Quantum algorithms
for the subset-sum problem
D. J. Bernstein

University of Illinois at Chicago \&
Technische Universiteit Eindhoven
cr.yp.to/qsubsetsum.html
Joint work with:
Stacey Jeffery
University of Waterloo
Tanja Lange
Technische Universiteit Eindhoven
Alexander Meurer
Ruhr-Universität Bochum

Subset-sum example:
Is there a subsequence of (499, 852, 1927, 2535, 3596, 3608,
$4688,5989,6385,7353,7650,9413)$
having sum 36634 ?
Many variations: e.g.,
find such a subsequence
if one exists;
find such a subsequence knowing that one exists; allow range of sums; coefficients outside $\{0,1\}$; etc. "Subset-sum problem"; "knapsack problem"; etc.

The lattice connection

Define $x_{1}=499, \ldots, x_{12}=9413$.
Define $L \subseteq \mathbf{Z}^{12}$ as
$\left\{v: v_{1} x_{1}+\cdots+v_{12} x_{12}=0\right\}$.
Define $u \in \mathbf{Z}^{12}$ as
(70, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).
If $J \subseteq\{1,2, \ldots, 12\}$
and $\sum_{i \in J} x_{i}=36634$ then
$v \in L$ where $v_{i}=u_{i}-[i \in J]$.
v is very close to u.
Reasonable to hope that v is the closest vector in L to u.
Subset-sum algorithms \approx
codimension-1 CVP algorithms.

The coding connection

A weight-w subset-sum problem: Is there a subsequence of (499, 852, 1927, 2535, 3596, 3608, $4688,5989,6385,7353,7650,9413)$ having length w and sum 36634 ?

The coding connection

A weight-w subset-sum problem:
Is there a subsequence of
(499, 852, 1927, 2535, 3596, 3608,
$4688,5989,6385,7353,7650,9413)$ having length w and sum 36634?

Replace \mathbf{Z} with $(\mathbf{Z} / 2)^{m}$:
Is there a subsequence of
(499, 852, 1927, 2535, 3596, 3608,
$4688,5989,6385,7353,7650,9413)$
having length w and xor 1060?
This is the central algorithmic problem in coding theory.

Recent asymptotic news

Eurocrypt 2010
Howgrave-Graham-Joux:
subset-sum exponent ≈ 0.337.
(Incorrect claim: ≈ 0.311.)
Eurocrypt 2011
Becker-Coron-Joux:
subset-sum exponent ≈ 0.291.
Adaptations to decoding:
Asiacrypt 2011 May-Meurer-
Thomae, Eurocrypt 2012
Becker-Joux-May-Meurer.

Post-quantum subset sum

Claimed in TCC 2010
Lyubashevsky-Palacio-Segev
"Public-key cryptographic
primitives provably
as secure as subset sum":
There are "currently no known quantum algorithms that perform better than classical ones on the subset sum problem".

Hmmm. What's the best quantum subset-sum exponent?

Interlude: Algorithm design

Textbook algorithm analysis:

Proof of correctness

New algorithm

Proof of run time

Mislead students into thinking that best algorithm $=$ best proven algorithm.

Reality: state-of-the-art cryptanalytic algorithms are almost never proven.

Reality: state-of-the-art cryptanalytic algorithms are almost never proven.

Ignorant response:
"Work harder, find proofs!"

Reality: state-of-the-art cryptanalytic algorithms are almost never proven.

Ignorant response:
"Work harder, find proofs!"
Consensus of the experts:
proofs probably do not exist for most of these algorithms.
So demanding proofs is silly.

Reality: state-of-the-art
cryptanalytic algorithms are almost never proven.

Ignorant response:
"Work harder, find proofs!"
Consensus of the experts:
proofs probably do not exist for most of these algorithms.
So demanding proofs is silly.
Without proofs, how do we analyze correctness+speed?
Answer: Real algorithm analysis relies critically on heuristics and computer experiments.

What about quantum algorithms?

Want to analyze, optimize quantum algorithms today to figure out safe crypto against future quantum attack.

What about quantum algorithms?
Want to analyze, optimize quantum algorithms today to figure out safe crypto against future quantum attack.

1. Simulate tiny q. computer?
\Rightarrow Huge extrapolation errors.

What about quantum algorithms?
Want to analyze, optimize quantum algorithms today to figure out safe crypto against future quantum attack.

1. Simulate tiny q. computer? \Rightarrow Huge extrapolation errors.
2. Faster algorithm-specific simulation? Yes, sometimes.

What about quantum algorithms?
Want to analyze, optimize quantum algorithms today to figure out safe crypto against future quantum attack.

1. Simulate tiny q. computer? \Rightarrow Huge extrapolation errors.
2. Faster algorithm-specific simulation? Yes, sometimes.
3. Fast trapdoor simulation. Simulator (like prover) knows more than the algorithm does.

Quantum search (0.5)

Assume that function f has n-bit input, unique root.

Generic brute-force search
finds this root using
$\approx 2^{n}$ evaluations of f.
1996 Grover method
finds this root using
$\approx 2^{0.5 n}$ quantum evaluations of f on superpositions of inputs.

Cost of quantum evaluation of f \approx cost of evaluation of f
if cost counts qubit "operations".

Easily adapt to handle

different \# of roots,
and \# not known in advance. Faster if \# is large, but typically \# is not very large. Most interesting: $\# \in\{0,1\}$.

Easily adapt to handle
different \# of roots,
and \# not known in advance.
Faster if \# is large,
but typically $\#$ is not very large.
Most interesting: $\# \in\{0,1\}$.
Apply to the function
$J \mapsto \Sigma(J)-t$ where
$\Sigma(J)=\sum_{i \in J} x_{i}$.
Cost $2^{0.5 n}$ to find root (i.e., to find indices of subsequence of x_{1}, \ldots, x_{n} with sum t) or to decide that no root exists.

We suppress poly factors in cost.

