Non-uniform
cracks in the concrete:
the power of free precomputation
D. J. Bernstein

University of Illinois at Chicago \& Technische Universiteit Eindhoven

Tanja Lange
Technische Universiteit Eindhoven

Full 53-page paper, including progress towards formalizing collision resistance: eprint.iacr.org/2012/318

Concrete security: an example

What is the best NIST P-256 discrete-log attack algorithm?

ECDL input: $\mathrm{P}-256$ points P, Q, where P is a standard generator.

ECDL output: $\log _{P} Q$.
Standard definition of "best": minimize "time".

Non-uniform
cracks in the concrete:
the power of free precomputation
D. J. Bernstein

University of Illinois at Chicago \& Technische Universiteit Eindhoven

Tanja Lange
Technische Universiteit Eindhoven

Full 53-page paper, including progress towards formalizing collision resistance: eprint.iacr.org/2012/318

Concrete security: an example
What is the best NIST P-256 discrete-log attack algorithm?

ECDL input: $\mathrm{P}-256$ points P, Q, where P is a standard generator.

ECDL output: $\log _{P} Q$.
Standard definition of "best": minimize "time".

More generally, allow attacks with $<100 \%$ success probability; analyze tradeoffs between
"time" and success probability.
This talk focuses on high prob.
form
the concrete:
er of free precomputation rnstein
ty of Illinois at Chicago \& the Universiteit Eindhoven
nge
the Universiteit Eindhoven
oage paper,
progress towards ing collision resistance:
iacr.org/2012/318

Concrete security: an example
What is the best NIST P-256 discrete-log attack algorithm?

ECDL input: $\mathrm{P}-256$ points P, Q, where P is a standard generator.

ECDL output: $\log _{P} Q$.
Standard definition of "best": minimize "time".

More generally, allow attacks with
$<100 \%$ success probability;
analyze tradeoffs between
"time" and success probability.
This talk focuses on high prob.

P-256 d total TL Should

ECDL input: $\mathrm{P}-256$ points P, Q, where P is a standard generator.

ECDL output: $\log _{P} Q$.
Standard definition of "best": minimize "time".

More generally, allow attacks with $<100 \%$ success probability;
analyze tradeoffs between
"time" and success probability.
This talk focuses on high prob.
is at Chicago \& siteit Eindhoven
towards
n resistance:
弓/2012/318
siteit Eindhoven
,
,

Concrete security: an example

What is the best NIST P-256 discrete-log attack algorithm?

P-256 discrete-log total TLS-ECDHE Should TLS users

Concrete security: an example

 What is the best NIST P-256discrete-log attack algorithm? What is the best NIST P-256
discrete-log attack algorithm?

P-256 discrete-log attack \Rightarrow
total TLS-ECDHE-P-256 br
P-256 discrete-log attack \Rightarrow
total TLS-ECDHE-P-256 br Should TLS users worry?
\qquad

ECDL input: P-256 points P, Q, where P is a standard generator. ECDL output: $\log _{p} Q$.

Standard definition of "best": minimize "time".

More generally, allow attacks with $<100 \%$ success probability; analyze tradeoffs between
"time" and success probability. This talk focuses on high prob.

Concrete security: an example

What is the best NIST P-256 discrete-log attack algorithm?

ECDL input: $\mathrm{P}-256$ points P, Q, where P is a standard generator.

ECDL output: $\log _{P} Q$.
Standard definition of "best": minimize "time".

More generally, allow attacks with $<100 \%$ success probability; analyze tradeoffs between
"time" and success probability. This talk focuses on high prob.

P-256 discrete-log attack \Rightarrow total TLS-ECDHE-P-256 break! Should TLS users worry?

Concrete security: an example

What is the best NIST P-256 discrete-log attack algorithm?

ECDL input: $\mathrm{P}-256$ points P, Q, where P is a standard generator.

ECDL output: $\log _{p} Q$.
Standard definition of "best": minimize "time".

More generally, allow attacks with $<100 \%$ success probability; analyze tradeoffs between
"time" and success probability. This talk focuses on high prob.

P-256 discrete-log attack \Rightarrow total TLS-ECDHE-P-256 break! Should TLS users worry?

No. Many researchers have tried and failed to find good P-256 discrete-log attacks.

Concrete security: an example

What is the best NIST P-256 discrete-log attack algorithm?

ECDL input: $\mathrm{P}-256$ points P, Q, where P is a standard generator.

ECDL output: $\log _{p} Q$.
Standard definition of "best": minimize "time".

More generally, allow attacks with $<100 \%$ success probability; analyze tradeoffs between "time" and success probability. This talk focuses on high prob.

P-256 discrete-log attack \Rightarrow total TLS-ECDHE-P-256 break! Should TLS users worry?

No. Many researchers have tried and failed to find good P-256 discrete-log attacks.

Standard conjecture:
For each $p \in[0,1]$,
each P-256 ECDL algorithm
with success probability $\geq p$ takes "time" $\geq 2^{128} p^{1 / 2}$.

Similar conjectures for AES-128, RSA-3072, etc.: see, e.g., 2005 Bellare-Rogaway.

e security: an example

the best NIST P-256 log attack algorithm?
put: P-256 points P, Q, is a standard generator.
utput: $\log _{P} Q$
d definition of "best":
e "time".
nerally, allow attacks with success probability;
tradeoffs between
and success probability.
< focuses on high prob.

P-256 discrete-log attack \Rightarrow total TLS-ECDHE-P-256 break! Should TLS users worry?

No. Many researchers have tried and failed to find good P-256 discrete-log attacks.

Standard conjecture:
For each $p \in[0,1]$,
each P-256 ECDL algorithm
with success probability $\geq p$
takes "time" $\geq 2^{128} p^{1 / 2}$.
Similar conjectures for AES-128, RSA-3072, etc.: see, e.g., 2005 Bellare-Rogaway.

Concret
Another

Each TL

with suc takes "t

an example

NIST P-256
algorithm?
6 points P, Q,
dard generator.
$P Q$
n of "best":
ow attacks with obability;
setween
s probability.
on high prob.

P-256 discrete-log attack \Rightarrow total TLS-ECDHE-P-256 break! Should TLS users worry?

No. Many researchers have tried and failed to find good P-256 discrete-log attacks.

Standard conjecture:
For each $p \in[0,1]$,
each P-256 ECDL algorithm with success probability $\geq p$ takes "time" $\geq 2^{128} p^{1 / 2}$.

Similar conjectures for AES-128, RSA-3072, etc.: see, e.g., 2005 Bellare-Rogaway.

Concrete reductio
Another conjectur
Each TLS-ECDHE
with success prob takes "time" $\geq 2^{12}$

P-256 discrete-log attack \Rightarrow total TLS-ECDHE-P-256 break! Should TLS users worry?

No. Many researchers have tried and failed to find good P-256 discrete-log attacks.

Standard conjecture:
For each $p \in[0,1]$, each P-256 ECDL algorithm with success probability $\geq p$ takes "time" $\geq 2^{128} p^{1 / 2}$.

Similar conjectures for AES-128, RSA-3072, etc.: see, e.g., 2005 Bellare-Rogaway.

Concrete reductions

Another conjecture:
Each TLS-ECDHE-P-256 at with success probability $\geq p$ takes "time" $\geq 2^{128} p^{1 / 2}$.

P-256 discrete-log attack \Rightarrow total TLS-ECDHE-P-256 break! Should TLS users worry?

No. Many researchers have tried and failed to find good P-256 discrete-log attacks.

Standard conjecture:
For each $p \in[0,1]$, each P-256 ECDL algorithm with success probability $\geq p$ takes "time" $\geq 2^{128} p^{1 / 2}$.

Similar conjectures for AES-128, RSA-3072, etc.: see, e.g., 2005 Bellare-Rogaway.

Concrete reductions

Another conjecture:
Each TLS-ECDHE-P-256 attack with success probability $\geq p$ takes "time" $\geq 2^{128} p^{1 / 2}$.

P-256 discrete-log attack \Rightarrow total TLS-ECDHE-P-256 break! Should TLS users worry?

No. Many researchers have tried and failed to find good P-256 discrete-log attacks.

