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Crypto layer is very close

to network layer.

Each packet is authenticated +

encrypted just before it is sent.

Each packet is verified +

decrypted immediately

after it Is received.

Much less invasive than DNSSEC

for DNS protocol, DNS databases,
DNS implementations.

A

so easy for HT TP etc.

Separate authenticator on every

packet also improves availability.
No more RST attacks.

How does server obtain
client’s public key?
Client sends it with first packet.

How does client obtain
server's public key?

Client already had mechanism
to obtain server address.
Server sneaks public key

into that mechanism.

No extra packets.
Serious crypto for each packet,
but state-of-the-art crypto

(Curve25519, Salsa20, Poly1305)
easily keeps up with the network.



