulls from

a laptop-wide DNS cache.

Or a site-wide DNS cache.



�3 com admin ! f.ns.com:

twitter.com NS ns2...

ns2... A 204.13.250.34

�2 Browser ! f.ns.com:

twitter.com?

�1 f.ns.com ! browser:

twitter.com NS ns2...

ns2... A 204.13.250.34

0 Twitter admin ! ns2:

twitter.com A 199.16.156.38

1 Browser ! 204.13.250.34:

twitter.com?

2 204.13.250.34 ! browser:

twitter.com A 199.16.156.38

Often even more steps:

� Maybe browser doesn’t know

where .com server is.

Has to ask root server.

� twitter.com server name is

actually ns2.p34.dynect.net.

Is browser allowed to accept

ns2.p34.dynect.net address

from the .com server?

Does it have to ask .net?

� Browser actually pulls from

a laptop-wide DNS cache.

Or a site-wide DNS cache.

DNS in the real world

The user doesn’t want

twitter.com’s IP address.

The user wants to

pull tweets from Twitter,

push tweets to Twitter.



�3 com admin ! f.ns.com:

twitter.com NS ns2...

ns2... A 204.13.250.34

�2 Browser ! f.ns.com:

twitter.com?

�1 f.ns.com ! browser:

twitter.com NS ns2...

ns2... A 204.13.250.34

0 Twitter admin ! ns2:

twitter.com A 199.16.156.38

1 Browser ! 204.13.250.34:

twitter.com?

2 204.13.250.34 ! browser:

twitter.com A 199.16.156.38

Often even more steps:

� Maybe browser doesn’t know

where .com server is.

Has to ask root server.

� twitter.com server name is

actually ns2.p34.dynect.net.

Is browser allowed to accept

ns2.p34.dynect.net address

from the .com server?

Does it have to ask .net?

� Browser actually pulls from

a laptop-wide DNS cache.

Or a site-wide DNS cache.

DNS in the real world

The user doesn’t want

twitter.com’s IP address.

The user wants to

pull tweets from Twitter,

push tweets to Twitter.



�3 com admin ! f.ns.com:

twitter.com NS ns2...

ns2... A 204.13.250.34

�2 Browser ! f.ns.com:

twitter.com?

�1 f.ns.com ! browser:

twitter.com NS ns2...

ns2... A 204.13.250.34

0 Twitter admin ! ns2:

twitter.com A 199.16.156.38

1 Browser ! 204.13.250.34:

twitter.com?

2 204.13.250.34 ! browser:

twitter.com A 199.16.156.38

Often even more steps:

� Maybe browser doesn’t know

where .com server is.

Has to ask root server.

� twitter.com server name is

actually ns2.p34.dynect.net.

Is browser allowed to accept

ns2.p34.dynect.net address

from the .com server?

Does it have to ask .net?

� Browser actually pulls from

a laptop-wide DNS cache.

Or a site-wide DNS cache.

DNS in the real world

The user doesn’t want

twitter.com’s IP address.

The user wants to

pull tweets from Twitter,

push tweets to Twitter.



Often even more steps:

� Maybe browser doesn’t know

where .com server is.

Has to ask root server.

� twitter.com server name is

actually ns2.p34.dynect.net.

Is browser allowed to accept

ns2.p34.dynect.net address

from the .com server?

Does it have to ask .net?

� Browser actually pulls from

a laptop-wide DNS cache.

Or a site-wide DNS cache.

DNS in the real world

The user doesn’t want

twitter.com’s IP address.

The user wants to

pull tweets from Twitter,

push tweets to Twitter.



Often even more steps:

� Maybe browser doesn’t know

where .com server is.

Has to ask root server.

� twitter.com server name is

actually ns2.p34.dynect.net.

Is browser allowed to accept

ns2.p34.dynect.net address

from the .com server?

Does it have to ask .net?

� Browser actually pulls from

a laptop-wide DNS cache.

Or a site-wide DNS cache.

DNS in the real world

The user doesn’t want

twitter.com’s IP address.

The user wants to

pull tweets from Twitter,

push tweets to Twitter.

The big picture:

DNS is just one small part

of any real Internet protocol.

Typical examples:

HTTP starts with DNS.

SMTP starts with DNS.

SSH starts with DNS.



Often even more steps:

� Maybe browser doesn’t know

where .com server is.

Has to ask root server.

