
Quantum algorithms

for the subset-sum problem

D. J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

cr.yp.to/qsubsetsum.html

Joint work with:

Stacey Jeffery

University of Waterloo

Tanja Lange

Technische Universiteit Eindhoven

Alexander Meurer

Ruhr-Universität Bochum

Subset-sum example:

Is there a subsequence of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413)

having sum 36634?

Many variations: e.g.,

find such a subsequence

if one exists;

find such a subsequence

knowing that one exists;

allow range of sums;

coefficients outside f0; 1g; etc.

“Subset-sum problem”;

“knapsack problem”; etc.

Quantum algorithms

for the subset-sum problem

D. J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

cr.yp.to/qsubsetsum.html

Joint work with:

Stacey Jeffery

University of Waterloo

Tanja Lange

Technische Universiteit Eindhoven

Alexander Meurer

Ruhr-Universität Bochum

Subset-sum example:

Is there a subsequence of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413)

having sum 36634?

Many variations: e.g.,

find such a subsequence

if one exists;

find such a subsequence

knowing that one exists;

allow range of sums;

coefficients outside f0; 1g; etc.

“Subset-sum problem”;

“knapsack problem”; etc.

The lattice connection

Define x1 = 499, : : : , x12 = 9413.

Define L � Z12 as

fv : v1x1 + � � �+ v12x12 = 0g.
Define u 2 Z12 as

(70; 2; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0).

If J � f1; 2; : : : ; 12g
and
P

i2J xi = 36634 then

v 2 L where vi = ui � [i 2 J].

v is very close to u.

Reasonable to hope that

v is the closest vector in L to u.

Subset-sum algorithms �
codimension-1 CVP algorithms.

Quantum algorithms

for the subset-sum problem

D. J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

cr.yp.to/qsubsetsum.html

Joint work with:

Stacey Jeffery

University of Waterloo

Tanja Lange

Technische Universiteit Eindhoven

Alexander Meurer

Ruhr-Universität Bochum

Subset-sum example:

Is there a subsequence of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413)

having sum 36634?

Many variations: e.g.,

find such a subsequence

if one exists;

find such a subsequence

knowing that one exists;

allow range of sums;

coefficients outside f0; 1g; etc.

“Subset-sum problem”;

“knapsack problem”; etc.

The lattice connection

Define x1 = 499, : : : , x12 = 9413.

Define L � Z12 as

fv : v1x1 + � � �+ v12x12 = 0g.
Define u 2 Z12 as

(70; 2; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0).

If J � f1; 2; : : : ; 12g
and
P

i2J xi = 36634 then

v 2 L where vi = ui � [i 2 J].

v is very close to u.

Reasonable to hope that

v is the closest vector in L to u.

Subset-sum algorithms �
codimension-1 CVP algorithms.

Quantum algorithms

for the subset-sum problem

D. J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

cr.yp.to/qsubsetsum.html

Joint work with:

Stacey Jeffery

University of Waterloo

Tanja Lange

Technische Universiteit Eindhoven

Alexander Meurer

Ruhr-Universität Bochum

Subset-sum example:

Is there a subsequence of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413)

having sum 36634?

Many variations: e.g.,

find such a subsequence

if one exists;

find such a subsequence

knowing that one exists;

allow range of sums;

coefficients outside f0; 1g; etc.

“Subset-sum problem”;

“knapsack problem”; etc.

The lattice connection

Define x1 = 499, : : : , x12 = 9413.

Define L � Z12 as

fv : v1x1 + � � �+ v12x12 = 0g.
Define u 2 Z12 as

(70; 2; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0).

If J � f1; 2; : : : ; 12g
and
P

i2J xi = 36634 then

v 2 L where vi = ui � [i 2 J].

v is very close to u.

Reasonable to hope that

v is the closest vector in L to u.

Subset-sum algorithms �
codimension-1 CVP algorithms.

Subset-sum example:

Is there a subsequence of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413)

having sum 36634?

Many variations: e.g.,

find such a subsequence

if one exists;

find such a subsequence

knowing that one exists;

allow range of sums;

coefficients outside f0; 1g; etc.

“Subset-sum problem”;

“knapsack problem”; etc.

The lattice connection

Define x1 = 499, : : : , x12 = 9413.

Define L � Z12 as

fv : v1x1 + � � �+ v12x12 = 0g.
Define u 2 Z12 as

(70; 2; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0).

If J � f1; 2; : : : ; 12g
and
P

i2J xi = 36634 then

v 2 L where vi = ui � [i 2 J].

v is very close to u.

Reasonable to hope that

v is the closest vector in L to u.

Subset-sum algorithms �
codimension-1 CVP algorithms.

Subset-sum example:

Is there a subsequence of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413)

having sum 36634?

Many variations: e.g.,

find such a subsequence

if one exists;

find such a subsequence

knowing that one exists;

allow range of sums;

coefficients outside f0; 1g; etc.

“Subset-sum problem”;

“knapsack problem”; etc.

The lattice connection

Define x1 = 499, : : : , x12 = 9413.

Define L � Z12 as

fv : v1x1 + � � �+ v12x12 = 0g.
Define u 2 Z12 as

(70; 2; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0).

If J � f1; 2; : : : ; 12g
and
P

i2J xi = 36634 then

v 2 L where vi = ui � [i 2 J].

v is very close to u.

Reasonable to hope that

v is the closest vector in L to u.

Subset-sum algorithms �
codimension-1 CVP algorithms.

The coding connection

A weight-w subset-sum problem:

Is there a subsequence of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413)

having length w and sum 36634?

Subset-sum example:

Is there a subsequence of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413)

having sum 36634?

Many variations: e.g.,

find such a subsequence

if one exists;

find such a subsequence

knowing that one exists;

allow range of sums;

coefficients outside f0; 1g; etc.

“Subset-sum problem”;

“knapsack problem”; etc.

The lattice connection

Define x1 = 499, : : : , x12 = 9413.

Define L � Z12 as

fv : v1x1 + � � �+ v12x12 = 0g.
Define u 2 Z12 as

(70; 2; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0).

If J � f1; 2; : : : ; 12g
and
P

i2J xi = 36634 then

v 2 L where vi = ui � [i 2 J].

v is very close to u.

Reasonable to hope that

v is the closest vector in L to u.

Subset-sum algorithms �
codimension-1 CVP algorithms.

The coding connection

A weight-w subset-sum problem:

Is there a subsequence of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413)

having length w and sum 36634?

Subset-sum example:

Is there a subsequence of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413)

having sum 36634?

Many variations: e.g.,

find such a subsequence

if one exists;

find such a subsequence

knowing that one exists;

allow range of sums;

coefficients outside f0; 1g; etc.

“Subset-sum problem”;

“knapsack problem”; etc.

The lattice connection

Define x1 = 499, : : : , x12 = 9413.

Define L � Z12 as

fv : v1x1 + � � �+ v12x12 = 0g.
Define u 2 Z12 as

(70; 2; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0).

If J � f1; 2; : : : ; 12g
and
P

i2J xi = 36634 then

v 2 L where vi = ui � [i 2 J].

v is very close to u.

Reasonable to hope that

v is the closest vector in L to u.

Subset-sum algorithms �
codimension-1 CVP algorithms.

The coding connection

A weight-w subset-sum problem:

Is there a subsequence of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413)

having length w and sum 36634?

The lattice connection

Define x1 = 499, : : : , x12 = 9413.

Define L � Z12 as

fv : v1x1 + � � �+ v12x12 = 0g.
Define u 2 Z12 as

(70; 2; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0).

If J � f1; 2; : : : ; 12g
and
P

i2J xi = 36634 then

v 2 L where vi = ui � [i 2 J].

v is very close to u.

Reasonable to hope that

v is the closest vector in L to u.

Subset-sum algorithms �
codimension-1 CVP algorithms.

The coding connection

A weight-w subset-sum problem:

Is there a subsequence of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413)

having length w and sum 36634?

The lattice connection

Define x1 = 499, : : : , x12 = 9413.

Define L � Z12 as

fv : v1x1 + � � �+ v12x12 = 0g.
Define u 2 Z12 as

(70; 2; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0).

If J � f1; 2; : : : ; 12g
and
P

i2J xi = 36634 then

v 2 L where vi = ui � [i 2 J].

v is very close to u.

Reasonable to hope that

v is the closest vector in L to u.

Subset-sum algorithms �
codimension-1 CVP algorithms.

The coding connection

A weight-w subset-sum problem:

Is there a subsequence of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413)

having length w and sum 36634?

Replace Z with (Z=2)m:

Is there a subsequence of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413)

having length w and xor 1060?

This is the central algorithmic

problem in coding theory.

The lattice connection

Define x1 = 499, : : : , x12 = 9413.

Define L � Z12 as

fv : v1x1 + � � �+ v12x12 = 0g.
Define u 2 Z12 as

(70; 2; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0).

If J � f1; 2; : : : ; 12g
and
P

i2J xi = 36634 then

v 2 L where vi = ui � [i 2 J].

v is very close to u.

Reasonable to hope that

v is the closest vector in L to u.

Subset-sum algorithms �
codimension-1 CVP algorithms.

The coding connection

A weight-w subset-sum problem:

Is there a subsequence of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413)

having length w and sum 36634?

Replace Z with (Z=2)m:

Is there a subsequence of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413)

having length w and xor 1060?

This is the central algorithmic

problem in coding theory.

Recent asymptotic news

Eurocrypt 2010

Howgrave-Graham–Joux:

subset-sum exponent �0:337.

(Incorrect claim: �0:311.)

Eurocrypt 2011

Becker–Coron–Joux:

subset-sum exponent �0:291.

Adaptations to decoding:

Asiacrypt 2011 May–Meurer–

Thomae, Eurocrypt 2012

Becker–Joux–May–Meurer.

The lattice connection

Define x1 = 499, : : : , x12 = 9413.

Define L � Z12 as

fv : v1x1 + � � �+ v12x12 = 0g.
Define u 2 Z12 as

(70; 2; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0).

If J � f1; 2; : : : ; 12g
and
P

i2J xi = 36634 then

v 2 L where vi = ui � [i 2 J].

v is very close to u.

Reasonable to hope that

v is the closest vector in L to u.

Subset-sum algorithms �
codimension-1 CVP algorithms.

The coding connection

A weight-w subset-sum problem:

Is there a subsequence of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413)

having length w and sum 36634?

Replace Z with (Z=2)m:

Is there a subsequence of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413)

having length w and xor 1060?

This is the central algorithmic

problem in coding theory.

Recent asymptotic news

Eurocrypt 2010

Howgrave-Graham–Joux:

subset-sum exponent �0:337.

(Incorrect claim: �0:311.)

Eurocrypt 2011

Becker–Coron–Joux:

subset-sum exponent �0:291.

Adaptations to decoding:

Asiacrypt 2011 May–Meurer–

Thomae, Eurocrypt 2012

Becker–Joux–May–Meurer.

The lattice connection

Define x1 = 499, : : : , x12 = 9413.

Define L � Z12 as

fv : v1x1 + � � �+ v12x12 = 0g.
Define u 2 Z12 as

(70; 2; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0).

If J � f1; 2; : : : ; 12g
and
P

i2J xi = 36634 then

v 2 L where vi = ui � [i 2 J].

v is very close to u.

Reasonable to hope that

v is the closest vector in L to u.

Subset-sum algorithms �
codimension-1 CVP algorithms.

The coding connection

A weight-w subset-sum problem:

Is there a subsequence of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413)

having length w and sum 36634?

Replace Z with (Z=2)m:

Is there a subsequence of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413)

having length w and xor 1060?

This is the central algorithmic

problem in coding theory.

Recent asymptotic news

Eurocrypt 2010

Howgrave-Graham–Joux:

subset-sum exponent �0:337.

(Incorrect claim: �0:311.)

Eurocrypt 2011

Becker–Coron–Joux:

subset-sum exponent �0:291.