Standard conjecture:
For each $p \in[0,1]$,
each P-256 ECDL algorithm
with success probability $\geq p$ takes "time" $\geq 2^{128} p^{1 / 2}$.

Similar conjectures for AES-128, RSA-3072, etc.: see, e.g., 2005 Bellare-Rogaway.

Concrete reductions

Another conjecture:
Each TLS-ECDHE-P-256 attack
with success probability $\geq p$
takes "time" $\geq 2^{128} p^{1 / 2}$.
Why should users have any confidence in this conjecture?

How many researchers have really tried to break ECDHE-P-256? ECDSA-P-256?
ECIES-P-256? ECMQV-P-256?
Other P-256-based protocols?
Far less attention than for ECDL.
screte-log attack \Rightarrow S-ECDHE-P-256 break!
「LS users worry?
ny researchers have
failed to find good iscrete-log attacks.
d conjecture:
$p \in[0,1]$,
256 ECDL algorithm
cess probability $\geq p$
$m e "^{\prime \prime} \geq 2^{128} p^{1 / 2}$
zonjectures for AES-128,
2, etc.: see, e.g.,
Ilare-Rogaway.

Concrete reductions

Another conjecture:
Each TLS-ECDHE-P-256 attack
with success probability $\geq p$
takes "time" $\geq 2^{128} p^{1 / 2}$.
Why should users have any confidence in this conjecture?

How many researchers
have really tried to break
ECDHE-P-256? ECDSA-P-256?
ECIES-P-256? ECMQV-P-256?
Other P-256-based protocols?
Far less attention than for ECDL.

Provable
Prove:
a TLS-E then the
a P-256
with sim and succ
attack \Rightarrow -P-256 break! worry? hers have find good attacks.
algorithm
bility $\geq p$
${ }^{8} p^{1 / 2}$
s for AES-128,
ee, e.g.,

Concrete reductions

Another conjecture:
Each TLS-ECDHE-P-256 attack
with success probability $\geq p$
takes "time" $\geq 2^{128} p^{1 / 2}$.
Why should users have any confidence in this conjecture?

How many researchers
have really tried to break
ECDHE-P-256? ECDSA-P-256?
ECIES-P-256? ECMQV-P-256?
Other P-256-based protocols?
Far less attention than for ECDL.

Provable security
Prove: if there is a TLS-ECDHE-Pthen there is
a P-256 discrete-lc with similar "time and success proba

Concrete reductions

Another conjecture:
Each TLS-ECDHE-P-256 attack
with success probability $\geq p$
takes "time" $\geq 2{ }^{128} p^{1 / 2}$.
Why should users have any confidence in this conjecture?

How many researchers
have really tried to break
ECDHE-P-256? ECDSA-P-256?
ECIES-P-256? ECMQV-P-256?
Other P-256-based protocols?
Far less attention than for ECDL.

Provable security to the resc
Prove: if there is
a TLS-ECDHE-P-256 attacl then there is
a P-256 discrete-log attack with similar "time" and success probability.

Concrete reductions

Another conjecture:
Each TLS-ECDHE-P-256 attack
with success probability $\geq p$
takes "time" $\geq 2^{128} p^{1 / 2}$.
Why should users have any confidence in this conjecture?

How many researchers
have really tried to break ECDHE-P-256? ECDSA-P-256? ECIES-P-256? ECMQV-P-256? Other P-256-based protocols? Far less attention than for ECDL.

Provable security to the rescue!
Prove: if there is
a TLS-ECDHE-P-256 attack then there is
a P-256 discrete-log attack with similar "time" and success probability.

Concrete reductions

Another conjecture:
Each TLS-ECDHE-P-256 attack
with success probability $\geq p$
takes "time" $\geq 2^{128} p^{1 / 2}$.
Why should users have any confidence in this conjecture?

How many researchers
have really tried to break
ECDHE-P-256? ECDSA-P-256?
ECIES-P-256? ECMQV-P-256?
Other P-256-based protocols?
Far less attention than for ECDL.

Provable security to the rescue!
Prove: if there is
a TLS-ECDHE-P-256 attack then there is
a P-256 discrete-log attack with similar "time" and success probability.

Oops: This turns out to be hard. But changing DL to DDH

+ adding more assumptions allows a proof: Crypto 2012 Jager-Kohlar-Schäge-Schwenk "On the security of TLS-DHE in the standard model".

reductions

conjecture:

S-ECDHE-P-256 attack
cess probability $\geq p$
ime" $\geq 2^{128} p^{1 / 2}$
ould users have any
ce in this conjecture?
ny researchers
lly tried to break
P-256? ECDSA-P-256?
-256? ECMQV-P-256?
-256-based protocols?
attention than for ECDL.

Provable security to the rescue!
Prove: if there is
a TLS-ECDHE-P-256 attack then there is
a P-256 discrete-log attack with similar "time" and success probability.

Oops: This turns out to be hard. But changing DL to DDH

+ adding more assumptions allows a proof: Crypto 2012
Jager-Kohlar-Schäge-Schwenk "On the security of TLS-DHE in the standard model".

Similar "provab

Protoco that har (e.g., Psecurity

After ex maybe g of P, an
-P-256 attack
bility $\geq p$
${ }^{8} p^{1 / 2}$
have any
conjecture?
hers
break
CDSA-P-256?
MQV-P-256?
protocols?
than for ECDL.

Provable security to the rescue!
Prove: if there is
a TLS-ECDHE-P-256 attack then there is
a P-256 discrete-log attack with similar "time" and success probability.

Oops: This turns out to be hard.
But changing DL to DDH

+ adding more assumptions allows a proof: Crypto 2012
Jager-Kohlar-Schäge-Schwenk "On the security of TLS-DHE in the standard model".

Similar pattern th "provable security'

Protocol designers that hardness of a (e.g., P-256 DDH security of various

After extensive cry maybe gain confid of P, and hence ir

Provable security to the rescue!
Prove: if there is
a TLS-ECDHE-P-256 attack then there is
a P-256 discrete-log attack with similar "time" and success probability.

Oops: This turns out to be hard. But changing DL to DDH + adding more assumptions allows a proof: Crypto 2012 Jager-Kohlar-Schäge-Schwenk "On the security of TLS-DHE in the standard model".

Similar pattern throughout "provable security" literatur

Protocol designers (try to) that hardness of a problem (e.g., P-256 DDH) implies security of various protocols After extensive cryptanalysis maybe gain confidence in ha of P, and hence in security

Provable security to the rescue!
Prove: if there is
a TLS-ECDHE-P-256 attack then there is
a P-256 discrete-log attack with similar "time" and success probability.

Oops: This turns out to be hard. But changing DL to DDH

+ adding more assumptions allows a proof: Crypto 2012
Jager-Kohlar-Schäge-Schwenk
"On the security of TLS-DHE in the standard model".

Similar pattern throughout the "provable security" literature.

Protocol designers (try to) prove that hardness of a problem P (e.g., P-256 DDH) implies security of various protocols Q.

After extensive cryptanalysis of P, maybe gain confidence in hardness of P, and hence in security of Q.

Provable security to the rescue!
Prove: if there is
a TLS-ECDHE-P-256 attack then there is
a P-256 discrete-log attack with similar "time" and success probability.

Oops: This turns out to be hard. But changing DL to DDH

+ adding more assumptions allows a proof: Crypto 2012 Jager-Kohlar-Schäge-Schwenk "On the security of TLS-DHE in the standard model".

Similar pattern throughout the "provable security" literature.

Protocol designers (try to) prove that hardness of a problem P (e.g., P-256 DDH) implies security of various protocols Q.

After extensive cryptanalysis of P, maybe gain confidence in hardness of P, and hence in security of Q.

Why not directly cryptanalyze Q ?
Cryptanalysis is hard work: have to focus on a few problems P.
Proofs scale to many protocols Q.
security to the rescue!
f there is
CDHE-P-256 attack
re is
discrete-log attack
ilar "time"
ess probability.
his turns out to be hard. nging DL to DDH
g more assumptions
proof: Crypto 2012
ohlar-Schäge-Schwenk security of TLS-DHE andard model".

Similar pattern throughout the "provable security" literature.

