McBits:

fast constant-time
code-based cryptography
D. J. Bernstein
University of Illinois at Chicago \&
Technische Universiteit Eindhoven
Joint work with:

Tung Chou

Technische Universiteit Eindhoven (original speaker, still waiting for U.S. visa)
Peter Schwabe
Radboud University Nijmegen

Objectives

Set new speed records for public-key cryptography.

McBits:

fast constant-time
code-based cryptography
D. J. Bernstein

University of Illinois at Chicago \& Technische Universiteit Eindhoven Joint work with:

Tung Chou

Technische Universiteit Eindhoven (original speaker, still waiting for U.S. visa)

Peter Schwabe
Radboud University Nijmegen

Objectives

Set new speed records for public-key cryptography.
... at a high security level.

McBits:

fast constant-time
code-based cryptography
D. J. Bernstein

University of Illinois at Chicago \& Technische Universiteit Eindhoven Joint work with:

Tung Chou

Technische Universiteit Eindhoven (original speaker, still waiting for U.S. visa)

Peter Schwabe
Radboud University Nijmegen

Objectives

Set new speed records for public-key cryptography.
... at a high security level.
... including protection against quantum computers.

McBits:

fast constant-time
code-based cryptography
D. J. Bernstein

University of Illinois at Chicago \&
Technische Universiteit Eindhoven
Joint work with:

Tung Chou

Technische Universiteit Eindhoven (original speaker, still waiting for U.S. visa)

Peter Schwabe
Radboud University Nijmegen

Objectives

Set new speed records for public-key cryptography.
... at a high security level.
... including protection against quantum computers.
... including full protection against cache-timing attacks, branch-prediction attacks, etc.

McBits:

fast constant-time
code-based cryptography
D. J. Bernstein

University of Illinois at Chicago \&
Technische Universiteit Eindhoven
Joint work with:

Tung Chou

Technische Universiteit Eindhoven (original speaker, still waiting for U.S. visa)

Peter Schwabe
Radboud University Nijmegen

Objectives

Set new speed records for public-key cryptography.
... at a high security level.
... including protection against quantum computers.
... including full protection against cache-timing attacks, branch-prediction attacks, etc.
... using code-based crypto with a solid track record.

McBits:

fast constant-time
code-based cryptography
D. J. Bernstein
University of Illinois at Chicago \&
Technische Universiteit Eindhoven
Joint work with:

Tung Chou

Technische Universiteit Eindhoven (original speaker, still waiting for U.S. visa)
Peter Schwabe
Radboud University Nijmegen

Objectives

Set new speed records for public-key cryptography.
... at a high security level.
... including protection against quantum computers.
... including full protection against cache-timing attacks, branch-prediction attacks, etc.
... using code-based crypto with a solid track record.
... all of the above at once.

Objectives

Set new speed records for public-key cryptography.
... at a high security level.
... including protection against quantum computers.
... including full protection against cache-timing attacks, branch-prediction attacks, etc.
... using code-based crypto with a solid track record.
... all of the above at once.

The trac
1978 Mc public-k

Has helc optimiza 1962 Pr 1988 Le 1989 Kr 1989 D 1990 Co 1990 va

1991 Co
1993 Ch
1993 Ch

Objectives

Set new speed records for public-key cryptography.
... at a high security level.
... including protection against quantum computers.
... including full protection against cache-timing attacks, branch-prediction attacks, etc.
... using code-based crypto with a solid track record.
... all of the above at once.

The track record
1978 McEliece pro public-key code-ba

Has held up well a optimization of at 1962 Prange. 198 1988 Lee-Brickell. 1989 Krouk. 1989 1989 Dumer.
1990 Coffey-Good 1990 van Tilburg. 1991 Coffey-Good
1993 Chabanne-C
1993 Chabaud.

Objectives

Set new speed records for public-key cryptography.
... at a high security level.
... including protection against quantum computers.
... including full protection against cache-timing attacks, branch-prediction attacks, etc.
... using code-based crypto with a solid track record.
... all of the above at once.

The track record

1978 McEliece proposed public-key code-based crypt

Has held up well after exten optimization of attack algor 1962 Prange. 1981 Omura. 1988 Lee-Brickell. 1988 Lec 1989 Krouk. 1989 Stern. 1989 Dumer.

1990 Coffey-Goodman.
1990 van Tilburg. 1991 Dur
1991 Coffey-Goodman-Farr
1993 Chabanne-Courteau.
1993 Chabaud.

Objectives

Set new speed records for public-key cryptography.
... at a high security level.
... including protection against quantum computers.
... including full protection against cache-timing attacks, branch-prediction attacks, etc.
... using code-based crypto with a solid track record.
... all of the above at once.

The track record

1978 McEliece proposed public-key code-based crypto.

Has held up well after extensive optimization of attack algorithms:
1962 Prange. 1981 Omura.
1988 Lee-Brickell. 1988 Leon.
1989 Krouk. 1989 Stern.
1989 Dumer.
1990 Coffey-Goodman.
1990 van Tilburg. 1991 Dumer.
1991 Coffey-Goodman-Farrell.
1993 Chabanne-Courteau.
1993 Chabaud.
speed records
c-key cryptography.
high security level.
ding protection quantum computers.
ding full protection cache-timing attacks, rediction attacks, etc.
g code-based crypto olid track record.
f the above at once.

The track record

1978 McEliece proposed public-key code-based crypto.

Has held up well after extensive optimization of attack algorithms:
1962 Prange. 1981 Omura.
1988 Lee-Brickell. 1988 Leon.
1989 Krouk. 1989 Stern.
1989 Dumer.
1990 Coffey-Goodman.
1990 van Tilburg. 1991 Dumer.
1991 Coffey-Goodman-Farrell.
1993 Chabanne-Courteau.
1993 Chabaud.

1994 va
1994 Ca
1998 Ca
1998 Ca
2008 Be
2009 Be
Peters-v 2009 Be 2009 Fir 2010 Be 2011 M

2011 Be
2012 Be
2013 Be
Meurer

The track record

1978 McEliece proposed public-key code-based crypto.

Has held up well after extensive optimization of attack algorithms:
1962 Prange. 1981 Omura.
1988 Lee-Brickell. 1988 Leon.
1989 Krouk. 1989 Stern.
1989 Dumer.
1990 Coffey-Goodman.
1990 van Tilburg. 1991 Dumer.
1991 Coffey-Goodman-Farrell.
1993 Chabanne-Courteau.
1993 Chabaud.

1994 van Tilburg. 1994 Canteaut-Cr 1998 Canteaut-Cr 1998 Canteaut-Se 2008 Bernstein-La 2009 Bernstein-La
Peters-van Tilbor 2009 Bernstein (p 2009 Finiasz-Senc 2010 Bernstein-La 2011 May-Meurer 2011 Becker-Coro 2012 Becker-Joux 2013 Bernstein-Je Meurer (post-quar

The track record

1978 McEliece proposed public-key code-based crypto.

Has held up well after extensive optimization of attack algorithms:
1962 Prange. 1981 Omura.
1988 Lee-Brickell. 1988 Leon.
1989 Krouk. 1989 Stern.
1989 Dumer.
1990 Coffey-Goodman.
1990 van Tilburg. 1991 Dumer.
1991 Coffey-Goodman-Farrell.
1993 Chabanne-Courteau.
1993 Chabaud.