� twitter.com server name is

actually ns2.p34.dynect.net.

Is browser allowed to accept

ns2.p34.dynect.net address

from the .com server?

Does it have to ask .net?

� Browser actually pulls from

a laptop-wide DNS cache.

Or a site-wide DNS cache.

DNS in the real world

The user doesn’t want

twitter.com’s IP address.

The user wants to

pull tweets from Twitter,

push tweets to Twitter.

The big picture:

DNS is just one small part

of any real Internet protocol.

Typical examples:

HTTP starts with DNS.

SMTP starts with DNS.

SSH starts with DNS.

Real Internet protocol example:

User asks browser for



Often even more steps:

� Maybe browser doesn’t know

where .com server is.

Has to ask root server.

� twitter.com server name is

actually ns2.p34.dynect.net.

Is browser allowed to accept

ns2.p34.dynect.net address

from the .com server?

Does it have to ask .net?

� Browser actually pulls from

a laptop-wide DNS cache.

Or a site-wide DNS cache.

DNS in the real world

The user doesn’t want

twitter.com’s IP address.

The user wants to

pull tweets from Twitter,

push tweets to Twitter.

The big picture:

DNS is just one small part

of any real Internet protocol.

Typical examples:

HTTP starts with DNS.

SMTP starts with DNS.

SSH starts with DNS.

Real Internet protocol example:

User asks browser for



Often even more steps:

� Maybe browser doesn’t know

where .com server is.

Has to ask root server.

� twitter.com server name is

actually ns2.p34.dynect.net.

Is browser allowed to accept

ns2.p34.dynect.net address

from the .com server?

Does it have to ask .net?

� Browser actually pulls from

a laptop-wide DNS cache.

Or a site-wide DNS cache.

DNS in the real world

The user doesn’t want

twitter.com’s IP address.

The user wants to

pull tweets from Twitter,

push tweets to Twitter.

The big picture:

DNS is just one small part

of any real Internet protocol.

Typical examples:

HTTP starts with DNS.

SMTP starts with DNS.

SSH starts with DNS.

Real Internet protocol example:

User asks browser for



DNS in the real world

The user doesn’t want

twitter.com’s IP address.

The user wants to

pull tweets from Twitter,

push tweets to Twitter.

The big picture:

DNS is just one small part

of any real Internet protocol.

Typical examples:

HTTP starts with DNS.

SMTP starts with DNS.

SSH starts with DNS.

Real Internet protocol example:

User asks browser for



DNS in the real world

The user doesn’t want

twitter.com’s IP address.

The user wants to

pull tweets from Twitter,

push tweets to Twitter.

The big picture:

DNS is just one small part

of any real Internet protocol.

Typical examples:

HTTP starts with DNS.

SMTP starts with DNS.

SSH starts with DNS.

Real Internet protocol example:

User asks browser for

http://theguardian.com.



DNS in the real world

The user doesn’t want

twitter.com’s IP address.

The user wants to

pull tweets from Twitter,

push tweets to Twitter.

The big picture:

DNS is just one small part

of any real Internet protocol.

Typical examples:

HTTP starts with DNS.

SMTP starts with DNS.

SSH starts with DNS.

Real Internet protocol example:

User asks browser for

http://theguardian.com.

Many levels of redirection:

root DNS 7!

.com DNS 7!

.theguardian.com DNS 7!

http://theguardian.com 7!

http://www.theguardian.com 7!

http://www.theguardian.com/uk.

And then the hard work begins:

browser receives page,

displays page for user.



DNS in the real world

The user doesn’t want

twitter.com’s IP address.

The user wants to

pull tweets from Twitter,

push tweets to Twitter.

The big picture:

DNS is just one small part

of any real Internet protocol.

Typical examples:

HTTP starts with DNS.

SMTP starts with DNS.

SSH starts with DNS.

Real Internet protocol example:

User asks browser for

http://theguardian.com.

Many levels of redirection:

root DNS 7!

.com DNS 7!

.theguardian.com DNS 7!

http://theguardian.com 7!

http://www.theguardian.com 7!

http://www.theguardian.com/uk.

And then the hard work begins:

browser receives page,

displays page for user.

What does DNS security mean?

Crypto goals: confidentiality,

integrity, and availability

for the user’s communication.

Security for IP addresses

is irrelevant unless it helps

protect user communication.