Algorithm details for unique root:
Represent $J \subseteq\{1, \ldots, n\}$ as an integer between 0 and $2^{n}-1$.
n bits are enough space to store one such integer.
n quits store much more, a superposition over sets J : 2^{n} complex amplitudes
$a_{0}, \ldots, a_{2} n_{-1}$ with
$\left|a_{0}\right|^{2}+\cdots+\left|a_{2 n-1}\right|^{2}=1$.
Measuring these n quits
has chance $\left|a_{J}\right|^{2}$ to produce J.
Start from uniform superposition, ie., $a_{J}=1 / 2^{n / 2}$ for all J.

Step 1: Set $a \leftarrow b$ where
$b_{J}=-a_{J}$ if $\Sigma(J)=t$,
$b_{J}=a_{J}$ otherwise.
This is about as easy
as computing Σ.
Step 2: "Grover diffusion".
Set $a \leftarrow b$ where
$b_{J}=-a_{J}+\left(2 / 2^{n}\right) \sum_{l} a_{l}$.
This is also easy.
Repeat steps 1 and 2 about $0.58 \cdot 2^{0.5 n}$ times.

Measure the n quits.
With high probability this finds the unique J such that $\Sigma(J)=t$.

Graph of $J \mapsto a_{J}$
for 36634 example with $n=12$ after 0 steps:

Graph of $J \mapsto a_{J}$
for 36634 example with $n=12$ after Step 1:

Graph of $J \mapsto a_{J}$
for 36634 example with $n=12$ after Step $1+$ Step 2:

1.0
0.5

Graph of $J \mapsto a_{J}$

for 36634 example with $n=12$ after Step $1+$ Step $2+$ Step 1 : | 1.0 |
| :--- |
| 0.5 |
| |
| 0.0 |

Graph of $J \mapsto a_{J}$
for 36634 example with $n=12$ after $2 \times($ Step $1+$ Step 2$)$:

Graph of $J \mapsto a_{J}$
for 36634 example with $n=12$ after $3 \times($ Step $1+$ Step 2$)$:

Graph of $J \mapsto a_{J}$
for 36634 example with $n=12$ after $4 \times($ Step $1+$ Step 2$)$:

Graph of $J \mapsto a_{J}$
for 36634 example with $n=12$ after $5 \times($ Step $1+$ Step 2$)$:

Graph of $J \mapsto a_{J}$
for 36634 example with $n=12$ after $6 \times($ Step $1+$ Step 2$)$:

Graph of $J \mapsto a_{J}$
for 36634 example with $n=12$ after $7 \times($ Step $1+$ Step 2$)$:

Graph of $J \mapsto a_{J}$
for 36634 example with $n=12$ after $8 \times($ Step $1+$ Step 2$)$:

Graph of $J \mapsto a_{J}$
for 36634 example with $n=12$ after $9 \times($ Step $1+$ Step 2$)$:

Graph of $J \mapsto a_{J}$
for 36634 example with $n=12$ after $10 \times($ Step $1+$ Step 2$)$:

Graph of $J \mapsto a_{J}$
for 36634 example with $n=12$ after $11 \times($ Step $1+$ Step 2$)$:

Graph of $J \mapsto a_{J}$
for 36634 example with $n=12$ after $12 \times($ Step $1+$ Step 2$)$:

Graph of $J \mapsto a_{J}$
for 36634 example with $n=12$ after $13 \times($ Step $1+$ Step 2):

Graph of $J \mapsto a_{J}$
for 36634 example with $n=12$ after $14 \times($ Step $1+$ Step 2):

Graph of $J \mapsto a_{J}$
for 36634 example with $n=12$ after $15 \times($ Step $1+$ Step 2$)$:

Graph of $J \mapsto a_{J}$
for 36634 example with $n=12$ after $16 \times($ Step $1+$ Step 2$)$:

Graph of $J \mapsto a_{J}$
for 36634 example with $n=12$ after $17 \times($ Step $1+$ Step 2$)$:

Graph of $J \mapsto a_{J}$
for 36634 example with $n=12$ after $18 \times($ Step $1+$ Step 2$)$:

Graph of $J \mapsto a_{J}$
for 36634 example with $n=12$ after $19 \times($ Step $1+$ Step 2):

Graph of $J \mapsto a_{J}$
for 36634 example with $n=12$ after $20 \times($ Step $1+$ Step 2$)$:

Graph of $J \mapsto a_{J}$
for 36634 example with $n=12$ after $25 \times($ Step $1+$ Step 2$)$:

Graph of $J \mapsto a_{J}$
for 36634 example with $n=12$ after $30 \times($ Step $1+$ Step 2):

Graph of $J \mapsto a_{J}$
for 36634 example with $n=12$ after $35 \times($ Step $1+$ Step 2$)$:

Good moment to stop, measure.

Graph of $J \mapsto a_{J}$
for 36634 example with $n=12$ after $40 \times($ Step $1+$ Step 2$)$:

Graph of $J \mapsto a_{J}$
for 36634 example with $n=12$ after $45 \times($ Step $1+$ Step 2):

Graph of $J \mapsto a_{J}$
for 36634 example with $n=12$ after $50 \times($ Step $1+$ Step 2$)$:

Traditional stopping point.

Graph of $J \mapsto a_{J}$
for 36634 example with $n=12$ after $60 \times($ Step $1+$ Step 2):

Graph of $J \mapsto a_{J}$
for 36634 example with $n=12$ after $70 \times($ Step $1+$ Step 2$)$:

Graph of $J \mapsto a_{J}$
for 36634 example with $n=12$ after $80 \times($ Step $1+$ Step 2):

Graph of $J \mapsto a_{J}$
for 36634 example with $n=12$ after $90 \times($ Step $1+$ Step 2$)$:

Graph of $J \mapsto a_{J}$
for 36634 example with $n=12$ after $100 \times($ Step $1+$ Step 2$)$:

Very bad stopping point.
$J \mapsto a_{J}$ is completely described by a vector of two numbers (with fixed multiplicities):
(1) a_{J} for roots J;
(2) a_{J} for non-roots J.

Step $1+$ Step 2
act linearly on this vector.
Easily compute eigenvalues and powers of this linear map to understand evolution of state of Grover's algorithm.
\Rightarrow Probability is ≈ 1
after $\approx(\pi / 4) 2^{0.5 n}$ iterations.