1994 van Tilburg.
1994 Canteaut-Chabanne. 1998 Canteaut-Chabaud. 1998 Canteaut-Sendrier. 2008 Bernstein-Lange-Pete 2009 Bernstein-Lange-Peters-van Tilborg. 2009 Bernstein (post-quantı 2009 Finiasz-Sendrier.
2010 Bernstein-Lange-Pete 2011 May-Meurer-Thomae.
2011 Becker-Coron-Joux.
2012 Becker-Joux-May-Me
2013 Bernstein-Jeffery-Lan§
Meurer (post-quantum).

The track record

1978 McEliece proposed public-key code-based crypto.

Has held up well after extensive optimization of attack algorithms:
1962 Prange. 1981 Omura.
1988 Lee-Brickell. 1988 Leon.
1989 Krouk. 1989 Stern.
1989 Dumer.
1990 Coffey-Goodman.
1990 van Tilburg. 1991 Dumer.
1991 Coffey-Goodman-Farrell.
1993 Chabanne-Courteau.
1993 Chabaud.

1994 van Tilburg.
1994 Canteaut-Chabanne.
1998 Canteaut-Chabaud.
1998 Canteaut-Sendrier.
2008 Bernstein-Lange-Peters.
2009 Bernstein-Lange-
Peters-van Tilborg.
2009 Bernstein (post-quantum).
2009 Finiasz-Sendrier.
2010 Bernstein-Lange-Peters.
2011 May-Meurer-Thomae.
2011 Becker-Coron-Joux.
2012 Becker-Joux-May-Meurer.
2013 Bernstein-Jeffery-Lange-
Meurer (post-quantum).

k record

Eliece proposed
ey code-based crypto.
up well after extensive tion of attack algorithms:
ange. 1981 Omura.
e-Brickell. 1988 Leon.
ouk. 1989 Stern.
imer.
ffey-Goodman.

- Tilburg. 1991 Dumer. ffey-Goodman-Farrell. abanne-Courteau. abaud.

1994 van Tilburg.
1994 Canteaut-Chabanne.
1998 Canteaut-Chabaud.
1998 Canteaut-Sendrier.
2008 Bernstein-Lange-Peters.
2009 Bernstein-Lange-
Peters-van Tilborg.
2009 Bernstein (post-quantum).
2009 Finiasz-Sendrier.
2010 Bernstein-Lange-Peters.
2011 May-Meurer-Thomae.
2011 Becker-Coron-Joux.
2012 Becker-Joux-May-Meurer.
2013 Bernstein-Jeffery-Lange-
Meurer (post-quantum).

Example

Some cy (Intel C from be
mceliec (2008 B gls254 (binary kumfp1? (hyperel curve2! (conserv mceliec ronald

posed

sed crypto.
fter extensive tack algorithms:
1 Omura.
1988 Leon.
Stern.
man.
1991 Dumer.
Iman-Farrell.
ourteau.

1994 van Tilburg.
1994 Canteaut-Chabanne.
1998 Canteaut-Chabaud.
1998 Canteaut-Sendrier.
2008 Bernstein-Lange-Peters.
2009 Bernstein-Lange-
Peters-van Tilborg.
2009 Bernstein (post-quantum).
2009 Finiasz-Sendrier.
2010 Bernstein-Lange-Peters.
2011 May-Meurer-Thomae.
2011 Becker-Coron-Joux.
2012 Becker-Joux-May-Meurer.
2013 Bernstein-Jeffery-Lange-
Meurer (post-quantum).

Examples of the c
Some cycle counts (Intel Core i5-321(from bench.cr.y
mceliece encrypt (2008 Biswas-Sen gls254 DH
(binary elliptic cur kumfp127g DH (hyperelliptic; Eur curve25519 DH (conservative ellip mceliece decryp ronald1024 decry

1994 van Tilburg.
1994 Canteaut-Chabanne.
1998 Canteaut-Chabaud.
1998 Canteaut-Sendrier.
2008 Bernstein-Lange-Peters.
2009 Bernstein-Lange-
Peters-van Tilborg.
2009 Bernstein (post-quantum).
2009 Finiasz-Sendrier.
2010 Bernstein-Lange-Peters.
2011 May-Meurer-Thomae.
2011 Becker-Coron-Joux.
2012 Becker-Joux-May-Meurer.
2013 Bernstein-Jeffery-Lange-
Meurer (post-quantum).

Examples of the competition
Some cycle counts on h9ivy (Intel Core i5-3210M, Ivy B from bench.cr.yp.to:
mceliece encrypt
(2008 Biswas-Sendrier, $\approx 2^{8}$ gls254 DH
(binary elliptic curve; CHES kumfp127g DH
(hyperelliptic; Eurocrypt 20 curve25519 DH (conservative elliptic curve) mceliece decrypt

1994 van Tilburg.
1994 Canteaut-Chabanne.
1998 Canteaut-Chabaud.
1998 Canteaut-Sendrier.
2008 Bernstein-Lange-Peters.
2009 Bernstein-Lange-
Peters-van Tilborg.
2009 Bernstein (post-quantum).
2009 Finiasz-Sendrier.
2010 Bernstein-Lange-Peters.
2011 May-Meurer-Thomae.
2011 Becker-Coron-Joux.
2012 Becker-Joux-May-Meurer.
2013 Bernstein-Jeffery-Lange-
Meurer (post-quantum).

Examples of the competition

Some cycle counts on h9ivy (Intel Core i5-3210M, Ivy Bridge) from bench.cr.yp.to:
mceliece encrypt 61440
(2008 Biswas-Sendrier, $\approx 2^{80}$)
gls254 DH 77468
(binary elliptic curve; CHES 2013)
kumfp127g DH 116944
(hyperelliptic; Eurocrypt 2013)
curve25519 DH 182632
(conservative elliptic curve)
mceliece decrypt 1219344
ronald1024 decrypt 1340040

ר Tilburg.

 nteaut-Chabanne. nteaut-Chabaud.nteaut-Sendrier. rnstein-Lange-Peters. rnstein-Langean Tilborg. rnstein (post-quantum). liasz-Sendrier. rnstein-Lange-Peters. ay-Meurer-Thomae. cker-Coron-Joux. cker-Joux-May-Meurer. rnstein-Jeffery-Lange-(post-quantum).

Examples of the competition

Some cycle counts on h9ivy (Intel Core i5-3210M, Ivy Bridge) from bench.cr.yp.to:
$\begin{array}{lr}\text { mceliece encrypt } & 61440 \\ \left(2008 \text { Biswas-Sendrier, } \approx 2^{80}\right) \\ \text { gls254 DH } & 77468\end{array}$
(binary elliptic curve; CHES 2013)
kumfp127g DH 116944
(hyperelliptic; Eurocrypt 2013)
curve25519 DH 182632
(conservative elliptic curve)
mceliece decrypt 1219344
ronald1024 decrypt 1340040

New dec
$\approx 2^{128}$

Examples of the competition

Some cycle counts on h9ivy (Intel Core i5-3210M, Ivy Bridge) from bench.cr.yp.to:
$\begin{array}{lr}\text { mceliece encrypt } & 61440 \\ \left(2008 \text { Biswas-Sendrier, } \approx 2^{80}\right) \\ \text { gls254 DH } & 77468\end{array}$
(binary elliptic curve; CHES 2013)
kumfp127g DH 116944
(hyperelliptic; Eurocrypt 2013)
curve25519 DH 182632
(conservative elliptic curve)
mceliece decrypt 1219344
ronald1024 decrypt 1340040