DNS in the real world

The user doesn’t want

twitter.com’s IP address.

The user wants to

pull tweets from Twitter,

push tweets to Twitter.

The big picture:

DNS is just one small part

of any real Internet protocol.

Typical examples:

HTTP starts with DNS.

SMTP starts with DNS.

SSH starts with DNS.

Real Internet protocol example:

User asks browser for

http://theguardian.com.

Many levels of redirection:

root DNS 7!

.com DNS 7!

.theguardian.com DNS 7!

http://theguardian.com 7!

http://www.theguardian.com 7!

http://www.theguardian.com/uk.

And then the hard work begins:

browser receives page,

displays page for user.

What does DNS security mean?

Crypto goals: confidentiality,

integrity, and availability

for the user’s communication.

Security for IP addresses

is irrelevant unless it helps

protect user communication.



DNS in the real world

The user doesn’t want

twitter.com’s IP address.

The user wants to

pull tweets from Twitter,

push tweets to Twitter.

The big picture:

DNS is just one small part

of any real Internet protocol.

Typical examples:

HTTP starts with DNS.

SMTP starts with DNS.

SSH starts with DNS.

Real Internet protocol example:

User asks browser for

http://theguardian.com.

Many levels of redirection:

root DNS 7!

.com DNS 7!

.theguardian.com DNS 7!

http://theguardian.com 7!

http://www.theguardian.com 7!

http://www.theguardian.com/uk.

And then the hard work begins:

browser receives page,

displays page for user.

What does DNS security mean?

Crypto goals: confidentiality,

integrity, and availability

for the user’s communication.

Security for IP addresses

is irrelevant unless it helps

protect user communication.



Real Internet protocol example:

User asks browser for

http://theguardian.com.

Many levels of redirection:

root DNS 7!

.com DNS 7!

.theguardian.com DNS 7!

http://theguardian.com 7!

http://www.theguardian.com 7!

http://www.theguardian.com/uk.

And then the hard work begins:

browser receives page,

displays page for user.

What does DNS security mean?

Crypto goals: confidentiality,

integrity, and availability

for the user’s communication.

Security for IP addresses

is irrelevant unless it helps

protect user communication.



Real Internet protocol example:

User asks browser for

http://theguardian.com.

Many levels of redirection:

root DNS 7!

.com DNS 7!

.theguardian.com DNS 7!

http://theguardian.com 7!

http://www.theguardian.com 7!

http://www.theguardian.com/uk.

And then the hard work begins:

browser receives page,

displays page for user.

What does DNS security mean?

Crypto goals: confidentiality,

integrity, and availability

for the user’s communication.

Security for IP addresses

is irrelevant unless it helps

protect user communication.

Consider DNSSEC marketing:

isc.org is “signed” by DNSSEC.



Real Internet protocol example:

User asks browser for

http://theguardian.com.

Many levels of redirection:

root DNS 7!

.com DNS 7!

.theguardian.com DNS 7!

http://theguardian.com 7!

http://www.theguardian.com 7!

http://www.theguardian.com/uk.

And then the hard work begins:

browser receives page,

displays page for user.

What does DNS security mean?

Crypto goals: confidentiality,

integrity, and availability

for the user’s communication.

Security for IP addresses

is irrelevant unless it helps

protect user communication.

Consider DNSSEC marketing:

isc.org is “signed” by DNSSEC.

Reality: What DNSSEC signs

is an IP-address redirection:

isc.org A 149.20.64.69.

This is meaningless for users.



Real Internet protocol example:

User asks browser for

http://theguardian.com.

Many levels of redirection:

root DNS 7!

.com DNS 7!

.theguardian.com DNS 7!

http://theguardian.com 7!

http://www.theguardian.com 7!

http://www.theguardian.com/uk.

And then the hard work begins:

browser receives page,

displays page for user.

What does DNS security mean?

Crypto goals: confidentiality,

integrity, and availability

for the user’s communication.

Security for IP addresses

is irrelevant unless it helps

protect user communication.

Consider DNSSEC marketing:

isc.org is “signed” by DNSSEC.

Reality: What DNSSEC signs

is an IP-address redirection:

isc.org A 149.20.64.69.

This is meaningless for users.

Example of bogus “security”:

“You can’t trust online servers.

Our DNS data is signed offline

by a Hardware Security Module

in a fortress in Maryland

protected by machine guns.