Left-right split (0.5)

Don't need quantum computers to achieve exponent 0.5.

For simplicity assume $n \in 2 \mathbf{Z}$.
1974 Horowitz-Sahni:
Sort list of $\Sigma\left(J_{1}\right)$
for all $J_{1} \subseteq\{1, \ldots, n / 2\}$
and list of $t-\Sigma\left(J_{2}\right)$
for all $J_{2} \subseteq\{n / 2+1, \ldots, n\}$.
Merge to find collisions
$\Sigma\left(J_{1}\right)=t-\Sigma\left(J_{2}\right)$,
i.e., $\Sigma\left(J_{1} \cup J_{2}\right)=t$.

Cost $2^{0.5 n}$ for sorting, merging.
We assign cost 1 to RAM.
e.g. 36634 as sum of
(499, 852, 1927, 2535, 3596, 3608,
4688, 5989, 6385, 7353, 7650, 9413):
Sort the 64 sums
$0,499,852,499+852, \ldots$,
$499+852+1927+\cdots+3608$
and the 64 differences
$36634-0,36634-4688, \ldots$,
$36634-4688-\cdots-9413$
to see that
$499+852+2535+3608=$
$36634-5989-6385-7353-9413$.

Moduli (0.5)

For simplicity assume $n \in \mathbf{4 Z}$.
Choose $M \approx 2^{0.25 n}$.
Choose $t_{1} \in\{0,1, \ldots, M-1\}$.
Define $t_{2}=t-t_{1}$.
Find all $J_{1} \subseteq\{1, \ldots, n / 2\}$
such that $\Sigma\left(J_{1}\right) \equiv t_{1} \quad(\bmod M)$.
How? Split J_{1} as $J_{11} \cup J_{12}$.
Find all $J_{2} \subseteq\{n / 2+1, \ldots, n\}$ such that $\Sigma\left(J_{2}\right) \equiv t_{2}(\bmod M)$.

Sort and merge to find all collisions $\Sigma\left(J_{1}\right)=t-\Sigma\left(J_{2}\right)$, ie., $\Sigma\left(J_{1} \cup J_{2}\right)=t$.

Finds J eff $\Sigma\left(J_{1}\right) \equiv t_{1}$.
There are $\approx 2^{0.25 n}$ choices of t_{1}.
Each choice costs $2^{0.25 n}$.
Total cost $2^{0.5 n}$.
Not visible in cost metric: this uses space only $2^{0.25 n}$, assuming typical distribution.

Algorithm has been introduced at least twice:
2006 Elsenhans-Jahnel;
2010 Howgrave-Graham-Joux.
Different technique
for similar space reduction:
1981 Schroeppel-Shamir.
e.g. $M=8, t=36634, x=$ (499, 852, 1927, 2535, 3596, 3608, 4688, 5989, 6385, 7353, 7650, 9413):

Try each $t_{1} \in\{0,1, \ldots, 7\}$.
In particular try $t_{1}=6$.
There are 12 subsequences of
(499, 852, 1927, 2535, 3596, 3608)
with sum 6 modulo 8 .
There are 6 subsequences of
(4688, 5989, 6385, $7353,7650,9413$)
with sum $36634-6$ modulo 8 .
Sort and merge to find
$499+852+2535+3608=$
$36634-5989-6385-7353-9413$.

Quantum left-right split (0.333 . . .)

Cost $2^{n / 3}$, imitating
1998 Brassard-Høyer-Tapp:
For simplicity assume $n \in 3 \mathbf{Z}$.
Compute $\Sigma\left(J_{1}\right)$ for all
$J_{1} \subseteq\{1,2, \ldots, n / 3\}$.
Sort $L=\left\{\Sigma\left(J_{1}\right)\right\}$.
Can now efficiently compute
$J_{2} \mapsto\left[t-\Sigma\left(J_{2}\right) \notin L\right]$
for $J_{2} \subseteq\{n / 3+1, \ldots, n\}$.
Recall: we assign cost 1 to RAM.
Use Grover's method to see whether this function has a root.

Quantum walk

Unique-collision-finding problem:
Say f has n-bit inputs,
exactly one collision $\{p, q\}$:
ie., $p \neq q, f(p)=f(q)$.
Problem: find this collision.
Cost 2^{n} : Define S as
the set of n-bit strings.
Compute $f(S)$, sort.
Generalize to cost r,
success probability $\approx\left(r / 2^{n}\right)^{2}$:
Choose a set S of size r.
Compute $f(S)$, sort.

Data structure $D(S)$ capturing the generalized computation: the set S; the multiset $f(S)$; the number of collisions in S.

Very efficient to move from $D(S)$ to $D(T)$ if T is an adjacent set:
$\# S=\# T=r, \#(S \cap T)=r-1$.
2003 Ambainis, simplified 2007 Magniez-Nayak-Roland-Santha:
Create superposition of states
$(D(S), D(T))$ with adjacent S, T.
By a quantum walk
find S containing a collision.

How the quantum walk works:

Start from uniform superposition.
Repeat $\approx 0.6 \cdot 2^{n} / r$ times:
Negate $a_{S, T}$
if S contains collision.
Repeat $\approx 0.7 \cdot \sqrt{r}$ times:
For each T :
Diffuse $a_{S, T}$ across all S.
For each S :
Diffuse $a_{S, T}$ across all T.
Now high probability that T contains collision.
Cost $r+2^{n} / \sqrt{r}$. Optimize: $2^{2 n / 3}$.