Adaptations to decoding:

Asiacrypt 2011 May–Meurer–

Thomae, Eurocrypt 2012

Becker–Joux–May–Meurer.

The coding connection

A weight-w subset-sum problem:

Is there a subsequence of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413)

having length w and sum 36634?

Replace Z with (Z=2)m:

Is there a subsequence of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413)

having length w and xor 1060?

This is the central algorithmic

problem in coding theory.

Recent asymptotic news

Eurocrypt 2010

Howgrave-Graham–Joux:

subset-sum exponent �0:337.

(Incorrect claim: �0:311.)

Eurocrypt 2011

Becker–Coron–Joux:

subset-sum exponent �0:291.

Adaptations to decoding:

Asiacrypt 2011 May–Meurer–

Thomae, Eurocrypt 2012

Becker–Joux–May–Meurer.

The coding connection

A weight-w subset-sum problem:

Is there a subsequence of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413)

having length w and sum 36634?

Replace Z with (Z=2)m:

Is there a subsequence of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413)

having length w and xor 1060?

This is the central algorithmic

problem in coding theory.

Recent asymptotic news

Eurocrypt 2010

Howgrave-Graham–Joux:

subset-sum exponent �0:337.

(Incorrect claim: �0:311.)

Eurocrypt 2011

Becker–Coron–Joux:

subset-sum exponent �0:291.

Adaptations to decoding:

Asiacrypt 2011 May–Meurer–

Thomae, Eurocrypt 2012

Becker–Joux–May–Meurer.

Post-quantum subset sum

Claimed in TCC 2010

Lyubashevsky–Palacio–Segev

“Public-key cryptographic

primitives provably

as secure as subset sum”:

There are “currently no known

quantum algorithms that perform

better than classical ones

on the subset sum problem”.

Hmmm. What’s the best

quantum subset-sum exponent?

The coding connection

A weight-w subset-sum problem:

Is there a subsequence of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413)

having length w and sum 36634?

Replace Z with (Z=2)m:

Is there a subsequence of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413)

having length w and xor 1060?

This is the central algorithmic

problem in coding theory.

Recent asymptotic news

Eurocrypt 2010

Howgrave-Graham–Joux:

subset-sum exponent �0:337.

(Incorrect claim: �0:311.)

Eurocrypt 2011

Becker–Coron–Joux:

subset-sum exponent �0:291.

Adaptations to decoding:

Asiacrypt 2011 May–Meurer–

Thomae, Eurocrypt 2012

Becker–Joux–May–Meurer.

Post-quantum subset sum

Claimed in TCC 2010

Lyubashevsky–Palacio–Segev

“Public-key cryptographic

primitives provably

as secure as subset sum”:

There are “currently no known

quantum algorithms that perform

better than classical ones

on the subset sum problem”.

Hmmm. What’s the best

quantum subset-sum exponent?

The coding connection

A weight-w subset-sum problem:

Is there a subsequence of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413)

having length w and sum 36634?

Replace Z with (Z=2)m:

Is there a subsequence of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413)

having length w and xor 1060?

This is the central algorithmic

problem in coding theory.

Recent asymptotic news

Eurocrypt 2010

Howgrave-Graham–Joux:

subset-sum exponent �0:337.

(Incorrect claim: �0:311.)

Eurocrypt 2011

Becker–Coron–Joux:

subset-sum exponent �0:291.

Adaptations to decoding:

Asiacrypt 2011 May–Meurer–

Thomae, Eurocrypt 2012

Becker–Joux–May–Meurer.

Post-quantum subset sum

Claimed in TCC 2010

Lyubashevsky–Palacio–Segev

“Public-key cryptographic

primitives provably

as secure as subset sum”:

There are “currently no known

quantum algorithms that perform

better than classical ones

on the subset sum problem”.

Hmmm. What’s the best

quantum subset-sum exponent?

Recent asymptotic news

Eurocrypt 2010

Howgrave-Graham–Joux:

subset-sum exponent �0:337.

(Incorrect claim: �0:311.)

Eurocrypt 2011

Becker–Coron–Joux:

subset-sum exponent �0:291.

Adaptations to decoding:

Asiacrypt 2011 May–Meurer–

Thomae, Eurocrypt 2012

Becker–Joux–May–Meurer.

Post-quantum subset sum

Claimed in TCC 2010

Lyubashevsky–Palacio–Segev

“Public-key cryptographic

primitives provably

as secure as subset sum”:

There are “currently no known

quantum algorithms that perform

better than classical ones

on the subset sum problem”.

Hmmm. What’s the best

quantum subset-sum exponent?

Recent asymptotic news

Eurocrypt 2010

Howgrave-Graham–Joux:

subset-sum exponent �0:337.

(Incorrect claim: �0:311.)

Eurocrypt 2011

Becker–Coron–Joux:

subset-sum exponent �0:291.

Adaptations to decoding:

Asiacrypt 2011 May–Meurer–

Thomae, Eurocrypt 2012

Becker–Joux–May–Meurer.

Post-quantum subset sum

Claimed in TCC 2010

Lyubashevsky–Palacio–Segev

“Public-key cryptographic

primitives provably

as secure as subset sum”:

There are “currently no known

quantum algorithms that perform

better than classical ones

on the subset sum problem”.

Hmmm. What’s the best

quantum subset-sum exponent?

Quantum search (0.5)

Assume that function f

has n-bit input, unique root.

Generic brute-force search

finds this root using

�2n evaluations of f .

1996 Grover method

finds this root using

�20:5n quantum evaluations of f

on superpositions of inputs.

Cost of quantum evaluation of f

� cost of evaluation of f

if cost counts qubit “operations”.

Recent asymptotic news

Eurocrypt 2010

Howgrave-Graham–Joux:

subset-sum exponent �0:337.

(Incorrect claim: �0:311.)

Eurocrypt 2011

Becker–Coron–Joux:

subset-sum exponent �0:291.

Adaptations to decoding:

Asiacrypt 2011 May–Meurer–

Thomae, Eurocrypt 2012

Becker–Joux–May–Meurer.

Post-quantum subset sum

Claimed in TCC 2010

Lyubashevsky–Palacio–Segev

“Public-key cryptographic

primitives provably

as secure as subset sum”:

There are “currently no known

quantum algorithms that perform

better than classical ones

on the subset sum problem”.

Hmmm. What’s the best

quantum subset-sum exponent?

Quantum search (0.5)

Assume that function f

has n-bit input, unique root.

Generic brute-force search

finds this root using

�2n evaluations of f .

1996 Grover method

finds this root using

�20:5n quantum evaluations of f

on superpositions of inputs.

Cost of quantum evaluation of f

� cost of evaluation of f

if cost counts qubit “operations”.

Recent asymptotic news

Eurocrypt 2010

Howgrave-Graham–Joux:

subset-sum exponent �0:337.

(Incorrect claim: �0:311.)

Eurocrypt 2011

Becker–Coron–Joux:

subset-sum exponent �0:291.

Adaptations to decoding:

Asiacrypt 2011 May–Meurer–

Thomae, Eurocrypt 2012

Becker–Joux–May–Meurer.

Post-quantum subset sum

Claimed in TCC 2010

Lyubashevsky–Palacio–Segev

“Public-key cryptographic

primitives provably

as secure as subset sum”:

There are “currently no known

quantum algorithms that perform

better than classical ones

on the subset sum problem”.

Hmmm. What’s the best

quantum subset-sum exponent?

Quantum search (0.5)

Assume that function f

has n-bit input, unique root.

Generic brute-force search

finds this root using

�2n evaluations of f .

1996 Grover method

finds this root using

�20:5n quantum evaluations of f

on superpositions of inputs.

Cost of quantum evaluation of f

� cost of evaluation of f

if cost counts qubit “operations”.

Post-quantum subset sum

Claimed in TCC 2010

Lyubashevsky–Palacio–Segev

“Public-key cryptographic

primitives provably

as secure as subset sum”:

There are “currently no known

quantum algorithms that perform

better than classical ones

on the subset sum problem”.

Hmmm. What’s the best

quantum subset-sum exponent?

Quantum search (0.5)

Assume that function f

has n-bit input, unique root.

Generic brute-force search

finds this root using

�2n evaluations of f .

1996 Grover method

finds this root using

�20:5n quantum evaluations of f

on superpositions of inputs.

Cost of quantum evaluation of f

� cost of evaluation of f

if cost counts qubit “operations”.

Post-quantum subset sum

Claimed in TCC 2010

Lyubashevsky–Palacio–Segev

“Public-key cryptographic

primitives provably

as secure as subset sum”:

There are “currently no known

quantum algorithms that perform

better than classical ones

on the subset sum problem”.

Hmmm. What’s the best

quantum subset-sum exponent?

Quantum search (0.5)

Assume that function f

has n-bit input, unique root.

Generic brute-force search

finds this root using

�2n evaluations of f .

1996 Grover method

finds this root using

�20:5n quantum evaluations of f

on superpositions of inputs.

Cost of quantum evaluation of f

� cost of evaluation of f

if cost counts qubit “operations”.

Easily adapt to handle

different # of roots,

and # not known in advance.

Faster if # is large,

but typically # is not very large.

Most interesting: # 2 f0; 1g.

Post-quantum subset sum

Claimed in TCC 2010

Lyubashevsky–Palacio–Segev

“Public-key cryptographic

primitives provably

as secure as subset sum”:

There are “currently no known

quantum algorithms that perform

better than classical ones

on the subset sum problem”.

Hmmm. What’s the best

quantum subset-sum exponent?

Quantum search (0.5)

Assume that function f

has n-bit input, unique root.

Generic brute-force search

finds this root using

�2n evaluations of f .

1996 Grover method

finds this root using

�20:5n quantum evaluations of f

on superpositions of inputs.

Cost of quantum evaluation of f

� cost of evaluation of f

if cost counts qubit “operations”.

Easily adapt to handle

different # of roots,

and # not known in advance.

Faster if # is large,

but typically # is not very large.

Most interesting: # 2 f0; 1g.

Post-quantum subset sum

Claimed in TCC 2010

Lyubashevsky–Palacio–Segev

“Public-key cryptographic

primitives provably

as secure as subset sum”:

There are “currently no known

quantum algorithms that perform

better than classical ones

on the subset sum problem”.

Hmmm. What’s the best

quantum subset-sum exponent?

Quantum search (0.5)

Assume that function f

has n-bit input, unique root.

Generic brute-force search

finds this root using

�2n evaluations of f .

1996 Grover method

finds this root using

�20:5n quantum evaluations of f

on superpositions of inputs.

Cost of quantum evaluation of f

� cost of evaluation of f

if cost counts qubit “operations”.

Easily adapt to handle

different # of roots,

and # not known in advance.

Faster if # is large,

but typically # is not very large.

Most interesting: # 2 f0; 1g.

Quantum search (0.5)

Assume that function f

has n-bit input, unique root.

Generic brute-force search

finds this root using

�2n evaluations of f .

1996 Grover method

finds this root using

�20:5n quantum evaluations of f

on superpositions of inputs.

Cost of quantum evaluation of f

� cost of evaluation of f

if cost counts qubit “operations”.

Easily adapt to handle

different # of roots,

and # not known in advance.

Faster if # is large,

but typically # is not very large.

Most interesting: # 2 f0; 1g.

Quantum search (0.5)

Assume that function f

has n-bit input, unique root.

Generic brute-force search

finds this root using

�2n evaluations of f .

1996 Grover method

finds this root using

�20:5n quantum evaluations of f

on superpositions of inputs.

Cost of quantum evaluation of f

� cost of evaluation of f

if cost counts qubit “operations”.

Easily adapt to handle

different # of roots,

and # not known in advance.

Faster if # is large,

but typically # is not very large.

Most interesting: # 2 f0; 1g.
Apply to the function

J 7! Σ(J)� t where

Σ(J) =
P

i2J xi.