Signing procedure requires

3 out of 16 smart cards held

by VeriSign Trust Managers.”



Real Internet protocol example:

User asks browser for

http://theguardian.com.

Many levels of redirection:

root DNS 7!

.com DNS 7!

.theguardian.com DNS 7!

http://theguardian.com 7!

http://www.theguardian.com 7!

http://www.theguardian.com/uk.

And then the hard work begins:

browser receives page,

displays page for user.

What does DNS security mean?

Crypto goals: confidentiality,

integrity, and availability

for the user’s communication.

Security for IP addresses

is irrelevant unless it helps

protect user communication.

Consider DNSSEC marketing:

isc.org is “signed” by DNSSEC.

Reality: What DNSSEC signs

is an IP-address redirection:

isc.org A 149.20.64.69.

This is meaningless for users.

Example of bogus “security”:

“You can’t trust online servers.

Our DNS data is signed offline

by a Hardware Security Module

in a fortress in Maryland

protected by machine guns.

Signing procedure requires

3 out of 16 smart cards held

by VeriSign Trust Managers.”



Real Internet protocol example:

User asks browser for

http://theguardian.com.

Many levels of redirection:

root DNS 7!

.com DNS 7!

.theguardian.com DNS 7!

http://theguardian.com 7!

http://www.theguardian.com 7!

http://www.theguardian.com/uk.

And then the hard work begins:

browser receives page,

displays page for user.

What does DNS security mean?

Crypto goals: confidentiality,

integrity, and availability

for the user’s communication.

Security for IP addresses

is irrelevant unless it helps

protect user communication.

Consider DNSSEC marketing:

isc.org is “signed” by DNSSEC.

Reality: What DNSSEC signs

is an IP-address redirection:

isc.org A 149.20.64.69.

This is meaningless for users.

Example of bogus “security”:

“You can’t trust online servers.

Our DNS data is signed offline

by a Hardware Security Module

in a fortress in Maryland

protected by machine guns.

Signing procedure requires

3 out of 16 smart cards held

by VeriSign Trust Managers.”



What does DNS security mean?

Crypto goals: confidentiality,

integrity, and availability

for the user’s communication.

Security for IP addresses

is irrelevant unless it helps

protect user communication.

Consider DNSSEC marketing:

isc.org is “signed” by DNSSEC.

Reality: What DNSSEC signs

is an IP-address redirection:

isc.org A 149.20.64.69.

This is meaningless for users.

Example of bogus “security”:

“You can’t trust online servers.

Our DNS data is signed offline

by a Hardware Security Module

in a fortress in Maryland

protected by machine guns.

Signing procedure requires

3 out of 16 smart cards held

by VeriSign Trust Managers.”



What does DNS security mean?

Crypto goals: confidentiality,

integrity, and availability

for the user’s communication.

Security for IP addresses

is irrelevant unless it helps

protect user communication.

Consider DNSSEC marketing:

isc.org is “signed” by DNSSEC.

Reality: What DNSSEC signs

is an IP-address redirection:

isc.org A 149.20.64.69.

This is meaningless for users.

Example of bogus “security”:

“You can’t trust online servers.

Our DNS data is signed offline

by a Hardware Security Module

in a fortress in Maryland

protected by machine guns.

Signing procedure requires

3 out of 16 smart cards held

by VeriSign Trust Managers.”

Does this protect users? No!

The web server is online,

and most web pages are dynamic.

The mail server is online.

The shell server is online.



What does DNS security mean?

Crypto goals: confidentiality,

integrity, and availability

for the user’s communication.

Security for IP addresses

is irrelevant unless it helps

protect user communication.

Consider DNSSEC marketing:

isc.org is “signed” by DNSSEC.

Reality: What DNSSEC signs

is an IP-address redirection:

isc.org A 149.20.64.69.

This is meaningless for users.

Example of bogus “security”:

“You can’t trust online servers.

Our DNS data is signed offline

by a Hardware Security Module

in a fortress in Maryland

protected by machine guns.

Signing procedure requires

3 out of 16 smart cards held

by VeriSign Trust Managers.”

Does this protect users? No!

The web server is online,

and most web pages are dynamic.

The mail server is online.

The shell server is online.

Occasionally user data is

broadcast+static+single-source,

so offline creation and signing

might help protect integrity.



What does DNS security mean?

Crypto goals: confidentiality,

integrity, and availability

for the user’s communication.