Classify (S, T) according to $(\#(S \cap\{p, q\}), \#(T \cap\{p, q\}))$; reduce a to low-dim vector. Analyze evolution of this vector.
e.g. $n=15, r=1024$, after

0 negations and 0 diffusions:
$\operatorname{Pr}[\operatorname{class}(0,0)] \approx 0.938 ;+$
$\operatorname{Pr}[\operatorname{class}(0,1)] \approx 0.000 ;+$
$\operatorname{Pr}[\operatorname{class}(1,0)] \approx 0.000 ;+$
$\operatorname{Pr}[\operatorname{class}(1,1)] \approx 0.060 ;+$
$\operatorname{Pr}[\operatorname{class}(1,2)] \approx 0.000 ;+$
$\operatorname{Pr}[\operatorname{class}(2,1)] \approx 0.000 ;+$
$\operatorname{Pr}[\operatorname{class}(2,2)] \approx 0.001 ;+$
Right column is sign of $a_{S, T}$.

Classify (S, T) according to $(\#(S \cap\{p, q\}), \#(T \cap\{p, q\}))$; reduce a to low-dim vector. Analyze evolution of this vector.
e.g. $n=15, r=1024$, after 1 negation and 46 diffusions:
$\operatorname{Pr}[\operatorname{class}(0,0)] \approx 0.935 ;+$ $\operatorname{Pr}[\operatorname{class}(0,1)] \approx 0.000 ;+$ $\operatorname{Pr}[\operatorname{class}(1,0)] \approx 0.000 ;-$ $\operatorname{Pr}[\operatorname{class}(1,1)] \approx 0.057 ;+$ $\operatorname{Pr}[\operatorname{class}(1,2)] \approx 0.000 ;+$ $\operatorname{Pr}[\operatorname{class}(2,1)] \approx 0.000 ;-$ $\operatorname{Pr}[\operatorname{class}(2,2)] \approx 0.008 ;+$

Right column is sign of $a_{S, T}$.

Classify (S, T) according to $(\#(S \cap\{p, q\}), \#(T \cap\{p, q\}))$; reduce a to low-dim vector. Analyze evolution of this vector.
e.g. $n=15, r=1024$, after

2 negations and 92 diffusions:
$\operatorname{Pr}[\operatorname{class}(0,0)] \approx 0.918 ;+$
$\operatorname{Pr}[\operatorname{class}(0,1)] \approx 0.001 ;+$
$\operatorname{Pr}[\operatorname{class}(1,0)] \approx 0.000 ;-$
$\operatorname{Pr}[\operatorname{class}(1,1)] \approx 0.059 ;+$
$\operatorname{Pr}[\operatorname{class}(1,2)] \approx 0.001 ;+$
$\operatorname{Pr}[\operatorname{class}(2,1)] \approx 0.000 ;-$
$\operatorname{Pr}[\operatorname{class}(2,2)] \approx 0.022 ;+$
Right column is sign of $a_{S, T}$.

Classify (S, T) according to $(\#(S \cap\{p, q\}), \#(T \cap\{p, q\}))$; reduce a to low-dim vector. Analyze evolution of this vector.
e.g. $n=15, r=1024$, after

3 negations and 138 diffusions:
$\operatorname{Pr}[\operatorname{class}(0,0)] \approx 0.897 ;+$
$\operatorname{Pr}[\operatorname{class}(0,1)] \approx 0.001 ;+$
$\operatorname{Pr}[\operatorname{class}(1,0)] \approx 0.000 ;-$
$\operatorname{Pr}[\operatorname{class}(1,1)] \approx 0.058 ;+$
$\operatorname{Pr}[\operatorname{class}(1,2)] \approx 0.002 ;+$
$\operatorname{Pr}[\operatorname{class}(2,1)] \approx 0.000 ;+$
$\operatorname{Pr}[\operatorname{class}(2,2)] \approx 0.042 ;+$
Right column is sign of $a_{S, T}$.

Classify (S, T) according to $(\#(S \cap\{p, q\}), \#(T \cap\{p, q\}))$; reduce a to low-dim vector. Analyze evolution of this vector.
e.g. $n=15, r=1024$, after

4 negations and 184 diffusions:
$\operatorname{Pr}[\operatorname{class}(0,0)] \approx 0.873 ;+$
$\operatorname{Pr}[\operatorname{class}(0,1)] \approx 0.001 ;+$
$\operatorname{Pr}[\operatorname{class}(1,0)] \approx 0.000 ;-$
$\operatorname{Pr}[\operatorname{class}(1,1)] \approx 0.054 ;+$
$\operatorname{Pr}[\operatorname{class}(1,2)] \approx 0.002 ;+$
$\operatorname{Pr}[\operatorname{class}(2,1)] \approx 0.000 ;+$
$\operatorname{Pr}[\operatorname{class}(2,2)] \approx 0.070 ;+$
Right column is sign of $a_{S, T}$.

Classify (S, T) according to $(\#(S \cap\{p, q\}), \#(T \cap\{p, q\}))$; reduce a to low-dim vector. Analyze evolution of this vector.
e.g. $n=15, r=1024$, after 5 negations and 230 diffusions:
$\operatorname{Pr}[\operatorname{class}(0,0)] \approx 0.838 ;+$ $\operatorname{Pr}[\operatorname{class}(0,1)] \approx 0.001 ;+$ $\operatorname{Pr}[\operatorname{class}(1,0)] \approx 0.001 ;-$ $\operatorname{Pr}[\operatorname{class}(1,1)] \approx 0.054 ;+$ $\operatorname{Pr}[\operatorname{class}(1,2)] \approx 0.003 ;+$ $\operatorname{Pr}[\operatorname{class}(2,1)] \approx 0.000 ;+$ $\operatorname{Pr}[\operatorname{class}(2,2)] \approx 0.104 ;+$

Right column is sign of $a_{S, T}$.

Classify (S, T) according to $(\#(S \cap\{p, q\}), \#(T \cap\{p, q\}))$; reduce a to low-dim vector. Analyze evolution of this vector.
e.g. $n=15, r=1024$, after

6 negations and 276 diffusions:
$\operatorname{Pr}[\operatorname{class}(0,0)] \approx 0.800 ;+$
$\operatorname{Pr}[\operatorname{class}(0,1)] \approx 0.001 ;+$
$\operatorname{Pr}[\operatorname{class}(1,0)] \approx 0.001 ;-$
$\operatorname{Pr}[\operatorname{class}(1,1)] \approx 0.051 ;+$
$\operatorname{Pr}[\operatorname{class}(1,2)] \approx 0.006 ;+$
$\operatorname{Pr}[\operatorname{class}(2,1)] \approx 0.000 ;+$
$\operatorname{Pr}[\operatorname{class}(2,2)] \approx 0.141 ;+$
Right column is sign of $a_{S, T}$.