New decoding spe
$\approx 2^{128}$ security $(n$,

Examples of the competition

Some cycle counts on h9ivy (Intel Core i5-3210M, Ivy Bridge) from bench.cr.yp.to:
mceliece encrypt 61440
(2008 Biswas-Sendrier, $\approx 2^{80}$)
gls254 DH
77468
(binary elliptic curve; CHES 2013)
kumfp127g DH 116944
(hyperelliptic; Eurocrypt 2013)
curve25519 DH 182632
(conservative elliptic curve)
mceliece decrypt 1219344
ronald1024 decrypt 1340040

New decoding speeds
$\approx 2^{128}$ security $(n, t)=(409$

Examples of the competition

Some cycle counts on h9ivy (Intel Core i5-3210M, Ivy Bridge) from bench.cr.yp.to:

mceliece encrypt	61440
(2008 Biswas-Sendrier,	$\approx 2^{80}$)
gls254 DH	77468
(binary elliptic curve; CHES 2013)	
kumfp 127 g DH	116944
(hyperelliptic; Eurocrypt	2013)
curve 25519 DH	182632
(conservative elliptic curve)	
mceliece decrypt	1219344
ronald1024 decrypt	1340040

New decoding speeds
$\approx 2^{128}$ security $(n, t)=(4096,41)$:

Examples of the competition

Some cycle counts on h9ivy (Intel Core i5-3210M, Ivy Bridge) from bench.cr.yp.to:

mceliece encrypt	61440
(2008 Biswas-Sendrier,	$\approx 2^{80}$)
gls254 DH	77468
(binary elliptic curve; CHES 2013)	
kumfp127g DH	116944
(hyperelliptic; Eurocrypt	2013)
curve25519 DH	182632
(conservative elliptic curve)	
mceliece decrypt	1219344
ronald1024 decrypt	1340040

New decoding speeds

$\approx 2^{128}$ security $(n, t)=(4096,41)$:
60493 lvy Bridge cycles.
Talk will focus on this case.
(Decryption is slightly slower: includes hash, cipher, MAC.)

Examples of the competition

Some cycle counts on h9ivy (Intel Core i5-3210M, Ivy Bridge) from bench.cr.yp.to:

mceliece encrypt	61440
(2008 Biswas-Sendrier,	$\approx 2^{80}$)
gls254 DH	77468
(binary elliptic curve; CHES 2013)	
kumfp127g DH	116944
(hyperelliptic; Eurocrypt	2013)
curve25519 DH	182632
(conservative elliptic curve)	
mceliece decrypt	1219344
ronald1024 decrypt	1340040

New decoding speeds

$\approx 2^{128}$ security $(n, t)=(4096,41)$:
60493 lvy Bridge cycles.
Talk will focus on this case.
(Decryption is slightly slower: includes hash, cipher, MAC.)
$\approx 2^{80}$ security $(n, t)=(2048,32)$:
26544 Ivy Bridge cycles.

Examples of the competition

Some cycle counts on h9ivy (Intel Core i5-3210M, Ivy Bridge) from bench.cr.yp.to:

mceliece encrypt	61440
(2008 Biswas-Sendrier,	$\approx 2^{80}$)
gls254 DH	77468
(binary elliptic curve; CHES 2013)	
kumfp127g DH	116944
(hyperelliptic; Eurocrypt	2013)
curve25519 DH	182632
(conservative elliptic curve)	
mceliece decrypt	1219344
ronald1024 decrypt	1340040

New decoding speeds

$\approx 2^{128}$ security $(n, t)=(4096,41)$:
60493 lvy Bridge cycles.
Talk will focus on this case.
(Decryption is slightly slower: includes hash, cipher, MAC.)
$\approx 2^{80}$ security $(n, t)=(2048,32)$:
26544 Ivy Bridge cycles.
All load/store addresses and all branch conditions are public. Eliminates cache-timing attacks etc.

Similar improvements for CFS.

s of the competition

cle counts on h9ivy re i5-3210M, Ivy Bridge) nch.cr.yp.to:

```
ee encrypt61440
```

iswas-Sendrier, $\approx 2^{80}$)
DH 77468
elliptic curve; CHES 2013)
$27 \mathrm{~g} \mathrm{DH} \quad 116944$
liptic; Eurocrypt 2013)
5519 DH 182632
ative elliptic curve)
ee decrypt 1219344
024 decrypt 1340040

New decoding speeds

$\approx 2^{128}$ security $(n, t)=(4096,41)$:
60493 lvy Bridge cycles.
Talk will focus on this case.
(Decryption is slightly slower: includes hash, cipher, MAC.)
$\approx 2^{80}$ security $(n, t)=(2048,32)$:
26544 Ivy Bridge cycles.
All load/store addresses
and all branch conditions
are public. Eliminates
cache-timing attacks etc.
Similar improvements for CFS.

Constan

The ext to elimir Handle using on XOR (~

ompetition

on h9ivy
JM, Ivy Bridge)
p.to:

61440
drier, $\approx 2^{80}$)
77468
ve; CHES 2013)
116944
ocrypt 2013)
182632
tic curve)
1219344
pt 1340040

New decoding speeds

$\approx 2^{128}$ security $(n, t)=(4096,41)$:
60493 lvy Bridge cycles.
Talk will focus on this case.
(Decryption is slightly slower: includes hash, cipher, MAC.)
$\approx 2^{80}$ security $(n, t)=(2048,32)$:
26544 Ivy Bridge cycles.
All load/store addresses and all branch conditions are public. Eliminates
cache-timing attacks etc.
Similar improvements for CFS.

Constant-time fan
The extremist's ap to eliminate timin Handle all secret using only bit ope XOR (${ }^{\wedge}$), AND (\&

New decoding speeds

$\approx 2^{128}$ security $(n, t)=(4096,41)$:
60493 lvy Bridge cycles.
Talk will focus on this case.
61440
0)

77468
2013)

16944
13)

82632

19344 cache-timing attacks etc.
40040 Similar improvements for CFS.

Constant-time fanaticism
The extremist's approach to eliminate timing attacks: Handle all secret data using only bit operationsXOR (${ }^{\circ}$), AND (\&), etc.

New decoding speeds

$\approx 2^{128}$ security $(n, t)=(4096,41)$:
60493 lvy Bridge cycles.
Talk will focus on this case.
(Decryption is slightly slower: includes hash, cipher, MAC.)
$\approx 2^{80}$ security $(n, t)=(2048,32)$:
26544 Ivy Bridge cycles.
All load/store addresses and all branch conditions are public. Eliminates cache-timing attacks etc.

Similar improvements for CFS.

Constant-time fanaticism

The extremist's approach to eliminate timing attacks:
Handle all secret data using only bit operationsXOR (${ }^{\circ}$), AND (\&), etc.

New decoding speeds

$\approx 2^{128}$ security $(n, t)=(4096,41)$:
60493 lvy Bridge cycles.
Talk will focus on this case.
(Decryption is slightly slower: includes hash, cipher, MAC.)
$\approx 2^{80}$ security $(n, t)=(2048,32)$:
26544 Ivy Bridge cycles.
All load/store addresses and all branch conditions are public. Eliminates cache-timing attacks etc.

Similar improvements for CFS.

Constant-time fanaticism

The extremist's approach to eliminate timing attacks:
Handle all secret data using only bit operationsXOR (${ }^{\circ}$), AND (\&), etc.