Cost 20:5n to find root (i.e.,

to find indices of subsequence

of x1; : : : ; xn with sum t)

or to decide that no root exists.

We suppress poly factors in cost.

Quantum search (0.5)

Assume that function f

has n-bit input, unique root.

Generic brute-force search

finds this root using

�2n evaluations of f .

1996 Grover method

finds this root using

�20:5n quantum evaluations of f

on superpositions of inputs.

Cost of quantum evaluation of f

� cost of evaluation of f

if cost counts qubit “operations”.

Easily adapt to handle

different # of roots,

and # not known in advance.

Faster if # is large,

but typically # is not very large.

Most interesting: # 2 f0; 1g.
Apply to the function

J 7! Σ(J)� t where

Σ(J) =
P

i2J xi.

Cost 20:5n to find root (i.e.,

to find indices of subsequence

of x1; : : : ; xn with sum t)

or to decide that no root exists.

We suppress poly factors in cost.

Algorithm details for unique root:

Represent J � f1; : : : ; ng as an

integer between 0 and 2n � 1.

n bits are enough space

to store one such integer.

n qubits store much more,

a superposition over sets J:

2n complex amplitudes

a0; : : : ; a2n�1 with

ja0j2 + � � �+ ja2n�1j2 = 1.

Measuring these n qubits

has chance jaJ j2 to produce J.

Start from uniform superposition,

i.e., aJ = 1=2n=2 for all J.

Quantum search (0.5)

Assume that function f

has n-bit input, unique root.

Generic brute-force search

finds this root using

�2n evaluations of f .

1996 Grover method

finds this root using

�20:5n quantum evaluations of f

on superpositions of inputs.

Cost of quantum evaluation of f

� cost of evaluation of f

if cost counts qubit “operations”.

Easily adapt to handle

different # of roots,

and # not known in advance.

Faster if # is large,

but typically # is not very large.

Most interesting: # 2 f0; 1g.
Apply to the function

J 7! Σ(J)� t where

Σ(J) =
P

i2J xi.

Cost 20:5n to find root (i.e.,

to find indices of subsequence

of x1; : : : ; xn with sum t)

or to decide that no root exists.

We suppress poly factors in cost.

Algorithm details for unique root:

Represent J � f1; : : : ; ng as an

integer between 0 and 2n � 1.

n bits are enough space

to store one such integer.

n qubits store much more,

a superposition over sets J:

2n complex amplitudes

a0; : : : ; a2n�1 with

ja0j2 + � � �+ ja2n�1j2 = 1.

Measuring these n qubits

has chance jaJ j2 to produce J.

Start from uniform superposition,

i.e., aJ = 1=2n=2 for all J.

Quantum search (0.5)

Assume that function f

has n-bit input, unique root.

Generic brute-force search

finds this root using

�2n evaluations of f .

1996 Grover method

finds this root using

�20:5n quantum evaluations of f

on superpositions of inputs.

Cost of quantum evaluation of f

� cost of evaluation of f

if cost counts qubit “operations”.

Easily adapt to handle

different # of roots,

and # not known in advance.

Faster if # is large,

but typically # is not very large.

Most interesting: # 2 f0; 1g.
Apply to the function

J 7! Σ(J)� t where

Σ(J) =
P

i2J xi.

Cost 20:5n to find root (i.e.,

to find indices of subsequence

of x1; : : : ; xn with sum t)

or to decide that no root exists.

We suppress poly factors in cost.

Algorithm details for unique root:

Represent J � f1; : : : ; ng as an

integer between 0 and 2n � 1.

n bits are enough space

to store one such integer.

n qubits store much more,

a superposition over sets J:

2n complex amplitudes

a0; : : : ; a2n�1 with

ja0j2 + � � �+ ja2n�1j2 = 1.

Measuring these n qubits

has chance jaJ j2 to produce J.

Start from uniform superposition,

i.e., aJ = 1=2n=2 for all J.

Easily adapt to handle

different # of roots,

and # not known in advance.

Faster if # is large,

but typically # is not very large.

Most interesting: # 2 f0; 1g.
Apply to the function

J 7! Σ(J)� t where

Σ(J) =
P

i2J xi.

Cost 20:5n to find root (i.e.,

to find indices of subsequence

of x1; : : : ; xn with sum t)

or to decide that no root exists.

We suppress poly factors in cost.

Algorithm details for unique root:

Represent J � f1; : : : ; ng as an

integer between 0 and 2n � 1.

n bits are enough space

to store one such integer.

n qubits store much more,

a superposition over sets J:

2n complex amplitudes

a0; : : : ; a2n�1 with

ja0j2 + � � �+ ja2n�1j2 = 1.

Measuring these n qubits

has chance jaJ j2 to produce J.

Start from uniform superposition,

i.e., aJ = 1=2n=2 for all J.

Easily adapt to handle

different # of roots,

and # not known in advance.

Faster if # is large,

but typically # is not very large.

Most interesting: # 2 f0; 1g.
Apply to the function

J 7! Σ(J)� t where

Σ(J) =
P

i2J xi.

Cost 20:5n to find root (i.e.,

to find indices of subsequence

of x1; : : : ; xn with sum t)

or to decide that no root exists.

We suppress poly factors in cost.

Algorithm details for unique root:

Represent J � f1; : : : ; ng as an

integer between 0 and 2n � 1.

n bits are enough space

to store one such integer.

n qubits store much more,

a superposition over sets J:

2n complex amplitudes

a0; : : : ; a2n�1 with

ja0j2 + � � �+ ja2n�1j2 = 1.

Measuring these n qubits

has chance jaJ j2 to produce J.

Start from uniform superposition,

i.e., aJ = 1=2n=2 for all J.

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Easily adapt to handle

different # of roots,

and # not known in advance.

Faster if # is large,

but typically # is not very large.

Most interesting: # 2 f0; 1g.
Apply to the function

J 7! Σ(J)� t where

Σ(J) =
P

i2J xi.

Cost 20:5n to find root (i.e.,

to find indices of subsequence

of x1; : : : ; xn with sum t)

or to decide that no root exists.

We suppress poly factors in cost.

Algorithm details for unique root:

Represent J � f1; : : : ; ng as an

integer between 0 and 2n � 1.

n bits are enough space

to store one such integer.

n qubits store much more,

a superposition over sets J:

2n complex amplitudes

a0; : : : ; a2n�1 with

ja0j2 + � � �+ ja2n�1j2 = 1.

Measuring these n qubits

has chance jaJ j2 to produce J.

Start from uniform superposition,

i.e., aJ = 1=2n=2 for all J.

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Easily adapt to handle

different # of roots,

and # not known in advance.

Faster if # is large,

but typically # is not very large.

Most interesting: # 2 f0; 1g.
Apply to the function

J 7! Σ(J)� t where

Σ(J) =
P

i2J xi.

Cost 20:5n to find root (i.e.,

to find indices of subsequence

of x1; : : : ; xn with sum t)

or to decide that no root exists.

We suppress poly factors in cost.

Algorithm details for unique root:

Represent J � f1; : : : ; ng as an

integer between 0 and 2n � 1.

n bits are enough space

to store one such integer.

n qubits store much more,

a superposition over sets J:

2n complex amplitudes

a0; : : : ; a2n�1 with

ja0j2 + � � �+ ja2n�1j2 = 1.

Measuring these n qubits

has chance jaJ j2 to produce J.

Start from uniform superposition,

i.e., aJ = 1=2n=2 for all J.

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Algorithm details for unique root:

Represent J � f1; : : : ; ng as an

integer between 0 and 2n � 1.

n bits are enough space

to store one such integer.

n qubits store much more,

a superposition over sets J:

2n complex amplitudes

a0; : : : ; a2n�1 with

ja0j2 + � � �+ ja2n�1j2 = 1.

Measuring these n qubits

has chance jaJ j2 to produce J.

Start from uniform superposition,

i.e., aJ = 1=2n=2 for all J.

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Algorithm details for unique root:

Represent J � f1; : : : ; ng as an

integer between 0 and 2n � 1.

n bits are enough space

to store one such integer.

n qubits store much more,

a superposition over sets J:

2n complex amplitudes

a0; : : : ; a2n�1 with

ja0j2 + � � �+ ja2n�1j2 = 1.

Measuring these n qubits

has chance jaJ j2 to produce J.

Start from uniform superposition,

i.e., aJ = 1=2n=2 for all J.

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 0 steps:

−1.0

−0.5

0.0

0.5

1.0

Algorithm details for unique root:

Represent J � f1; : : : ; ng as an

integer between 0 and 2n � 1.

n bits are enough space

to store one such integer.

n qubits store much more,

a superposition over sets J:

2n complex amplitudes

a0; : : : ; a2n�1 with

ja0j2 + � � �+ ja2n�1j2 = 1.

Measuring these n qubits

has chance jaJ j2 to produce J.

Start from uniform superposition,

i.e., aJ = 1=2n=2 for all J.

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 0 steps:

−1.0

−0.5

0.0

0.5

1.0

Algorithm details for unique root:

Represent J � f1; : : : ; ng as an

integer between 0 and 2n � 1.

n bits are enough space

to store one such integer.

n qubits store much more,

a superposition over sets J:

2n complex amplitudes

a0; : : : ; a2n�1 with

ja0j2 + � � �+ ja2n�1j2 = 1.

Measuring these n qubits

has chance jaJ j2 to produce J.

Start from uniform superposition,

i.e., aJ = 1=2n=2 for all J.

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 0 steps:

−1.0

−0.5

0.0

0.5

1.0

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 0 steps:

−1.0

−0.5

0.0

0.5

1.0

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after Step 1:

−1.0

−0.5

0.0

0.5

1.0

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after Step 1 + Step 2:

−1.0

−0.5

0.0

0.5

1.0

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after Step 1 + Step 2 + Step 1:

−1.0

−0.5

0.0

0.5

1.0

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 2� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 3� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 4� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 5� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 6� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 7� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 8� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 9� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 10� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 11� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 12� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 13� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 14� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 15� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 16� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 17� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 18� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 19� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 20� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 25� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 30� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 35� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Good moment to stop, measure.

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 40� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 45� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 50� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Traditional stopping point.

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 60� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 70� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 80� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 90� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 100� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Very bad stopping point.

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 100� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Very bad stopping point.

J 7! aJ is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) aJ for roots J;

(2) aJ for non-roots J.

Step 1 + Step 2

act linearly on this vector.

Easily compute eigenvalues

and powers of this linear map

to understand evolution

of state of Grover’s algorithm.

) Probability is �1

after �(�=4)20:5n iterations.

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 100� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Very bad stopping point.

J 7! aJ is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) aJ for roots J;

(2) aJ for non-roots J.

Step 1 + Step 2

act linearly on this vector.

Easily compute eigenvalues

and powers of this linear map

to understand evolution

of state of Grover’s algorithm.

) Probability is �1

after �(�=4)20:5n iterations.

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 100� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Very bad stopping point.

J 7! aJ is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) aJ for roots J;

(2) aJ for non-roots J.

Step 1 + Step 2

act linearly on this vector.

Easily compute eigenvalues

and powers of this linear map

to understand evolution

of state of Grover’s algorithm.

) Probability is �1

after �(�=4)20:5n iterations.

Graph of J 7! aJ
for 36634 example with n = 12

after 100� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Very bad stopping point.

J 7! aJ is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) aJ for roots J;

(2) aJ for non-roots J.

Step 1 + Step 2

act linearly on this vector.

Easily compute eigenvalues

and powers of this linear map

to understand evolution

of state of Grover’s algorithm.

) Probability is �1

after �(�=4)20:5n iterations.

Graph of J 7! aJ
for 36634 example with n = 12

after 100� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Very bad stopping point.

J 7! aJ is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) aJ for roots J;

(2) aJ for non-roots J.

Step 1 + Step 2

act linearly on this vector.