Classify (S, T) according to $(\#(S \cap\{p, q\}), \#(T \cap\{p, q\}))$; reduce a to low-dim vector. Analyze evolution of this vector.
e.g. $n=15, r=1024$, after

7 negations and 322 diffusions:
$\operatorname{Pr}[\operatorname{class}(0,0)] \approx 0.758 ;+$
$\operatorname{Pr}[\operatorname{class}(0,1)] \approx 0.002 ;+$
$\operatorname{Pr}[\operatorname{class}(1,0)] \approx 0.001 ;-$
$\operatorname{Pr}[\operatorname{class}(1,1)] \approx 0.047 ;+$
$\operatorname{Pr}[\operatorname{class}(1,2)] \approx 0.007 ;+$
$\operatorname{Pr}[\operatorname{class}(2,1)] \approx 0.000 ;+$
$\operatorname{Pr}[\operatorname{class}(2,2)] \approx 0.184 ;+$
Right column is sign of $a_{S, T}$.

Classify (S, T) according to $(\#(S \cap\{p, q\}), \#(T \cap\{p, q\}))$; reduce a to low-dim vector. Analyze evolution of this vector.
e.g. $n=15, r=1024$, after 8 negations and 368 diffusions:
$\operatorname{Pr}[\operatorname{class}(0,0)] \approx 0.708 ;+$ $\operatorname{Pr}[\operatorname{class}(0,1)] \approx 0.003 ;+$ $\operatorname{Pr}[\operatorname{class}(1,0)] \approx 0.001 ;-$ $\operatorname{Pr}[\operatorname{class}(1,1)] \approx 0.046 ;+$ $\operatorname{Pr}[\operatorname{class}(1,2)] \approx 0.007 ;+$ $\operatorname{Pr}[\operatorname{class}(2,1)] \approx 0.000 ;+$ $\operatorname{Pr}[\operatorname{class}(2,2)] \approx 0.234 ;+$

Right column is sign of $a_{S, T}$.

Classify (S, T) according to $(\#(S \cap\{p, q\}), \#(T \cap\{p, q\}))$; reduce a to low-dim vector. Analyze evolution of this vector.
e.g. $n=15, r=1024$, after

9 negations and 414 diffusions:
$\operatorname{Pr}[\operatorname{class}(0,0)] \approx 0.658 ;+$
$\operatorname{Pr}[\operatorname{class}(0,1)] \approx 0.003 ;+$
$\operatorname{Pr}[\operatorname{class}(1,0)] \approx 0.001 ;-$
$\operatorname{Pr}[\operatorname{class}(1,1)] \approx 0.042 ;+$
$\operatorname{Pr}[\operatorname{class}(1,2)] \approx 0.009 ;+$
$\operatorname{Pr}[\operatorname{class}(2,1)] \approx 0.000 ;+$
$\operatorname{Pr}[\operatorname{class}(2,2)] \approx 0.287 ;+$
Right column is sign of $a_{S, T}$.

Classify (S, T) according to $(\#(S \cap\{p, q\}), \#(T \cap\{p, q\}))$; reduce a to low-dim vector. Analyze evolution of this vector.
e.g. $n=15, r=1024$, after 10 negations and 460 diffusions:
$\operatorname{Pr}[\operatorname{class}(0,0)] \approx 0.606 ;+$ $\operatorname{Pr}[\operatorname{class}(0,1)] \approx 0.003 ;+$ $\operatorname{Pr}[\operatorname{class}(1,0)] \approx 0.002 ;-$ $\operatorname{Pr}[\operatorname{class}(1,1)] \approx 0.037 ;+$ $\operatorname{Pr}[\operatorname{class}(1,2)] \approx 0.013 ;+$ $\operatorname{Pr}[\operatorname{class}(2,1)] \approx 0.000 ;+$ $\operatorname{Pr}[\operatorname{class}(2,2)] \approx 0.338 ;+$

Right column is sign of $a_{S, T}$.

Classify (S, T) according to $(\#(S \cap\{p, q\}), \#(T \cap\{p, q\}))$; reduce a to low-dim vector. Analyze evolution of this vector.
e.g. $n=15, r=1024$, after 11 negations and 506 diffusions:
$\operatorname{Pr}[\operatorname{class}(0,0)] \approx 0.547 ;+$
$\operatorname{Pr}[\operatorname{class}(0,1)] \approx 0.004 ;+$
$\operatorname{Pr}[\operatorname{class}(1,0)] \approx 0.003 ;-$
$\operatorname{Pr}[\operatorname{class}(1,1)] \approx 0.036 ;+$
$\operatorname{Pr}[\operatorname{class}(1,2)] \approx 0.015 ;+$
$\operatorname{Pr}[\operatorname{class}(2,1)] \approx 0.001 ;+$
$\operatorname{Pr}[\operatorname{class}(2,2)] \approx 0.394 ;+$
Right column is sign of $a_{S, T}$.

Classify (S, T) according to $(\#(S \cap\{p, q\}), \#(T \cap\{p, q\}))$; reduce a to low-dim vector. Analyze evolution of this vector.
e.g. $n=15, r=1024$, after 12 negations and 552 diffusions:
$\operatorname{Pr}[\operatorname{class}(0,0)] \approx 0.491 ;+$
$\operatorname{Pr}[\operatorname{class}(0,1)] \approx 0.004 ;+$
$\operatorname{Pr}[\operatorname{class}(1,0)] \approx 0.003 ;-$
$\operatorname{Pr}[\operatorname{class}(1,1)] \approx 0.032 ;+$
$\operatorname{Pr}[\operatorname{class}(1,2)] \approx 0.014 ;+$
$\operatorname{Pr}[\operatorname{class}(2,1)] \approx 0.001 ;+$
$\operatorname{Pr}[\operatorname{class}(2,2)] \approx 0.455 ;+$
Right column is sign of $a_{S, T}$.