Protocol designers (try to) prove that hardness of a problem P (e.g., P-256 DDH) implies security of various protocols Q.

After extensive cryptanalysis of P, maybe gain confidence in hardness of P, and hence in security of Q.

Why not directly cryptanalyze Q ?
Cryptanalysis is hard work: have to focus on a few problems P.
Proofs scale to many protocols Q.

Interlud How mu followin def pic
if nc
if
if
ret
if n
if
ret
if n
retur
to the rescue!

256 attack
gg attack
bility.
out to be hard.
to DDH
sumptions
ypto 2012
äge-Schwenk
f TLS-DHE
odel".

Similar pattern throughout the "provable security" literature.

Protocol designers (try to) prove that hardness of a problem P (e.g., P-256 DDH) implies security of various protocols Q.

After extensive cryptanalysis of P, maybe gain confidence in hardness of P, and hence in security of Q.

Why not directly cryptanalyze Q ?
Cryptanalysis is hard work: have to focus on a few problems P. Proofs scale to many protocols Q.

Interlude regardin§
How much "time" following algorithn def pidigit(n0
if $\mathrm{n} 0==0$:
if n1 == 0
if n2 ==
return
if n2 == 0
return
if n1 == 0:
if n2 == 0
return
if $\mathrm{n} 2=0$:
return

Similar pattern throughout the "provable security" literature.

Protocol designers (try to) prove that hardness of a problem P (e.g., P-256 DDH) implies security of various protocols Q.

After extensive cryptanalysis of P, maybe gain confidence in hardness of P, and hence in security of Q.

Why not directly cryptanalyze Q ? Cryptanalysis is hard work: have to focus on a few problems P.
Proofs scale to many protocols Q.

Interlude regarding "time" How much "time" does the following algorithm take?
def pidigit(n0,n1,n2):
if $\mathrm{n} 0==0$:
if n 1 == 0:
if n2 == 0: retu
return
if n2 == 0: return
return
if $\mathrm{n} 1==0$:
if n2 == 0: return
return
if n2 == 0: return
return

Similar pattern throughout the "provable security" literature.

Protocol designers (try to) prove that hardness of a problem P (e.g., P-256 DDH) implies security of various protocols Q.

After extensive cryptanalysis of P, maybe gain confidence in hardness of P, and hence in security of Q.

Why not directly cryptanalyze Q ?
Cryptanalysis is hard work: have to focus on a few problems P.
Proofs scale to many protocols Q.

Interlude regarding "time"

How much "time" does the following algorithm take?

```
def pidigit(n0,n1,n2):
if n0 == 0:
        if n1 == 0:
        if n2 == 0: return 3
        return 1
    if n2 == 0: return 4
    return 1
if n1 == 0:
    if n2 == 0: return 5
    return 9
if n2 == 0: return 2
return 6
```

pattern throughout the e security" literature.
designers (try to) prove dness of a problem P
256 DDH) implies
of various protocols Q. tensive cryptanalysis of P, ain confidence in hardness d hence in security of Q.
directly cryptanalyze Q ? alysis is hard work: have on a few problems P. cale to many protocols Q.

Interlude regarding "time"

How much "time" does the following algorithm take?
def pidigit(n0,n1,n2):
if $\mathrm{nO}==0$:
if n 1 == 0:
if n2 == 0: return 3
return 1
if n2 == 0: return 4
return 1
if $\mathrm{n} 1==0$:
if n2 == 0: return 5
return 9
if $\mathrm{n} 2==0$: return 2
return 6

Student learn to
Skipped
This alg
oughout the literature.
(try to) prove problem P) implies protocols Q. ptanalysis of P, ence in hardness security of Q.
cryptanalyze Q ?
ard work: have problems P. any protocols Q.

Interlude regarding "time"

How much "time" does the following algorithm take?

```
def pidigit(n0,n1,n2):
    if n0 == 0:
    if n1 == 0:
```

 if n2 == 0: return 3
 return 1
 if n2 == 0: return 4
 return
 1
 if \(\mathrm{n} 1=0\) :
 if n2 == 0: return 5
 return 9
 if $\mathrm{n} 2==0$: return 2
return

Students in algorit learn to count exe Skipped branches

This algorithm use

he \quad Interlude regarding "time"

How much "time" does the following algorithm take?
def pidigit(n0,n1,n2):
if $\mathrm{n} 0==0$:
if n1 == 0:
if n2 == 0: return 3
return 1
if n2 == 0: return 4
return 1
if $\mathrm{n} 1=0$:
if n2 == 0: return 5
return 9
if n2 == 0: return 2
return

Students in algorithm cours learn to count executed "ste Skipped branches take 0 "st

This algorithm uses 4 "steps

Interlude regarding "time"

How much "time" does the following algorithm take? def pidigit(n0,n1,n2):

Students in algorithm courses learn to count executed "steps". Skipped branches take 0 "steps".

This algorithm uses 4 "steps".

Interlude regarding "time"

How much "time" does the following algorithm take? def pidigit(n0,n1,n2):

Students in algorithm courses learn to count executed "steps". Skipped branches take 0 "steps".

This algorithm uses 4 "steps".
Generalization: There exists an algorithm that, given $n<2^{k}$, prints the nth digit of π using $k+1$ "steps".

Interlude regarding "time"

How much "time" does the following algorithm take? def pidigit(n0,n1,n2):

$$
\begin{aligned}
& \text { if } \mathrm{n} 0=0 \text { : } \\
& \text { if } \mathrm{n} 1==0 \text { : }
\end{aligned}
$$

$$
\text { if n2 == 0: return } 3
$$

$$
\text { return } \quad 1
$$

if n2 == 0: return 4
return 1
if n 1 == 0 :
if n2 == 0: return 5
return 9
if n2 == 0: return 2 return

Students in algorithm courses learn to count executed "steps". Skipped branches take 0 "steps".

This algorithm uses 4 "steps".
Generalization: There exists an algorithm that, given $n<2^{k}$, prints the nth digit of π using $k+1$ "steps".

Variant: There exists a 258"step" P-256 discrete-log attack (with 100% success probability).

Interlude regarding "time"

How much "time" does the following algorithm take?

```
def pidigit(n0,n1,n2):
if n0 == 0:
```

 if \(\mathrm{n} 1==0\) :
 if n2 == 0: return 3
 return 1
 if n2 == 0: return 4
 return 1
 if $\mathrm{n} 1==0$:
if n2 == 0: return 5
return
9
if n2 == 0: return 2
return

Students in algorithm courses learn to count executed "steps". Skipped branches take 0 "steps".

This algorithm uses 4 "steps".
Generalization: There exists an algorithm that, given $n<2^{k}$, prints the nth digit of π using $k+1$ "steps".

Variant: There exists a 258"step" P-256 discrete-log attack (with 100% success probability). If "time" means "steps" then the standard conjectures are wrong.

e regarding "time"

ch "time" does the algorithm take?

```
ligit(n0,n1,n2):
    == 0:
n1 == 0:
f n2 == 0: return 3
```

return 1
n2 == 0: return 4
curn
= 0 :
n2 == 0: return 5
zurn
== 0: return

Students in algorithm courses learn to count executed "steps". Skipped branches take 0 "steps".

This algorithm uses 4 "steps".
Generalization: There exists an algorithm that, given $n<2^{k}$, prints the nth digit of π using $k+1$ "steps".

Variant: There exists a 258"step" P-256 discrete-log attack (with 100% success probability). If "time" means "steps" then the standard conjectures are wrong.

1994 Be
"We say
A is a $(t$
A runs i makes a

"time"

does the n take?
,n1,n2):

0: return 3
ceturn

Students in algorithm courses learn to count executed "steps". Skipped branches take 0 "steps".

This algorithm uses 4 "steps".
Generalization: There exists an algorithm that, given $n<2^{k}$, prints the nth digit of π using $k+1$ "steps".

Variant: There exists a 258"step" P-256 discrete-log attack (with 100% success probability). If "time" means "steps" then the standard conjectures are wrong.

1994 Bellare-Kilia
"We say that
A is a (t, q)-adver
A runs in at most
makes at most q

Students in algorithm courses learn to count executed "steps". Skipped branches take 0 "steps".