Easily compute eigenvalues

and powers of this linear map

to understand evolution

of state of Grover’s algorithm.

) Probability is �1

after �(�=4)20:5n iterations.

Left-right split (0.5)

Don’t need quantum computers

to achieve exponent 0:5.

For simplicity assume n 2 2Z.

1974 Horowitz–Sahni:

Sort list of Σ(J1)

for all J1 � f1; : : : ; n=2g
and list of t� Σ(J2)

for all J2 � fn=2 + 1; : : : ; ng.
Merge to find collisions

Σ(J1) = t� Σ(J2),

i.e., Σ(J1 [J2) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 100� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Very bad stopping point.

J 7! aJ is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) aJ for roots J;

(2) aJ for non-roots J.

Step 1 + Step 2

act linearly on this vector.

Easily compute eigenvalues

and powers of this linear map

to understand evolution

of state of Grover’s algorithm.

) Probability is �1

after �(�=4)20:5n iterations.

Left-right split (0.5)

Don’t need quantum computers

to achieve exponent 0:5.

For simplicity assume n 2 2Z.

1974 Horowitz–Sahni:

Sort list of Σ(J1)

for all J1 � f1; : : : ; n=2g
and list of t� Σ(J2)

for all J2 � fn=2 + 1; : : : ; ng.
Merge to find collisions

Σ(J1) = t� Σ(J2),

i.e., Σ(J1 [J2) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 100� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Very bad stopping point.

J 7! aJ is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) aJ for roots J;

(2) aJ for non-roots J.

Step 1 + Step 2

act linearly on this vector.

Easily compute eigenvalues

and powers of this linear map

to understand evolution

of state of Grover’s algorithm.

) Probability is �1

after �(�=4)20:5n iterations.

Left-right split (0.5)

Don’t need quantum computers

to achieve exponent 0:5.

For simplicity assume n 2 2Z.

1974 Horowitz–Sahni:

Sort list of Σ(J1)

for all J1 � f1; : : : ; n=2g
and list of t� Σ(J2)

for all J2 � fn=2 + 1; : : : ; ng.
Merge to find collisions

Σ(J1) = t� Σ(J2),

i.e., Σ(J1 [J2) = t.

J 7! aJ is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) aJ for roots J;

(2) aJ for non-roots J.

Step 1 + Step 2

act linearly on this vector.

Easily compute eigenvalues

and powers of this linear map

to understand evolution

of state of Grover’s algorithm.

) Probability is �1

after �(�=4)20:5n iterations.

Left-right split (0.5)

Don’t need quantum computers

to achieve exponent 0:5.

For simplicity assume n 2 2Z.

1974 Horowitz–Sahni:

Sort list of Σ(J1)

for all J1 � f1; : : : ; n=2g
and list of t� Σ(J2)

for all J2 � fn=2 + 1; : : : ; ng.
Merge to find collisions

Σ(J1) = t� Σ(J2),

i.e., Σ(J1 [J2) = t.

J 7! aJ is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) aJ for roots J;

(2) aJ for non-roots J.

Step 1 + Step 2

act linearly on this vector.

Easily compute eigenvalues

and powers of this linear map

to understand evolution

of state of Grover’s algorithm.

) Probability is �1

after �(�=4)20:5n iterations.

Left-right split (0.5)

Don’t need quantum computers

to achieve exponent 0:5.

For simplicity assume n 2 2Z.

1974 Horowitz–Sahni:

Sort list of Σ(J1)

for all J1 � f1; : : : ; n=2g
and list of t� Σ(J2)

for all J2 � fn=2 + 1; : : : ; ng.
Merge to find collisions

Σ(J1) = t� Σ(J2),

i.e., Σ(J1 [J2) = t.

Cost 20:5n for sorting, merging.

We assign cost 1 to RAM.

e.g. 36634 as sum of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413):

Sort the 64 sums

0; 499; 852; 499 + 852; : : : ;

499 + 852 + 1927 + � � �+ 3608

and the 64 differences

36634� 0; 36634� 4688; : : : ;

36634� 4688� � � � � 9413

to see that

499 + 852 + 2535 + 3608 =

36634�5989�6385�7353�9413.

J 7! aJ is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) aJ for roots J;

(2) aJ for non-roots J.

Step 1 + Step 2

act linearly on this vector.

Easily compute eigenvalues

and powers of this linear map

to understand evolution

of state of Grover’s algorithm.

) Probability is �1

after �(�=4)20:5n iterations.

Left-right split (0.5)

Don’t need quantum computers

to achieve exponent 0:5.

For simplicity assume n 2 2Z.

1974 Horowitz–Sahni:

Sort list of Σ(J1)

for all J1 � f1; : : : ; n=2g
and list of t� Σ(J2)

for all J2 � fn=2 + 1; : : : ; ng.
Merge to find collisions

Σ(J1) = t� Σ(J2),

i.e., Σ(J1 [J2) = t.

Cost 20:5n for sorting, merging.

We assign cost 1 to RAM.

e.g. 36634 as sum of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413):

Sort the 64 sums

0; 499; 852; 499 + 852; : : : ;

499 + 852 + 1927 + � � �+ 3608

and the 64 differences

36634� 0; 36634� 4688; : : : ;

36634� 4688� � � � � 9413

to see that

499 + 852 + 2535 + 3608 =

36634�5989�6385�7353�9413.

J 7! aJ is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) aJ for roots J;

(2) aJ for non-roots J.

Step 1 + Step 2

act linearly on this vector.

Easily compute eigenvalues

and powers of this linear map

to understand evolution

of state of Grover’s algorithm.

) Probability is �1

after �(�=4)20:5n iterations.

Left-right split (0.5)

Don’t need quantum computers

to achieve exponent 0:5.

For simplicity assume n 2 2Z.

1974 Horowitz–Sahni:

Sort list of Σ(J1)

for all J1 � f1; : : : ; n=2g
and list of t� Σ(J2)

for all J2 � fn=2 + 1; : : : ; ng.
Merge to find collisions

Σ(J1) = t� Σ(J2),

i.e., Σ(J1 [J2) = t.

Cost 20:5n for sorting, merging.

We assign cost 1 to RAM.

e.g. 36634 as sum of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413):

Sort the 64 sums

0; 499; 852; 499 + 852; : : : ;

499 + 852 + 1927 + � � �+ 3608

and the 64 differences

36634� 0; 36634� 4688; : : : ;

36634� 4688� � � � � 9413

to see that

499 + 852 + 2535 + 3608 =

36634�5989�6385�7353�9413.

Left-right split (0.5)

Don’t need quantum computers

to achieve exponent 0:5.

For simplicity assume n 2 2Z.

1974 Horowitz–Sahni:

Sort list of Σ(J1)

for all J1 � f1; : : : ; n=2g
and list of t� Σ(J2)

for all J2 � fn=2 + 1; : : : ; ng.
Merge to find collisions

Σ(J1) = t� Σ(J2),

i.e., Σ(J1 [J2) = t.

Cost 20:5n for sorting, merging.

We assign cost 1 to RAM.

e.g. 36634 as sum of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413):

Sort the 64 sums

0; 499; 852; 499 + 852; : : : ;

499 + 852 + 1927 + � � �+ 3608

and the 64 differences

36634� 0; 36634� 4688; : : : ;

36634� 4688� � � � � 9413

to see that

499 + 852 + 2535 + 3608 =

36634�5989�6385�7353�9413.

Left-right split (0.5)

Don’t need quantum computers

to achieve exponent 0:5.

For simplicity assume n 2 2Z.

1974 Horowitz–Sahni:

Sort list of Σ(J1)

for all J1 � f1; : : : ; n=2g
and list of t� Σ(J2)

for all J2 � fn=2 + 1; : : : ; ng.
Merge to find collisions

Σ(J1) = t� Σ(J2),

i.e., Σ(J1 [J2) = t.

Cost 20:5n for sorting, merging.

We assign cost 1 to RAM.

e.g. 36634 as sum of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413):

Sort the 64 sums

0; 499; 852; 499 + 852; : : : ;

499 + 852 + 1927 + � � �+ 3608

and the 64 differences

36634� 0; 36634� 4688; : : : ;

36634� 4688� � � � � 9413

to see that

499 + 852 + 2535 + 3608 =

36634�5989�6385�7353�9413.

Moduli (0.5)

For simplicity assume n 2 4Z.

Choose M � 20:25n.

Choose t1 2 f0; 1; : : : ;M � 1g.
Define t2 = t� t1.

Find all J1 � f1; : : : ; n=2g
such that Σ(J1) � t1 (mod M).

How? Split J1 as J11 [J12.

Find all J2 � fn=2 + 1; : : : ; ng
such that Σ(J2) � t2 (mod M).

Sort and merge to find all

collisions Σ(J1) = t� Σ(J2),

i.e., Σ(J1 [J2) = t.

Left-right split (0.5)

Don’t need quantum computers

to achieve exponent 0:5.

For simplicity assume n 2 2Z.

1974 Horowitz–Sahni:

Sort list of Σ(J1)

for all J1 � f1; : : : ; n=2g
and list of t� Σ(J2)

for all J2 � fn=2 + 1; : : : ; ng.
Merge to find collisions

Σ(J1) = t� Σ(J2),

i.e., Σ(J1 [J2) = t.

Cost 20:5n for sorting, merging.

We assign cost 1 to RAM.

e.g. 36634 as sum of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413):

Sort the 64 sums

0; 499; 852; 499 + 852; : : : ;

499 + 852 + 1927 + � � �+ 3608

and the 64 differences

36634� 0; 36634� 4688; : : : ;

36634� 4688� � � � � 9413

to see that

499 + 852 + 2535 + 3608 =

36634�5989�6385�7353�9413.

Moduli (0.5)

For simplicity assume n 2 4Z.

Choose M � 20:25n.

Choose t1 2 f0; 1; : : : ;M � 1g.
Define t2 = t� t1.

Find all J1 � f1; : : : ; n=2g
such that Σ(J1) � t1 (mod M).

How? Split J1 as J11 [J12.

Find all J2 � fn=2 + 1; : : : ; ng
such that Σ(J2) � t2 (mod M).

Sort and merge to find all

collisions Σ(J1) = t� Σ(J2),

i.e., Σ(J1 [J2) = t.

Left-right split (0.5)

Don’t need quantum computers

to achieve exponent 0:5.

For simplicity assume n 2 2Z.

1974 Horowitz–Sahni:

Sort list of Σ(J1)

for all J1 � f1; : : : ; n=2g
and list of t� Σ(J2)

for all J2 � fn=2 + 1; : : : ; ng.
Merge to find collisions

Σ(J1) = t� Σ(J2),

i.e., Σ(J1 [J2) = t.

Cost 20:5n for sorting, merging.

We assign cost 1 to RAM.

e.g. 36634 as sum of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413):

Sort the 64 sums

0; 499; 852; 499 + 852; : : : ;

499 + 852 + 1927 + � � �+ 3608

and the 64 differences

36634� 0; 36634� 4688; : : : ;

36634� 4688� � � � � 9413

to see that

499 + 852 + 2535 + 3608 =

36634�5989�6385�7353�9413.

Moduli (0.5)

For simplicity assume n 2 4Z.

Choose M � 20:25n.

Choose t1 2 f0; 1; : : : ;M � 1g.
Define t2 = t� t1.

Find all J1 � f1; : : : ; n=2g
such that Σ(J1) � t1 (mod M).

How? Split J1 as J11 [J12.

Find all J2 � fn=2 + 1; : : : ; ng
such that Σ(J2) � t2 (mod M).

Sort and merge to find all

collisions Σ(J1) = t� Σ(J2),

i.e., Σ(J1 [J2) = t.

Cost 20:5n for sorting, merging.

We assign cost 1 to RAM.

e.g. 36634 as sum of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413):

Sort the 64 sums

0; 499; 852; 499 + 852; : : : ;

499 + 852 + 1927 + � � �+ 3608

and the 64 differences

36634� 0; 36634� 4688; : : : ;

36634� 4688� � � � � 9413

to see that

499 + 852 + 2535 + 3608 =

36634�5989�6385�7353�9413.