We take this approach.

New decoding speeds

$\approx 2^{128}$ security $(n, t)=(4096,41)$:
60493 lvy Bridge cycles.
Talk will focus on this case.
(Decryption is slightly slower: includes hash, cipher, MAC.)
$\approx 2^{80}$ security $(n, t)=(2048,32)$:
26544 Ivy Bridge cycles.
All load/store addresses and all branch conditions are public. Eliminates cache-timing attacks etc.

Similar improvements for CFS.

Constant-time fanaticism

The extremist's approach to eliminate timing attacks:
Handle all secret data using only bit operationsXOR (${ }^{\wedge}$), AND (\&), etc.

We take this approach.
"How can this be competitive in speed?
Are you really simulating field multiplication with hundreds of bit operations instead of simple log tables?"

oding speeds

ecurity $(n, t)=(4096,41)$:
vy Bridge cycles.
focus on this case.
tion is slightly slower:
hash, cipher, MAC.)
curity $(n, t)=(2048,32)$:
vy Bridge cycles.
/store addresses
ranch conditions

ic. Eliminates

ning attacks etc.
mprovements for CFS.

Constant-time fanaticism

The extremist's approach to eliminate timing attacks:
Handle all secret data
using only bit operations-
XOR (${ }^{\circ}$), AND (\&), etc.
We take this approach.
"How can this be competitive in speed?
Are you really simulating field multiplication with hundreds of bit operations instead of simple log tables?"

Yes, we
Not as s
On a ty the XOF
is actual operatin on vectc

eds

$t)=(4096,41):$
cycles.
this case.
htly slower:
ner, MAC.)
) $=(2048,32):$
cycles.
resses
ditions
ates
ks etc.
nts for CFS.

Constant-time fanaticism

The extremist's approach to eliminate timing attacks:
Handle all secret data
using only bit operations-
XOR (${ }^{\wedge}$), AND (\&), etc.
We take this approach.
"How can this be competitive in speed?
Are you really simulating field multiplication with hundreds of bit operations instead of simple log tables?"

Yes, we are.
Not as slow as it On a typical 32-bi the XOR instructi is actually 32-bit) operating in parall on vectors of 32 b

Constant-time fanaticism

The extremist's approach to eliminate timing attacks:
Handle all secret data using only bit operationsXOR (${ }^{\wedge}$), AND (\&), etc.

We take this approach.
"How can this be competitive in speed?
Are you really simulating field multiplication with hundreds of bit operations instead of simple log tables?"

Yes, we are.
Not as slow as it sounds! On a typical 32-bit CPU, the XOR instruction is actually 32-bit XOR, operating in parallel on vectors of 32 bits.

Constant-time fanaticism

The extremist's approach to eliminate timing attacks:
Handle all secret data
using only bit operationsXOR (${ }^{\wedge}$), AND (\&), etc.

We take this approach.
"How can this be
competitive in speed?
Are you really simulating field multiplication with hundreds of bit operations instead of simple log tables?"

Yes, we are.
Not as slow as it sounds! On a typical 32-bit CPU, the XOR instruction is actually 32-bit XOR, operating in parallel on vectors of 32 bits.

Constant-time fanaticism

The extremist's approach to eliminate timing attacks:
Handle all secret data
using only bit operationsXOR (${ }^{\wedge}$), AND (\&), etc.

We take this approach.
"How can this be competitive in speed?
Are you really simulating field multiplication with hundreds of bit operations instead of simple log tables?"

Yes, we are.
Not as slow as it sounds!
On a typical 32-bit CPU, the XOR instruction is actually 32-bit XOR, operating in parallel on vectors of 32 bits.

Low-end smartphone CPU: 128-bit XOR every cycle.

Ivy Bridge:
256-bit XOR every cycle, or three 128-bit XORs.

t-time fanaticism

emist's approach rate timing attacks:
all secret data
ly bit operations, AND (\&), etc.
this approach.
n this be tive in speed?
really simulating Itiplication with
s of bit operations of simple log tables?"

Yes, we are.
Not as slow as it sounds!
On a typical 32-bit CPU, the XOR instruction is actually 32-bit XOR, operating in parallel on vectors of 32 bits.

Low-end smartphone CPU: 128-bit XOR every cycle.

Ivy Bridge:
256-bit XOR every cycle, or three 128-bit XORs.

Not imn that this saves tir multiplic

aticism

pproach
s attacks:
lata
rations-
), etc.
oach.
ed?
ulating
with
erations
og tables?"

Yes, we are.
Not as slow as it sounds!
On a typical 32-bit CPU, the XOR instruction is actually 32-bit XOR, operating in parallel on vectors of 32 bits.

Low-end smartphone CPU: 128-bit XOR every cycle.

Ivy Bridge:
256-bit XOR every cycle, or three 128-bit XORs.

Not immediately that this "bitslicin saves time for, e.g multiplication in \mathbf{F}

Yes, we are.
Not as slow as it sounds! On a typical 32-bit CPU, the XOR instruction is actually 32-bit XOR, operating in parallel on vectors of 32 bits.

Low-end smartphone CPU:
128-bit XOR every cycle.
Ivy Bridge:
256-bit XOR every cycle, or three 128-bit XORs.

Not immediately obvious that this "bitslicing" saves time for, e.g., multiplication in \mathbf{F}_{212}.

Yes, we are.
Not as slow as it sounds!
On a typical 32-bit CPU, the XOR instruction is actually 32-bit XOR, operating in parallel on vectors of 32 bits.

Low-end smartphone CPU: 128-bit XOR every cycle.

Ivy Bridge:
256-bit XOR every cycle, or three 128-bit XORs.

Not immediately obvious that this "bitslicing"
saves time for, e.g., multiplication in \mathbf{F}_{212}.

Yes, we are.
Not as slow as it sounds!
On a typical 32-bit CPU, the XOR instruction is actually 32-bit XOR, operating in parallel on vectors of 32 bits.

Low-end smartphone CPU: 128-bit XOR every cycle.

Ivy Bridge:
256-bit XOR every cycle, or three 128-bit XORs.

Not immediately obvious that this "bitslicing"
saves time for, e.g., multiplication in \mathbf{F}_{212}.

But quite obvious that it saves time for addition in \mathbf{F}_{212}.

Yes, we are.
Not as slow as it sounds!
On a typical 32-bit CPU, the XOR instruction is actually 32-bit XOR, operating in parallel on vectors of 32 bits.

Low-end smartphone CPU: 128-bit XOR every cycle.

Ivy Bridge:
256-bit XOR every cycle, or three 128-bit XORs.

Not immediately obvious that this "bitslicing"
saves time for, e.g., multiplication in \mathbf{F}_{212}.

But quite obvious that it saves time for addition in $\mathbf{F}_{2^{12}}$.

Typical decoding algorithms have add, mult roughly balanced.

Coming next: how to save many adds and most mults. Nice synergy with bitslicing.
are.
low as it sounds!
sical 32-bit CPU, instruction ly 32-bit XOR, g in parallel rs of 32 bits.
smartphone CPU:
XOR every cycle.
ge:
XOR every cycle,
128-bit XORs.

Not immediately obvious
that this "bitslicing"
saves time for, e.g., multiplication in \mathbf{F}_{212}.

But quite obvious that it saves time for addition in $\mathbf{F}_{2^{12}}$.

Typical decoding algorithms have add, mult roughly balanced.