This algorithm uses 4 "steps".
Generalization: There exists an algorithm that, given $n<2^{k}$, prints the nth digit of π using $k+1$ "steps".

Variant: There exists a 258"step" P-256 discrete-log attack (with 100% success probability). If "time" means "steps" then the standard conjectures are wrong.

1994 Bellare-Kilian-Rogawa
"We say that
A is a (t, q)-adversary if
A runs in at most t steps ar makes at most q queries to

Students in algorithm courses learn to count executed "steps". Skipped branches take 0 "steps".

This algorithm uses 4 "steps".
Generalization: There exists an algorithm that, given $n<2^{k}$, prints the nth digit of π using $k+1$ "steps".

Variant: There exists a 258"step" P-256 discrete-log attack (with 100% success probability). If "time" means "steps" then the standard conjectures are wrong.

1994 Bellare-Kilian-Rogaway:
"We say that
A is a (t, q)-adversary if
A runs in at most t steps and makes at most q queries to \mathcal{O}."

Students in algorithm courses learn to count executed "steps". Skipped branches take 0 "steps". This algorithm uses 4 "steps". Generalization: There exists an algorithm that, given $n<2^{k}$, prints the nth digit of π using $k+1$ "steps".

Variant: There exists a 258"step" P-256 discrete-log attack (with 100% success probability). If "time" means "steps" then the standard conjectures are wrong.

1994 Bellare-Kilian-Rogaway:
"We say that
A is a (t, q)-adversary if
A runs in at most t steps and makes at most q queries to \mathcal{O}."

Oops: table-lookup attack has very small t.

Paper conjectured "useful" DES security bounds. Any reasonable interpretation of conjecture was false, given paper's definition.
Theorems in paper were vacuous.
in algorithm courses count executed "steps". branches take 0 "steps". orithm uses 4 "steps".
zation: There exists an
n that, given $n<2^{k}$,
e nth digit of π

+ 1 "steps".
There exists a 258-
-256 discrete-log attack 0% success probability). means "steps" then the conjectures are wrong.

1994 Bellare-Kilian-Rogaway:
"We say that
A is a (t, q)-adversary if
A runs in at most t steps and makes at most q queries to \mathcal{O}."

Oops: table-lookup attack has very small t.

Paper conjectured "useful" DES security bounds. Any reasonable interpretation of conjecture was false, given paper's definition.
Theorems in paper were vacuous.

2000 Be
"We fix Access model o running executio of A's d convent caused tables.
hm courses
cuted "steps". take 0 "steps".
es 4 "steps".
tere exists an
en $n<2^{k}$,
t of π
ists a 258 -
rete-log attack ss probability). steps" then the es are wrong.

1994 Bellare-Kilian-Rogaway:
"We say that
A is a (t, q)-adversary if
A runs in at most t steps and makes at most q queries to \mathcal{O}."

Oops: table-lookup attack has very small t.

Paper conjectured "useful" DES security bounds. Any reasonable interpretation of conjecture was false, given paper's definition.
Theorems in paper were vacuous.

2000 Bellare-Kilia "We fix some part Access Machine (model of computa running time [mea execution time plı of A's description convention elimina caused [by] arbitra tables ..."

1994 Bellare-Kilian-Rogaway:
"We say that
A is a (t, q)-adversary if
A runs in at most t steps and makes at most q queries to \mathcal{O}."

Oops: table-lookup attack has very small t.

Paper conjectured "useful" DES security bounds. Any reasonable interpretation of conjecture was false, given paper's definition.
Theorems in paper were vacuous.

2000 Bellare-Kilian-Rogawa "We fix some particular Rar Access Machine (RAM) as model of computation. ... running time [means] A's ac execution time plus the leng of A's description ... This convention eliminates patho caused [by] arbitrarily large tables ..."

1994 Bellare-Kilian-Rogaway:
"We say that
A is a (t, q)-adversary if
A runs in at most t steps and makes at most q queries to \mathcal{O}."

Oops: table-lookup attack has very small t.

Paper conjectured "useful" DES security bounds. Any reasonable interpretation of conjecture was false, given paper's definition.
Theorems in paper were vacuous.

2000 Bellare-Kilian-Rogaway:
"We fix some particular Random
Access Machine (RAM) as a model of computation. ... A's running time [means] A's actual execution time plus the length of A's description ... This convention eliminates pathologies caused [by] arbitrarily large lookup tables ..."

1994 Bellare-Kilian-Rogaway:
"We say that
A is a (t, q)-adversary if
A runs in at most t steps and makes at most q queries to \mathcal{O}."

Oops: table-lookup attack has very small t.

Paper conjectured "useful" DES security bounds. Any reasonable interpretation of conjecture was false, given paper's definition.
Theorems in paper were vacuous.

2000 Bellare-Kilian-Rogaway:
"We fix some particular Random
Access Machine (RAM) as a model of computation. ... A's running time [means] A's actual execution time plus the length of A's description ... This convention eliminates pathologies caused [by] arbitrarily large lookup tables ..."

Main point of our paper:
There are more pathologies!
Illustrative example: ECDL.

Ilare-Kilian-Rogaway:
that
q)-adversary if
n at most t steps and
t most q queries to \mathcal{O}."
able-lookup attack small t.
onjectured "useful" DES bounds. Any reasonable ation of conjecture was en paper's definition.
is in paper were vacuous.

2000 Bellare-Kilian-Rogaway:
"We fix some particular Random
Access Machine (RAM) as a model of computation. . . A's running time [means] A's actual execution time plus the length of A's description ... This
convention eliminates pathologies
caused [by] arbitrarily large lookup tables..."

Main point of our paper:
There are more pathologies!
Illustrative example: ECDL.

The rho
Simplifie
Make a R_{0}, R_{1}, where the next

Birthday

Random element after ab P-256:

The wal
Cycle-fir
(e.g., Fl
n-Rogaway:
sary if
t steps and queries to \mathcal{O}."
p attack
"useful" DES
Any reasonable onjecture was s definition.
r were vacuous.

2000 Bellare-Kilian-Rogaway:
"We fix some particular Random
Access Machine (RAM) as a model of computation. . . A's
running time [means] A's actual execution time plus the length of A's description ... This convention eliminates pathologies caused [by] arbitrarily large lookup tables ..."

Main point of our paper:
There are more pathologies!
Illustrative example: ECDL.

The rho method
Simplified, non-pa
Make a pseudo-ra $R_{0}, R_{1}, R_{2}, \ldots$ in where current poir the next point: R

Birthday paradox:
Randomly choosin elements picks on after about $\sqrt{\pi \ell /}$ $\mathrm{P}-256: \ell \approx 2^{256} \mathrm{~s}$

The walk now ent Cycle-finding algo (e.g., Floyd) quick

2000 Bellare-Kilian-Rogaway:
"We fix some particular Random
Access Machine (RAM) as a model of computation. . . A's running time [means] A's actual execution time plus the length of A's description ... This convention eliminates pathologies caused [by] arbitrarily large lookup tables ..."

Main point of our paper:
There are more pathologies!
Illustrative example: ECDL.

The rho method

Simplified, non-parallel rho:
Make a pseudo-random wall $R_{0}, R_{1}, R_{2}, \ldots$ in the group where current point determi the next point: $R_{i+1}=f(R$

Birthday paradox:
Randomly choosing from ℓ elements picks one element after about $\sqrt{\pi \ell / 2}$ draws.
P-256: $\ell \approx 2^{256}$ so $\approx 2^{128} \mathrm{~d}$
The walk now enters a cycle Cycle-finding algorithm (e.g., Floyd) quickly detects

2000 Bellare-Kilian-Rogaway:
"We fix some particular Random
Access Machine (RAM) as a model of computation. . . A's running time [means] A's actual execution time plus the length of A's description ... This convention eliminates pathologies caused [by] arbitrarily large lookup tables ..."

Main point of our paper:
There are more pathologies!
Illustrative example: ECDL.

The rho method

Simplified, non-parallel rho:
Make a pseudo-random walk $R_{0}, R_{1}, R_{2}, \ldots$ in the group $\langle P\rangle$, where current point determines the next point: $R_{i+1}=f\left(R_{i}\right)$.