Classify (S, T) according to $(\#(S \cap\{p, q\}), \#(T \cap\{p, q\}))$; reduce a to low-dim vector. Analyze evolution of this vector.
e.g. $n=15, r=1024$, after 13 negations and 598 diffusions:
$\operatorname{Pr}[\operatorname{class}(0,0)] \approx 0.436 ;+$
$\operatorname{Pr}[\operatorname{class}(0,1)] \approx 0.005 ;+$
$\operatorname{Pr}[\operatorname{class}(1,0)] \approx 0.003 ;-$
$\operatorname{Pr}[\operatorname{class}(1,1)] \approx 0.026 ;+$
$\operatorname{Pr}[\operatorname{class}(1,2)] \approx 0.017 ;+$
$\operatorname{Pr}[\operatorname{class}(2,1)] \approx 0.000 ;+$
$\operatorname{Pr}[\operatorname{class}(2,2)] \approx 0.513 ;+$
Right column is sign of $a_{S, T}$.

Classify (S, T) according to $(\#(S \cap\{p, q\}), \#(T \cap\{p, q\}))$; reduce a to low-dim vector. Analyze evolution of this vector.
e.g. $n=15, r=1024$, after 14 negations and 644 diffusions:
$\operatorname{Pr}[\operatorname{class}(0,0)] \approx 0.377 ;+$
$\operatorname{Pr}[\operatorname{class}(0,1)] \approx 0.006 ;+$
$\operatorname{Pr}[\operatorname{class}(1,0)] \approx 0.004 ;-$
$\operatorname{Pr}[\operatorname{class}(1,1)] \approx 0.025 ;+$
$\operatorname{Pr}[\operatorname{class}(1,2)] \approx 0.022 ;+$
$\operatorname{Pr}[\operatorname{class}(2,1)] \approx 0.001 ;+$
$\operatorname{Pr}[\operatorname{class}(2,2)] \approx 0.566 ;+$
Right column is sign of $a_{S, T}$.

Classify (S, T) according to $(\#(S \cap\{p, q\}), \#(T \cap\{p, q\}))$; reduce a to low-dim vector. Analyze evolution of this vector.
e.g. $n=15, r=1024$, after 15 negations and 690 diffusions:
$\operatorname{Pr}[\operatorname{class}(0,0)] \approx 0.322 ;+$
$\operatorname{Pr}[\operatorname{class}(0,1)] \approx 0.005 ;+$
$\operatorname{Pr}[\operatorname{class}(1,0)] \approx 0.004 ;-$
$\operatorname{Pr}[\operatorname{class}(1,1)] \approx 0.021 ;+$
$\operatorname{Pr}[\operatorname{class}(1,2)] \approx 0.023 ;+$
$\operatorname{Pr}[\operatorname{class}(2,1)] \approx 0.001 ;+$
$\operatorname{Pr}[\operatorname{class}(2,2)] \approx 0.623 ;+$
Right column is sign of $a_{S, T}$.

Classify (S, T) according to $(\#(S \cap\{p, q\}), \#(T \cap\{p, q\}))$; reduce a to low-dim vector. Analyze evolution of this vector.
e.g. $n=15, r=1024$, after 16 negations and 736 diffusions:
$\operatorname{Pr}[\operatorname{class}(0,0)] \approx 0.270 ;+$
$\operatorname{Pr}[\operatorname{class}(0,1)] \approx 0.006 ;+$
$\operatorname{Pr}[\operatorname{class}(1,0)] \approx 0.005 ;-$
$\operatorname{Pr}[\operatorname{class}(1,1)] \approx 0.017 ;+$
$\operatorname{Pr}[\operatorname{class}(1,2)] \approx 0.022 ;+$
$\operatorname{Pr}[\operatorname{class}(2,1)] \approx 0.001 ;+$
$\operatorname{Pr}[\operatorname{class}(2,2)] \approx 0.680 ;+$
Right column is sign of $a_{S, T}$.

Classify (S, T) according to $(\#(S \cap\{p, q\}), \#(T \cap\{p, q\}))$; reduce a to low-dim vector. Analyze evolution of this vector.
e.g. $n=15, r=1024$, after 17 negations and 782 diffusions:
$\operatorname{Pr}[\operatorname{class}(0,0)] \approx 0.218 ;+$
$\operatorname{Pr}[\operatorname{class}(0,1)] \approx 0.007 ;+$
$\operatorname{Pr}[\operatorname{class}(1,0)] \approx 0.005 ;-$
$\operatorname{Pr}[\operatorname{class}(1,1)] \approx 0.015 ;+$
$\operatorname{Pr}[\operatorname{class}(1,2)] \approx 0.024 ;+$
$\operatorname{Pr}[\operatorname{class}(2,1)] \approx 0.001 ;+$
$\operatorname{Pr}[\operatorname{class}(2,2)] \approx 0.730 ;+$
Right column is sign of $a_{S, T}$.

Classify (S, T) according to $(\#(S \cap\{p, q\}), \#(T \cap\{p, q\}))$; reduce a to low-dim vector. Analyze evolution of this vector.
e.g. $n=15, r=1024$, after 18 negations and 828 diffusions:
$\operatorname{Pr}[\operatorname{class}(0,0)] \approx 0.172 ;+$
$\operatorname{Pr}[\operatorname{class}(0,1)] \approx 0.006 ;+$
$\operatorname{Pr}[\operatorname{class}(1,0)] \approx 0.005 ;-$
$\operatorname{Pr}[\operatorname{class}(1,1)] \approx 0.011 ;+$
$\operatorname{Pr}[\operatorname{class}(1,2)] \approx 0.029 ;+$
$\operatorname{Pr}[\operatorname{class}(2,1)] \approx 0.001 ;+$
$\operatorname{Pr}[\operatorname{class}(2,2)] \approx 0.775 ;+$
Right column is sign of $a_{S, T}$.

