
Non-uniform

cracks in the concrete:

the power of free precomputation

D. J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Tanja Lange

Technische Universiteit Eindhoven

Full 53-page paper,

including progress towards

formalizing collision resistance:

eprint.iacr.org/2012/318

Concrete security: an example

What is the best NIST P-256

discrete-log attack algorithm?

ECDL input: P-256 points P;Q,

where P is a standard generator.

ECDL output: logP Q.

Standard definition of “best”:

minimize “time”.



Non-uniform

cracks in the concrete:

the power of free precomputation

D. J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Tanja Lange

Technische Universiteit Eindhoven

Full 53-page paper,

including progress towards

formalizing collision resistance:

eprint.iacr.org/2012/318

Concrete security: an example

What is the best NIST P-256

discrete-log attack algorithm?

ECDL input: P-256 points P;Q,

where P is a standard generator.

ECDL output: logP Q.

Standard definition of “best”:

minimize “time”.

More generally, allow attacks with

<100% success probability;

analyze tradeoffs between

“time” and success probability.

This talk focuses on high prob.



Non-uniform

cracks in the concrete:

the power of free precomputation

D. J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Tanja Lange

Technische Universiteit Eindhoven

Full 53-page paper,

including progress towards

formalizing collision resistance:

eprint.iacr.org/2012/318

Concrete security: an example

What is the best NIST P-256

discrete-log attack algorithm?

ECDL input: P-256 points P;Q,

where P is a standard generator.

ECDL output: logP Q.

Standard definition of “best”:

minimize “time”.

More generally, allow attacks with

<100% success probability;

analyze tradeoffs between

“time” and success probability.

This talk focuses on high prob.

P-256 discrete-log attack )
total TLS-ECDHE-P-256 break!

Should TLS users worry?



Non-uniform

cracks in the concrete:

the power of free precomputation

D. J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Tanja Lange

Technische Universiteit Eindhoven

Full 53-page paper,

including progress towards

formalizing collision resistance:

eprint.iacr.org/2012/318

Concrete security: an example

What is the best NIST P-256

discrete-log attack algorithm?

ECDL input: P-256 points P;Q,

where P is a standard generator.

ECDL output: logP Q.

Standard definition of “best”:

minimize “time”.

More generally, allow attacks with

<100% success probability;

analyze tradeoffs between

“time” and success probability.

This talk focuses on high prob.

P-256 discrete-log attack )
total TLS-ECDHE-P-256 break!

Should TLS users worry?



Non-uniform

cracks in the concrete:

the power of free precomputation

D. J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Tanja Lange

Technische Universiteit Eindhoven

Full 53-page paper,

including progress towards

formalizing collision resistance:

eprint.iacr.org/2012/318

Concrete security: an example

What is the best NIST P-256

discrete-log attack algorithm?

ECDL input: P-256 points P;Q,

where P is a standard generator.

ECDL output: logP Q.

Standard definition of “best”:

minimize “time”.

More generally, allow attacks with

<100% success probability;

analyze tradeoffs between

“time” and success probability.

This talk focuses on high prob.

P-256 discrete-log attack )
total TLS-ECDHE-P-256 break!

Should TLS users worry?



Concrete security: an example

What is the best NIST P-256

discrete-log attack algorithm?

ECDL input: P-256 points P;Q,

where P is a standard generator.

ECDL output: logP Q.

Standard definition of “best”:

minimize “time”.

More generally, allow attacks with

<100% success probability;

analyze tradeoffs between

“time” and success probability.

This talk focuses on high prob.

P-256 discrete-log attack )
total TLS-ECDHE-P-256 break!

Should TLS users worry?



Concrete security: an example

What is the best NIST P-256

discrete-log attack algorithm?

ECDL input: P-256 points P;Q,

where P is a standard generator.

ECDL output: logP Q.

Standard definition of “best”:

minimize “time”.

More generally, allow attacks with

<100% success probability;

analyze tradeoffs between

“time” and success probability.

This talk focuses on high prob.

P-256 discrete-log attack )
total TLS-ECDHE-P-256 break!

Should TLS users worry?

No. Many researchers have

tried and failed to find good

P-256 discrete-log attacks.



Concrete security: an example

What is the best NIST P-256

discrete-log attack algorithm?

ECDL input: P-256 points P;Q,

where P is a standard generator.

ECDL output: logP Q.

Standard definition of “best”:

minimize “time”.

More generally, allow attacks with

<100% success probability;

analyze tradeoffs between

“time” and success probability.

This talk focuses on high prob.

P-256 discrete-log attack )
total TLS-ECDHE-P-256 break!

Should TLS users worry?

No. Many researchers have

tried and failed to find good

P-256 discrete-log attacks.

Standard conjecture:

For each p 2 [0; 1],

each P-256 ECDL algorithm

with success probability �p
takes “time” �2128p1=2.

Similar conjectures for AES-128,

RSA-3072, etc.: see, e.g.,

2005 Bellare–Rogaway.



Concrete security: an example

What is the best NIST P-256

discrete-log attack algorithm?

ECDL input: P-256 points P;Q,

where P is a standard generator.

ECDL output: logP Q.

Standard definition of “best”:

minimize “time”.

More generally, allow attacks with

<100% success probability;

analyze tradeoffs between

“time” and success probability.

This talk focuses on high prob.

P-256 discrete-log attack )
total TLS-ECDHE-P-256 break!

Should TLS users worry?

No. Many researchers have

tried and failed to find good

P-256 discrete-log attacks.

Standard conjecture:

For each p 2 [0; 1],

each P-256 ECDL algorithm

with success probability �p
takes “time” �2128p1=2.

Similar conjectures for AES-128,

RSA-3072, etc.: see, e.g.,

2005 Bellare–Rogaway.

Concrete reductions

Another conjecture:

Each TLS-ECDHE-P-256 attack

with success probability �p
takes “time” �2128p1=2.



Concrete security: an example

What is the best NIST P-256

discrete-log attack algorithm?

ECDL input: P-256 points P;Q,

where P is a standard generator.

ECDL output: logP Q.

Standard definition of “best”:

minimize “time”.

More generally, allow attacks with

<100% success probability;

analyze tradeoffs between

“time” and success probability.

This talk focuses on high prob.

P-256 discrete-log attack )
total TLS-ECDHE-P-256 break!

Should TLS users worry?

No. Many researchers have

tried and failed to find good

P-256 discrete-log attacks.

Standard conjecture:

For each p 2 [0; 1],

each P-256 ECDL algorithm

with success probability �p
takes “time” �2128p1=2.

Similar conjectures for AES-128,

RSA-3072, etc.: see, e.g.,

2005 Bellare–Rogaway.

Concrete reductions

Another conjecture:

Each TLS-ECDHE-P-256 attack

with success probability �p
takes “time” �2128p1=2.



Concrete security: an example

What is the best NIST P-256

discrete-log attack algorithm?

ECDL input: P-256 points P;Q,

where P is a standard generator.

ECDL output: logP Q.

Standard definition of “best”:

minimize “time”.

More generally, allow attacks with

<100% success probability;

analyze tradeoffs between

“time” and success probability.

This talk focuses on high prob.

P-256 discrete-log attack )
total TLS-ECDHE-P-256 break!

Should TLS users worry?

No. Many researchers have

tried and failed to find good

P-256 discrete-log attacks.

Standard conjecture:

For each p 2 [0; 1],

each P-256 ECDL algorithm

with success probability �p
takes “time” �2128p1=2.

Similar conjectures for AES-128,

RSA-3072, etc.: see, e.g.,

2005 Bellare–Rogaway.

Concrete reductions

Another conjecture:

Each TLS-ECDHE-P-256 attack

with success probability �p
takes “time” �2128p1=2.



P-256 discrete-log attack )
total TLS-ECDHE-P-256 break!

Should TLS users worry?

No. Many researchers have

tried and failed to find good

P-256 discrete-log attacks.

Standard conjecture:

For each p 2 [0; 1],

each P-256 ECDL algorithm

with success probability �p
takes “time” �2128p1=2.

Similar conjectures for AES-128,

RSA-3072, etc.: see, e.g.,

2005 Bellare–Rogaway.

Concrete reductions

Another conjecture:

Each TLS-ECDHE-P-256 attack

with success probability �p
takes “time” �2128p1=2.



P-256 discrete-log attack )
total TLS-ECDHE-P-256 break!

Should TLS users worry?

No. Many researchers have

tried and failed to find good

P-256 discrete-log attacks.

Standard conjecture:

For each p 2 [0; 1],

each P-256 ECDL algorithm

with success probability �p
takes “time” �2128p1=2.

Similar conjectures for AES-128,

RSA-3072, etc.: see, e.g.,

2005 Bellare–Rogaway.

Concrete reductions

Another conjecture:

Each TLS-ECDHE-P-256 attack

with success probability �p
takes “time” �2128p1=2.

Why should users have any

confidence in this conjecture?

How many researchers

have really tried to break

ECDHE-P-256? ECDSA-P-256?

ECIES-P-256? ECMQV-P-256?

Other P-256-based protocols?

Far less attention than for ECDL.



P-256 discrete-log attack )
total TLS-ECDHE-P-256 break!

Should TLS users worry?

No. Many researchers have

tried and failed to find good

P-256 discrete-log attacks.