Birthday paradox:
Randomly choosing from ℓ elements picks one element twice after about $\sqrt{\pi \ell / 2}$ draws.
P-256: $\ell \approx 2^{256}$ so $\approx 2^{128}$ draws.
The walk now enters a cycle.
Cycle-finding algorithm
(e.g., Floyd) quickly detects this.

Ilare-Kilian-Rogaway:
some particular Random
Vachine (RAM) as a
f computation. . . . A's
time [means] A's actual
n time plus the length escription ... This
ion eliminates pathologies
by] arbitrarily large lookup 11
int of our paper:
e more pathologies!
ve example: ECDL.

The rho method

Simplified, non-parallel rho:
Make a pseudo-random walk
$R_{0}, R_{1}, R_{2}, \ldots$ in the group $\langle P\rangle$, where current point determines the next point: $R_{i+1}=f\left(R_{i}\right)$.

Birthday paradox:
Randomly choosing from ℓ
elements picks one element twice after about $\sqrt{\pi \ell / 2}$ draws.
P-256: $\ell \approx 2^{256}$ so $\approx 2^{128}$ draws.
The walk now enters a cycle.
Cycle-finding algorithm
(e.g., Floyd) quickly detects this.

Goal: C
Assume we knon so that

Then R_{2}
$y_{i} P+x$
so $\left(y_{i}-\right.$
If $x_{i} \neq 3$
$\log _{P} Q=$
n-Rogaway:
icular Random
RAM) as a
tion. . . . A's
ns] A 's actual
Is the length

... This

tes pathologies
rily large lookup
paper:
thologies!
e: ECDL.

The rho method

Simplified, non-parallel rho:
Make a pseudo-random walk
$R_{0}, R_{1}, R_{2}, \ldots$ in the group $\langle P\rangle$,
where current point determines the next point: $R_{i+1}=f\left(R_{i}\right)$.

Birthday paradox:
Randomly choosing from ℓ
elements picks one element twice after about $\sqrt{\pi \ell / 2}$ draws.
P-256: $\ell \approx 2^{256}$ so $\approx 2^{128}$ draws.
The walk now enters a cycle.
Cycle-finding algorithm
(e.g., Floyd) quickly detects this.

Goal: Compute lo
Assume that for e we know $x_{i}, y_{i} \in$ so that $R_{i}=y_{i} P$

Then $R_{i}=R_{j} \mathrm{me}$ $y_{i} P+x_{i} Q=y_{j} P$ so $\left(y_{i}-y_{j}\right) P=($ If $x_{i} \neq x_{j}$ the DLI $\log _{P} Q=\left(y_{j}-y_{i}\right.$

The rho method

Simplified, non-parallel rho:
Make a pseudo-random walk $R_{0}, R_{1}, R_{2}, \ldots$ in the group $\langle P\rangle$, where current point determines the next point: $R_{i+1}=f\left(R_{i}\right)$.

Birthday paradox:
Randomly choosing from ℓ elements picks one element twice after about $\sqrt{\pi \ell / 2}$ draws.
P-256: $\ell \approx 2^{256}$ so $\approx 2^{128}$ draws.
The walk now enters a cycle.
Cycle-finding algorithm
(e.g., Floyd) quickly detects this.

Goal: Compute $\log _{P} Q$.
Assume that for each i we know $x_{i}, y_{i} \in \mathbf{Z} / \ell \mathbf{Z}$ so that $R_{i}=y_{i} P+x_{i} Q$.

Then $R_{i}=R_{j}$ means that
$y_{i} P+x_{i} Q=y_{j} P+x_{j} Q$
so $\left(y_{i}-y_{j}\right) P=\left(x_{j}-x_{i}\right) Q$
If $x_{i} \neq x_{j}$ the DLP is solvec
$\log _{P} Q=\left(y_{j}-y_{i}\right) /\left(x_{i}-x\right)$

The rho method

Simplified, non-parallel rho:
Make a pseudo-random walk $R_{0}, R_{1}, R_{2}, \ldots$ in the group $\langle P\rangle$, where current point determines the next point: $R_{i+1}=f\left(R_{i}\right)$.

Birthday paradox:
Randomly choosing from ℓ
elements picks one element twice after about $\sqrt{\pi \ell / 2}$ draws.
P-256: $\ell \approx 2^{256}$ so $\approx 2^{128}$ draws.
The walk now enters a cycle.
Cycle-finding algorithm
(e.g., Floyd) quickly detects this.

Goal: Compute $\log _{P} Q$.
Assume that for each i we know $x_{i}, y_{i} \in \mathbf{Z} / \ell \mathbf{Z}$
so that $R_{i}=y_{i} P+x_{i} Q$.
Then $R_{i}=R_{j}$ means that
$y_{i} P+x_{i} Q=y_{j} P+x_{j} Q$
so $\left(y_{i}-y_{j}\right) P=\left(x_{j}-x_{i}\right) Q$.
If $x_{i} \neq x_{j}$ the DLP is solved:
$\log _{P} Q=\left(y_{j}-y_{i}\right) /\left(x_{i}-x_{j}\right)$.

The rho method

Simplified, non-parallel rho:
Make a pseudo-random walk $R_{0}, R_{1}, R_{2}, \ldots$ in the group $\langle P\rangle$, where current point determines the next point: $R_{i+1}=f\left(R_{i}\right)$.

Birthday paradox:
Randomly choosing from ℓ
elements picks one element twice after about $\sqrt{\pi \ell / 2}$ draws.
P-256: $\ell \approx 2^{256}$ so $\approx 2^{128}$ draws.
The walk now enters a cycle.
Cycle-finding algorithm
(e.g., Floyd) quickly detects this.

Goal: Compute $\log _{P} Q$.
Assume that for each i we know $x_{i}, y_{i} \in \mathbf{Z} / \ell \mathbf{Z}$
so that $R_{i}=y_{i} P+x_{i} Q$.
Then $R_{i}=R_{j}$ means that
$y_{i} P+x_{i} Q=y_{j} P+x_{j} Q$ so $\left(y_{i}-y_{j}\right) P=\left(x_{j}-x_{i}\right) Q$.
If $x_{i} \neq x_{j}$ the DLP is solved:
$\log _{P} Q=\left(y_{j}-y_{i}\right) /\left(x_{i}-x_{j}\right)$.
e.g. "base- $(P, Q) r$-adding walk":
precompute $S_{1}, S_{2}, \ldots, S_{r}$ as random combinations $a P+b Q$; define $f(R)=R+S_{H(R)}$ where H hashes to $\{1,2, \ldots, r\}$.

method

d, non-parallel rho:
pseudo-random walk
R_{2}, \ldots in the group $\langle P\rangle$, urrent point determines point: $R_{i+1}=f\left(R_{i}\right)$.
paradox:
ly choosing from ℓ
picks one element twice out $\sqrt{\pi \ell / 2}$ draws.
$\approx 2^{256}$ so $\approx 2^{128}$ draws.
k now enters a cycle.
Iding algorithm
oyd) quickly detects this.

Goal: Compute $\log _{P} Q$.
Assume that for each i
we know $x_{i}, y_{i} \in \mathbf{Z} / \ell \mathbf{Z}$
so that $R_{i}=y_{i} P+x_{i} Q$.
Then $R_{i}=R_{j}$ means that
$y_{i} P+x_{i} Q=y_{j} P+x_{j} Q$
so $\left(y_{i}-y_{j}\right) P=\left(x_{j}-x_{i}\right) Q$.
If $x_{i} \neq x_{j}$ the DLP is solved:
$\log _{P} Q=\left(y_{j}-y_{i}\right) /\left(x_{i}-x_{j}\right)$.
e.g. "base- $(P, Q) r$-adding walk":
precompute $S_{1}, S_{2}, \ldots, S_{r}$
as random combinations $a P+b Q$;
define $f(R)=R+S_{H(R)}$
where H hashes to $\{1,2, \ldots, r\}$.