Moduli (0.5)

For simplicity assume n 2 4Z.

Choose M � 20:25n.

Choose t1 2 f0; 1; : : : ;M � 1g.
Define t2 = t� t1.

Find all J1 � f1; : : : ; n=2g
such that Σ(J1) � t1 (mod M).

How? Split J1 as J11 [J12.

Find all J2 � fn=2 + 1; : : : ; ng
such that Σ(J2) � t2 (mod M).

Sort and merge to find all

collisions Σ(J1) = t� Σ(J2),

i.e., Σ(J1 [J2) = t.

Cost 20:5n for sorting, merging.

We assign cost 1 to RAM.

e.g. 36634 as sum of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413):

Sort the 64 sums

0; 499; 852; 499 + 852; : : : ;

499 + 852 + 1927 + � � �+ 3608

and the 64 differences

36634� 0; 36634� 4688; : : : ;

36634� 4688� � � � � 9413

to see that

499 + 852 + 2535 + 3608 =

36634�5989�6385�7353�9413.

Moduli (0.5)

For simplicity assume n 2 4Z.

Choose M � 20:25n.

Choose t1 2 f0; 1; : : : ;M � 1g.
Define t2 = t� t1.

Find all J1 � f1; : : : ; n=2g
such that Σ(J1) � t1 (mod M).

How? Split J1 as J11 [J12.

Find all J2 � fn=2 + 1; : : : ; ng
such that Σ(J2) � t2 (mod M).

Sort and merge to find all

collisions Σ(J1) = t� Σ(J2),

i.e., Σ(J1 [J2) = t.

Finds J iff Σ(J1) � t1.

There are �20:25n choices of t1.

Each choice costs 20:25n.

Total cost 20:5n.

Not visible in cost metric:

this uses space only 20:25n,

assuming typical distribution.

Algorithm has been

introduced at least twice:

2006 Elsenhans–Jahnel;

2010 Howgrave-Graham–Joux.

Different technique

for similar space reduction:

1981 Schroeppel–Shamir.

Cost 20:5n for sorting, merging.

We assign cost 1 to RAM.

e.g. 36634 as sum of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413):

Sort the 64 sums

0; 499; 852; 499 + 852; : : : ;

499 + 852 + 1927 + � � �+ 3608

and the 64 differences

36634� 0; 36634� 4688; : : : ;

36634� 4688� � � � � 9413

to see that

499 + 852 + 2535 + 3608 =

36634�5989�6385�7353�9413.

Moduli (0.5)

For simplicity assume n 2 4Z.

Choose M � 20:25n.

Choose t1 2 f0; 1; : : : ;M � 1g.
Define t2 = t� t1.

Find all J1 � f1; : : : ; n=2g
such that Σ(J1) � t1 (mod M).

How? Split J1 as J11 [J12.

Find all J2 � fn=2 + 1; : : : ; ng
such that Σ(J2) � t2 (mod M).

Sort and merge to find all

collisions Σ(J1) = t� Σ(J2),

i.e., Σ(J1 [J2) = t.

Finds J iff Σ(J1) � t1.

There are �20:25n choices of t1.

Each choice costs 20:25n.

Total cost 20:5n.

Not visible in cost metric:

this uses space only 20:25n,

assuming typical distribution.

Algorithm has been

introduced at least twice:

2006 Elsenhans–Jahnel;

2010 Howgrave-Graham–Joux.

Different technique

for similar space reduction:

1981 Schroeppel–Shamir.

Cost 20:5n for sorting, merging.

We assign cost 1 to RAM.

e.g. 36634 as sum of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413):

Sort the 64 sums

0; 499; 852; 499 + 852; : : : ;

499 + 852 + 1927 + � � �+ 3608

and the 64 differences

36634� 0; 36634� 4688; : : : ;

36634� 4688� � � � � 9413

to see that

499 + 852 + 2535 + 3608 =

36634�5989�6385�7353�9413.

Moduli (0.5)

For simplicity assume n 2 4Z.

Choose M � 20:25n.

Choose t1 2 f0; 1; : : : ;M � 1g.
Define t2 = t� t1.

Find all J1 � f1; : : : ; n=2g
such that Σ(J1) � t1 (mod M).

How? Split J1 as J11 [J12.

Find all J2 � fn=2 + 1; : : : ; ng
such that Σ(J2) � t2 (mod M).

Sort and merge to find all

collisions Σ(J1) = t� Σ(J2),

i.e., Σ(J1 [J2) = t.

Finds J iff Σ(J1) � t1.

There are �20:25n choices of t1.

Each choice costs 20:25n.

Total cost 20:5n.

Not visible in cost metric:

this uses space only 20:25n,

assuming typical distribution.

Algorithm has been

introduced at least twice:

2006 Elsenhans–Jahnel;

2010 Howgrave-Graham–Joux.

Different technique

for similar space reduction:

1981 Schroeppel–Shamir.

Moduli (0.5)

For simplicity assume n 2 4Z.

Choose M � 20:25n.

Choose t1 2 f0; 1; : : : ;M � 1g.
Define t2 = t� t1.

Find all J1 � f1; : : : ; n=2g
such that Σ(J1) � t1 (mod M).

How? Split J1 as J11 [J12.

Find all J2 � fn=2 + 1; : : : ; ng
such that Σ(J2) � t2 (mod M).

Sort and merge to find all

collisions Σ(J1) = t� Σ(J2),

i.e., Σ(J1 [J2) = t.

Finds J iff Σ(J1) � t1.

There are �20:25n choices of t1.

Each choice costs 20:25n.

Total cost 20:5n.

Not visible in cost metric:

this uses space only 20:25n,

assuming typical distribution.

Algorithm has been

introduced at least twice:

2006 Elsenhans–Jahnel;

2010 Howgrave-Graham–Joux.

Different technique

for similar space reduction:

1981 Schroeppel–Shamir.

Moduli (0.5)

For simplicity assume n 2 4Z.

Choose M � 20:25n.

Choose t1 2 f0; 1; : : : ;M � 1g.
Define t2 = t� t1.

Find all J1 � f1; : : : ; n=2g
such that Σ(J1) � t1 (mod M).

How? Split J1 as J11 [J12.

Find all J2 � fn=2 + 1; : : : ; ng
such that Σ(J2) � t2 (mod M).

Sort and merge to find all

collisions Σ(J1) = t� Σ(J2),

i.e., Σ(J1 [J2) = t.

Finds J iff Σ(J1) � t1.

There are �20:25n choices of t1.

Each choice costs 20:25n.

Total cost 20:5n.

Not visible in cost metric:

this uses space only 20:25n,

assuming typical distribution.

Algorithm has been

introduced at least twice:

2006 Elsenhans–Jahnel;

2010 Howgrave-Graham–Joux.

Different technique

for similar space reduction:

1981 Schroeppel–Shamir.

e.g. M = 8, t = 36634, x =

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413):

Try each t1 2 f0; 1; : : : ; 7g.
In particular try t1 = 6.

There are 12 subsequences of

(499; 852; 1927; 2535; 3596; 3608)

with sum 6 modulo 8.

There are 6 subsequences of

(4688; 5989; 6385; 7353; 7650; 9413)

with sum 36634� 6 modulo 8.

Sort and merge to find

499 + 852 + 2535 + 3608 =

36634�5989�6385�7353�9413.

Moduli (0.5)

For simplicity assume n 2 4Z.

Choose M � 20:25n.

Choose t1 2 f0; 1; : : : ;M � 1g.
Define t2 = t� t1.

Find all J1 � f1; : : : ; n=2g
such that Σ(J1) � t1 (mod M).

How? Split J1 as J11 [J12.

Find all J2 � fn=2 + 1; : : : ; ng
such that Σ(J2) � t2 (mod M).

Sort and merge to find all

collisions Σ(J1) = t� Σ(J2),

i.e., Σ(J1 [J2) = t.

Finds J iff Σ(J1) � t1.

There are �20:25n choices of t1.

Each choice costs 20:25n.

Total cost 20:5n.

Not visible in cost metric:

this uses space only 20:25n,

assuming typical distribution.

Algorithm has been

introduced at least twice:

2006 Elsenhans–Jahnel;

2010 Howgrave-Graham–Joux.

Different technique

for similar space reduction:

1981 Schroeppel–Shamir.

e.g. M = 8, t = 36634, x =

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413):

Try each t1 2 f0; 1; : : : ; 7g.
In particular try t1 = 6.

There are 12 subsequences of

(499; 852; 1927; 2535; 3596; 3608)

with sum 6 modulo 8.

There are 6 subsequences of

(4688; 5989; 6385; 7353; 7650; 9413)

with sum 36634� 6 modulo 8.

Sort and merge to find

499 + 852 + 2535 + 3608 =

36634�5989�6385�7353�9413.

Moduli (0.5)

For simplicity assume n 2 4Z.

Choose M � 20:25n.

Choose t1 2 f0; 1; : : : ;M � 1g.
Define t2 = t� t1.

Find all J1 � f1; : : : ; n=2g
such that Σ(J1) � t1 (mod M).

How? Split J1 as J11 [J12.

Find all J2 � fn=2 + 1; : : : ; ng
such that Σ(J2) � t2 (mod M).

Sort and merge to find all

collisions Σ(J1) = t� Σ(J2),

i.e., Σ(J1 [J2) = t.

Finds J iff Σ(J1) � t1.

There are �20:25n choices of t1.

Each choice costs 20:25n.

Total cost 20:5n.

Not visible in cost metric:

this uses space only 20:25n,

assuming typical distribution.

Algorithm has been

introduced at least twice:

2006 Elsenhans–Jahnel;

2010 Howgrave-Graham–Joux.

Different technique

for similar space reduction:

1981 Schroeppel–Shamir.

e.g. M = 8, t = 36634, x =

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413):

Try each t1 2 f0; 1; : : : ; 7g.
In particular try t1 = 6.

There are 12 subsequences of

(499; 852; 1927; 2535; 3596; 3608)

with sum 6 modulo 8.

There are 6 subsequences of

(4688; 5989; 6385; 7353; 7650; 9413)

with sum 36634� 6 modulo 8.

Sort and merge to find

499 + 852 + 2535 + 3608 =

36634�5989�6385�7353�9413.

Finds J iff Σ(J1) � t1.

There are �20:25n choices of t1.

Each choice costs 20:25n.

Total cost 20:5n.

Not visible in cost metric:

this uses space only 20:25n,

assuming typical distribution.

Algorithm has been

introduced at least twice:

2006 Elsenhans–Jahnel;

2010 Howgrave-Graham–Joux.

Different technique

for similar space reduction:

1981 Schroeppel–Shamir.

e.g. M = 8, t = 36634, x =

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413):

Try each t1 2 f0; 1; : : : ; 7g.
In particular try t1 = 6.

There are 12 subsequences of

(499; 852; 1927; 2535; 3596; 3608)

with sum 6 modulo 8.

There are 6 subsequences of

(4688; 5989; 6385; 7353; 7650; 9413)

with sum 36634� 6 modulo 8.

Sort and merge to find

499 + 852 + 2535 + 3608 =

36634�5989�6385�7353�9413.

Finds J iff Σ(J1) � t1.

There are �20:25n choices of t1.

Each choice costs 20:25n.

Total cost 20:5n.

Not visible in cost metric:

this uses space only 20:25n,

assuming typical distribution.

Algorithm has been

introduced at least twice:

2006 Elsenhans–Jahnel;

2010 Howgrave-Graham–Joux.

Different technique

for similar space reduction:

1981 Schroeppel–Shamir.

e.g. M = 8, t = 36634, x =

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413):

Try each t1 2 f0; 1; : : : ; 7g.
In particular try t1 = 6.