Security for IP addresses

is irrelevant unless it helps

protect user communication.

Consider DNSSEC marketing:

isc.org is “signed” by DNSSEC.

Reality: What DNSSEC signs

is an IP-address redirection:

isc.org A 149.20.64.69.

This is meaningless for users.

Example of bogus “security”:

“You can’t trust online servers.

Our DNS data is signed offline

by a Hardware Security Module

in a fortress in Maryland

protected by machine guns.

Signing procedure requires

3 out of 16 smart cards held

by VeriSign Trust Managers.”

Does this protect users? No!

The web server is online,

and most web pages are dynamic.

The mail server is online.

The shell server is online.

Occasionally user data is

broadcast+static+single-source,

so offline creation and signing

might help protect integrity.



What does DNS security mean?

Crypto goals: confidentiality,

integrity, and availability

for the user’s communication.

Security for IP addresses

is irrelevant unless it helps

protect user communication.

Consider DNSSEC marketing:

isc.org is “signed” by DNSSEC.

Reality: What DNSSEC signs

is an IP-address redirection:

isc.org A 149.20.64.69.

This is meaningless for users.

Example of bogus “security”:

“You can’t trust online servers.

Our DNS data is signed offline

by a Hardware Security Module

in a fortress in Maryland

protected by machine guns.

Signing procedure requires

3 out of 16 smart cards held

by VeriSign Trust Managers.”

Does this protect users? No!

The web server is online,

and most web pages are dynamic.

The mail server is online.

The shell server is online.

Occasionally user data is

broadcast+static+single-source,

so offline creation and signing

might help protect integrity.



Example of bogus “security”:

“You can’t trust online servers.

Our DNS data is signed offline

by a Hardware Security Module

in a fortress in Maryland

protected by machine guns.

Signing procedure requires

3 out of 16 smart cards held

by VeriSign Trust Managers.”

Does this protect users? No!

The web server is online,

and most web pages are dynamic.

The mail server is online.

The shell server is online.

Occasionally user data is

broadcast+static+single-source,

so offline creation and signing

might help protect integrity.



Example of bogus “security”:

“You can’t trust online servers.

Our DNS data is signed offline

by a Hardware Security Module

in a fortress in Maryland

protected by machine guns.

Signing procedure requires

3 out of 16 smart cards held

by VeriSign Trust Managers.”

Does this protect users? No!

The web server is online,

and most web pages are dynamic.

The mail server is online.

The shell server is online.

Occasionally user data is

broadcast+static+single-source,

so offline creation and signing

might help protect integrity.

But this is a rare corner case.

Offline creation and signing:

impossible for most user data.



Example of bogus “security”:

“You can’t trust online servers.

Our DNS data is signed offline

by a Hardware Security Module

in a fortress in Maryland

protected by machine guns.

Signing procedure requires

3 out of 16 smart cards held

by VeriSign Trust Managers.”

Does this protect users? No!

The web server is online,

and most web pages are dynamic.

The mail server is online.

The shell server is online.

Occasionally user data is

broadcast+static+single-source,

so offline creation and signing

might help protect integrity.

But this is a rare corner case.

Offline creation and signing:

impossible for most user data.

By insisting on signatures,

DNSSEC creates problems for

lookups of dynamic DNS data;

lookups of nonexistent names;

speed; robustness; availability;

freshness; confidentiality.

Analogy: imagine HTTPSEC.



Example of bogus “security”:

“You can’t trust online servers.

Our DNS data is signed offline

by a Hardware Security Module

in a fortress in Maryland

protected by machine guns.

Signing procedure requires

3 out of 16 smart cards held

by VeriSign Trust Managers.”

Does this protect users? No!

The web server is online,

and most web pages are dynamic.

The mail server is online.

The shell server is online.

Occasionally user data is

broadcast+static+single-source,

so offline creation and signing

might help protect integrity.

But this is a rare corner case.

Offline creation and signing:

impossible for most user data.

By insisting on signatures,

DNSSEC creates problems for

lookups of dynamic DNS data;

lookups of nonexistent names;

speed; robustness; availability;

freshness; confidentiality.

Analogy: imagine HTTPSEC.

DNSCurve, CurveCP, etc.



Example of bogus “security”:

“You can’t trust online servers.

Our DNS data is signed offline

by a Hardware Security Module

in a fortress in Maryland

protected by machine guns.