Parallel

1994 va
Declare the set e.g., all bits of r

Perform different but sam

Termina once it Report Server r all distin

Goal: Compute $\log _{P} Q$.
Assume that for each i
we know $x_{i}, y_{i} \in \mathbf{Z} / \ell \mathbf{Z}$
so that $R_{i}=y_{i} P+x_{i} Q$.
Then $R_{i}=R_{j}$ means that
$y_{i} P+x_{i} Q=y_{j} P+x_{j} Q$
so $\left(y_{i}-y_{j}\right) P=\left(x_{j}-x_{i}\right) Q$.
If $x_{i} \neq x_{j}$ the DLP is solved:
$\log _{P} Q=\left(y_{j}-y_{i}\right) /\left(x_{i}-x_{j}\right)$.
e.g. "base- $(P, Q) r$-adding walk":
precompute $S_{1}, S_{2}, \ldots, S_{r}$ as random combinations $a P+b Q$; define $f(R)=R+S_{H(R)}$
where H hashes to $\{1,2, \ldots, r\}$.

Parallel rho

1994 van Oorscho
Declare some subs the set of distingu e.g., all $R \in\langle P\rangle v$ bits of representat

Perform, in paralle different starting F but same update

Terminate each w once it hits a disti Report point to $c \in$ Server receives, st all distinguished p

Goal: Compute $\log _{P} Q$.
Assume that for each i
we know $x_{i}, y_{i} \in \mathbf{Z} / \ell \mathbf{Z}$
so that $R_{i}=y_{i} P+x_{i} Q$.
Then $R_{i}=R_{j}$ means that
$y_{i} P+x_{i} Q=y_{j} P+x_{j} Q$
so $\left(y_{i}-y_{j}\right) P=\left(x_{j}-x_{i}\right) Q$.
If $x_{i} \neq x_{j}$ the DLP is solved:
$\log _{P} Q=\left(y_{j}-y_{i}\right) /\left(x_{i}-x_{j}\right)$.
e.g. "base- $(P, Q) r$-adding walk":
precompute $S_{1}, S_{2}, \ldots, S_{r}$ as random combinations $a P+b Q$; define $f(R)=R+S_{H(R)}$
where H hashes to $\{1,2, \ldots, r\}$.

Parallel rho

1994 van Oorschot-Wiener:
Declare some subset of $\langle P\rangle$ the set of distinguished poir e.g., all $R \in\langle P\rangle$ where last bits of representation of R a

Perform, in parallel, walks fc different starting points $Q+$ but same update function f

Terminate each walk once it hits a distinguished Report point to central serv Server receives, stores, and all distinguished points.

Goal: Compute $\log _{P} Q$.
Assume that for each i
we know $x_{i}, y_{i} \in \mathbf{Z} / \ell \mathbf{Z}$
so that $R_{i}=y_{i} P+x_{i} Q$.
Then $R_{i}=R_{j}$ means that
$y_{i} P+x_{i} Q=y_{j} P+x_{j} Q$ so $\left(y_{i}-y_{j}\right) P=\left(x_{j}-x_{i}\right) Q$.
If $x_{i} \neq x_{j}$ the DLP is solved:
$\log _{P} Q=\left(y_{j}-y_{i}\right) /\left(x_{i}-x_{j}\right)$.
e.g. "base- $(P, Q) r$-adding walk":
precompute $S_{1}, S_{2}, \ldots, S_{r}$ as random combinations $a P+b Q$; define $f(R)=R+S_{H(R)}$ where H hashes to $\{1,2, \ldots, r\}$.

Parallel rho

1994 van Oorschot-Wiener:
Declare some subset of $\langle P\rangle$ to be the set of distinguished points: e.g., all $R \in\langle P\rangle$ where last 20 bits of representation of R are 0 .

Perform, in parallel, walks for different starting points $Q+y P$ but same update function f.

Terminate each walk once it hits a distinguished point. Report point to central server. Server receives, stores, and sorts all distinguished points.
ompute $\log _{P} Q$.
that for each i
$x_{i}, y_{i} \in \mathbf{Z} / \ell \mathbf{Z}$
$R_{i}=y_{i} P+x_{i} Q$.
$=R_{j}$ means that
${ }_{i} Q=y_{j} P+x_{j} Q$
$\left.y_{j}\right) P=\left(x_{j}-x_{i}\right) Q$.
c_{j} the DLP is solved:

$$
=\left(y_{j}-y_{i}\right) /\left(x_{i}-x_{j}\right) .
$$

se- $(P, Q) r$-adding walk":
ute $S_{1}, S_{2}, \ldots, S_{r}$
m combinations $a P+b Q$;
$(R)=R+S_{H(R)}$
hashes to $\{1,2, \ldots, r\}$.

Parallel rho

1994 van Oorschot-Wiener:
Declare some subset of $\langle P\rangle$ to be the set of distinguished points: e.g., all $R \in\langle P\rangle$ where last 20 bits of representation of R are 0 .

Perform, in parallel, walks for different starting points $Q+y P$ but same update function f.

Terminate each walk once it hits a distinguished point. Report point to central server. Server receives, stores, and sorts all distinguished points.

State of

Can bre ℓ in $\sqrt{\pi}$ Use neg factor $\sqrt{ }$

Solving takes \approx

This is t cryptana
$g_{P} Q$.
ach i
Z/lZ
$+x_{i} Q$.
ans that
$+x_{j} Q$
$\left.x_{j}-x_{i}\right) Q$.
P is solved:
)/($\left.x_{i}-x_{j}\right)$.
r-adding walk":
S_{r}
ations $a P+b Q$;
$S_{H(R)}$
$\{1,2, \ldots, r\}$.

Parallel rho

1994 van Oorschot-Wiener:
Declare some subset of $\langle P\rangle$ to be the set of distinguished points: e.g., all $R \in\langle P\rangle$ where last 20 bits of representation of R are 0 .

Perform, in parallel, walks for different starting points $Q+y P$ but same update function f.

Terminate each walk once it hits a distinguished point. Report point to central server. Server receives, stores, and sorts all distinguished points.

State of the art

Can break DLP in ℓ in $\sqrt{\pi \ell / 2}$ group

Use negation map factor $\sqrt{2}$ for ellip Solving DLP on N takes $\approx 2^{128}$ group

This is the best al cryptanalysts have

Parallel rho

1994 van Oorschot-Wiener:
Declare some subset of $\langle P\rangle$ to be the set of distinguished points:
e.g., all $R \in\langle P\rangle$ where last 20 bits of representation of R are 0 .

Perform, in parallel, walks for different starting points $Q+y P$ but same update function f.

Terminate each walk once it hits a distinguished point. Report point to central server. Server receives, stores, and sorts all distinguished points.

State of the art

Can break DLP in group of ℓ in $\sqrt{\pi \ell / 2}$ group operation

Use negation map to gain factor $\sqrt{2}$ for elliptic curves.

Solving DLP on NIST P-256 takes $\approx 2^{128}$ group operatior

This is the best algorithm th cryptanalysts have publishec

Parallel rho

1994 van Oorschot-Wiener:
Declare some subset of $\langle P\rangle$ to be the set of distinguished points: e.g., all $R \in\langle P\rangle$ where last 20 bits of representation of R are 0 .

Perform, in parallel, walks for different starting points $Q+y P$ but same update function f.

Terminate each walk once it hits a distinguished point. Report point to central server. Server receives, stores, and sorts all distinguished points.

State of the art

Can break DLP in group of order ℓ in $\sqrt{\pi \ell / 2}$ group operations.

Use negation map to gain factor $\sqrt{2}$ for elliptic curves.

Solving DLP on NIST P-256 takes $\approx 2^{128}$ group operations.

This is the best algorithm that cryptanalysts have published.

Parallel rho

1994 van Oorschot-Wiener:
Declare some subset of $\langle P\rangle$ to be the set of distinguished points: e.g., all $R \in\langle P\rangle$ where last 20 bits of representation of R are 0 .

Perform, in parallel, walks for different starting points $Q+y P$ but same update function f.

Terminate each walk once it hits a distinguished point. Report point to central server. Server receives, stores, and sorts all distinguished points.

State of the art

Can break DLP in group of order ℓ in $\sqrt{\pi \ell / 2}$ group operations.

Use negation map to gain factor $\sqrt{2}$ for elliptic curves.