Classify (S, T) according to $(\#(S \cap\{p, q\}), \#(T \cap\{p, q\}))$; reduce a to low-dim vector. Analyze evolution of this vector.
e.g. $n=15, r=1024$, after 19 negations and 874 diffusions:
$\operatorname{Pr}[\operatorname{class}(0,0)] \approx 0.131 ;+$ $\operatorname{Pr}[\operatorname{class}(0,1)] \approx 0.007 ;+$ $\operatorname{Pr}[\operatorname{class}(1,0)] \approx 0.006 ;-$ $\operatorname{Pr}[\operatorname{class}(1,1)] \approx 0.008 ;+$ $\operatorname{Pr}[\operatorname{class}(1,2)] \approx 0.030 ;+$ $\operatorname{Pr}[\operatorname{class}(2,1)] \approx 0.002 ;+$ $\operatorname{Pr}[\operatorname{class}(2,2)] \approx 0.816 ;+$

Right column is sign of $a_{S, T}$.

Classify (S, T) according to $(\#(S \cap\{p, q\}), \#(T \cap\{p, q\}))$; reduce a to low-dim vector. Analyze evolution of this vector.
e.g. $n=15, r=1024$, after 20 negations and 920 diffusions:
$\operatorname{Pr}[\operatorname{class}(0,0)] \approx 0.093 ;+$ $\operatorname{Pr}[\operatorname{class}(0,1)] \approx 0.007 ;+$ $\operatorname{Pr}[\operatorname{class}(1,0)] \approx 0.007 ;-$ $\operatorname{Pr}[\operatorname{class}(1,1)] \approx 0.007 ;+$ $\operatorname{Pr}[\operatorname{class}(1,2)] \approx 0.027 ;+$ $\operatorname{Pr}[\operatorname{class}(2,1)] \approx 0.002 ;+$ $\operatorname{Pr}[\operatorname{class}(2,2)] \approx 0.857 ;+$

Right column is sign of $a_{S, T}$.

Classify (S, T) according to $(\#(S \cap\{p, q\}), \#(T \cap\{p, q\}))$; reduce a to low-dim vector. Analyze evolution of this vector.
e.g. $n=15, r=1024$, after

21 negations and 966 diffusions:
$\operatorname{Pr}[\operatorname{class}(0,0)] \approx 0.062 ;+$
$\operatorname{Pr}[\operatorname{class}(0,1)] \approx 0.007 ;+$
$\operatorname{Pr}[\operatorname{class}(1,0)] \approx 0.006 ;-$
$\operatorname{Pr}[\operatorname{class}(1,1)] \approx 0.004 ;+$
$\operatorname{Pr}[\operatorname{class}(1,2)] \approx 0.030 ;+$
$\operatorname{Pr}[\operatorname{class}(2,1)] \approx 0.001 ;+$
$\operatorname{Pr}[\operatorname{class}(2,2)] \approx 0.890 ;+$
Right column is sign of $a_{S, T}$.

Classify (S, T) according to $(\#(S \cap\{p, q\}), \#(T \cap\{p, q\}))$; reduce a to low-dim vector. Analyze evolution of this vector.
e.g. $n=15, r=1024$, after 22 negations and 1012 diffusions:
$\operatorname{Pr}[\operatorname{class}(0,0)] \approx 0.037 ;+$ $\operatorname{Pr}[\operatorname{class}(0,1)] \approx 0.008 ;+$ $\operatorname{Pr}[\operatorname{class}(1,0)] \approx 0.007 ;-$ $\operatorname{Pr}[\operatorname{class}(1,1)] \approx 0.002 ;+$ $\operatorname{Pr}[\operatorname{class}(1,2)] \approx 0.034 ;+$ $\operatorname{Pr}[\operatorname{class}(2,1)] \approx 0.001 ;+$ $\operatorname{Pr}[\operatorname{class}(2,2)] \approx 0.910 ;+$

Right column is sign of $a_{S, T}$.

Classify (S, T) according to $(\#(S \cap\{p, q\}), \#(T \cap\{p, q\}))$; reduce a to low-dim vector. Analyze evolution of this vector.
e.g. $n=15, r=1024$, after 23 negations and 1058 diffusions:
$\operatorname{Pr}[\operatorname{class}(0,0)] \approx 0.017 ;+$
$\operatorname{Pr}[\operatorname{class}(0,1)] \approx 0.008 ;+$
$\operatorname{Pr}[\operatorname{class}(1,0)] \approx 0.007 ;-$
$\operatorname{Pr}[\operatorname{class}(1,1)] \approx 0.002 ;+$
$\operatorname{Pr}[\operatorname{class}(1,2)] \approx 0.034 ;+$
$\operatorname{Pr}[\operatorname{class}(2,1)] \approx 0.002 ;+$
$\operatorname{Pr}[\operatorname{class}(2,2)] \approx 0.930 ;+$
Right column is sign of $a_{S, T}$.

Classify (S, T) according to $(\#(S \cap\{p, q\}), \#(T \cap\{p, q\}))$; reduce a to low-dim vector. Analyze evolution of this vector.
e.g. $n=15, r=1024$, after

24 negations and 1104 diffusions:
$\operatorname{Pr}[\operatorname{class}(0,0)] \approx 0.005 ;+$
$\operatorname{Pr}[\operatorname{class}(0,1)] \approx 0.007 ;+$
$\operatorname{Pr}[\operatorname{class}(1,0)] \approx 0.007 ;-$
$\operatorname{Pr}[\operatorname{class}(1,1)] \approx 0.000 ;+$
$\operatorname{Pr}[\operatorname{class}(1,2)] \approx 0.030 ;+$
$\operatorname{Pr}[\operatorname{class}(2,1)] \approx 0.002 ;+$
$\operatorname{Pr}[\operatorname{class}(2,2)] \approx 0.948 ;+$
Right column is sign of $a_{S, T}$.