Coming next: how to save many adds and most mults.
Nice synergy with bitslicing.

The add
Fix $n=$
Big final is to finc of $f=c$

For each comput 41 adds,

Not immediately obvious that this "bitslicing"
saves time for, e.g., multiplication in \mathbf{F}_{212}.

But quite obvious that it saves time for addition in $\mathbf{F}_{2^{12}}$.

Typical decoding algorithms
have add, mult roughly balanced.
Coming next: how to save many adds and most mults.
Nice synergy with bitslicing.

The additive FFT
Fix $n=4096=2$
Big final decoding is to find all roots of $f=c_{41} x^{41}+$.

For each $\alpha \in \mathbf{F}_{2^{12}}$ compute $f(\alpha)$ by 41 adds, 41 mults

Not immediately obvious that this "bitslicing"
saves time for, e.g., multiplication in \mathbf{F}_{212}.

But quite obvious that it saves time for addition in $\mathbf{F}_{2^{12}}$.

Typical decoding algorithms have add, mult roughly balanced.

Coming next: how to save many adds and most mults. Nice synergy with bitslicing.

The additive FFT

Fix $n=4096=2^{12}, t=41$.
Big final decoding step is to find all roots in $\mathbf{F}_{2^{12}}$ of $f=c_{41} x^{41}+\cdots+c_{0} x^{0}$.

For each $\alpha \in \mathbf{F}_{2^{12}}$, compute $f(\alpha)$ by Horner's r 41 adds, 41 mults.

Not immediately obvious that this "bitslicing" saves time for, e.g., multiplication in \mathbf{F}_{212}.

But quite obvious that it saves time for addition in $\mathbf{F}_{2^{12}}$.

Typical decoding algorithms have add, mult roughly balanced.

Coming next: how to save many adds and most mults. Nice synergy with bitslicing.

The additive FFT

Fix $n=4096=2^{12}, t=41$.
Big final decoding step
is to find all roots in F_{212}
of $f=c_{41} x^{41}+\cdots+c_{0} x^{0}$.
For each $\alpha \in \mathbf{F}_{2^{12}}$, compute $f(\alpha)$ by Horner's rule: 41 adds, 41 mults.

Not immediately obvious that this "bitslicing"
saves time for, e.g., multiplication in \mathbf{F}_{212}.

But quite obvious that it saves time for addition in $\mathbf{F}_{2^{12}}$.

Typical decoding algorithms have add, mult roughly balanced.

Coming next: how to save many adds and most mults. Nice synergy with bitslicing.

The additive FFT

Fix $n=4096=2^{12}, t=41$.
Big final decoding step
is to find all roots in F_{212}
of $f=c_{41} x^{41}+\cdots+c_{0} x^{0}$.
For each $\alpha \in \mathbf{F}_{2^{12}}$, compute $f(\alpha)$ by Horner's rule: 41 adds, 41 mults.

Or use Chien search: compute $c_{i} g^{i}, c_{i} g^{2 i}, c_{i} g^{3 i}$, etc. Cost per point: again 41 adds, 41 mults.

Not immediately obvious that this "bitslicing"
saves time for, e.g., multiplication in \mathbf{F}_{212}.

But quite obvious that it saves time for addition in $\mathbf{F}_{2^{12}}$.

Typical decoding algorithms have add, mult roughly balanced.

Coming next: how to save many adds and most mults. Nice synergy with bitslicing.

The additive FFT

Fix $n=4096=2^{12}, t=41$.
Big final decoding step
is to find all roots in $F_{2^{12}}$
of $f=c_{41} x^{41}+\cdots+c_{0} x^{0}$.
For each $\alpha \in \mathbf{F}_{2^{12}}$,
compute $f(\alpha)$ by Horner's rule:
41 adds, 41 mults.
Or use Chien search: compute $c_{i} g^{i}, c_{i} g^{2 i}, c_{i} g^{3 i}$, etc. Cost per point: again 41 adds, 41 mults.

Our cost: 6.01 adds, 2.09 mults.
nediately obvious
"bitslicing"
ne for, e.g.,
ation in $\mathbf{F}_{2^{12}}$.
e obvious that it ne for addition in $\mathbf{F}_{2^{12}}$.
decoding algorithms
d, mult roughly balanced.
next: how to save Ids and most mults. ergy with bitslicing.

The additive FFT

Fix $n=4096=2^{12}, t=41$.
Big final decoding step is to find all roots in F_{212}
of $f=c_{41} x^{41}+\cdots+c_{0} x^{0}$.
For each $\alpha \in \mathbf{F}_{2^{12}}$,
compute $f(\alpha)$ by Horner's rule:
41 adds, 41 mults.
Or use Chien search: compute $c_{i} g^{i}, c_{i} g^{2 i}, c_{i} g^{3 i}$, etc. Cost per point: again 41 adds, 41 mults.

Our cost: 6.01 adds, 2.09 mults.

Asymptc normally
so Horn
$\Theta(n t)=$
bvious
that it ition in F_{2}.
lgorithms ughly balanced.
to save ost mults. bitslicing.

The additive FFT

Fix $n=4096=2^{12}, t=41$.
Big final decoding step is to find all roots in F_{212}
of $f=c_{41} x^{41}+\cdots+c_{0} x^{0}$.
For each $\alpha \in \mathbf{F}_{2^{12}}$,
compute $f(\alpha)$ by Horner's rule:
41 adds, 41 mults.
Or use Chien search: compute $c_{i} g^{i}, c_{i} g^{2 i}, c_{i} g^{3 i}$, etc. Cost per point: again 41 adds, 41 mults.

Our cost: 6.01 adds, 2.09 mults.

Asymptotics: normally $t \in \Theta(n)$ so Horner's rule cc $\Theta(n t)=\Theta\left(n^{2} / \lg \right.$

The additive FFT

Fix $n=4096=2^{12}, t=41$.
Big final decoding step
is to find all roots in $\mathbf{F}_{2^{12}}$
of $f=c_{41} x^{41}+\cdots+c_{0} x^{0}$.
For each $\alpha \in \mathbf{F}_{2^{12}}$,
compute $f(\alpha)$ by Horner's rule:
41 adds, 41 mults.
Or use Chien search: compute $c_{i} g^{i}, c_{i} g^{2 i}, c_{i} g^{3 i}$, etc. Cost per point: again 41 adds, 41 mults.

Our cost: 6.01 adds, 2.09 mults.

Asymptotics:
normally $t \in \Theta(n / \lg n)$,
so Horner's rule costs
$\Theta(n t)=\Theta\left(n^{2} / \lg n\right)$.

The additive FFT

Fix $n=4096=2^{12}, t=41$.
Big final decoding step is to find all roots in F_{212}
of $f=c_{41} x^{41}+\cdots+c_{0} x^{0}$.
For each $\alpha \in \mathbf{F}_{2^{12}}$,
compute $f(\alpha)$ by Horner's rule:
41 adds, 41 mults.
Or use Chien search: compute $c_{i} g^{i}, c_{i} g^{2 i}, c_{i} g^{3 i}$, etc. Cost per point: again 41 adds, 41 mults.

Our cost: 6.01 adds, 2.09 mults.

Asymptotics:
normally $t \in \Theta(n / \lg n)$,
so Horner's rule costs
$\Theta(n t)=\Theta\left(n^{2} / \lg n\right)$.