Solving DLP on NIST P-256 takes $\approx 2^{128}$ group operations.

This is the best algorithm that cryptanalysts have published.

But is it the best algorithm that exists?

rho

(Oorschot-Wiener:
some subset of $\langle P\rangle$ to be f distinguished points: $R \in\langle P\rangle$ where last 20 epresentation of R are 0 .
in parallel, walks for starting points $Q+y P$ e update function f.
te each walk
hits a distinguished point.
ooint to central server.
eceives, stores, and sorts guished points.

State of the art

Can break DLP in group of order ℓ in $\sqrt{\pi \ell / 2}$ group operations.

Use negation map to gain factor $\sqrt{2}$ for elliptic curves.

Solving DLP on NIST P-256 takes $\approx 2^{128}$ group operations.

This is the best algorithm that cryptanalysts have published.

But is it the best algorithm that exists?

This pat
Assumin
overwhe compute

There e> algorithr and has
"Time"
Inescapa
standar
P-256 E
ECDHE

State of the art

Can break DLP in group of order ℓ in $\sqrt{\pi \ell / 2}$ group operations.

Use negation map to gain factor $\sqrt{2}$ for elliptic curves.

Solving DLP on NIST P-256 takes $\approx 2^{128}$ group operations.

This is the best algorithm that cryptanalysts have published.

But is it the best algorithm that exists?

This paper's ECD
Assuming plausibl overwhelmingly ve computer experim

There exists a P-2 algorithm that tak and has success pr
"Time" includes a
Inescapable conclu standard conject
P-256 ECDL hard
ECDHE security,

State of the art

Can break DLP in group of order ℓ in $\sqrt{\pi \ell / 2}$ group operations.

Use negation map to gain factor $\sqrt{2}$ for elliptic curves.

Solving DLP on NIST P-256 takes $\approx 2^{128}$ group operations.

This is the best algorithm that cryptanalysts have published.

But is it the best algorithm that exists?

This paper's ECDL algorithr
Assuming plausible heuristic overwhelmingly verified by computer experiment:

There exists a P-256 ECDL algorithm that takes "time" and has success probability
"Time" includes algorithm I
Inescapable conclusion: The standard conjectures (rega
P-256 ECDL hardness, P-25 ECDHE security, etc.) are \mathbf{f}

State of the art

Can break DLP in group of order ℓ in $\sqrt{\pi \ell / 2}$ group operations.

Use negation map to gain factor $\sqrt{2}$ for elliptic curves.

Solving DLP on NIST P-256 takes $\approx 2^{128}$ group operations.

This is the best algorithm that cryptanalysts have published.

But is it the best algorithm that exists?

This paper's ECDL algorithms

Assuming plausible heuristics, overwhelmingly verified by computer experiment:

There exists a P-256 ECDL algorithm that takes "time" $\approx 2^{85}$ and has success probability ≈ 1.
"Time" includes algorithm length.
Inescapable conclusion: The
standard conjectures (regarding
P-256 ECDL hardness, P-256
ECDHE security, etc.) are false.

the art

ak DLP in group of order $\overline{\ell / 2}$ group operations. ation map to gain $\sqrt{2}$ for elliptic curves.

DLP on NIST P-256 2^{128} group operations.
he best algorithm that lysts have published.
the best algorithm
sts?

This paper's ECDL algorithms
Assuming plausible heuristics, overwhelmingly verified by computer experiment:

There exists a P-256 ECDL algorithm that takes "time" $\approx 2^{85}$ and has success probability ≈ 1.
"Time" includes algorithm length.
Inescapable conclusion: The
standard conjectures (regarding
P-256 ECDL hardness, P-256
ECDHE security, etc.) are false.

Should be worri P-256 E No!

We have that prir but B ta

We conj nobody

This paper's ECDL algorithms

group of order operations.
to gain tic curves.

IST P-256
operations.
gorithm that published.
algorithm

Assuming plausible heuristics, overwhelmingly verified by computer experiment:

There exists a P-256 ECDL algorithm that takes "time" $\approx 2^{85}$ and has success probability ≈ 1.
"Time" includes algorithm length.
Inescapable conclusion: The
standard conjectures (regarding
P-256 ECDL hardness, P-256
ECDHE security, etc.) are false.

Should P-256 EC[be worried about P-256 ECDL algor

No!
We have a progra that prints out A, but B takes "time

We conjecture tha nobody will ever p

This paper's ECDL algorithms

order

Inescapable conclusion: The
standard conjectures (regarding
P-256 ECDL hardness, P-256
ECDHE security, etc.) are false.

Should P-256 ECDHE users be worried about this
P-256 ECDL algorithm A ?
No!
We have a program B that prints out A, but B takes "time" $\approx 2^{170}$.

We conjecture that nobody will ever print out A

This paper's ECDL algorithms

Assuming plausible heuristics, overwhelmingly verified by computer experiment:

There exists a P-256 ECDL algorithm that takes "time" $\approx 2^{85}$ and has success probability ≈ 1.
"Time" includes algorithm length.
Inescapable conclusion: The
standard conjectures (regarding
P-256 ECDL hardness, P-256
ECDHE security, etc.) are false.

Should P-256 ECDHE users be worried about this P-256 ECDL algorithm A ?

No!
We have a program B
that prints out A, but B takes "time" $\approx 2^{170}$.

We conjecture that nobody will ever print out A.

This paper's ECDL algorithms

Assuming plausible heuristics, overwhelmingly verified by computer experiment:

There exists a P-256 ECDL algorithm that takes "time" $\approx 2^{85}$ and has success probability ≈ 1.
"Time" includes algorithm length.
Inescapable conclusion: The
standard conjectures (regarding
P-256 ECDL hardness, P-256
ECDHE security, etc.) are false.

Should P-256 ECDHE users be worried about this
P-256 ECDL algorithm A ?
No!
We have a program B
that prints out A, but B takes "time" $\approx 2^{170}$.

We conjecture that nobody will ever print out A.

But A exists, and the standard conjecture doesn't see the 2^{170}.
er's ECDL algorithms
g plausible heuristics, Imingly verified by
experiment:
kists a P-256 ECDL
n that takes "time" $\approx 2^{85}$
success probability ≈ 1.
includes algorithm length.
ble conclusion: The
d conjectures (regarding
CDL hardness, P-256
security, etc.) are false.

Should P-256 ECDHE users
be worried about this
P-256 ECDL algorithm A ?
No!
We have a program B
that prints out A, but B takes "time" $\approx 2^{170}$.

We conjecture that nobody will ever print out A.

But A exists, and the standard conjecture doesn't see the 2^{170}.

Cryptan
Commor
a 2^{170}
(indeper
a 2^{85}
For cryp
2^{170}, mı
For the definitio The mai much be

algorithms

e heuristics, rified by
ent:
56 ECDL
es "time" $\approx 2^{85}$
obability ≈ 1.
Igorithm length.
sion: The
ures (regarding
ness, P-256
tc.) are false.

Should P-256 ECDHE users

be worried about this
P-256 ECDL algorithm A ?
No!
We have a program B
that prints out A, but B takes "time" $\approx 2^{170}$.

We conjecture that nobody will ever print out A.

But A exists, and the standard conjecture doesn't see the 2^{170}.

Cryptanalysts do
Common parlance a 2^{170} "precompu (independent of Q a 2^{85} "main comp

For cryptanalysts: 2^{170}, much worse

For the standard s definitions and col The main comput much better than

Should P-256 ECDHE users be worried about this
P-256 ECDL algorithm A ?
No!
We have a program B
that prints out A, but B takes "time" $\approx 2^{170}$.

We conjecture that nobody will ever print out A.
rding
6
But A exists, and the standard conjecture doesn't see the 2^{170}.

Cryptanalysts do see the 2^{17}
Common parlance: We have a 2^{170} "precomputation" (independent of Q) followed a 2^{85} "main computation".

For cryptanalysts: This cost 2^{170}, much worse than 2^{128}.

For the standard security definitions and conjectures: The main computation cost much better than 2^{128}.

Should P-256 ECDHE users be worried about this P-256 ECDL algorithm A ?