There are 12 subsequences of

(499; 852; 1927; 2535; 3596; 3608)

with sum 6 modulo 8.

There are 6 subsequences of

(4688; 5989; 6385; 7353; 7650; 9413)

with sum 36634� 6 modulo 8.

Sort and merge to find

499 + 852 + 2535 + 3608 =

36634�5989�6385�7353�9413.

Quantum left-right split (0:333 : : :)

Cost 2n=3, imitating

1998 Brassard–Høyer–Tapp:

For simplicity assume n 2 3Z.

Compute Σ(J1) for all

J1 � f1; 2; : : : ; n=3g.
Sort L = fΣ(J1)g.
Can now efficiently compute

J2 7! [t� Σ(J2) =2 L]

for J2 � fn=3 + 1; : : : ; ng.
Recall: we assign cost 1 to RAM.

Use Grover’s method to see

whether this function has a root.

Finds J iff Σ(J1) � t1.

There are �20:25n choices of t1.

Each choice costs 20:25n.

Total cost 20:5n.

Not visible in cost metric:

this uses space only 20:25n,

assuming typical distribution.

Algorithm has been

introduced at least twice:

2006 Elsenhans–Jahnel;

2010 Howgrave-Graham–Joux.

Different technique

for similar space reduction:

1981 Schroeppel–Shamir.

e.g. M = 8, t = 36634, x =

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413):

Try each t1 2 f0; 1; : : : ; 7g.
In particular try t1 = 6.

There are 12 subsequences of

(499; 852; 1927; 2535; 3596; 3608)

with sum 6 modulo 8.

There are 6 subsequences of

(4688; 5989; 6385; 7353; 7650; 9413)

with sum 36634� 6 modulo 8.

Sort and merge to find

499 + 852 + 2535 + 3608 =

36634�5989�6385�7353�9413.

Quantum left-right split (0:333 : : :)

Cost 2n=3, imitating

1998 Brassard–Høyer–Tapp:

For simplicity assume n 2 3Z.

Compute Σ(J1) for all

J1 � f1; 2; : : : ; n=3g.
Sort L = fΣ(J1)g.
Can now efficiently compute

J2 7! [t� Σ(J2) =2 L]

for J2 � fn=3 + 1; : : : ; ng.
Recall: we assign cost 1 to RAM.

Use Grover’s method to see

whether this function has a root.

Finds J iff Σ(J1) � t1.

There are �20:25n choices of t1.

Each choice costs 20:25n.

Total cost 20:5n.

Not visible in cost metric:

this uses space only 20:25n,

assuming typical distribution.

Algorithm has been

introduced at least twice:

2006 Elsenhans–Jahnel;

2010 Howgrave-Graham–Joux.

Different technique

for similar space reduction:

1981 Schroeppel–Shamir.

e.g. M = 8, t = 36634, x =

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413):

Try each t1 2 f0; 1; : : : ; 7g.
In particular try t1 = 6.

There are 12 subsequences of

(499; 852; 1927; 2535; 3596; 3608)

with sum 6 modulo 8.

There are 6 subsequences of

(4688; 5989; 6385; 7353; 7650; 9413)

with sum 36634� 6 modulo 8.

Sort and merge to find

499 + 852 + 2535 + 3608 =

36634�5989�6385�7353�9413.

Quantum left-right split (0:333 : : :)

Cost 2n=3, imitating

1998 Brassard–Høyer–Tapp:

For simplicity assume n 2 3Z.

Compute Σ(J1) for all

J1 � f1; 2; : : : ; n=3g.
Sort L = fΣ(J1)g.
Can now efficiently compute

J2 7! [t� Σ(J2) =2 L]

for J2 � fn=3 + 1; : : : ; ng.
Recall: we assign cost 1 to RAM.

Use Grover’s method to see

whether this function has a root.

e.g. M = 8, t = 36634, x =

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413):

Try each t1 2 f0; 1; : : : ; 7g.
In particular try t1 = 6.

There are 12 subsequences of

(499; 852; 1927; 2535; 3596; 3608)

with sum 6 modulo 8.

There are 6 subsequences of

(4688; 5989; 6385; 7353; 7650; 9413)

with sum 36634� 6 modulo 8.

Sort and merge to find

499 + 852 + 2535 + 3608 =

36634�5989�6385�7353�9413.

Quantum left-right split (0:333 : : :)

Cost 2n=3, imitating

1998 Brassard–Høyer–Tapp:

For simplicity assume n 2 3Z.

Compute Σ(J1) for all

J1 � f1; 2; : : : ; n=3g.
Sort L = fΣ(J1)g.
Can now efficiently compute

J2 7! [t� Σ(J2) =2 L]

for J2 � fn=3 + 1; : : : ; ng.
Recall: we assign cost 1 to RAM.

Use Grover’s method to see

whether this function has a root.

e.g. M = 8, t = 36634, x =

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413):

Try each t1 2 f0; 1; : : : ; 7g.
In particular try t1 = 6.

There are 12 subsequences of

(499; 852; 1927; 2535; 3596; 3608)

with sum 6 modulo 8.

There are 6 subsequences of

(4688; 5989; 6385; 7353; 7650; 9413)

with sum 36634� 6 modulo 8.

Sort and merge to find

499 + 852 + 2535 + 3608 =

36634�5989�6385�7353�9413.

Quantum left-right split (0:333 : : :)

Cost 2n=3, imitating

1998 Brassard–Høyer–Tapp:

For simplicity assume n 2 3Z.

Compute Σ(J1) for all

J1 � f1; 2; : : : ; n=3g.
Sort L = fΣ(J1)g.
Can now efficiently compute

J2 7! [t� Σ(J2) =2 L]

for J2 � fn=3 + 1; : : : ; ng.
Recall: we assign cost 1 to RAM.

Use Grover’s method to see

whether this function has a root.

Quantum walk

Unique-collision-finding problem:

Say f has n-bit inputs,

exactly one collision fp; qg:
i.e., p 6= q, f(p) = f(q).

Problem: find this collision.

Cost 2n: Define S as

the set of n-bit strings.

Compute f(S), sort.

Generalize to cost r,

success probability �(r=2n)2:

Choose a set S of size r.

Compute f(S), sort.

e.g. M = 8, t = 36634, x =

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413):

Try each t1 2 f0; 1; : : : ; 7g.
In particular try t1 = 6.

There are 12 subsequences of

(499; 852; 1927; 2535; 3596; 3608)

with sum 6 modulo 8.

There are 6 subsequences of

(4688; 5989; 6385; 7353; 7650; 9413)

with sum 36634� 6 modulo 8.

Sort and merge to find

499 + 852 + 2535 + 3608 =

36634�5989�6385�7353�9413.

Quantum left-right split (0:333 : : :)

Cost 2n=3, imitating

1998 Brassard–Høyer–Tapp:

For simplicity assume n 2 3Z.

Compute Σ(J1) for all

J1 � f1; 2; : : : ; n=3g.
Sort L = fΣ(J1)g.
Can now efficiently compute

J2 7! [t� Σ(J2) =2 L]

for J2 � fn=3 + 1; : : : ; ng.
Recall: we assign cost 1 to RAM.

Use Grover’s method to see

whether this function has a root.

Quantum walk

Unique-collision-finding problem:

Say f has n-bit inputs,

exactly one collision fp; qg:
i.e., p 6= q, f(p) = f(q).

Problem: find this collision.

Cost 2n: Define S as

the set of n-bit strings.

Compute f(S), sort.

Generalize to cost r,

success probability �(r=2n)2:

Choose a set S of size r.

Compute f(S), sort.

e.g. M = 8, t = 36634, x =

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413):

Try each t1 2 f0; 1; : : : ; 7g.
In particular try t1 = 6.

There are 12 subsequences of

(499; 852; 1927; 2535; 3596; 3608)

with sum 6 modulo 8.

There are 6 subsequences of

(4688; 5989; 6385; 7353; 7650; 9413)

with sum 36634� 6 modulo 8.

Sort and merge to find

499 + 852 + 2535 + 3608 =

36634�5989�6385�7353�9413.

Quantum left-right split (0:333 : : :)

Cost 2n=3, imitating

1998 Brassard–Høyer–Tapp:

For simplicity assume n 2 3Z.

Compute Σ(J1) for all

J1 � f1; 2; : : : ; n=3g.
Sort L = fΣ(J1)g.
Can now efficiently compute

J2 7! [t� Σ(J2) =2 L]

for J2 � fn=3 + 1; : : : ; ng.
Recall: we assign cost 1 to RAM.

Use Grover’s method to see

whether this function has a root.

Quantum walk

Unique-collision-finding problem:

Say f has n-bit inputs,

exactly one collision fp; qg:
i.e., p 6= q, f(p) = f(q).

Problem: find this collision.

Cost 2n: Define S as

the set of n-bit strings.

Compute f(S), sort.

Generalize to cost r,

success probability �(r=2n)2:

Choose a set S of size r.

Compute f(S), sort.

Quantum left-right split (0:333 : : :)

Cost 2n=3, imitating

1998 Brassard–Høyer–Tapp:

For simplicity assume n 2 3Z.

Compute Σ(J1) for all

J1 � f1; 2; : : : ; n=3g.
Sort L = fΣ(J1)g.
Can now efficiently compute

J2 7! [t� Σ(J2) =2 L]

for J2 � fn=3 + 1; : : : ; ng.
Recall: we assign cost 1 to RAM.

Use Grover’s method to see

whether this function has a root.

Quantum walk

Unique-collision-finding problem:

Say f has n-bit inputs,

exactly one collision fp; qg:
i.e., p 6= q, f(p) = f(q).

Problem: find this collision.

Cost 2n: Define S as

the set of n-bit strings.

Compute f(S), sort.

Generalize to cost r,

success probability �(r=2n)2:

Choose a set S of size r.

Compute f(S), sort.

Quantum left-right split (0:333 : : :)

Cost 2n=3, imitating

1998 Brassard–Høyer–Tapp:

For simplicity assume n 2 3Z.

Compute Σ(J1) for all

J1 � f1; 2; : : : ; n=3g.
Sort L = fΣ(J1)g.
Can now efficiently compute

J2 7! [t� Σ(J2) =2 L]

for J2 � fn=3 + 1; : : : ; ng.
Recall: we assign cost 1 to RAM.

Use Grover’s method to see

whether this function has a root.

Quantum walk

Unique-collision-finding problem:

Say f has n-bit inputs,

exactly one collision fp; qg:
i.e., p 6= q, f(p) = f(q).

Problem: find this collision.

Cost 2n: Define S as

the set of n-bit strings.

Compute f(S), sort.

Generalize to cost r,

success probability �(r=2n)2:

Choose a set S of size r.

Compute f(S), sort.

Data structure D(S) capturing

the generalized computation:

the set S; the multiset f(S);

the number of collisions in S.

Very efficient to move from D(S)

to D(T) if T is an adjacent set:

#S = #T = r, #(S\T) = r�1.

2003 Ambainis, simplified 2007

Magniez–Nayak–Roland–Santha:

Create superposition of states

(D(S); D(T)) with adjacent S; T .

By a quantum walk

find S containing a collision.

Quantum left-right split (0:333 : : :)

Cost 2n=3, imitating

1998 Brassard–Høyer–Tapp:

For simplicity assume n 2 3Z.

Compute Σ(J1) for all

J1 � f1; 2; : : : ; n=3g.
Sort L = fΣ(J1)g.
Can now efficiently compute

J2 7! [t� Σ(J2) =2 L]

for J2 � fn=3 + 1; : : : ; ng.
Recall: we assign cost 1 to RAM.

Use Grover’s method to see

whether this function has a root.

Quantum walk

Unique-collision-finding problem:

Say f has n-bit inputs,

exactly one collision fp; qg:
i.e., p 6= q, f(p) = f(q).

Problem: find this collision.

Cost 2n: Define S as

the set of n-bit strings.

Compute f(S), sort.