Standard conjecture:

For each p 2 [0; 1],

each P-256 ECDL algorithm

with success probability �p
takes “time” �2128p1=2.

Similar conjectures for AES-128,

RSA-3072, etc.: see, e.g.,

2005 Bellare–Rogaway.

Concrete reductions

Another conjecture:

Each TLS-ECDHE-P-256 attack

with success probability �p
takes “time” �2128p1=2.

Why should users have any

confidence in this conjecture?

How many researchers

have really tried to break

ECDHE-P-256? ECDSA-P-256?

ECIES-P-256? ECMQV-P-256?

Other P-256-based protocols?

Far less attention than for ECDL.

Provable security to the rescue!

Prove: if there is

a TLS-ECDHE-P-256 attack

then there is

a P-256 discrete-log attack

with similar “time”

and success probability.



P-256 discrete-log attack )
total TLS-ECDHE-P-256 break!

Should TLS users worry?

No. Many researchers have

tried and failed to find good

P-256 discrete-log attacks.

Standard conjecture:

For each p 2 [0; 1],

each P-256 ECDL algorithm

with success probability �p
takes “time” �2128p1=2.

Similar conjectures for AES-128,

RSA-3072, etc.: see, e.g.,

2005 Bellare–Rogaway.

Concrete reductions

Another conjecture:

Each TLS-ECDHE-P-256 attack

with success probability �p
takes “time” �2128p1=2.

Why should users have any

confidence in this conjecture?

How many researchers

have really tried to break

ECDHE-P-256? ECDSA-P-256?

ECIES-P-256? ECMQV-P-256?

Other P-256-based protocols?

Far less attention than for ECDL.

Provable security to the rescue!

Prove: if there is

a TLS-ECDHE-P-256 attack

then there is

a P-256 discrete-log attack

with similar “time”

and success probability.



P-256 discrete-log attack )
total TLS-ECDHE-P-256 break!

Should TLS users worry?

No. Many researchers have

tried and failed to find good

P-256 discrete-log attacks.

Standard conjecture:

For each p 2 [0; 1],

each P-256 ECDL algorithm

with success probability �p
takes “time” �2128p1=2.

Similar conjectures for AES-128,

RSA-3072, etc.: see, e.g.,

2005 Bellare–Rogaway.

Concrete reductions

Another conjecture:

Each TLS-ECDHE-P-256 attack

with success probability �p
takes “time” �2128p1=2.

Why should users have any

confidence in this conjecture?

How many researchers

have really tried to break

ECDHE-P-256? ECDSA-P-256?

ECIES-P-256? ECMQV-P-256?

Other P-256-based protocols?

Far less attention than for ECDL.

Provable security to the rescue!

Prove: if there is

a TLS-ECDHE-P-256 attack

then there is

a P-256 discrete-log attack

with similar “time”

and success probability.



Concrete reductions

Another conjecture:

Each TLS-ECDHE-P-256 attack

with success probability �p
takes “time” �2128p1=2.

Why should users have any

confidence in this conjecture?

How many researchers

have really tried to break

ECDHE-P-256? ECDSA-P-256?

ECIES-P-256? ECMQV-P-256?

Other P-256-based protocols?

Far less attention than for ECDL.

Provable security to the rescue!

Prove: if there is

a TLS-ECDHE-P-256 attack

then there is

a P-256 discrete-log attack

with similar “time”

and success probability.



Concrete reductions

Another conjecture:

Each TLS-ECDHE-P-256 attack

with success probability �p
takes “time” �2128p1=2.

Why should users have any

confidence in this conjecture?

How many researchers

have really tried to break

ECDHE-P-256? ECDSA-P-256?

ECIES-P-256? ECMQV-P-256?

Other P-256-based protocols?

Far less attention than for ECDL.

Provable security to the rescue!

Prove: if there is

a TLS-ECDHE-P-256 attack

then there is

a P-256 discrete-log attack

with similar “time”

and success probability.

Oops: This turns out to be hard.

But changing DL to DDH

+ adding more assumptions

allows a proof: Crypto 2012

Jager–Kohlar–Schäge–Schwenk

“On the security of TLS-DHE

in the standard model”.



Concrete reductions

Another conjecture:

Each TLS-ECDHE-P-256 attack

with success probability �p
takes “time” �2128p1=2.

Why should users have any

confidence in this conjecture?

How many researchers

have really tried to break

ECDHE-P-256? ECDSA-P-256?

ECIES-P-256? ECMQV-P-256?

Other P-256-based protocols?

Far less attention than for ECDL.

Provable security to the rescue!

Prove: if there is

a TLS-ECDHE-P-256 attack

then there is

a P-256 discrete-log attack

with similar “time”

and success probability.

Oops: This turns out to be hard.

But changing DL to DDH

+ adding more assumptions

allows a proof: Crypto 2012

Jager–Kohlar–Schäge–Schwenk

“On the security of TLS-DHE

in the standard model”.

Similar pattern throughout the

“provable security” literature.

Protocol designers (try to) prove

that hardness of a problem P

(e.g., P-256 DDH) implies

security of various protocols Q.

After extensive cryptanalysis of P ,

maybe gain confidence in hardness

of P , and hence in security of Q.



Concrete reductions

Another conjecture:

Each TLS-ECDHE-P-256 attack

with success probability �p
takes “time” �2128p1=2.

Why should users have any

confidence in this conjecture?

How many researchers

have really tried to break

ECDHE-P-256? ECDSA-P-256?

ECIES-P-256? ECMQV-P-256?

Other P-256-based protocols?

Far less attention than for ECDL.

Provable security to the rescue!

Prove: if there is

a TLS-ECDHE-P-256 attack

then there is

a P-256 discrete-log attack

with similar “time”

and success probability.

Oops: This turns out to be hard.

But changing DL to DDH

+ adding more assumptions

allows a proof: Crypto 2012

Jager–Kohlar–Schäge–Schwenk

“On the security of TLS-DHE

in the standard model”.

Similar pattern throughout the

“provable security” literature.

Protocol designers (try to) prove

that hardness of a problem P

(e.g., P-256 DDH) implies

security of various protocols Q.

After extensive cryptanalysis of P ,

maybe gain confidence in hardness

of P , and hence in security of Q.



Concrete reductions

Another conjecture:

Each TLS-ECDHE-P-256 attack

with success probability �p
takes “time” �2128p1=2.

Why should users have any

confidence in this conjecture?

How many researchers

have really tried to break

ECDHE-P-256? ECDSA-P-256?

ECIES-P-256? ECMQV-P-256?

Other P-256-based protocols?

Far less attention than for ECDL.

Provable security to the rescue!

Prove: if there is

a TLS-ECDHE-P-256 attack

then there is

a P-256 discrete-log attack

with similar “time”

and success probability.

Oops: This turns out to be hard.

But changing DL to DDH

+ adding more assumptions

allows a proof: Crypto 2012

Jager–Kohlar–Schäge–Schwenk

“On the security of TLS-DHE

in the standard model”.

Similar pattern throughout the

“provable security” literature.

Protocol designers (try to) prove

that hardness of a problem P

(e.g., P-256 DDH) implies

security of various protocols Q.

After extensive cryptanalysis of P ,

maybe gain confidence in hardness

of P , and hence in security of Q.



Provable security to the rescue!

Prove: if there is

a TLS-ECDHE-P-256 attack

then there is

a P-256 discrete-log attack

with similar “time”

and success probability.

Oops: This turns out to be hard.

But changing DL to DDH

+ adding more assumptions

allows a proof: Crypto 2012

Jager–Kohlar–Schäge–Schwenk

“On the security of TLS-DHE

in the standard model”.

Similar pattern throughout the

“provable security” literature.

Protocol designers (try to) prove

that hardness of a problem P

(e.g., P-256 DDH) implies

security of various protocols Q.

After extensive cryptanalysis of P ,

maybe gain confidence in hardness

of P , and hence in security of Q.



Provable security to the rescue!

Prove: if there is

a TLS-ECDHE-P-256 attack

then there is

a P-256 discrete-log attack

with similar “time”

and success probability.

Oops: This turns out to be hard.

But changing DL to DDH

+ adding more assumptions

allows a proof: Crypto 2012

Jager–Kohlar–Schäge–Schwenk

“On the security of TLS-DHE

in the standard model”.

Similar pattern throughout the

“provable security” literature.

Protocol designers (try to) prove

that hardness of a problem P

(e.g., P-256 DDH) implies

security of various protocols Q.

After extensive cryptanalysis of P ,

maybe gain confidence in hardness

of P , and hence in security of Q.

Why not directly cryptanalyze Q?

Cryptanalysis is hard work: have

to focus on a few problems P .

Proofs scale to many protocols Q.



Provable security to the rescue!

Prove: if there is

a TLS-ECDHE-P-256 attack

then there is

a P-256 discrete-log attack

with similar “time”

and success probability.

Oops: This turns out to be hard.

But changing DL to DDH

+ adding more assumptions

allows a proof: Crypto 2012

Jager–Kohlar–Schäge–Schwenk

“On the security of TLS-DHE

in the standard model”.

Similar pattern throughout the

“provable security” literature.

Protocol designers (try to) prove

that hardness of a problem P

(e.g., P-256 DDH) implies

security of various protocols Q.

After extensive cryptanalysis of P ,

maybe gain confidence in hardness

of P , and hence in security of Q.