No!
We have a program B
that prints out A, but B takes "time" $\approx 2^{170}$.

We conjecture that nobody will ever print out A.

But A exists, and the standard conjecture doesn't see the 2^{170}.

Cryptanalysts do see the 2^{170}.
Common parlance: We have a 2^{170} "precomputation"
(independent of Q) followed by a 2^{85} "main computation".

For cryptanalysts: This costs 2^{170}, much worse than 2^{128}.

For the standard security definitions and conjectures:
The main computation costs 2^{85}, much better than 2^{128}.
-256 ECDHE users
ed about this
CDL algorithm A ?
a program B
ts out A,
kes "time" $\approx 2{ }^{170}$.
ecture that
will ever print out A.
xists, and the standard re doesn't see the 2^{170}.

Cryptanalysts do see the 2^{170}.
Common parlance: We have a 2^{170} "precomputation" (independent of Q) followed by a 2^{85} "main computation".

For cryptanalysts: This costs 2^{170}, much worse than 2^{128}.

For the standard security definitions and conjectures: The main computation costs 2^{85}, much better than 2^{128}.

Almost redefine on P on c_{i} chose

HE users

chis
ithm A ?
n B
$" \approx 2^{170}$.
rint out A.
the standard see the 2^{170}.

Cryptanalysts do see the 2^{170}.
Common parlance: We have a 2^{170} "precomputation" (independent of Q) followed by a 2^{85} "main computation".

For cryptanalysts: This costs 2^{170}, much worse than 2^{128}.

For the standard security definitions and conjectures: The main computation costs 2^{85}, much better than 2^{128}.

Almost standard redefine steps S_{i} on P only; i.e., S_{i} c_{i} chosen uniform

Cryptanalysts do see the 2^{170}.
Common parlance: We have a 2^{170} "precomputation" (independent of Q) followed by a 2^{85} "main computation".

For cryptanalysts: This costs
2^{170}, much worse than 2^{128}.
For cryptanalysts: This costs
2^{170}, much worse than 2^{128}.
For the standard security definitions and conjectures: The main computation costs 2^{85}, much better than 2^{128}.

Almost standard walk functi redefine steps S_{i} to depend on P only; i.e., $S_{i}=c_{i} P$ wi
c_{i} chosen uniformly at rand

Cryptanalysts do see the 2^{170}.
Common parlance: We have a 2^{170} "precomputation"
(independent of Q) followed by a 2^{85} "main computation".

For cryptanalysts: This costs 2^{170}, much worse than 2^{128}.

For the standard security definitions and conjectures:
The main computation costs 2^{85}, much better than 2^{128}.

Almost standard walk function: redefine steps S_{i} to depend on P only; i.e., $S_{i}=c_{i} P$ with c_{i} chosen uniformly at random.

Cryptanalysts do see the 2^{170}.
Common parlance: We have a 2^{170} "precomputation" (independent of Q) followed by a 2^{85} "main computation".

For cryptanalysts: This costs 2^{170}, much worse than 2^{128}.

For the standard security definitions and conjectures:
The main computation costs 2^{85}, much better than 2^{128}.

Almost standard walk function: redefine steps S_{i} to depend
on P only; i.e., $S_{i}=c_{i} P$ with
c_{i} chosen uniformly at random.
Precomputation:
Start some walks at $y P$ for random choices of y. Build table of distinct distinguished points D along with $\log _{p} D$.

Cryptanalysts do see the 2^{170}.
Common parlance: We have a 2^{170} "precomputation" (independent of Q) followed by a 2^{85} "main computation".

For cryptanalysts: This costs 2^{170}, much worse than 2^{128}.

For the standard security definitions and conjectures: The main computation costs 2^{85}, much better than 2^{128}.

Almost standard walk function: redefine steps S_{i} to depend on P only; i.e., $S_{i}=c_{i} P$ with c_{i} chosen uniformly at random.
Precomputation:
Start some walks at $y P$ for random choices of y. Build table of distinct distinguished points D along with $\log _{p} D$.
Main computation:
Starting from Q, walk to distinguished point $Q+y P$.
Check for $Q+y P$ in table.

Cryptanalysts do see the 2^{170}.
Common parlance: We have a 2^{170} "precomputation" (independent of Q) followed by a 2^{85} "main computation".

For cryptanalysts: This costs 2^{170}, much worse than 2^{128}.

For the standard security definitions and conjectures: The main computation costs 2^{85}, much better than 2^{128}.

Almost standard walk function: redefine steps S_{i} to depend on P only; i.e., $S_{i}=c_{i} P$ with c_{i} chosen uniformly at random.
Precomputation:
Start some walks at $y P$ for random choices of y.
Build table of distinct distinguished points D along with $\log _{p} D$.
Main computation:
Starting from Q, walk to distinguished point $Q+y P$.
Check for $Q+y P$ in table. (If this fails, rerandomize Q.)
alysts do see the 2^{170}.
I parlance: We have precomputation" dent of Q) followed by nain computation".
tanalysts: This costs ch worse than 2^{128}.
standard security ns and conjectures:
n computation costs 2^{85}, tter than 2^{128}

Almost standard walk function:
redefine steps S_{i} to depend
on P only; i.e., $S_{i}=c_{i} P$ with
c_{i} chosen uniformly at random.
Precomputation:
Start some walks at $y P$
for random choices of y.
Build table of distinct
distinguished points D
along with $\log _{P} D$.
Main computation:
Starting from Q, walk to distinguished point $Q+y P$.
Check for $Q+y P$ in table. (If this fails, rerandomize Q.)

What yo
$\mathrm{P}-256$ is
There e AES-128 at cost e.g., tim
(Assumi
\Rightarrow Very
between and actı

Also: A for fixin
eprint
see the 2^{170}.

We have tation"

) followed by utation" .

This costs than 2^{128}.
ecurity njectures:
ation costs 2^{85},
2^{128}

Almost standard walk function:
redefine steps S_{i} to depend
on P only; i.e., $S_{i}=c_{i} P$ with
c_{i} chosen uniformly at random.
Precomputation:
Start some walks at $y P$
for random choices of y.
Build table of distinct distinguished points D
along with $\log _{P} D$.
Main computation:
Starting from Q, walk to distinguished point $Q+y P$.
Check for $Q+y P$ in table. (If this fails, rerandomize Q.)

What you find in
P-256 isn't the on
There exist algorit AES-128, RSA-30 at cost below 2^{128} e.g., time 2^{85} to b (Assuming standa
\Rightarrow Very large sepa
between standard and actual securit

Also: Analysis of for fixing the defin
eprint.iacr.or

Almost standard walk function: redefine steps S_{i} to depend on P only; i.e., $S_{i}=c_{i} P$ with c_{i} chosen uniformly at random.

Precomputation:

Start some walks at $y P$
for random choices of y.
Build table of distinct
distinguished points D
along with $\log _{p} D$.
Main computation:
Starting from Q, walk to distinguished point $Q+y P$.
Check for $Q+y P$ in table.
(If this fails, rerandomize Q.)

What you find in the full pa P-256 isn't the only problem There exist algorithms breal AES-128, RSA-3072, DSA-3 at cost below 2^{128};
e.g., time 2^{85} to break AES. (Assuming standard heuristi
\Rightarrow Very large separation between standard definition and actual security.

Also: Analysis of various ide for fixing the definitions.
eprint.iacr.org/2012/3

Almost standard walk function: redefine steps S_{i} to depend on P only; i.e., $S_{i}=c_{i} P$ with c_{i} chosen uniformly at random.

Precomputation:
Start some walks at $y P$
for random choices of y.
Build table of distinct distinguished points D along with $\log _{P} D$.
Main computation:
Starting from Q, walk to distinguished point $Q+y P$. Check for $Q+y P$ in table. (If this fails, rerandomize Q.)

What you find in the full paper:
P-256 isn't the only problem!
There exist algorithms breaking AES-128, RSA-3072, DSA-3072 at cost below 2^{128}; e.g., time 2^{85} to break AES. (Assuming standard heuristics.)
\Rightarrow Very large separation
between standard definition and actual security.

Also: Analysis of various ideas for fixing the definitions.
eprint.iacr.org/2012/318