Classify (S, T) according to $(\#(S \cap\{p, q\}), \#(T \cap\{p, q\}))$; reduce a to low-dim vector. Analyze evolution of this vector.
e.g. $n=15, r=1024$, after

25 negations and 1150 diffusions:
$\operatorname{Pr}[\operatorname{class}(0,0)] \approx 0.000 ;+$
$\operatorname{Pr}[\operatorname{class}(0,1)] \approx 0.008 ;+$
$\operatorname{Pr}[\operatorname{class}(1,0)] \approx 0.008 ;-$
$\operatorname{Pr}[\operatorname{class}(1,1)] \approx 0.000 ;+$
$\operatorname{Pr}[\operatorname{class}(1,2)] \approx 0.031 ;+$
$\operatorname{Pr}[\operatorname{class}(2,1)] \approx 0.001 ;+$
$\operatorname{Pr}[\operatorname{class}(2,2)] \approx 0.952 ;+$
Right column is sign of $a_{S, T}$.

Classify (S, T) according to $(\#(S \cap\{p, q\}), \#(T \cap\{p, q\}))$; reduce a to low-dim vector. Analyze evolution of this vector.
e.g. $n=15, r=1024$, after 26 negations and 1196 diffusions:
$\operatorname{Pr}[\operatorname{class}(0,0)] \approx 0.002 ;-$
$\operatorname{Pr}[\operatorname{class}(0,1)] \approx 0.008 ;+$
$\operatorname{Pr}[\operatorname{class}(1,0)] \approx 0.008 ;-$
$\operatorname{Pr}[\operatorname{class}(1,1)] \approx 0.000 ;-$
$\operatorname{Pr}[\operatorname{class}(1,2)] \approx 0.035 ;+$
$\operatorname{Pr}[\operatorname{class}(2,1)] \approx 0.002 ;+$
$\operatorname{Pr}[\operatorname{class}(2,2)] \approx 0.945 ;+$
Right column is sign of $a_{S, T}$.

Classify (S, T) according to $(\#(S \cap\{p, q\}), \#(T \cap\{p, q\}))$; reduce a to low-dim vector. Analyze evolution of this vector.
e.g. $n=15, r=1024$, after

27 negations and 1242 diffusions:
$\operatorname{Pr}[\operatorname{class}(0,0)] \approx 0.011 ;-$
$\operatorname{Pr}[\operatorname{class}(0,1)] \approx 0.007 ;+$
$\operatorname{Pr}[\operatorname{class}(1,0)] \approx 0.007 ;-$
$\operatorname{Pr}[\operatorname{class}(1,1)] \approx 0.001 ;-$
$\operatorname{Pr}[\operatorname{class}(1,2)] \approx 0.034 ;+$
$\operatorname{Pr}[\operatorname{class}(2,1)] \approx 0.003 ;+$
$\operatorname{Pr}[\operatorname{class}(2,2)] \approx 0.938 ;+$
Right column is sign of $a_{S, T}$.

Subset-sum walk (0.333 ...)
Consider f defined by
$f\left(1, J_{1}\right)=\Sigma\left(J_{1}\right)$
for $J_{1} \subseteq\{1, \ldots, n / 2\}$;
$f\left(2, J_{2}\right)=t-\Sigma\left(J_{2}\right)$
for $J_{2} \subseteq\{n / 2+1, \ldots, n\}$.
Good chance of unique
collision $\Sigma\left(J_{1}\right)=t-\Sigma\left(J_{2}\right)$.
$n / 2+1$ bits of input, so quantum walk costs $2^{n / 3}$.

Easily tweak quantum walk to handle more collisions, ignore $\Sigma\left(J_{1}\right)=\Sigma\left(J_{1}^{\prime}\right)$, etc.

Generalized moduli

Choose M, t_{1}, r with $M \approx r$.
(Original moduli algorithm
is the special case $r=2^{n / 4}$.)
Take set $S_{11}, \# S_{11}=r$, where
$J_{11} \in S_{11} \Rightarrow J_{11} \subseteq\{1, \ldots, n / 4\}$.
(Original algorithm: S_{11} is the set
of all $J_{11} \subseteq\{1, \ldots, n / 4\}$.)
Compute $\Sigma\left(J_{11}\right) \bmod M$
for each $J_{11} \in S_{11}$.
Similarly take a set S_{12} of r subsets of $\{n / 4+1, \ldots, n / 2\}$.
Compute $t_{1}-\Sigma\left(J_{12}\right) \bmod M$
for each $J_{12} \in S_{12}$.

Find all collisions
$\Sigma\left(J_{11}\right) \equiv t_{1}-\Sigma\left(J_{12}\right)$,
i.e., $\Sigma\left(J_{1}\right) \equiv t_{1} \quad(\bmod M)$
where $J_{1}=J_{11} \cup J_{12}$.
Compute each $\Sigma\left(J_{1}\right)$.
Similarly $S_{21}, S_{22} \Rightarrow$
list of J_{2} with $\Sigma\left(J_{2}\right) \equiv t-t_{1}$ \Rightarrow each $t-\Sigma\left(J_{2}\right)$.

Find collisions $\Sigma\left(J_{1}\right)=t-\Sigma\left(J_{2}\right)$.
Success probability $r^{4} / 2^{n}$ at finding any particular J with $\Sigma(J)=t, \Sigma\left(J_{1}\right) \equiv t_{1} \quad(\bmod M)$.

Assuming typical distribution:
cost r, since $M \approx r$.

Quantum moduli (0.3)

Capture execution of
generalized moduli algorithm as data structure
$D\left(S_{11}, S_{12}, S_{21}, S_{22}\right)$.
Easy to move
from $S_{i j}$ to adjacent $T_{i j}$.
Convert into quantum walk:
cost $r+\sqrt{r} 2^{n / 2} / r^{2}$.
$2^{0.2 n}$ for $r \approx 2^{0.2 n}$.
Use "amplitude amplification" to search for correct t_{1}. Total cost $2^{0.3 n}$.

Quantum reps (0.241...)

Central result of the paper:
Combine quantum walk
with "representations" idea of
2010 Howgrave-Graham-Joux.
Subset-sum exponent $0.241 \ldots$; new record.

Lower-level improvement:
Ambainis uses ad-hoc "combination of a hash table and a skip list" to ensure history-independence.
We use radix trees.
Much easier, presumably faster.