Why not directly cryptanalyze Q?

Cryptanalysis is hard work: have

to focus on a few problems P .

Proofs scale to many protocols Q.

Interlude regarding “time”

How much “time” does the

following algorithm take?

def pidigit(n0,n1,n2):

if n0 == 0:

if n1 == 0:

if n2 == 0: return 3

return 1

if n2 == 0: return 4

return 1

if n1 == 0:

if n2 == 0: return 5

return 9

if n2 == 0: return 2

return 6



Provable security to the rescue!

Prove: if there is

a TLS-ECDHE-P-256 attack

then there is

a P-256 discrete-log attack

with similar “time”

and success probability.

Oops: This turns out to be hard.

But changing DL to DDH

+ adding more assumptions

allows a proof: Crypto 2012

Jager–Kohlar–Schäge–Schwenk

“On the security of TLS-DHE

in the standard model”.

Similar pattern throughout the

“provable security” literature.

Protocol designers (try to) prove

that hardness of a problem P

(e.g., P-256 DDH) implies

security of various protocols Q.

After extensive cryptanalysis of P ,

maybe gain confidence in hardness

of P , and hence in security of Q.

Why not directly cryptanalyze Q?

Cryptanalysis is hard work: have

to focus on a few problems P .

Proofs scale to many protocols Q.

Interlude regarding “time”

How much “time” does the

following algorithm take?

def pidigit(n0,n1,n2):

if n0 == 0:

if n1 == 0:

if n2 == 0: return 3

return 1

if n2 == 0: return 4

return 1

if n1 == 0:

if n2 == 0: return 5

return 9

if n2 == 0: return 2

return 6



Provable security to the rescue!

Prove: if there is

a TLS-ECDHE-P-256 attack

then there is

a P-256 discrete-log attack

with similar “time”

and success probability.

Oops: This turns out to be hard.

But changing DL to DDH

+ adding more assumptions

allows a proof: Crypto 2012

Jager–Kohlar–Schäge–Schwenk

“On the security of TLS-DHE

in the standard model”.

Similar pattern throughout the

“provable security” literature.

Protocol designers (try to) prove

that hardness of a problem P

(e.g., P-256 DDH) implies

security of various protocols Q.

After extensive cryptanalysis of P ,

maybe gain confidence in hardness

of P , and hence in security of Q.

Why not directly cryptanalyze Q?

Cryptanalysis is hard work: have

to focus on a few problems P .

Proofs scale to many protocols Q.

Interlude regarding “time”

How much “time” does the

following algorithm take?

def pidigit(n0,n1,n2):

if n0 == 0:

if n1 == 0:

if n2 == 0: return 3

return 1

if n2 == 0: return 4

return 1

if n1 == 0:

if n2 == 0: return 5

return 9

if n2 == 0: return 2

return 6



Similar pattern throughout the

“provable security” literature.

Protocol designers (try to) prove

that hardness of a problem P

(e.g., P-256 DDH) implies

security of various protocols Q.

After extensive cryptanalysis of P ,

maybe gain confidence in hardness

of P , and hence in security of Q.

Why not directly cryptanalyze Q?

Cryptanalysis is hard work: have

to focus on a few problems P .

Proofs scale to many protocols Q.

Interlude regarding “time”

How much “time” does the

following algorithm take?

def pidigit(n0,n1,n2):

if n0 == 0:

if n1 == 0:

if n2 == 0: return 3

return 1

if n2 == 0: return 4

return 1

if n1 == 0:

if n2 == 0: return 5

return 9

if n2 == 0: return 2

return 6



Similar pattern throughout the

“provable security” literature.

Protocol designers (try to) prove

that hardness of a problem P

(e.g., P-256 DDH) implies

security of various protocols Q.

After extensive cryptanalysis of P ,

maybe gain confidence in hardness

of P , and hence in security of Q.

Why not directly cryptanalyze Q?

Cryptanalysis is hard work: have

to focus on a few problems P .

Proofs scale to many protocols Q.

Interlude regarding “time”

How much “time” does the

following algorithm take?

def pidigit(n0,n1,n2):

if n0 == 0:

if n1 == 0:

if n2 == 0: return 3

return 1

if n2 == 0: return 4

return 1

if n1 == 0:

if n2 == 0: return 5

return 9

if n2 == 0: return 2

return 6

Students in algorithm courses

learn to count executed “steps”.

Skipped branches take 0 “steps”.

This algorithm uses 4 “steps”.



Similar pattern throughout the

“provable security” literature.

Protocol designers (try to) prove

that hardness of a problem P

(e.g., P-256 DDH) implies

security of various protocols Q.

After extensive cryptanalysis of P ,

maybe gain confidence in hardness

of P , and hence in security of Q.

Why not directly cryptanalyze Q?

Cryptanalysis is hard work: have

to focus on a few problems P .

Proofs scale to many protocols Q.

Interlude regarding “time”

How much “time” does the

following algorithm take?

def pidigit(n0,n1,n2):

if n0 == 0:

if n1 == 0:

if n2 == 0: return 3

return 1

if n2 == 0: return 4

return 1

if n1 == 0:

if n2 == 0: return 5

return 9

if n2 == 0: return 2

return 6

Students in algorithm courses

learn to count executed “steps”.

Skipped branches take 0 “steps”.

This algorithm uses 4 “steps”.



Similar pattern throughout the

“provable security” literature.

Protocol designers (try to) prove

that hardness of a problem P

(e.g., P-256 DDH) implies

security of various protocols Q.

After extensive cryptanalysis of P ,

maybe gain confidence in hardness

of P , and hence in security of Q.

Why not directly cryptanalyze Q?

Cryptanalysis is hard work: have

to focus on a few problems P .

Proofs scale to many protocols Q.

Interlude regarding “time”

How much “time” does the

following algorithm take?

def pidigit(n0,n1,n2):

if n0 == 0:

if n1 == 0:

if n2 == 0: return 3

return 1

if n2 == 0: return 4

return 1

if n1 == 0:

if n2 == 0: return 5

return 9

if n2 == 0: return 2

return 6

Students in algorithm courses

learn to count executed “steps”.

Skipped branches take 0 “steps”.

This algorithm uses 4 “steps”.



Interlude regarding “time”

How much “time” does the

following algorithm take?

def pidigit(n0,n1,n2):

if n0 == 0:

if n1 == 0:

if n2 == 0: return 3

return 1

if n2 == 0: return 4

return 1

if n1 == 0:

if n2 == 0: return 5

return 9

if n2 == 0: return 2

return 6

Students in algorithm courses

learn to count executed “steps”.

Skipped branches take 0 “steps”.

This algorithm uses 4 “steps”.



Interlude regarding “time”

How much “time” does the

following algorithm take?

def pidigit(n0,n1,n2):

if n0 == 0:

if n1 == 0:

if n2 == 0: return 3

return 1

if n2 == 0: return 4

return 1

if n1 == 0:

if n2 == 0: return 5

return 9

if n2 == 0: return 2

return 6

Students in algorithm courses

learn to count executed “steps”.

Skipped branches take 0 “steps”.

This algorithm uses 4 “steps”.

Generalization: There exists an

algorithm that, given n < 2k,

prints the nth digit of �

using k + 1 “steps”.



Interlude regarding “time”

How much “time” does the

following algorithm take?

def pidigit(n0,n1,n2):

if n0 == 0:

if n1 == 0:

if n2 == 0: return 3

return 1

if n2 == 0: return 4

return 1

if n1 == 0:

if n2 == 0: return 5

return 9

if n2 == 0: return 2

return 6

Students in algorithm courses

learn to count executed “steps”.

Skipped branches take 0 “steps”.

This algorithm uses 4 “steps”.

Generalization: There exists an

algorithm that, given n < 2k,

prints the nth digit of �

using k + 1 “steps”.

Variant: There exists a 258-

“step” P-256 discrete-log attack

(with 100% success probability).



Interlude regarding “time”

How much “time” does the

following algorithm take?

def pidigit(n0,n1,n2):

if n0 == 0:

if n1 == 0:

if n2 == 0: return 3

return 1

if n2 == 0: return 4

return 1

if n1 == 0:

if n2 == 0: return 5

return 9

if n2 == 0: return 2

return 6

Students in algorithm courses

learn to count executed “steps”.

Skipped branches take 0 “steps”.

This algorithm uses 4 “steps”.

Generalization: There exists an

algorithm that, given n < 2k,

prints the nth digit of �

using k + 1 “steps”.

Variant: There exists a 258-

“step” P-256 discrete-log attack

(with 100% success probability).

If “time” means “steps” then the

standard conjectures are wrong.



Interlude regarding “time”

How much “time” does the

following algorithm take?

def pidigit(n0,n1,n2):

if n0 == 0:

if n1 == 0:

if n2 == 0: return 3

return 1

if n2 == 0: return 4

return 1

if n1 == 0:

if n2 == 0: return 5

return 9

if n2 == 0: return 2

return 6

Students in algorithm courses

learn to count executed “steps”.

Skipped branches take 0 “steps”.

This algorithm uses 4 “steps”.

Generalization: There exists an

algorithm that, given n < 2k,

prints the nth digit of �

using k + 1 “steps”.

Variant: There exists a 258-

“step” P-256 discrete-log attack

(with 100% success probability).