Signing procedure requires

3 out of 16 smart cards held

by VeriSign Trust Managers.”

Does this protect users? No!

The web server is online,

and most web pages are dynamic.

The mail server is online.

The shell server is online.

Occasionally user data is

broadcast+static+single-source,

so offline creation and signing

might help protect integrity.

But this is a rare corner case.

Offline creation and signing:

impossible for most user data.

By insisting on signatures,

DNSSEC creates problems for

lookups of dynamic DNS data;

lookups of nonexistent names;

speed; robustness; availability;

freshness; confidentiality.

Analogy: imagine HTTPSEC.

DNSCurve, CurveCP, etc.



Example of bogus “security”:

“You can’t trust online servers.

Our DNS data is signed offline

by a Hardware Security Module

in a fortress in Maryland

protected by machine guns.

Signing procedure requires

3 out of 16 smart cards held

by VeriSign Trust Managers.”

Does this protect users? No!

The web server is online,

and most web pages are dynamic.

The mail server is online.

The shell server is online.

Occasionally user data is

broadcast+static+single-source,

so offline creation and signing

might help protect integrity.

But this is a rare corner case.

Offline creation and signing:

impossible for most user data.

By insisting on signatures,

DNSSEC creates problems for

lookups of dynamic DNS data;

lookups of nonexistent names;

speed; robustness; availability;

freshness; confidentiality.

Analogy: imagine HTTPSEC.

DNSCurve, CurveCP, etc.



Occasionally user data is

broadcast+static+single-source,

so offline creation and signing

might help protect integrity.

But this is a rare corner case.

Offline creation and signing:

impossible for most user data.

By insisting on signatures,

DNSSEC creates problems for

lookups of dynamic DNS data;

lookups of nonexistent names;

speed; robustness; availability;

freshness; confidentiality.

Analogy: imagine HTTPSEC.

DNSCurve, CurveCP, etc.



Occasionally user data is

broadcast+static+single-source,

so offline creation and signing

might help protect integrity.

But this is a rare corner case.

Offline creation and signing:

impossible for most user data.

By insisting on signatures,

DNSSEC creates problems for

lookups of dynamic DNS data;

lookups of nonexistent names;

speed; robustness; availability;

freshness; confidentiality.

Analogy: imagine HTTPSEC.

DNSCurve, CurveCP, etc.

Most Internet connections today

have no cryptographic protection.



Occasionally user data is

broadcast+static+single-source,

so offline creation and signing

might help protect integrity.

But this is a rare corner case.

Offline creation and signing:

impossible for most user data.

By insisting on signatures,

DNSSEC creates problems for

lookups of dynamic DNS data;

lookups of nonexistent names;

speed; robustness; availability;

freshness; confidentiality.

Analogy: imagine HTTPSEC.

DNSCurve, CurveCP, etc.

Most Internet connections today

have no cryptographic protection.

The big plan: replace

DNS with DNSCurve,

TCP with CurveCP,

HTTP with HTTPCurve, etc.



Occasionally user data is

broadcast+static+single-source,

so offline creation and signing

might help protect integrity.

But this is a rare corner case.

Offline creation and signing:

impossible for most user data.

By insisting on signatures,

DNSSEC creates problems for

lookups of dynamic DNS data;

lookups of nonexistent names;

speed; robustness; availability;

freshness; confidentiality.

Analogy: imagine HTTPSEC.

DNSCurve, CurveCP, etc.

Most Internet connections today

have no cryptographic protection.

The big plan: replace

DNS with DNSCurve,

TCP with CurveCP,

HTTP with HTTPCurve, etc.

All client data is authenticated +

encrypted to server’s public key

from client’s public key.

All server data is authenticated +

encrypted to client’s public key

from server’s public key.



Occasionally user data is

broadcast+static+single-source,

so offline creation and signing

might help protect integrity.

But this is a rare corner case.

Offline creation and signing:

impossible for most user data.

By insisting on signatures,

DNSSEC creates problems for

lookups of dynamic DNS data;

lookups of nonexistent names;

speed; robustness; availability;

freshness; confidentiality.

Analogy: imagine HTTPSEC.

DNSCurve, CurveCP, etc.

Most Internet connections today

have no cryptographic protection.

The big plan: replace

DNS with DNSCurve,

TCP with CurveCP,

HTTP with HTTPCurve, etc.