The additive FFT

Fix $n=4096=2^{12}, t=41$.
Big final decoding step is to find all roots in \mathbf{F}_{212}
of $f=c_{41} x^{41}+\cdots+c_{0} x^{0}$.
For each $\alpha \in \mathbf{F}_{2^{12}}$,
compute $f(\alpha)$ by Horner's rule:
41 adds, 41 mults.
Or use Chien search: compute $c_{i} g^{i}, c_{i} g^{2 i}, c_{i} g^{3 i}$, etc. Cost per point: again 41 adds, 41 mults.

Our cost: 6.01 adds, 2.09 mults.

Asymptotics:
normally $t \in \Theta(n / \lg n)$,
so Horner's rule costs
$\Theta(n t)=\Theta\left(n^{2} / \lg n\right)$.
Wait a minute.
Didn't we learn in school that FFT evaluates
an n-coeff polynomial
at n points
using $n^{1+o(1)}$ operations?
Isn't this better than $n^{2} / \lg n$?

itive FFT

$4096=2^{12}, t=41$.
decoding step
d all roots in $\mathbf{F}_{2^{12}}$
${ }_{41} x^{41}+\cdots+c_{0} x^{0}$.
$\alpha \in \mathbf{F}_{2^{12}}$,
$f(\alpha)$ by Horner's rule:
41 mults.
Chien search: compute
${ }^{2 i}, c_{i} g^{3 i}$, etc. Cost per
gain 41 adds, 41 mults.
6.01 adds, 2.09 mults.

Asymptotics:
normally $t \in \Theta(n / \lg n)$,
so Horner's rule costs
$\Theta(n t)=\Theta\left(n^{2} / \lg n\right)$.
Wait a minute.
Didn't we learn in school
that FFT evaluates
an n-coeff polynomial
at n points
using $n^{1+o(1)}$ operations?
Isn't this better than $n^{2} / \lg n$?

Standar
Want to
$f=c_{0}$ at all th

Write f
Observe
$f(\alpha)=$ $f(-\alpha)=$
f_{0} has n evaluate
by same
Similarly
$12, t=41$.
step
in $F_{2^{12}}$
$\cdot+c_{0} x^{0}$.

Horner's rule:
ch: compute etc. Cost per dds, 41 mults. ds, 2.09 mults.

Asymptotics:

normally $t \in \Theta(n / \lg n)$,
so Horner's rule costs
$\Theta(n t)=\Theta\left(n^{2} / \lg n\right)$.
Wait a minute.
Didn't we learn in school that FFT evaluates
an n-coeff polynomial
at n points
using $n^{1+o(1)}$ operations?
Isn't this better than $n^{2} / \lg n$?

Standard radix-2
Want to evaluate $f=c_{0}+c_{1} x+\cdot \cdot$ at all the nth root

Write f as $f_{0}\left(x^{2}\right)$ Observe big overla $f(\alpha)=f_{0}\left(\alpha^{2}\right)+$ $f(-\alpha)=f_{0}\left(\alpha^{2}\right)$
f_{0} has $n / 2$ coeffs; evaluate at ($n / 2$) by same idea recu Similarly f_{1}.

Asymptotics:
normally $t \in \Theta(n / \lg n)$,
so Horner's rule costs
$\Theta(n t)=\Theta\left(n^{2} / \lg n\right)$.
Wait a minute.
Didn't we learn in school that FFT evaluates
an n-coeff polynomial
at n points
using $n^{1+o(1)}$ operations?
Isn't this better than $n^{2} / \lg n$?

Standard radix-2 FFT:
Want to evaluate $f=c_{0}+c_{1} x+\cdots+c_{n-1} x$ at all the nth roots of 1 .

Write f as $f_{0}\left(x^{2}\right)+x f_{1}\left(x^{2}\right.$ Observe big overlap betweer $f(\alpha)=f_{0}\left(\alpha^{2}\right)+\alpha f_{1}\left(\alpha^{2}\right)$, $f(-\alpha)=f_{0}\left(\alpha^{2}\right)-\alpha f_{1}\left(\alpha^{2}\right)$
f_{0} has $n / 2$ coeffs; evaluate at ($n / 2$)nd roots o by same idea recursively. Similarly f_{1}.

Asymptotics:
normally $t \in \Theta(n / \lg n)$,
so Horner's rule costs
$\Theta(n t)=\Theta\left(n^{2} / \lg n\right)$.
Wait a minute.
Didn't we learn in school that FFT evaluates
an n-coeff polynomial
at n points
using $n^{1+o(1)}$ operations?
Isn't this better than $n^{2} / \lg n$?

Standard radix-2 FFT:
Want to evaluate

$$
f=c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}
$$

at all the nth roots of 1 .
Write f as $f_{0}\left(x^{2}\right)+x f_{1}\left(x^{2}\right)$.
Observe big overlap between
$f(\alpha)=f_{0}\left(\alpha^{2}\right)+\alpha f_{1}\left(\alpha^{2}\right)$,
$f(-\alpha)=f_{0}\left(\alpha^{2}\right)-\alpha f_{1}\left(\alpha^{2}\right)$.
f_{0} has $n / 2$ coeffs;
evaluate at ($n / 2$) nd roots of 1 by same idea recursively.
Similarly f_{1}.
tics:

$$
t \in \Theta(n / \lg n)
$$

er's rule costs
$=\Theta\left(n^{2} / \lg n\right)$
ninute.
re learn in school
「 evaluates
eff polynomial

nts

$+o(1)$ operations?
better than $n^{2} / \lg n$?

Standard radix-2 FFT:
Want to evaluate
$f=c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}$
at all the nth roots of 1 .
Write f as $f_{0}\left(x^{2}\right)+x f_{1}\left(x^{2}\right)$.
Observe big overlap between
$f(\alpha)=f_{0}\left(\alpha^{2}\right)+\alpha f_{1}\left(\alpha^{2}\right)$,
$f(-\alpha)=f_{0}\left(\alpha^{2}\right)-\alpha f_{1}\left(\alpha^{2}\right)$.
f_{0} has $n / 2$ coeffs;
evaluate at ($n / 2$) nd roots of 1
by same idea recursively.
Similarly f_{1}.

Useless
Standar
FFT cor
1988 W
indepens
"additiv
Still quit
1996 vo
some im
2010 Ga much be

We use plus son

$(\lg n)$

 sts$n)$.
school
S
nial
rations?
an $n^{2} / \lg n ?$

Standard radix-2 FFT:

Want to evaluate
$f=c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}$
at all the nth roots of 1 .
Write f as $f_{0}\left(x^{2}\right)+x f_{1}\left(x^{2}\right)$.
Observe big overlap between
$f(\alpha)=f_{0}\left(\alpha^{2}\right)+\alpha f_{1}\left(\alpha^{2}\right)$,
$f(-\alpha)=f_{0}\left(\alpha^{2}\right)-\alpha f_{1}\left(\alpha^{2}\right)$.
f_{0} has $n / 2$ coeffs;
evaluate at ($n / 2$) nd roots of 1 by same idea recursively.
Similarly f_{1}.