If “time” means “steps” then the

standard conjectures are wrong.

1994 Bellare–Kilian–Rogaway:

“We say that

A is a (t; q)-adversary if

A runs in at most t steps and

makes at most q queries to O.”



Interlude regarding “time”

How much “time” does the

following algorithm take?

def pidigit(n0,n1,n2):

if n0 == 0:

if n1 == 0:

if n2 == 0: return 3

return 1

if n2 == 0: return 4

return 1

if n1 == 0:

if n2 == 0: return 5

return 9

if n2 == 0: return 2

return 6

Students in algorithm courses

learn to count executed “steps”.

Skipped branches take 0 “steps”.

This algorithm uses 4 “steps”.

Generalization: There exists an

algorithm that, given n < 2k,

prints the nth digit of �

using k + 1 “steps”.

Variant: There exists a 258-

“step” P-256 discrete-log attack

(with 100% success probability).

If “time” means “steps” then the

standard conjectures are wrong.

1994 Bellare–Kilian–Rogaway:

“We say that

A is a (t; q)-adversary if

A runs in at most t steps and

makes at most q queries to O.”



Interlude regarding “time”

How much “time” does the

following algorithm take?

def pidigit(n0,n1,n2):

if n0 == 0:

if n1 == 0:

if n2 == 0: return 3

return 1

if n2 == 0: return 4

return 1

if n1 == 0:

if n2 == 0: return 5

return 9

if n2 == 0: return 2

return 6

Students in algorithm courses

learn to count executed “steps”.

Skipped branches take 0 “steps”.

This algorithm uses 4 “steps”.

Generalization: There exists an

algorithm that, given n < 2k,

prints the nth digit of �

using k + 1 “steps”.

Variant: There exists a 258-

“step” P-256 discrete-log attack

(with 100% success probability).

If “time” means “steps” then the

standard conjectures are wrong.

1994 Bellare–Kilian–Rogaway:

“We say that

A is a (t; q)-adversary if

A runs in at most t steps and

makes at most q queries to O.”



Students in algorithm courses

learn to count executed “steps”.

Skipped branches take 0 “steps”.

This algorithm uses 4 “steps”.

Generalization: There exists an

algorithm that, given n < 2k,

prints the nth digit of �

using k + 1 “steps”.

Variant: There exists a 258-

“step” P-256 discrete-log attack

(with 100% success probability).

If “time” means “steps” then the

standard conjectures are wrong.

1994 Bellare–Kilian–Rogaway:

“We say that

A is a (t; q)-adversary if

A runs in at most t steps and

makes at most q queries to O.”



Students in algorithm courses

learn to count executed “steps”.

Skipped branches take 0 “steps”.

This algorithm uses 4 “steps”.

Generalization: There exists an

algorithm that, given n < 2k,

prints the nth digit of �

using k + 1 “steps”.

Variant: There exists a 258-

“step” P-256 discrete-log attack

(with 100% success probability).

If “time” means “steps” then the

standard conjectures are wrong.

1994 Bellare–Kilian–Rogaway:

“We say that

A is a (t; q)-adversary if

A runs in at most t steps and

makes at most q queries to O.”

Oops: table-lookup attack

has very small t.

Paper conjectured “useful” DES

security bounds. Any reasonable

interpretation of conjecture was

false, given paper’s definition.

Theorems in paper were vacuous.



Students in algorithm courses

learn to count executed “steps”.

Skipped branches take 0 “steps”.

This algorithm uses 4 “steps”.

Generalization: There exists an

algorithm that, given n < 2k,

prints the nth digit of �

using k + 1 “steps”.

Variant: There exists a 258-

“step” P-256 discrete-log attack

(with 100% success probability).

If “time” means “steps” then the

standard conjectures are wrong.

1994 Bellare–Kilian–Rogaway:

“We say that

A is a (t; q)-adversary if

A runs in at most t steps and

makes at most q queries to O.”

Oops: table-lookup attack

has very small t.

Paper conjectured “useful” DES

security bounds. Any reasonable

interpretation of conjecture was

false, given paper’s definition.

Theorems in paper were vacuous.

2000 Bellare–Kilian–Rogaway:

“We fix some particular Random

Access Machine (RAM) as a

model of computation. : : : A’s

running time [means] A’s actual

execution time plus the length

of A’s description : : : This

convention eliminates pathologies

caused [by] arbitrarily large lookup

tables : : : ”



Students in algorithm courses

learn to count executed “steps”.

Skipped branches take 0 “steps”.

This algorithm uses 4 “steps”.

Generalization: There exists an

algorithm that, given n < 2k,

prints the nth digit of �

using k + 1 “steps”.

Variant: There exists a 258-

“step” P-256 discrete-log attack

(with 100% success probability).

If “time” means “steps” then the

standard conjectures are wrong.

1994 Bellare–Kilian–Rogaway:

“We say that

A is a (t; q)-adversary if

A runs in at most t steps and

makes at most q queries to O.”

Oops: table-lookup attack

has very small t.

Paper conjectured “useful” DES

security bounds. Any reasonable

interpretation of conjecture was

false, given paper’s definition.

Theorems in paper were vacuous.

2000 Bellare–Kilian–Rogaway:

“We fix some particular Random

Access Machine (RAM) as a

model of computation. : : : A’s

running time [means] A’s actual

execution time plus the length

of A’s description : : : This

convention eliminates pathologies

caused [by] arbitrarily large lookup

tables : : : ”



Students in algorithm courses

learn to count executed “steps”.

Skipped branches take 0 “steps”.

This algorithm uses 4 “steps”.

Generalization: There exists an

algorithm that, given n < 2k,

prints the nth digit of �

using k + 1 “steps”.

Variant: There exists a 258-

“step” P-256 discrete-log attack

(with 100% success probability).

If “time” means “steps” then the

standard conjectures are wrong.

1994 Bellare–Kilian–Rogaway:

“We say that

A is a (t; q)-adversary if

A runs in at most t steps and

makes at most q queries to O.”

Oops: table-lookup attack

has very small t.

Paper conjectured “useful” DES

security bounds. Any reasonable

interpretation of conjecture was

false, given paper’s definition.

Theorems in paper were vacuous.

2000 Bellare–Kilian–Rogaway:

“We fix some particular Random

Access Machine (RAM) as a

model of computation. : : : A’s

running time [means] A’s actual

execution time plus the length

of A’s description : : : This

convention eliminates pathologies

caused [by] arbitrarily large lookup

tables : : : ”



1994 Bellare–Kilian–Rogaway:

“We say that

A is a (t; q)-adversary if

A runs in at most t steps and

makes at most q queries to O.”

Oops: table-lookup attack

has very small t.

Paper conjectured “useful” DES

security bounds. Any reasonable

interpretation of conjecture was

false, given paper’s definition.

Theorems in paper were vacuous.

2000 Bellare–Kilian–Rogaway:

“We fix some particular Random

Access Machine (RAM) as a

model of computation. : : : A’s

running time [means] A’s actual

execution time plus the length

of A’s description : : : This

convention eliminates pathologies

caused [by] arbitrarily large lookup

tables : : : ”



1994 Bellare–Kilian–Rogaway:

“We say that

A is a (t; q)-adversary if

A runs in at most t steps and

makes at most q queries to O.”

Oops: table-lookup attack

has very small t.

Paper conjectured “useful” DES

security bounds. Any reasonable

interpretation of conjecture was

false, given paper’s definition.

Theorems in paper were vacuous.

2000 Bellare–Kilian–Rogaway:

“We fix some particular Random

Access Machine (RAM) as a

model of computation. : : : A’s

running time [means] A’s actual

execution time plus the length

of A’s description : : : This

convention eliminates pathologies

caused [by] arbitrarily large lookup

tables : : : ”

Main point of our paper:

There are more pathologies!

Illustrative example: ECDL.



1994 Bellare–Kilian–Rogaway:

“We say that

A is a (t; q)-adversary if

A runs in at most t steps and

makes at most q queries to O.”

Oops: table-lookup attack

has very small t.

Paper conjectured “useful” DES

security bounds. Any reasonable

interpretation of conjecture was

false, given paper’s definition.

Theorems in paper were vacuous.

2000 Bellare–Kilian–Rogaway:

“We fix some particular Random

Access Machine (RAM) as a

model of computation. : : : A’s

running time [means] A’s actual

execution time plus the length

of A’s description : : : This

convention eliminates pathologies

caused [by] arbitrarily large lookup

tables : : : ”

Main point of our paper:

There are more pathologies!

Illustrative example: ECDL.

The rho method

Simplified, non-parallel rho:

Make a pseudo-random walk

R0; R1; R2; : : : in the group hP i,
where current point determines

the next point: Ri+1 = f(Ri).

Birthday paradox:

Randomly choosing from `

elements picks one element twice

after about
p
�`=2 draws.

P-256: ` � 2256 so �2128 draws.

The walk now enters a cycle.

Cycle-finding algorithm

(e.g., Floyd) quickly detects this.



1994 Bellare–Kilian–Rogaway:

“We say that

A is a (t; q)-adversary if

A runs in at most t steps and

makes at most q queries to O.”

Oops: table-lookup attack

has very small t.

Paper conjectured “useful” DES

security bounds. Any reasonable

interpretation of conjecture was

false, given paper’s definition.