Generalize to cost r,

success probability �(r=2n)2:

Choose a set S of size r.

Compute f(S), sort.

Data structure D(S) capturing

the generalized computation:

the set S; the multiset f(S);

the number of collisions in S.

Very efficient to move from D(S)

to D(T) if T is an adjacent set:

#S = #T = r, #(S\T) = r�1.

2003 Ambainis, simplified 2007

Magniez–Nayak–Roland–Santha:

Create superposition of states

(D(S); D(T)) with adjacent S; T .

By a quantum walk

find S containing a collision.

Quantum left-right split (0:333 : : :)

Cost 2n=3, imitating

1998 Brassard–Høyer–Tapp:

For simplicity assume n 2 3Z.

Compute Σ(J1) for all

J1 � f1; 2; : : : ; n=3g.
Sort L = fΣ(J1)g.
Can now efficiently compute

J2 7! [t� Σ(J2) =2 L]

for J2 � fn=3 + 1; : : : ; ng.
Recall: we assign cost 1 to RAM.

Use Grover’s method to see

whether this function has a root.

Quantum walk

Unique-collision-finding problem:

Say f has n-bit inputs,

exactly one collision fp; qg:
i.e., p 6= q, f(p) = f(q).

Problem: find this collision.

Cost 2n: Define S as

the set of n-bit strings.

Compute f(S), sort.

Generalize to cost r,

success probability �(r=2n)2:

Choose a set S of size r.

Compute f(S), sort.

Data structure D(S) capturing

the generalized computation:

the set S; the multiset f(S);

the number of collisions in S.

Very efficient to move from D(S)

to D(T) if T is an adjacent set:

#S = #T = r, #(S\T) = r�1.

2003 Ambainis, simplified 2007

Magniez–Nayak–Roland–Santha:

Create superposition of states

(D(S); D(T)) with adjacent S; T .

By a quantum walk

find S containing a collision.

Quantum walk

Unique-collision-finding problem:

Say f has n-bit inputs,

exactly one collision fp; qg:
i.e., p 6= q, f(p) = f(q).

Problem: find this collision.

Cost 2n: Define S as

the set of n-bit strings.

Compute f(S), sort.

Generalize to cost r,

success probability �(r=2n)2:

Choose a set S of size r.

Compute f(S), sort.

Data structure D(S) capturing

the generalized computation:

the set S; the multiset f(S);

the number of collisions in S.

Very efficient to move from D(S)

to D(T) if T is an adjacent set:

#S = #T = r, #(S\T) = r�1.

2003 Ambainis, simplified 2007

Magniez–Nayak–Roland–Santha:

Create superposition of states

(D(S); D(T)) with adjacent S; T .

By a quantum walk

find S containing a collision.

Quantum walk

Unique-collision-finding problem:

Say f has n-bit inputs,

exactly one collision fp; qg:
i.e., p 6= q, f(p) = f(q).

Problem: find this collision.

Cost 2n: Define S as

the set of n-bit strings.

Compute f(S), sort.

Generalize to cost r,

success probability �(r=2n)2:

Choose a set S of size r.

Compute f(S), sort.

Data structure D(S) capturing

the generalized computation:

the set S; the multiset f(S);

the number of collisions in S.

Very efficient to move from D(S)

to D(T) if T is an adjacent set:

#S = #T = r, #(S\T) = r�1.

2003 Ambainis, simplified 2007

Magniez–Nayak–Roland–Santha:

Create superposition of states

(D(S); D(T)) with adjacent S; T .

By a quantum walk

find S containing a collision.

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Quantum walk

Unique-collision-finding problem:

Say f has n-bit inputs,

exactly one collision fp; qg:
i.e., p 6= q, f(p) = f(q).

Problem: find this collision.

Cost 2n: Define S as

the set of n-bit strings.

Compute f(S), sort.

Generalize to cost r,

success probability �(r=2n)2:

Choose a set S of size r.

Compute f(S), sort.

Data structure D(S) capturing

the generalized computation:

the set S; the multiset f(S);

the number of collisions in S.

Very efficient to move from D(S)

to D(T) if T is an adjacent set:

#S = #T = r, #(S\T) = r�1.

2003 Ambainis, simplified 2007

Magniez–Nayak–Roland–Santha:

Create superposition of states

(D(S); D(T)) with adjacent S; T .

By a quantum walk

find S containing a collision.

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Quantum walk

Unique-collision-finding problem:

Say f has n-bit inputs,

exactly one collision fp; qg:
i.e., p 6= q, f(p) = f(q).

Problem: find this collision.

Cost 2n: Define S as

the set of n-bit strings.

Compute f(S), sort.

Generalize to cost r,

success probability �(r=2n)2:

Choose a set S of size r.

Compute f(S), sort.

Data structure D(S) capturing

the generalized computation:

the set S; the multiset f(S);

the number of collisions in S.

Very efficient to move from D(S)

to D(T) if T is an adjacent set:

#S = #T = r, #(S\T) = r�1.

2003 Ambainis, simplified 2007

Magniez–Nayak–Roland–Santha:

Create superposition of states

(D(S); D(T)) with adjacent S; T .

By a quantum walk

find S containing a collision.

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Data structure D(S) capturing

the generalized computation:

the set S; the multiset f(S);

the number of collisions in S.

Very efficient to move from D(S)

to D(T) if T is an adjacent set:

#S = #T = r, #(S\T) = r�1.

2003 Ambainis, simplified 2007

Magniez–Nayak–Roland–Santha:

Create superposition of states

(D(S); D(T)) with adjacent S; T .

By a quantum walk

find S containing a collision.

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Data structure D(S) capturing

the generalized computation:

the set S; the multiset f(S);

the number of collisions in S.

Very efficient to move from D(S)

to D(T) if T is an adjacent set:

#S = #T = r, #(S\T) = r�1.

2003 Ambainis, simplified 2007

Magniez–Nayak–Roland–Santha:

Create superposition of states

(D(S); D(T)) with adjacent S; T .

By a quantum walk

find S containing a collision.

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

0 negations and 0 diffusions:

Pr[class (0; 0)] � 0:938; +

Pr[class (0; 1)] � 0:000; +

Pr[class (1; 0)] � 0:000; +

Pr[class (1; 1)] � 0:060; +

Pr[class (1; 2)] � 0:000; +

Pr[class (2; 1)] � 0:000; +

Pr[class (2; 2)] � 0:001; +

Right column is sign of aS;T .

Data structure D(S) capturing

the generalized computation:

the set S; the multiset f(S);

the number of collisions in S.

Very efficient to move from D(S)

to D(T) if T is an adjacent set:

#S = #T = r, #(S\T) = r�1.

2003 Ambainis, simplified 2007

Magniez–Nayak–Roland–Santha:

Create superposition of states

(D(S); D(T)) with adjacent S; T .

By a quantum walk

find S containing a collision.

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

0 negations and 0 diffusions:

Pr[class (0; 0)] � 0:938; +

Pr[class (0; 1)] � 0:000; +

Pr[class (1; 0)] � 0:000; +

Pr[class (1; 1)] � 0:060; +

Pr[class (1; 2)] � 0:000; +

Pr[class (2; 1)] � 0:000; +

Pr[class (2; 2)] � 0:001; +

Right column is sign of aS;T .

Data structure D(S) capturing

the generalized computation:

the set S; the multiset f(S);

the number of collisions in S.

Very efficient to move from D(S)

to D(T) if T is an adjacent set:

#S = #T = r, #(S\T) = r�1.

2003 Ambainis, simplified 2007

Magniez–Nayak–Roland–Santha:

Create superposition of states

(D(S); D(T)) with adjacent S; T .

By a quantum walk

find S containing a collision.

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

0 negations and 0 diffusions:

Pr[class (0; 0)] � 0:938; +

Pr[class (0; 1)] � 0:000; +

Pr[class (1; 0)] � 0:000; +

Pr[class (1; 1)] � 0:060; +

Pr[class (1; 2)] � 0:000; +

Pr[class (2; 1)] � 0:000; +

Pr[class (2; 2)] � 0:001; +

Right column is sign of aS;T .

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

0 negations and 0 diffusions:

Pr[class (0; 0)] � 0:938; +

Pr[class (0; 1)] � 0:000; +

Pr[class (1; 0)] � 0:000; +

Pr[class (1; 1)] � 0:060; +

Pr[class (1; 2)] � 0:000; +

Pr[class (2; 1)] � 0:000; +

Pr[class (2; 2)] � 0:001; +

Right column is sign of aS;T .

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

1 negation and 46 diffusions:

Pr[class (0; 0)] � 0:935; +

Pr[class (0; 1)] � 0:000; +

Pr[class (1; 0)] � 0:000;�
Pr[class (1; 1)] � 0:057; +

Pr[class (1; 2)] � 0:000; +

Pr[class (2; 1)] � 0:000;�
Pr[class (2; 2)] � 0:008; +

Right column is sign of aS;T .

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

2 negations and 92 diffusions:

Pr[class (0; 0)] � 0:918; +

Pr[class (0; 1)] � 0:001; +

Pr[class (1; 0)] � 0:000;�
Pr[class (1; 1)] � 0:059; +

Pr[class (1; 2)] � 0:001; +

Pr[class (2; 1)] � 0:000;�
Pr[class (2; 2)] � 0:022; +

Right column is sign of aS;T .

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

3 negations and 138 diffusions:

Pr[class (0; 0)] � 0:897; +

Pr[class (0; 1)] � 0:001; +

Pr[class (1; 0)] � 0:000;�
Pr[class (1; 1)] � 0:058; +

Pr[class (1; 2)] � 0:002; +

Pr[class (2; 1)] � 0:000; +

Pr[class (2; 2)] � 0:042; +

Right column is sign of aS;T .

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

4 negations and 184 diffusions:

Pr[class (0; 0)] � 0:873; +

Pr[class (0; 1)] � 0:001; +

Pr[class (1; 0)] � 0:000;�
Pr[class (1; 1)] � 0:054; +

Pr[class (1; 2)] � 0:002; +

Pr[class (2; 1)] � 0:000; +

Pr[class (2; 2)] � 0:070; +

Right column is sign of aS;T .

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

5 negations and 230 diffusions:

Pr[class (0; 0)] � 0:838; +

Pr[class (0; 1)] � 0:001; +

Pr[class (1; 0)] � 0:001;�
Pr[class (1; 1)] � 0:054; +

Pr[class (1; 2)] � 0:003; +

Pr[class (2; 1)] � 0:000; +

Pr[class (2; 2)] � 0:104; +

Right column is sign of aS;T .

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

6 negations and 276 diffusions:

Pr[class (0; 0)] � 0:800; +

Pr[class (0; 1)] � 0:001; +

Pr[class (1; 0)] � 0:001;�
Pr[class (1; 1)] � 0:051; +

Pr[class (1; 2)] � 0:006; +

Pr[class (2; 1)] � 0:000; +

Pr[class (2; 2)] � 0:141; +

Right column is sign of aS;T .

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

7 negations and 322 diffusions:

Pr[class (0; 0)] � 0:758; +

Pr[class (0; 1)] � 0:002; +

Pr[class (1; 0)] � 0:001;�
Pr[class (1; 1)] � 0:047; +

Pr[class (1; 2)] � 0:007; +

Pr[class (2; 1)] � 0:000; +

Pr[class (2; 2)] � 0:184; +

Right column is sign of aS;T .

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

8 negations and 368 diffusions:

Pr[class (0; 0)] � 0:708; +

Pr[class (0; 1)] � 0:003; +

Pr[class (1; 0)] � 0:001;�
Pr[class (1; 1)] � 0:046; +

Pr[class (1; 2)] � 0:007; +

Pr[class (2; 1)] � 0:000; +

Pr[class (2; 2)] � 0:234; +

Right column is sign of aS;T .

