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“On the security of TLS-DHE

in the standard model”.

Similar pattern throughout the

“provable security” literature.

Protocol designers (try to) prove

that hardness of a problem P

(e.g., P-256 DDH) implies

security of various protocols Q.

After extensive cryptanalysis of P ,

maybe gain confidence in hardness

of P , and hence in security of Q.



Concrete reductions

Another conjecture:

Each TLS-ECDHE-P-256 attack

with success probability �p
takes “time” �2128p1=2.

Why should users have any

confidence in this conjecture?

How many researchers

have really tried to break

ECDHE-P-256? ECDSA-P-256?

ECIES-P-256? ECMQV-P-256?

Other P-256-based protocols?

Far less attention than for ECDL.

Provable security to the rescue!

Prove: if there is

a TLS-ECDHE-P-256 attack

then there is

a P-256 discrete-log attack

with similar “time”

and success probability.

Oops: This turns out to be hard.

But changing DL to DDH

+ adding more assumptions

allows a proof: Crypto 2012

Jager–Kohlar–Schäge–Schwenk
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) Very large separation

between standard definition

and actual security.

Also: Analysis of various ideas

for fixing the definitions.
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