Theorems in paper were vacuous.

2000 Bellare–Kilian–Rogaway:

“We fix some particular Random

Access Machine (RAM) as a

model of computation. : : : A’s

running time [means] A’s actual

execution time plus the length

of A’s description : : : This

convention eliminates pathologies

caused [by] arbitrarily large lookup

tables : : : ”

Main point of our paper:

There are more pathologies!

Illustrative example: ECDL.

The rho method

Simplified, non-parallel rho:

Make a pseudo-random walk

R0; R1; R2; : : : in the group hP i,
where current point determines

the next point: Ri+1 = f(Ri).

Birthday paradox:

Randomly choosing from `

elements picks one element twice

after about
p
�`=2 draws.

P-256: ` � 2256 so �2128 draws.

The walk now enters a cycle.

Cycle-finding algorithm

(e.g., Floyd) quickly detects this.



1994 Bellare–Kilian–Rogaway:

“We say that

A is a (t; q)-adversary if

A runs in at most t steps and

makes at most q queries to O.”

Oops: table-lookup attack

has very small t.

Paper conjectured “useful” DES

security bounds. Any reasonable

interpretation of conjecture was

false, given paper’s definition.

Theorems in paper were vacuous.

2000 Bellare–Kilian–Rogaway:

“We fix some particular Random

Access Machine (RAM) as a

model of computation. : : : A’s

running time [means] A’s actual

execution time plus the length

of A’s description : : : This

convention eliminates pathologies

caused [by] arbitrarily large lookup

tables : : : ”

Main point of our paper:

There are more pathologies!

Illustrative example: ECDL.

The rho method

Simplified, non-parallel rho:

Make a pseudo-random walk

R0; R1; R2; : : : in the group hP i,
where current point determines

the next point: Ri+1 = f(Ri).

Birthday paradox:

Randomly choosing from `

elements picks one element twice

after about
p
�`=2 draws.

P-256: ` � 2256 so �2128 draws.

The walk now enters a cycle.

Cycle-finding algorithm

(e.g., Floyd) quickly detects this.



2000 Bellare–Kilian–Rogaway:

“We fix some particular Random

Access Machine (RAM) as a

model of computation. : : : A’s

running time [means] A’s actual

execution time plus the length

of A’s description : : : This

convention eliminates pathologies

caused [by] arbitrarily large lookup

tables : : : ”

Main point of our paper:

There are more pathologies!

Illustrative example: ECDL.

The rho method

Simplified, non-parallel rho:

Make a pseudo-random walk

R0; R1; R2; : : : in the group hP i,
where current point determines

the next point: Ri+1 = f(Ri).

Birthday paradox:

Randomly choosing from `

elements picks one element twice

after about
p
�`=2 draws.

P-256: ` � 2256 so �2128 draws.

The walk now enters a cycle.

Cycle-finding algorithm

(e.g., Floyd) quickly detects this.



2000 Bellare–Kilian–Rogaway:

“We fix some particular Random

Access Machine (RAM) as a

model of computation. : : : A’s

running time [means] A’s actual

execution time plus the length

of A’s description : : : This

convention eliminates pathologies

caused [by] arbitrarily large lookup

tables : : : ”

Main point of our paper:

There are more pathologies!

Illustrative example: ECDL.

The rho method

Simplified, non-parallel rho:

Make a pseudo-random walk

R0; R1; R2; : : : in the group hP i,
where current point determines

the next point: Ri+1 = f(Ri).

Birthday paradox:

Randomly choosing from `

elements picks one element twice

after about
p
�`=2 draws.

P-256: ` � 2256 so �2128 draws.

The walk now enters a cycle.

Cycle-finding algorithm

(e.g., Floyd) quickly detects this.

Goal: Compute logP Q.

Assume that for each i

we know xi; yi 2 Z=`Z

so that Ri = yiP + xiQ.

Then Ri = Rj means that

yiP + xiQ = yjP + xjQ

so (yi � yj)P = (xj � xi)Q.

If xi 6= xj the DLP is solved:

logP Q = (yj � yi)=(xi � xj).



2000 Bellare–Kilian–Rogaway:

“We fix some particular Random

Access Machine (RAM) as a

model of computation. : : : A’s

running time [means] A’s actual

execution time plus the length

of A’s description : : : This

convention eliminates pathologies

caused [by] arbitrarily large lookup

tables : : : ”

Main point of our paper:

There are more pathologies!

Illustrative example: ECDL.

The rho method

Simplified, non-parallel rho:

Make a pseudo-random walk

R0; R1; R2; : : : in the group hP i,
where current point determines

the next point: Ri+1 = f(Ri).

Birthday paradox:

Randomly choosing from `

elements picks one element twice

after about
p
�`=2 draws.

P-256: ` � 2256 so �2128 draws.

The walk now enters a cycle.

Cycle-finding algorithm

(e.g., Floyd) quickly detects this.

Goal: Compute logP Q.

Assume that for each i

we know xi; yi 2 Z=`Z

so that Ri = yiP + xiQ.

Then Ri = Rj means that

yiP + xiQ = yjP + xjQ

so (yi � yj)P = (xj � xi)Q.

If xi 6= xj the DLP is solved:

logP Q = (yj � yi)=(xi � xj).



2000 Bellare–Kilian–Rogaway:

“We fix some particular Random

Access Machine (RAM) as a

model of computation. : : : A’s

running time [means] A’s actual

execution time plus the length

of A’s description : : : This

convention eliminates pathologies

caused [by] arbitrarily large lookup

tables : : : ”

Main point of our paper:

There are more pathologies!

Illustrative example: ECDL.

The rho method

Simplified, non-parallel rho:

Make a pseudo-random walk

R0; R1; R2; : : : in the group hP i,
where current point determines

the next point: Ri+1 = f(Ri).

Birthday paradox:

Randomly choosing from `

elements picks one element twice

after about
p
�`=2 draws.

P-256: ` � 2256 so �2128 draws.

The walk now enters a cycle.

Cycle-finding algorithm

(e.g., Floyd) quickly detects this.

Goal: Compute logP Q.

Assume that for each i

we know xi; yi 2 Z=`Z

so that Ri = yiP + xiQ.

Then Ri = Rj means that

yiP + xiQ = yjP + xjQ

so (yi � yj)P = (xj � xi)Q.

If xi 6= xj the DLP is solved:

logP Q = (yj � yi)=(xi � xj).



The rho method

Simplified, non-parallel rho:

Make a pseudo-random walk

R0; R1; R2; : : : in the group hP i,
where current point determines

the next point: Ri+1 = f(Ri).

Birthday paradox:

Randomly choosing from `

elements picks one element twice

after about
p
�`=2 draws.

P-256: ` � 2256 so �2128 draws.

The walk now enters a cycle.

Cycle-finding algorithm

(e.g., Floyd) quickly detects this.

Goal: Compute logP Q.

Assume that for each i

we know xi; yi 2 Z=`Z

so that Ri = yiP + xiQ.

Then Ri = Rj means that

yiP + xiQ = yjP + xjQ

so (yi � yj)P = (xj � xi)Q.

If xi 6= xj the DLP is solved:

logP Q = (yj � yi)=(xi � xj).



The rho method

Simplified, non-parallel rho:

Make a pseudo-random walk

R0; R1; R2; : : : in the group hP i,
where current point determines

the next point: Ri+1 = f(Ri).

Birthday paradox:

Randomly choosing from `

elements picks one element twice

after about
p
�`=2 draws.

P-256: ` � 2256 so �2128 draws.

The walk now enters a cycle.

Cycle-finding algorithm

(e.g., Floyd) quickly detects this.

Goal: Compute logP Q.

Assume that for each i

we know xi; yi 2 Z=`Z

so that Ri = yiP + xiQ.

Then Ri = Rj means that

yiP + xiQ = yjP + xjQ

so (yi � yj)P = (xj � xi)Q.

If xi 6= xj the DLP is solved:

logP Q = (yj � yi)=(xi � xj).

e.g. “base-(P;Q) r-adding walk”:

precompute S1; S2; : : : ; Sr

as random combinations aP + bQ;

define f(R) = R + SH(R)

where H hashes to f1; 2; : : : ; rg.



The rho method

Simplified, non-parallel rho:

Make a pseudo-random walk

R0; R1; R2; : : : in the group hP i,
where current point determines

the next point: Ri+1 = f(Ri).

Birthday paradox:

Randomly choosing from `

elements picks one element twice

after about
p
�`=2 draws.

P-256: ` � 2256 so �2128 draws.

The walk now enters a cycle.

Cycle-finding algorithm

(e.g., Floyd) quickly detects this.

Goal: Compute logP Q.

Assume that for each i

we know xi; yi 2 Z=`Z

so that Ri = yiP + xiQ.

Then Ri = Rj means that

yiP + xiQ = yjP + xjQ

so (yi � yj)P = (xj � xi)Q.

If xi 6= xj the DLP is solved:

logP Q = (yj � yi)=(xi � xj).

e.g. “base-(P;Q) r-adding walk”:

precompute S1; S2; : : : ; Sr

as random combinations aP + bQ;

define f(R) = R + SH(R)

where H hashes to f1; 2; : : : ; rg.

Parallel rho

1994 van Oorschot–Wiener:

Declare some subset of hP i to be

the set of distinguished points:

e.g., all R 2 hP i where last 20

bits of representation of R are 0.