Useless in char 2: Standard workarol FFT considered in

1988 Wang-Zhu, independently 198 "additive FFT" in Still quite expensi

1996 von zur Gath some improvemen 2010 Gao-Mateer much better addit

We use Gao-Mate plus some new im

Standard radix-2 FFT:
Want to evaluate
$f=c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}$
at all the nth roots of 1 .
Write f as $f_{0}\left(x^{2}\right)+x f_{1}\left(x^{2}\right)$.
Observe big overlap between
$f(\alpha)=f_{0}\left(\alpha^{2}\right)+\alpha f_{1}\left(\alpha^{2}\right)$,
$f(-\alpha)=f_{0}\left(\alpha^{2}\right)-\alpha f_{1}\left(\alpha^{2}\right)$.
f_{0} has $n / 2$ coeffs;
evaluate at ($n / 2$)nd roots of 1
by same idea recursively.
Similarly f_{1}.

Useless in char 2: $\alpha=-\alpha$. Standard workarounds are p FFT considered impractical.

1988 Wang-Zhu, independently 1989 Cantor: "additive FFT" in char 2. Still quite expensive.

1996 von zur Gathen-Gerha some improvements.

2010 Gao-Mateer:
much better additive FFT.
We use Gao-Mateer, plus some new improvement

Standard radix-2 FFT:
Want to evaluate

$$
f=c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}
$$

at all the nth roots of 1 .
Write f as $f_{0}\left(x^{2}\right)+x f_{1}\left(x^{2}\right)$.
Observe big overlap between
$f(\alpha)=f_{0}\left(\alpha^{2}\right)+\alpha f_{1}\left(\alpha^{2}\right)$,
$f(-\alpha)=f_{0}\left(\alpha^{2}\right)-\alpha f_{1}\left(\alpha^{2}\right)$.
f_{0} has $n / 2$ coeffs;
evaluate at ($n / 2$)nd roots of 1 by same idea recursively. Similarly f_{1}.

Useless in char 2: $\alpha=-\alpha$.
Standard workarounds are painful.
FFT considered impractical.
1988 Wang-Zhu,
independently 1989 Cantor:
"additive FFT" in char 2.
Still quite expensive.
1996 von zur Gathen-Gerhard:
some improvements.
2010 Gao-Mateer:
much better additive FFT.
We use Gao-Mateer,
plus some new improvements.
radix-2 FFT:

evaluate

$-c_{1} x+\cdots+c_{n-1} x^{n-1}$
e nth roots of 1 .
as $f_{0}\left(x^{2}\right)+x f_{1}\left(x^{2}\right)$.
big overlap between
$f_{0}\left(\alpha^{2}\right)+\alpha f_{1}\left(\alpha^{2}\right)$,
$=f_{0}\left(\alpha^{2}\right)-\alpha f_{1}\left(\alpha^{2}\right)$.
/2 coeffs;
at ($n / 2$)nd roots of 1 idea recursively.
f_{1}.

Useless in char 2: $\alpha=-\alpha$.
Standard workarounds are painful.
FFT considered impractical.
1988 Wang-Zhu,
independently 1989 Cantor:
"additive FFT" in char 2.
Still quite expensive.
1996 von zur Gathen-Gerhard:
some improvements.
2010 Gao-Mateer:
much better additive FFT.
We use Gao-Mateer,
plus some new improvements.

Gao and
$f=c_{0}$
on a siz
Their m $f_{0}\left(x^{2}+\right.$

Big over $f_{0}\left(\alpha^{2}+\right.$ and $f(\alpha$ $f_{0}\left(\alpha^{2}+\right.$
"Twist"
Then \{c size-(n)
Apply sa

FT:
$\cdot+c_{n-1} x^{n-1}$
s of 1 .
$+x f_{1}\left(x^{2}\right)$
p between
$\alpha f_{1}\left(\alpha^{2}\right)$,
$\alpha f_{1}\left(\alpha^{2}\right)$.
nd roots of 1
rsively.

Useless in char 2: $\alpha=-\alpha$.
Standard workarounds are painful.
FFT considered impractical.
1988 Wang-Zhu, independently 1989 Cantor: "additive FFT" in char 2.
Still quite expensive.
1996 von zur Gathen-Gerhard:
some improvements.
2010 Gao-Mateer:
much better additive FFT.
We use Gao-Mateer,
plus some new improvements.

Gao and Mateer e
$f=c_{0}+c_{1} x+$. on a size-n \mathbf{F}_{2}-lin

Their main idea: $f_{0}\left(x^{2}+x\right)+x f_{1}($

Big overlap betwe $f_{0}\left(\alpha^{2}+\alpha\right)+\alpha f_{1}$ and $f(\alpha+1)=$ $f_{0}\left(\alpha^{2}+\alpha\right)+(\alpha-$
"Twist" to ensure Then $\left\{\alpha^{2}+\alpha\right\}$ is size- $(n / 2) \mathbf{F}_{2}$-line Apply same idea r

Useless in char 2: $\alpha=-\alpha$.
Standard workarounds are painful.
FFT considered impractical.
1988 Wang-Zhu, independently 1989 Cantor: "additive FFT" in char 2.
Still quite expensive.
1996 von zur Gathen-Gerhard: some improvements.

2010 Gao-Mateer:
much better additive FFT.
We use Gao-Mateer, plus some new improvements.

Gao and Mateer evaluate
$f=c_{0}+c_{1} x+\cdots+c_{n-1} x$
on a size- $n \mathbf{F}_{2}$-linear space.
Their main idea: Write f as $f_{0}\left(x^{2}+x\right)+x f_{1}\left(x^{2}+x\right)$.

Big overlap between $f(\alpha)=$ $f_{0}\left(\alpha^{2}+\alpha\right)+\alpha f_{1}\left(\alpha^{2}+\alpha\right)$ and $f(\alpha+1)=$
$f_{0}\left(\alpha^{2}+\alpha\right)+(\alpha+1) f_{1}\left(\alpha^{2}\right.$
"Twist" to ensure $1 \in \operatorname{spac\epsilon }$
Then $\left\{\alpha^{2}+\alpha\right\}$ is a size- $(n / 2) \mathbf{F}_{2}$-linear space. Apply same idea recursively.

Useless in char 2: $\alpha=-\alpha$.
Standard workarounds are painful.
FFT considered impractical.
1988 Wang-Zhu, independently 1989 Cantor:
"additive FFT" in char 2.
Still quite expensive.
1996 von zur Gathen-Gerhard: some improvements.

2010 Gao-Mateer:
much better additive FFT.
We use Gao-Mateer,
plus some new improvements.

Gao and Mateer evaluate
$f=c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}$
on a size- $n F_{2}$-linear space.
Their main idea: Write f as $f_{0}\left(x^{2}+x\right)+x f_{1}\left(x^{2}+x\right)$.

Big overlap between $f(\alpha)=$ $f_{0}\left(\alpha^{2}+\alpha\right)+\alpha f_{1}\left(\alpha^{2}+\alpha\right)$ and $f(\alpha+1)=$ $f_{0}\left(\alpha^{2}+\alpha\right)+(\alpha+1) f_{1}\left(\alpha^{2}+\alpha\right)$.
"Twist" to ensure $1 \in$ space.
Then $\left\{\alpha^{2}+\alpha\right\}$ is a size- $(n / 2) \mathbf{F}_{2}$-linear space.
Apply same idea recursively.
n char $2: \alpha=-\alpha$.
workarounds are painful.
sidered impractical.
ang-Zhu,
dently 1989 Cantor:
e FFT" in char 2.
e expensive.
n zur Gathen-Gerhard:
provements.
o-Mateer:
tter additive FFT.
Gao-Mateer,
ie new improvements.