All client data is authenticated +

encrypted to server’s public key

from client’s public key.

All server data is authenticated +

encrypted to client’s public key

from server’s public key.

Crypto layer is very close

to network layer.

Each packet is authenticated +

encrypted just before it is sent.

Each packet is verified +

decrypted immediately

after it is received.



Occasionally user data is

broadcast+static+single-source,

so offline creation and signing

might help protect integrity.

But this is a rare corner case.

Offline creation and signing:

impossible for most user data.

By insisting on signatures,

DNSSEC creates problems for

lookups of dynamic DNS data;

lookups of nonexistent names;

speed; robustness; availability;

freshness; confidentiality.

Analogy: imagine HTTPSEC.

DNSCurve, CurveCP, etc.

Most Internet connections today

have no cryptographic protection.

The big plan: replace

DNS with DNSCurve,

TCP with CurveCP,

HTTP with HTTPCurve, etc.

All client data is authenticated +

encrypted to server’s public key

from client’s public key.

All server data is authenticated +

encrypted to client’s public key

from server’s public key.

Crypto layer is very close

to network layer.

Each packet is authenticated +

encrypted just before it is sent.

Each packet is verified +

decrypted immediately

after it is received.



Occasionally user data is

broadcast+static+single-source,

so offline creation and signing

might help protect integrity.

But this is a rare corner case.

Offline creation and signing:

impossible for most user data.

By insisting on signatures,

DNSSEC creates problems for

lookups of dynamic DNS data;

lookups of nonexistent names;

speed; robustness; availability;

freshness; confidentiality.

Analogy: imagine HTTPSEC.

DNSCurve, CurveCP, etc.

Most Internet connections today

have no cryptographic protection.

The big plan: replace

DNS with DNSCurve,

TCP with CurveCP,

HTTP with HTTPCurve, etc.

All client data is authenticated +

encrypted to server’s public key

from client’s public key.

All server data is authenticated +

encrypted to client’s public key

from server’s public key.

Crypto layer is very close

to network layer.

Each packet is authenticated +

encrypted just before it is sent.

Each packet is verified +

decrypted immediately

after it is received.



DNSCurve, CurveCP, etc.

Most Internet connections today

have no cryptographic protection.

The big plan: replace

DNS with DNSCurve,

TCP with CurveCP,

HTTP with HTTPCurve, etc.

All client data is authenticated +

encrypted to server’s public key

from client’s public key.

All server data is authenticated +

encrypted to client’s public key

from server’s public key.

Crypto layer is very close

to network layer.

Each packet is authenticated +

encrypted just before it is sent.

Each packet is verified +

decrypted immediately

after it is received.



DNSCurve, CurveCP, etc.

Most Internet connections today

have no cryptographic protection.

The big plan: replace

DNS with DNSCurve,

TCP with CurveCP,

HTTP with HTTPCurve, etc.

All client data is authenticated +

encrypted to server’s public key

from client’s public key.

All server data is authenticated +

encrypted to client’s public key

from server’s public key.

Crypto layer is very close

to network layer.

Each packet is authenticated +

encrypted just before it is sent.

Each packet is verified +

decrypted immediately

after it is received.

Much less invasive than DNSSEC

for DNS protocol, DNS databases,

DNS implementations.

Also easy for HTTP etc.



DNSCurve, CurveCP, etc.

Most Internet connections today

have no cryptographic protection.

The big plan: replace

DNS with DNSCurve,

TCP with CurveCP,

HTTP with HTTPCurve, etc.

All client data is authenticated +

encrypted to server’s public key

from client’s public key.

All server data is authenticated +

encrypted to client’s public key

from server’s public key.

Crypto layer is very close

to network layer.

Each packet is authenticated +

encrypted just before it is sent.

Each packet is verified +

decrypted immediately

after it is received.

Much less invasive than DNSSEC

for DNS protocol, DNS databases,

DNS implementations.

Also easy for HTTP etc.

Separate authenticator on every

packet also improves availability.

No more RST attacks.



DNSCurve, CurveCP, etc.

Most Internet connections today

have no cryptographic protection.

The big plan: replace

DNS with DNSCurve,

TCP with CurveCP,

HTTP with HTTPCurve, etc.

All client data is authenticated +

encrypted to server’s public key

from client’s public key.

All server data is authenticated +

encrypted to client’s public key

from server’s public key.