Perform, in parallel, walks for

different starting points Q+yP

but same update function f .

Terminate each walk

once it hits a distinguished point.

Report point to central server.

Server receives, stores, and sorts

all distinguished points.



The rho method

Simplified, non-parallel rho:

Make a pseudo-random walk

R0; R1; R2; : : : in the group hP i,
where current point determines

the next point: Ri+1 = f(Ri).

Birthday paradox:

Randomly choosing from `

elements picks one element twice

after about
p
�`=2 draws.

P-256: ` � 2256 so �2128 draws.

The walk now enters a cycle.

Cycle-finding algorithm

(e.g., Floyd) quickly detects this.

Goal: Compute logP Q.

Assume that for each i

we know xi; yi 2 Z=`Z

so that Ri = yiP + xiQ.

Then Ri = Rj means that

yiP + xiQ = yjP + xjQ

so (yi � yj)P = (xj � xi)Q.

If xi 6= xj the DLP is solved:

logP Q = (yj � yi)=(xi � xj).

e.g. “base-(P;Q) r-adding walk”:

precompute S1; S2; : : : ; Sr

as random combinations aP + bQ;

define f(R) = R + SH(R)

where H hashes to f1; 2; : : : ; rg.

Parallel rho

1994 van Oorschot–Wiener:

Declare some subset of hP i to be

the set of distinguished points:

e.g., all R 2 hP i where last 20

bits of representation of R are 0.

Perform, in parallel, walks for

different starting points Q+yP

but same update function f .

Terminate each walk

once it hits a distinguished point.

Report point to central server.

Server receives, stores, and sorts

all distinguished points.



The rho method

Simplified, non-parallel rho:

Make a pseudo-random walk

R0; R1; R2; : : : in the group hP i,
where current point determines

the next point: Ri+1 = f(Ri).

Birthday paradox:

Randomly choosing from `

elements picks one element twice

after about
p
�`=2 draws.

P-256: ` � 2256 so �2128 draws.

The walk now enters a cycle.

Cycle-finding algorithm

(e.g., Floyd) quickly detects this.

Goal: Compute logP Q.

Assume that for each i

we know xi; yi 2 Z=`Z

so that Ri = yiP + xiQ.

Then Ri = Rj means that

yiP + xiQ = yjP + xjQ

so (yi � yj)P = (xj � xi)Q.

If xi 6= xj the DLP is solved:

logP Q = (yj � yi)=(xi � xj).

e.g. “base-(P;Q) r-adding walk”:

precompute S1; S2; : : : ; Sr

as random combinations aP + bQ;

define f(R) = R + SH(R)

where H hashes to f1; 2; : : : ; rg.

Parallel rho

1994 van Oorschot–Wiener:

Declare some subset of hP i to be

the set of distinguished points:

e.g., all R 2 hP i where last 20

bits of representation of R are 0.

Perform, in parallel, walks for

different starting points Q+yP

but same update function f .

Terminate each walk

once it hits a distinguished point.

Report point to central server.

Server receives, stores, and sorts

all distinguished points.



Goal: Compute logP Q.

Assume that for each i

we know xi; yi 2 Z=`Z

so that Ri = yiP + xiQ.

Then Ri = Rj means that

yiP + xiQ = yjP + xjQ

so (yi � yj)P = (xj � xi)Q.

If xi 6= xj the DLP is solved:

logP Q = (yj � yi)=(xi � xj).

e.g. “base-(P;Q) r-adding walk”:

precompute S1; S2; : : : ; Sr

as random combinations aP + bQ;

define f(R) = R + SH(R)

where H hashes to f1; 2; : : : ; rg.

Parallel rho

1994 van Oorschot–Wiener:

Declare some subset of hP i to be

the set of distinguished points:

e.g., all R 2 hP i where last 20

bits of representation of R are 0.

Perform, in parallel, walks for

different starting points Q+yP

but same update function f .

Terminate each walk

once it hits a distinguished point.

Report point to central server.

Server receives, stores, and sorts

all distinguished points.



Goal: Compute logP Q.

Assume that for each i

we know xi; yi 2 Z=`Z

so that Ri = yiP + xiQ.

Then Ri = Rj means that

yiP + xiQ = yjP + xjQ

so (yi � yj)P = (xj � xi)Q.

If xi 6= xj the DLP is solved:

logP Q = (yj � yi)=(xi � xj).

e.g. “base-(P;Q) r-adding walk”:

precompute S1; S2; : : : ; Sr

as random combinations aP + bQ;

define f(R) = R + SH(R)

where H hashes to f1; 2; : : : ; rg.

Parallel rho

1994 van Oorschot–Wiener:

Declare some subset of hP i to be

the set of distinguished points:

e.g., all R 2 hP i where last 20

bits of representation of R are 0.

Perform, in parallel, walks for

different starting points Q+yP

but same update function f .

Terminate each walk

once it hits a distinguished point.

Report point to central server.

Server receives, stores, and sorts

all distinguished points.

State of the art

Can break DLP in group of order

` in
p
�`=2 group operations.

Use negation map to gain

factor
p

2 for elliptic curves.

Solving DLP on NIST P-256

takes �2128 group operations.

This is the best algorithm that

cryptanalysts have published.



Goal: Compute logP Q.

Assume that for each i

we know xi; yi 2 Z=`Z

so that Ri = yiP + xiQ.

Then Ri = Rj means that

yiP + xiQ = yjP + xjQ

so (yi � yj)P = (xj � xi)Q.

If xi 6= xj the DLP is solved:

logP Q = (yj � yi)=(xi � xj).

e.g. “base-(P;Q) r-adding walk”:

precompute S1; S2; : : : ; Sr

as random combinations aP + bQ;

define f(R) = R + SH(R)

where H hashes to f1; 2; : : : ; rg.

Parallel rho

1994 van Oorschot–Wiener:

Declare some subset of hP i to be

the set of distinguished points:

e.g., all R 2 hP i where last 20

bits of representation of R are 0.

Perform, in parallel, walks for

different starting points Q+yP

but same update function f .

Terminate each walk

once it hits a distinguished point.

Report point to central server.

Server receives, stores, and sorts

all distinguished points.

State of the art

Can break DLP in group of order

` in
p
�`=2 group operations.

Use negation map to gain

factor
p

2 for elliptic curves.

Solving DLP on NIST P-256

takes �2128 group operations.

This is the best algorithm that

cryptanalysts have published.



Goal: Compute logP Q.

Assume that for each i

we know xi; yi 2 Z=`Z

so that Ri = yiP + xiQ.

Then Ri = Rj means that

yiP + xiQ = yjP + xjQ

so (yi � yj)P = (xj � xi)Q.

If xi 6= xj the DLP is solved:

logP Q = (yj � yi)=(xi � xj).

e.g. “base-(P;Q) r-adding walk”:

precompute S1; S2; : : : ; Sr

as random combinations aP + bQ;

define f(R) = R + SH(R)

where H hashes to f1; 2; : : : ; rg.

Parallel rho

1994 van Oorschot–Wiener:

Declare some subset of hP i to be

the set of distinguished points:

e.g., all R 2 hP i where last 20

bits of representation of R are 0.

Perform, in parallel, walks for

different starting points Q+yP

but same update function f .

Terminate each walk

once it hits a distinguished point.

Report point to central server.

Server receives, stores, and sorts

all distinguished points.

State of the art

Can break DLP in group of order

` in
p
�`=2 group operations.

Use negation map to gain

factor
p

2 for elliptic curves.

Solving DLP on NIST P-256

takes �2128 group operations.

This is the best algorithm that

cryptanalysts have published.



Parallel rho

1994 van Oorschot–Wiener:

Declare some subset of hP i to be

the set of distinguished points:

e.g., all R 2 hP i where last 20

bits of representation of R are 0.

Perform, in parallel, walks for

different starting points Q+yP

but same update function f .

Terminate each walk

once it hits a distinguished point.

Report point to central server.

Server receives, stores, and sorts

all distinguished points.

State of the art

Can break DLP in group of order

` in
p
�`=2 group operations.

Use negation map to gain

factor
p

2 for elliptic curves.

Solving DLP on NIST P-256

takes �2128 group operations.

This is the best algorithm that

cryptanalysts have published.



Parallel rho

1994 van Oorschot–Wiener:

Declare some subset of hP i to be

the set of distinguished points:

e.g., all R 2 hP i where last 20

bits of representation of R are 0.

Perform, in parallel, walks for

different starting points Q+yP

but same update function f .

Terminate each walk

once it hits a distinguished point.

Report point to central server.

Server receives, stores, and sorts

all distinguished points.

State of the art

Can break DLP in group of order

` in
p
�`=2 group operations.

Use negation map to gain

factor
p

2 for elliptic curves.

Solving DLP on NIST P-256

takes �2128 group operations.

This is the best algorithm that

cryptanalysts have published.

But is it the best algorithm

that exists?



Parallel rho

1994 van Oorschot–Wiener:

Declare some subset of hP i to be

the set of distinguished points:

e.g., all R 2 hP i where last 20

bits of representation of R are 0.

Perform, in parallel, walks for

different starting points Q+yP

but same update function f .

Terminate each walk

once it hits a distinguished point.

Report point to central server.

Server receives, stores, and sorts

all distinguished points.