Gao and Mateer evaluate
$f=c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}$
on a size- $n \mathbf{F}_{2}$-linear space.
Their main idea: Write f as
$f_{0}\left(x^{2}+x\right)+x f_{1}\left(x^{2}+x\right)$.
Big overlap between $f(\alpha)=$
$f_{0}\left(\alpha^{2}+\alpha\right)+\alpha f_{1}\left(\alpha^{2}+\alpha\right)$
and $f(\alpha+1)=$
$f_{0}\left(\alpha^{2}+\alpha\right)+(\alpha+1) f_{1}\left(\alpha^{2}+\alpha\right)$.
"Twist" to ensure $1 \in$ space.
Then $\left\{\alpha^{2}+\alpha\right\}$ is a
size- $(n / 2) \mathbf{F}_{2}$-linear space.
Apply same idea recursively.

Results

60493 IV 8622 fc 20846 f 7714 fc 14794 fc 8520 fc

Code wi
We're st
Also 10
More inf cr.yp.t
$\alpha=-\alpha$.
unds are painful.
mpractical.

9 Cantor:
char 2.
ve.
en-Gerhard:
ts.

ive FFT.

er,
provements.

Gao and Mateer evaluate
$f=c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}$
on a size- $n \mathbf{F}_{2}$-linear space.
Their main idea: Write f as
$f_{0}\left(x^{2}+x\right)+x f_{1}\left(x^{2}+x\right)$.
Big overlap between $f(\alpha)=$
$f_{0}\left(\alpha^{2}+\alpha\right)+\alpha f_{1}\left(\alpha^{2}+\alpha\right)$
and $f(\alpha+1)=$
$f_{0}\left(\alpha^{2}+\alpha\right)+(\alpha+1) f_{1}\left(\alpha^{2}+\alpha\right)$.
"Twist" to ensure $1 \in$ space.
Then $\left\{\alpha^{2}+\alpha\right\}$ is a
size- $(n / 2) \mathbf{F}_{2}$-linear space.
Apply same idea recursively.

Results

60493 Ivy Bridge
8622 for permuta
20846 for syndrom 7714 for BM.
14794 for roots. 8520 for permuta

Code will be publi We're still speedin

Also $10 \times$ speedup
More information: cr.yp.to/paper:

Gao and Mateer evaluate
$f=c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}$
on a size- $n \mathbf{F}_{2}$-linear space.
Their main idea: Write f as
$f_{0}\left(x^{2}+x\right)+x f_{1}\left(x^{2}+x\right)$.
Big overlap between $f(\alpha)=$ $f_{0}\left(\alpha^{2}+\alpha\right)+\alpha f_{1}\left(\alpha^{2}+\alpha\right)$ and $f(\alpha+1)=$ $f_{0}\left(\alpha^{2}+\alpha\right)+(\alpha+1) f_{1}\left(\alpha^{2}+\alpha\right)$.
"Twist" to ensure $1 \in$ space.
Then $\left\{\alpha^{2}+\alpha\right\}$ is a size- $(n / 2) \mathbf{F}_{2}$-linear space. Apply same idea recursively.

Results

60493 Ivy Bridge cycles:
8622 for permutation.
20846 for syndrome.
7714 for BM.
14794 for roots. 8520 for permutation.

Code will be public domain. We're still speeding it up.

Also $10 \times$ speedup for CFS.
More information:
cr.yp.to/papers.html\#m

Gao and Mateer evaluate
$f=c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}$
on a size- $n \mathbf{F}_{2}$-linear space.
Their main idea: Write f as
$f_{0}\left(x^{2}+x\right)+x f_{1}\left(x^{2}+x\right)$.
Big overlap between $f(\alpha)=$ $f_{0}\left(\alpha^{2}+\alpha\right)+\alpha f_{1}\left(\alpha^{2}+\alpha\right)$ and $f(\alpha+1)=$ $f_{0}\left(\alpha^{2}+\alpha\right)+(\alpha+1) f_{1}\left(\alpha^{2}+\alpha\right)$.
"Twist" to ensure $1 \in$ space.
Then $\left\{\alpha^{2}+\alpha\right\}$ is a size- $(n / 2) \mathbf{F}_{2}$-linear space. Apply same idea recursively.

Results

60493 Ivy Bridge cycles:
8622 for permutation.
20846 for syndrome.
7714 for BM.
14794 for roots.
8520 for permutation.
Code will be public domain.
We're still speeding it up.
Also $10 \times$ speedup for CFS.
More information:
cr.yp.to/papers.html\#mcbits

Mateer evaluate

$-c_{1} x+\cdots+c_{n-1} x^{n-1}$
e-n \mathbf{F}_{2}-linear space. ain idea: Write f as
$x)+x f_{1}\left(x^{2}+x\right)$.
lap between $f(\alpha)=$
$\alpha)+\alpha f_{1}\left(\alpha^{2}+\alpha\right)$
$+1)=$
$\alpha)+(\alpha+1) f_{1}\left(\alpha^{2}+\alpha\right)$.
to ensure $1 \in$ space.
$\left.x^{2}+\alpha\right\}$ is a
2) \mathbf{F}_{2}-linear space.
me idea recursively.

Results

60493 Ivy Bridge cycles:
8622 for permutation.
20846 for syndrome.
7714 for BM.
14794 for roots.
8520 for permutation.
Code will be public domain.
We're still speeding it up.
Also $10 \times$ speedup for CFS.
More information:
cr.yp.to/papers.html\#mcbits

What yo
Cryptos
Our spe (We nov ongoing

Fast syn without Importa

Fast sec using bi sorting r permuta
valuate
$\cdot+c_{n-1} x^{n-1}$
ear space.
Nrite f as
$\left.x^{2}+x\right)$.
en $f(\alpha)=$
$\left(\alpha^{2}+\alpha\right)$

1) $f_{1}\left(\alpha^{2}+\alpha\right)$.
$1 \in$ space.
a
ar space.
ecursively.

Results

60493 Ivy Bridge cycles:
8622 for permutation.
20846 for syndrome.
7714 for BM.
14794 for roots. 8520 for permutation.

Code will be public domain.
We're still speeding it up.
Also $10 \times$ speedup for CFS.
More information:
cr.yp.to/papers.html\#mcbits

What you find in
Cryptosystem sped
Our speedups to a (We now have mo ongoing joint worl

Fast syndrome cor without big precol Important for ligh

Fast secret permu using bit operatior sorting networks, permutation netw

Results

60493 Ivy Bridge cycles:
8622 for permutation.
20846 for syndrome.
7714 for BM.
14794 for roots.
8520 for permutation.
Code will be public domain.
We're still speeding it up.
Also $10 \times$ speedup for CFS.
More information:
cr.yp.to/papers.html\#mcbits

What you find in paper:
Cryptosystem specification.
Our speedups to additive FF (We now have more speedu ongoing joint work with Lan

Fast syndrome computation without big precomputed m Important for lightweight!

Fast secret permutation using bit operations: sorting networks, permutation networks.

Results

60493 Ivy Bridge cycles:
8622 for permutation.
20846 for syndrome.
7714 for BM.
14794 for roots.
8520 for permutation.
Code will be public domain.
We're still speeding it up.
Also $10 \times$ speedup for CFS.
More information:
cr.yp.to/papers.html\#mcbits

What you find in paper:
Cryptosystem specification.
Our speedups to additive FFT. (We now have more speedups; ongoing joint work with Lange.)

Fast syndrome computation without big precomputed matrix. Important for lightweight!

Fast secret permutation using bit operations:
sorting networks, permutation networks.