Crypto layer is very close

to network layer.

Each packet is authenticated +

encrypted just before it is sent.

Each packet is verified +

decrypted immediately

after it is received.

Much less invasive than DNSSEC

for DNS protocol, DNS databases,

DNS implementations.

Also easy for HTTP etc.

Separate authenticator on every

packet also improves availability.

No more RST attacks.

How does server obtain

client’s public key?



DNSCurve, CurveCP, etc.

Most Internet connections today

have no cryptographic protection.

The big plan: replace

DNS with DNSCurve,

TCP with CurveCP,

HTTP with HTTPCurve, etc.

All client data is authenticated +

encrypted to server’s public key

from client’s public key.

All server data is authenticated +

encrypted to client’s public key

from server’s public key.

Crypto layer is very close

to network layer.

Each packet is authenticated +

encrypted just before it is sent.

Each packet is verified +

decrypted immediately

after it is received.

Much less invasive than DNSSEC

for DNS protocol, DNS databases,

DNS implementations.

Also easy for HTTP etc.

Separate authenticator on every

packet also improves availability.

No more RST attacks.

How does server obtain

client’s public key?



DNSCurve, CurveCP, etc.

Most Internet connections today

have no cryptographic protection.

The big plan: replace

DNS with DNSCurve,

TCP with CurveCP,

HTTP with HTTPCurve, etc.

All client data is authenticated +

encrypted to server’s public key

from client’s public key.

All server data is authenticated +

encrypted to client’s public key

from server’s public key.

Crypto layer is very close

to network layer.

Each packet is authenticated +

encrypted just before it is sent.

Each packet is verified +

decrypted immediately

after it is received.

Much less invasive than DNSSEC

for DNS protocol, DNS databases,

DNS implementations.

Also easy for HTTP etc.

Separate authenticator on every

packet also improves availability.

No more RST attacks.

How does server obtain

client’s public key?



Crypto layer is very close

to network layer.

Each packet is authenticated +

encrypted just before it is sent.

Each packet is verified +

decrypted immediately

after it is received.

Much less invasive than DNSSEC

for DNS protocol, DNS databases,

DNS implementations.

Also easy for HTTP etc.

Separate authenticator on every

packet also improves availability.

No more RST attacks.

How does server obtain

client’s public key?



Crypto layer is very close

to network layer.

Each packet is authenticated +

encrypted just before it is sent.

Each packet is verified +

decrypted immediately

after it is received.

Much less invasive than DNSSEC

for DNS protocol, DNS databases,

DNS implementations.

Also easy for HTTP etc.

Separate authenticator on every

packet also improves availability.

No more RST attacks.

How does server obtain

client’s public key?

Client sends it with first packet.



Crypto layer is very close

to network layer.

Each packet is authenticated +

encrypted just before it is sent.

Each packet is verified +

decrypted immediately

after it is received.

Much less invasive than DNSSEC

for DNS protocol, DNS databases,

DNS implementations.

Also easy for HTTP etc.

Separate authenticator on every

packet also improves availability.

No more RST attacks.

How does server obtain

client’s public key?

Client sends it with first packet.

How does client obtain

server’s public key?



Crypto layer is very close

to network layer.

Each packet is authenticated +

encrypted just before it is sent.

Each packet is verified +

decrypted immediately

after it is received.

Much less invasive than DNSSEC

for DNS protocol, DNS databases,

DNS implementations.

Also easy for HTTP etc.

Separate authenticator on every

packet also improves availability.

No more RST attacks.

How does server obtain

client’s public key?

Client sends it with first packet.

How does client obtain

server’s public key?

Client already had mechanism

to obtain server address.

Server sneaks public key

into that mechanism.



Crypto layer is very close

to network layer.

Each packet is authenticated +

encrypted just before it is sent.

Each packet is verified +

decrypted immediately

after it is received.

Much less invasive than DNSSEC

for DNS protocol, DNS databases,

DNS implementations.

Also easy for HTTP etc.

Separate authenticator on every

packet also improves availability.

No more RST attacks.

How does server obtain

client’s public key?

Client sends it with first packet.

How does client obtain

server’s public key?

Client already had mechanism

to obtain server address.

Server sneaks public key

into that mechanism.

No extra packets.

Serious crypto for each packet,

but state-of-the-art crypto

(Curve25519, Salsa20, Poly1305)

easily keeps up with the network.