State of the art

Can break DLP in group of order

` in
p
�`=2 group operations.

Use negation map to gain

factor
p

2 for elliptic curves.

Solving DLP on NIST P-256

takes �2128 group operations.

This is the best algorithm that

cryptanalysts have published.

But is it the best algorithm

that exists?

This paper’s ECDL algorithms

Assuming plausible heuristics,

overwhelmingly verified by

computer experiment:

There exists a P-256 ECDL

algorithm that takes “time” �285

and has success probability �1.

“Time” includes algorithm length.

Inescapable conclusion: The

standard conjectures (regarding

P-256 ECDL hardness, P-256

ECDHE security, etc.) are false.



Parallel rho

1994 van Oorschot–Wiener:

Declare some subset of hP i to be

the set of distinguished points:

e.g., all R 2 hP i where last 20

bits of representation of R are 0.

Perform, in parallel, walks for

different starting points Q+yP

but same update function f .

Terminate each walk

once it hits a distinguished point.

Report point to central server.

Server receives, stores, and sorts

all distinguished points.

State of the art

Can break DLP in group of order

` in
p
�`=2 group operations.

Use negation map to gain

factor
p

2 for elliptic curves.

Solving DLP on NIST P-256

takes �2128 group operations.

This is the best algorithm that

cryptanalysts have published.

But is it the best algorithm

that exists?

This paper’s ECDL algorithms

Assuming plausible heuristics,

overwhelmingly verified by

computer experiment:

There exists a P-256 ECDL

algorithm that takes “time” �285

and has success probability �1.

“Time” includes algorithm length.

Inescapable conclusion: The

standard conjectures (regarding

P-256 ECDL hardness, P-256

ECDHE security, etc.) are false.



Parallel rho

1994 van Oorschot–Wiener:

Declare some subset of hP i to be

the set of distinguished points:

e.g., all R 2 hP i where last 20

bits of representation of R are 0.

Perform, in parallel, walks for

different starting points Q+yP

but same update function f .

Terminate each walk

once it hits a distinguished point.

Report point to central server.

Server receives, stores, and sorts

all distinguished points.

State of the art

Can break DLP in group of order

` in
p
�`=2 group operations.

Use negation map to gain

factor
p

2 for elliptic curves.

Solving DLP on NIST P-256

takes �2128 group operations.

This is the best algorithm that

cryptanalysts have published.

But is it the best algorithm

that exists?

This paper’s ECDL algorithms

Assuming plausible heuristics,

overwhelmingly verified by

computer experiment:

There exists a P-256 ECDL

algorithm that takes “time” �285

and has success probability �1.

“Time” includes algorithm length.

Inescapable conclusion: The

standard conjectures (regarding

P-256 ECDL hardness, P-256

ECDHE security, etc.) are false.



State of the art

Can break DLP in group of order

` in
p
�`=2 group operations.

Use negation map to gain

factor
p

2 for elliptic curves.

Solving DLP on NIST P-256

takes �2128 group operations.

This is the best algorithm that

cryptanalysts have published.

But is it the best algorithm

that exists?

This paper’s ECDL algorithms

Assuming plausible heuristics,

overwhelmingly verified by

computer experiment:

There exists a P-256 ECDL

algorithm that takes “time” �285

and has success probability �1.

“Time” includes algorithm length.

Inescapable conclusion: The

standard conjectures (regarding

P-256 ECDL hardness, P-256

ECDHE security, etc.) are false.



State of the art

Can break DLP in group of order

` in
p
�`=2 group operations.

Use negation map to gain

factor
p

2 for elliptic curves.

Solving DLP on NIST P-256

takes �2128 group operations.

This is the best algorithm that

cryptanalysts have published.

But is it the best algorithm

that exists?

This paper’s ECDL algorithms

Assuming plausible heuristics,

overwhelmingly verified by

computer experiment:

There exists a P-256 ECDL

algorithm that takes “time” �285

and has success probability �1.

“Time” includes algorithm length.

Inescapable conclusion: The

standard conjectures (regarding

P-256 ECDL hardness, P-256

ECDHE security, etc.) are false.

Should P-256 ECDHE users

be worried about this

P-256 ECDL algorithm A?

No!

We have a program B

that prints out A,

but B takes “time” �2170.

We conjecture that

nobody will ever print out A.



State of the art

Can break DLP in group of order

` in
p
�`=2 group operations.

Use negation map to gain

factor
p

2 for elliptic curves.

Solving DLP on NIST P-256

takes �2128 group operations.

This is the best algorithm that

cryptanalysts have published.

But is it the best algorithm

that exists?

This paper’s ECDL algorithms

Assuming plausible heuristics,

overwhelmingly verified by

computer experiment:

There exists a P-256 ECDL

algorithm that takes “time” �285

and has success probability �1.

“Time” includes algorithm length.

Inescapable conclusion: The

standard conjectures (regarding

P-256 ECDL hardness, P-256

ECDHE security, etc.) are false.

Should P-256 ECDHE users

be worried about this

P-256 ECDL algorithm A?

No!

We have a program B

that prints out A,

but B takes “time” �2170.

We conjecture that

nobody will ever print out A.



State of the art

Can break DLP in group of order

` in
p
�`=2 group operations.

Use negation map to gain

factor
p

2 for elliptic curves.

Solving DLP on NIST P-256

takes �2128 group operations.

This is the best algorithm that

cryptanalysts have published.

But is it the best algorithm

that exists?

This paper’s ECDL algorithms

Assuming plausible heuristics,

overwhelmingly verified by

computer experiment:

There exists a P-256 ECDL

algorithm that takes “time” �285

and has success probability �1.

“Time” includes algorithm length.

Inescapable conclusion: The

standard conjectures (regarding

P-256 ECDL hardness, P-256

ECDHE security, etc.) are false.

Should P-256 ECDHE users

be worried about this

P-256 ECDL algorithm A?

No!

We have a program B

that prints out A,

but B takes “time” �2170.

We conjecture that

nobody will ever print out A.



This paper’s ECDL algorithms

Assuming plausible heuristics,

overwhelmingly verified by

computer experiment:

There exists a P-256 ECDL

algorithm that takes “time” �285

and has success probability �1.

“Time” includes algorithm length.

Inescapable conclusion: The

standard conjectures (regarding

P-256 ECDL hardness, P-256

ECDHE security, etc.) are false.

Should P-256 ECDHE users

be worried about this

P-256 ECDL algorithm A?

No!

We have a program B

that prints out A,

but B takes “time” �2170.

We conjecture that

nobody will ever print out A.



This paper’s ECDL algorithms

Assuming plausible heuristics,

overwhelmingly verified by

computer experiment:

There exists a P-256 ECDL

algorithm that takes “time” �285

and has success probability �1.

“Time” includes algorithm length.

Inescapable conclusion: The

standard conjectures (regarding

P-256 ECDL hardness, P-256

ECDHE security, etc.) are false.

Should P-256 ECDHE users

be worried about this

P-256 ECDL algorithm A?

No!

We have a program B

that prints out A,

but B takes “time” �2170.

We conjecture that

nobody will ever print out A.

But A exists, and the standard

conjecture doesn’t see the 2170.



This paper’s ECDL algorithms

Assuming plausible heuristics,

overwhelmingly verified by

computer experiment:

There exists a P-256 ECDL

algorithm that takes “time” �285

and has success probability �1.

“Time” includes algorithm length.

Inescapable conclusion: The

standard conjectures (regarding

P-256 ECDL hardness, P-256

ECDHE security, etc.) are false.

Should P-256 ECDHE users

be worried about this

P-256 ECDL algorithm A?

No!

We have a program B

that prints out A,

but B takes “time” �2170.

We conjecture that

nobody will ever print out A.

But A exists, and the standard

conjecture doesn’t see the 2170.

Cryptanalysts do see the 2170.

Common parlance: We have

a 2170 “precomputation”

(independent of Q) followed by

a 285 “main computation”.

For cryptanalysts: This costs

2170, much worse than 2128.

For the standard security

definitions and conjectures:

The main computation costs 285,

much better than 2128.



This paper’s ECDL algorithms

Assuming plausible heuristics,

overwhelmingly verified by

computer experiment:

There exists a P-256 ECDL

algorithm that takes “time” �285

and has success probability �1.

“Time” includes algorithm length.

Inescapable conclusion: The

standard conjectures (regarding

P-256 ECDL hardness, P-256

ECDHE security, etc.) are false.

Should P-256 ECDHE users

be worried about this

P-256 ECDL algorithm A?

No!

We have a program B

that prints out A,

but B takes “time” �2170.

We conjecture that

nobody will ever print out A.

But A exists, and the standard

conjecture doesn’t see the 2170.

Cryptanalysts do see the 2170.

Common parlance: We have

a 2170 “precomputation”

(independent of Q) followed by

a 285 “main computation”.

For cryptanalysts: This costs

2170, much worse than 2128.

For the standard security

definitions and conjectures:

The main computation costs 285,

much better than 2128.



This paper’s ECDL algorithms

Assuming plausible heuristics,

overwhelmingly verified by

computer experiment:

There exists a P-256 ECDL

algorithm that takes “time” �285

and has success probability �1.

“Time” includes algorithm length.

Inescapable conclusion: The

standard conjectures (regarding

P-256 ECDL hardness, P-256

ECDHE security, etc.) are false.

