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2002 Möller:

To check a guess g for (e.g.) p�3,

choose p0 = c�1 � g � c�4,

compare c0 to c�3.

2006 Bard:

malicious code in browser should

be able to carry out this attack,

especially if high-entropy data

is split across blocks.

2011 Duong–Rizzo “BEAST”:

fast attack fully implemented,

including controlled variable split.

Countermeasure in browsers:

send a content-free packet

just before sending real packet.



SSL lets attacker choose p0

as function of c�1! Very bad.

2002 Möller:
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SSL has a crypto switch

that in theory allows

switching to AES-GCM.
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via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:
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Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:
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Graph of 256 Pr[z124 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–
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Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:
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Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–
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Paterson–Poettering–Schuldt:
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for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.
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independently (slightly earlier)
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accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.
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independently (slightly earlier)
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for all i 2 f1; : : : ; 256g, all j;
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independently (slightly earlier)
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for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.
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Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.
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Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.
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by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z134 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–
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for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.
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for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.
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accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.
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for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.
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independently (slightly earlier)
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for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.
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accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.
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by 2013 Watanabe–Isobe–
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for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack
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Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)
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Ohigashi–Morii, 2013 Isobe–
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accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.
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independently (slightly earlier)
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accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.
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independently (slightly earlier)
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Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.
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independently (slightly earlier)
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Paterson–Poettering–Schuldt:
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for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.
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independently (slightly earlier)
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Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:
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Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:
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Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)
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Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)
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Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)
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Ohigashi–Morii, 2013 Isobe–
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Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.
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independently (slightly earlier)
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accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.
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independently (slightly earlier)
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for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.
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for all i 2 f1; : : : ; 256g, all j;
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used all of them in SSL attack

via proper Bayesian analysis.
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by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z155 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–
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for all i 2 f1; : : : ; 256g, all j;
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accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.
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for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;
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for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:
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Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:
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Graph of 256 Pr[z161 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:
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Graph of 256 Pr[z162 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:
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2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:
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2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:
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Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:
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Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:
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Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:
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Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:
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Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:
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Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–
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Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–
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z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z172 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:
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Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–
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Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:
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Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:
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Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–
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Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–
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Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:
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2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–
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2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:
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Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:
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Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:
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2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:
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2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–
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2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–
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2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:
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2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:
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2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:
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2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–
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Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:
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Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–
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Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.
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2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:
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2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:
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2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:
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by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z233 = x]:
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2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z234 = x]:
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2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z235 = x]:
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2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z236 = x]:
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2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z237 = x]:
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2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z238 = x]:
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2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z239 = x]:
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2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z240 = x]:
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2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z241 = x]:
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2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z242 = x]:
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2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z243 = x]:
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2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z244 = x]:
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2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z245 = x]:
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2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z246 = x]:
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2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z247 = x]:
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2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z248 = x]:
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2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z249 = x]:
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2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z250 = x]:
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2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z251 = x]:
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2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z252 = x]:
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2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z253 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z254 = x]:
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2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z255 = x]:
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2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z256 = x]:
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2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z256 = x]:
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Later bytes: see paper.



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z256 = x]:
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Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z256 = x]:
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