Should P-256 ECDHE users

be worried about this

P-256 ECDL algorithm A?

No!

We have a program B

that prints out A,

but B takes “time” �2170.

We conjecture that

nobody will ever print out A.

But A exists, and the standard

conjecture doesn’t see the 2170.

Cryptanalysts do see the 2170.

Common parlance: We have

a 2170 “precomputation”

(independent of Q) followed by

a 285 “main computation”.

For cryptanalysts: This costs

2170, much worse than 2128.

For the standard security

definitions and conjectures:

The main computation costs 285,

much better than 2128.



Should P-256 ECDHE users

be worried about this

P-256 ECDL algorithm A?

No!

We have a program B

that prints out A,

but B takes “time” �2170.

We conjecture that

nobody will ever print out A.

But A exists, and the standard

conjecture doesn’t see the 2170.

Cryptanalysts do see the 2170.

Common parlance: We have

a 2170 “precomputation”

(independent of Q) followed by

a 285 “main computation”.

For cryptanalysts: This costs

2170, much worse than 2128.

For the standard security

definitions and conjectures:

The main computation costs 285,

much better than 2128.



Should P-256 ECDHE users

be worried about this

P-256 ECDL algorithm A?

No!

We have a program B

that prints out A,

but B takes “time” �2170.

We conjecture that

nobody will ever print out A.

But A exists, and the standard

conjecture doesn’t see the 2170.

Cryptanalysts do see the 2170.

Common parlance: We have

a 2170 “precomputation”

(independent of Q) followed by

a 285 “main computation”.

For cryptanalysts: This costs

2170, much worse than 2128.

For the standard security

definitions and conjectures:

The main computation costs 285,

much better than 2128.

Almost standard walk function:

redefine steps Si to depend

on P only; i.e., Si = ciP with

ci chosen uniformly at random.



Should P-256 ECDHE users

be worried about this

P-256 ECDL algorithm A?

No!

We have a program B

that prints out A,

but B takes “time” �2170.

We conjecture that

nobody will ever print out A.

But A exists, and the standard

conjecture doesn’t see the 2170.

Cryptanalysts do see the 2170.

Common parlance: We have

a 2170 “precomputation”

(independent of Q) followed by

a 285 “main computation”.

For cryptanalysts: This costs

2170, much worse than 2128.

For the standard security

definitions and conjectures:

The main computation costs 285,

much better than 2128.

Almost standard walk function:

redefine steps Si to depend

on P only; i.e., Si = ciP with

ci chosen uniformly at random.



Should P-256 ECDHE users

be worried about this

P-256 ECDL algorithm A?

No!

We have a program B

that prints out A,

but B takes “time” �2170.

We conjecture that

nobody will ever print out A.

But A exists, and the standard

conjecture doesn’t see the 2170.

Cryptanalysts do see the 2170.

Common parlance: We have

a 2170 “precomputation”

(independent of Q) followed by

a 285 “main computation”.

For cryptanalysts: This costs

2170, much worse than 2128.

For the standard security

definitions and conjectures:

The main computation costs 285,

much better than 2128.

Almost standard walk function:

redefine steps Si to depend

on P only; i.e., Si = ciP with

ci chosen uniformly at random.



Cryptanalysts do see the 2170.

Common parlance: We have

a 2170 “precomputation”

(independent of Q) followed by

a 285 “main computation”.

For cryptanalysts: This costs

2170, much worse than 2128.

For the standard security

definitions and conjectures:

The main computation costs 285,

much better than 2128.

Almost standard walk function:

redefine steps Si to depend

on P only; i.e., Si = ciP with

ci chosen uniformly at random.



Cryptanalysts do see the 2170.

Common parlance: We have

a 2170 “precomputation”

(independent of Q) followed by

a 285 “main computation”.

For cryptanalysts: This costs

2170, much worse than 2128.

For the standard security

definitions and conjectures:

The main computation costs 285,

much better than 2128.

Almost standard walk function:

redefine steps Si to depend

on P only; i.e., Si = ciP with

ci chosen uniformly at random.

Precomputation:

Start some walks at yP

for random choices of y.

Build table of distinct

distinguished points D

along with logP D.



Cryptanalysts do see the 2170.

Common parlance: We have

a 2170 “precomputation”

(independent of Q) followed by

a 285 “main computation”.

For cryptanalysts: This costs

2170, much worse than 2128.

For the standard security

definitions and conjectures:

The main computation costs 285,

much better than 2128.

Almost standard walk function:

redefine steps Si to depend

on P only; i.e., Si = ciP with

ci chosen uniformly at random.

Precomputation:

Start some walks at yP

for random choices of y.

Build table of distinct

distinguished points D

along with logP D.

Main computation:

Starting from Q, walk to

distinguished point Q + yP .

Check for Q + yP in table.



Cryptanalysts do see the 2170.

Common parlance: We have

a 2170 “precomputation”

(independent of Q) followed by

a 285 “main computation”.

For cryptanalysts: This costs

2170, much worse than 2128.

For the standard security

definitions and conjectures:

The main computation costs 285,

much better than 2128.

Almost standard walk function:

redefine steps Si to depend

on P only; i.e., Si = ciP with

ci chosen uniformly at random.

Precomputation:

Start some walks at yP

for random choices of y.

Build table of distinct

distinguished points D

along with logP D.

Main computation:

Starting from Q, walk to

distinguished point Q + yP .

Check for Q + yP in table.

(If this fails, rerandomize Q.)



Cryptanalysts do see the 2170.

Common parlance: We have

a 2170 “precomputation”

(independent of Q) followed by

a 285 “main computation”.

For cryptanalysts: This costs

2170, much worse than 2128.

For the standard security

definitions and conjectures:

The main computation costs 285,

much better than 2128.

Almost standard walk function:

redefine steps Si to depend

on P only; i.e., Si = ciP with

ci chosen uniformly at random.

Precomputation:

Start some walks at yP

for random choices of y.

Build table of distinct

distinguished points D

along with logP D.

Main computation:

Starting from Q, walk to

distinguished point Q + yP .

Check for Q + yP in table.

(If this fails, rerandomize Q.)

What you find in the full paper:

P-256 isn’t the only problem!

There exist algorithms breaking

AES-128, RSA-3072, DSA-3072

at cost below 2128;

e.g., time 285 to break AES.

(Assuming standard heuristics.)

) Very large separation

between standard definition

and actual security.

Also: Analysis of various ideas

for fixing the definitions.

eprint.iacr.org/2012/318



Cryptanalysts do see the 2170.

Common parlance: We have

a 2170 “precomputation”

(independent of Q) followed by

a 285 “main computation”.

For cryptanalysts: This costs

2170, much worse than 2128.

For the standard security

definitions and conjectures:

The main computation costs 285,

much better than 2128.

Almost standard walk function:

redefine steps Si to depend

on P only; i.e., Si = ciP with

ci chosen uniformly at random.

Precomputation:

Start some walks at yP

for random choices of y.

Build table of distinct

distinguished points D

along with logP D.

Main computation:

Starting from Q, walk to

distinguished point Q + yP .

Check for Q + yP in table.

(If this fails, rerandomize Q.)

What you find in the full paper:

P-256 isn’t the only problem!

There exist algorithms breaking

AES-128, RSA-3072, DSA-3072

at cost below 2128;

e.g., time 285 to break AES.

(Assuming standard heuristics.)

) Very large separation

between standard definition

and actual security.

Also: Analysis of various ideas

for fixing the definitions.

eprint.iacr.org/2012/318



Cryptanalysts do see the 2170.

Common parlance: We have

a 2170 “precomputation”

(independent of Q) followed by

a 285 “main computation”.

For cryptanalysts: This costs

2170, much worse than 2128.

For the standard security

definitions and conjectures:

The main computation costs 285,

much better than 2128.

Almost standard walk function:

redefine steps Si to depend

on P only; i.e., Si = ciP with

ci chosen uniformly at random.

Precomputation:

Start some walks at yP

for random choices of y.

Build table of distinct

distinguished points D

along with logP D.

Main computation:

Starting from Q, walk to

distinguished point Q + yP .

Check for Q + yP in table.

(If this fails, rerandomize Q.)

What you find in the full paper:

P-256 isn’t the only problem!

There exist algorithms breaking

AES-128, RSA-3072, DSA-3072

at cost below 2128;

e.g., time 285 to break AES.

(Assuming standard heuristics.)

) Very large separation

between standard definition

and actual security.

Also: Analysis of various ideas

for fixing the definitions.

eprint.iacr.org/2012/318



Almost standard walk function:

redefine steps Si to depend

on P only; i.e., Si = ciP with

ci chosen uniformly at random.

Precomputation:

Start some walks at yP

for random choices of y.

Build table of distinct

distinguished points D

along with logP D.

Main computation:

Starting from Q, walk to

distinguished point Q + yP .

Check for Q + yP in table.

(If this fails, rerandomize Q.)

What you find in the full paper:

P-256 isn’t the only problem!

There exist algorithms breaking

AES-128, RSA-3072, DSA-3072

at cost below 2128;

e.g., time 285 to break AES.

(Assuming standard heuristics.)

) Very large separation

between standard definition

and actual security.

Also: Analysis of various ideas

for fixing the definitions.

eprint.iacr.org/2012/318