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

9 negations and 414 diffusions:

Pr[class (0; 0)] � 0:658; +

Pr[class (0; 1)] � 0:003; +

Pr[class (1; 0)] � 0:001;�
Pr[class (1; 1)] � 0:042; +

Pr[class (1; 2)] � 0:009; +

Pr[class (2; 1)] � 0:000; +

Pr[class (2; 2)] � 0:287; +

Right column is sign of aS;T .

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

10 negations and 460 diffusions:

Pr[class (0; 0)] � 0:606; +

Pr[class (0; 1)] � 0:003; +

Pr[class (1; 0)] � 0:002;�
Pr[class (1; 1)] � 0:037; +

Pr[class (1; 2)] � 0:013; +

Pr[class (2; 1)] � 0:000; +

Pr[class (2; 2)] � 0:338; +

Right column is sign of aS;T .

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

11 negations and 506 diffusions:

Pr[class (0; 0)] � 0:547; +

Pr[class (0; 1)] � 0:004; +

Pr[class (1; 0)] � 0:003;�
Pr[class (1; 1)] � 0:036; +

Pr[class (1; 2)] � 0:015; +

Pr[class (2; 1)] � 0:001; +

Pr[class (2; 2)] � 0:394; +

Right column is sign of aS;T .

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

12 negations and 552 diffusions:

Pr[class (0; 0)] � 0:491; +

Pr[class (0; 1)] � 0:004; +

Pr[class (1; 0)] � 0:003;�
Pr[class (1; 1)] � 0:032; +

Pr[class (1; 2)] � 0:014; +

Pr[class (2; 1)] � 0:001; +

Pr[class (2; 2)] � 0:455; +

Right column is sign of aS;T .

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

13 negations and 598 diffusions:

Pr[class (0; 0)] � 0:436; +

Pr[class (0; 1)] � 0:005; +

Pr[class (1; 0)] � 0:003;�
Pr[class (1; 1)] � 0:026; +

Pr[class (1; 2)] � 0:017; +

Pr[class (2; 1)] � 0:000; +

Pr[class (2; 2)] � 0:513; +

Right column is sign of aS;T .

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

14 negations and 644 diffusions:

Pr[class (0; 0)] � 0:377; +

Pr[class (0; 1)] � 0:006; +

Pr[class (1; 0)] � 0:004;�
Pr[class (1; 1)] � 0:025; +

Pr[class (1; 2)] � 0:022; +

Pr[class (2; 1)] � 0:001; +

Pr[class (2; 2)] � 0:566; +

Right column is sign of aS;T .

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

15 negations and 690 diffusions:

Pr[class (0; 0)] � 0:322; +

Pr[class (0; 1)] � 0:005; +

Pr[class (1; 0)] � 0:004;�
Pr[class (1; 1)] � 0:021; +

Pr[class (1; 2)] � 0:023; +

Pr[class (2; 1)] � 0:001; +

Pr[class (2; 2)] � 0:623; +

Right column is sign of aS;T .

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

16 negations and 736 diffusions:

Pr[class (0; 0)] � 0:270; +

Pr[class (0; 1)] � 0:006; +

Pr[class (1; 0)] � 0:005;�
Pr[class (1; 1)] � 0:017; +

Pr[class (1; 2)] � 0:022; +

Pr[class (2; 1)] � 0:001; +

Pr[class (2; 2)] � 0:680; +

Right column is sign of aS;T .

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

17 negations and 782 diffusions:

Pr[class (0; 0)] � 0:218; +

Pr[class (0; 1)] � 0:007; +

Pr[class (1; 0)] � 0:005;�
Pr[class (1; 1)] � 0:015; +

Pr[class (1; 2)] � 0:024; +

Pr[class (2; 1)] � 0:001; +

Pr[class (2; 2)] � 0:730; +

Right column is sign of aS;T .

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

18 negations and 828 diffusions:

Pr[class (0; 0)] � 0:172; +

Pr[class (0; 1)] � 0:006; +

Pr[class (1; 0)] � 0:005;�
Pr[class (1; 1)] � 0:011; +

Pr[class (1; 2)] � 0:029; +

Pr[class (2; 1)] � 0:001; +

Pr[class (2; 2)] � 0:775; +

Right column is sign of aS;T .

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

19 negations and 874 diffusions:

Pr[class (0; 0)] � 0:131; +

Pr[class (0; 1)] � 0:007; +

Pr[class (1; 0)] � 0:006;�
Pr[class (1; 1)] � 0:008; +

Pr[class (1; 2)] � 0:030; +

Pr[class (2; 1)] � 0:002; +

Pr[class (2; 2)] � 0:816; +

Right column is sign of aS;T .

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

20 negations and 920 diffusions:

Pr[class (0; 0)] � 0:093; +

Pr[class (0; 1)] � 0:007; +

Pr[class (1; 0)] � 0:007;�
Pr[class (1; 1)] � 0:007; +

Pr[class (1; 2)] � 0:027; +

Pr[class (2; 1)] � 0:002; +

Pr[class (2; 2)] � 0:857; +

Right column is sign of aS;T .

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

21 negations and 966 diffusions:

Pr[class (0; 0)] � 0:062; +

Pr[class (0; 1)] � 0:007; +

Pr[class (1; 0)] � 0:006;�
Pr[class (1; 1)] � 0:004; +

Pr[class (1; 2)] � 0:030; +

Pr[class (2; 1)] � 0:001; +

Pr[class (2; 2)] � 0:890; +

Right column is sign of aS;T .

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

22 negations and 1012 diffusions:

Pr[class (0; 0)] � 0:037; +

Pr[class (0; 1)] � 0:008; +

Pr[class (1; 0)] � 0:007;�
Pr[class (1; 1)] � 0:002; +

Pr[class (1; 2)] � 0:034; +

Pr[class (2; 1)] � 0:001; +

Pr[class (2; 2)] � 0:910; +

Right column is sign of aS;T .

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

23 negations and 1058 diffusions:

Pr[class (0; 0)] � 0:017; +

Pr[class (0; 1)] � 0:008; +

Pr[class (1; 0)] � 0:007;�
Pr[class (1; 1)] � 0:002; +

Pr[class (1; 2)] � 0:034; +

Pr[class (2; 1)] � 0:002; +

Pr[class (2; 2)] � 0:930; +

Right column is sign of aS;T .

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

24 negations and 1104 diffusions:

Pr[class (0; 0)] � 0:005; +

Pr[class (0; 1)] � 0:007; +

Pr[class (1; 0)] � 0:007;�
Pr[class (1; 1)] � 0:000; +

Pr[class (1; 2)] � 0:030; +

Pr[class (2; 1)] � 0:002; +

Pr[class (2; 2)] � 0:948; +

Right column is sign of aS;T .

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

25 negations and 1150 diffusions:

Pr[class (0; 0)] � 0:000; +

Pr[class (0; 1)] � 0:008; +

Pr[class (1; 0)] � 0:008;�
Pr[class (1; 1)] � 0:000; +

Pr[class (1; 2)] � 0:031; +

Pr[class (2; 1)] � 0:001; +

Pr[class (2; 2)] � 0:952; +

Right column is sign of aS;T .

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

26 negations and 1196 diffusions:

Pr[class (0; 0)] � 0:002;�
Pr[class (0; 1)] � 0:008; +

Pr[class (1; 0)] � 0:008;�
Pr[class (1; 1)] � 0:000;�
Pr[class (1; 2)] � 0:035; +

Pr[class (2; 1)] � 0:002; +

Pr[class (2; 2)] � 0:945; +

Right column is sign of aS;T .

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

27 negations and 1242 diffusions:

Pr[class (0; 0)] � 0:011;�
Pr[class (0; 1)] � 0:007; +

Pr[class (1; 0)] � 0:007;�
Pr[class (1; 1)] � 0:001;�
Pr[class (1; 2)] � 0:034; +

Pr[class (2; 1)] � 0:003; +

Pr[class (2; 2)] � 0:938; +

Right column is sign of aS;T .

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

27 negations and 1242 diffusions:

Pr[class (0; 0)] � 0:011;�
Pr[class (0; 1)] � 0:007; +

Pr[class (1; 0)] � 0:007;�
Pr[class (1; 1)] � 0:001;�
Pr[class (1; 2)] � 0:034; +

Pr[class (2; 1)] � 0:003; +

Pr[class (2; 2)] � 0:938; +

Right column is sign of aS;T .

Subset-sum walk (0:333 : : :)

Consider f defined by

f(1; J1) = Σ(J1)

for J1 � f1; : : : ; n=2g;
f(2; J2) = t� Σ(J2)

for J2 � fn=2 + 1; : : : ; ng.
Good chance of unique

collision Σ(J1) = t� Σ(J2).

n=2 + 1 bits of input,

so quantum walk costs 2n=3.

Easily tweak quantum walk

to handle more collisions,

ignore Σ(J1) = Σ(J 01), etc.

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

27 negations and 1242 diffusions:

Pr[class (0; 0)] � 0:011;�
Pr[class (0; 1)] � 0:007; +

Pr[class (1; 0)] � 0:007;�
Pr[class (1; 1)] � 0:001;�
Pr[class (1; 2)] � 0:034; +

Pr[class (2; 1)] � 0:003; +

Pr[class (2; 2)] � 0:938; +

Right column is sign of aS;T .

Subset-sum walk (0:333 : : :)

Consider f defined by

f(1; J1) = Σ(J1)

for J1 � f1; : : : ; n=2g;
f(2; J2) = t� Σ(J2)

for J2 � fn=2 + 1; : : : ; ng.
Good chance of unique

collision Σ(J1) = t� Σ(J2).

n=2 + 1 bits of input,

so quantum walk costs 2n=3.

Easily tweak quantum walk

to handle more collisions,

ignore Σ(J1) = Σ(J 01), etc.

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

27 negations and 1242 diffusions:

Pr[class (0; 0)] � 0:011;�
Pr[class (0; 1)] � 0:007; +

Pr[class (1; 0)] � 0:007;�
Pr[class (1; 1)] � 0:001;�
Pr[class (1; 2)] � 0:034; +

Pr[class (2; 1)] � 0:003; +

Pr[class (2; 2)] � 0:938; +

Right column is sign of aS;T .

Subset-sum walk (0:333 : : :)

Consider f defined by

f(1; J1) = Σ(J1)

for J1 � f1; : : : ; n=2g;
f(2; J2) = t� Σ(J2)

for J2 � fn=2 + 1; : : : ; ng.
Good chance of unique

collision Σ(J1) = t� Σ(J2).

n=2 + 1 bits of input,

so quantum walk costs 2n=3.

Easily tweak quantum walk

to handle more collisions,

ignore Σ(J1) = Σ(J 01), etc.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

27 negations and 1242 diffusions:

Pr[class (0; 0)] � 0:011;�
Pr[class (0; 1)] � 0:007; +

Pr[class (1; 0)] � 0:007;�
Pr[class (1; 1)] � 0:001;�
Pr[class (1; 2)] � 0:034; +

Pr[class (2; 1)] � 0:003; +

Pr[class (2; 2)] � 0:938; +

Right column is sign of aS;T .

Subset-sum walk (0:333 : : :)

Consider f defined by

f(1; J1) = Σ(J1)

for J1 � f1; : : : ; n=2g;
f(2; J2) = t� Σ(J2)

for J2 � fn=2 + 1; : : : ; ng.
Good chance of unique

collision Σ(J1) = t� Σ(J2).

n=2 + 1 bits of input,

so quantum walk costs 2n=3.

Easily tweak quantum walk

to handle more collisions,

ignore Σ(J1) = Σ(J 01), etc.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

27 negations and 1242 diffusions:

Pr[class (0; 0)] � 0:011;�
Pr[class (0; 1)] � 0:007; +

Pr[class (1; 0)] � 0:007;�
Pr[class (1; 1)] � 0:001;�
Pr[class (1; 2)] � 0:034; +

Pr[class (2; 1)] � 0:003; +

Pr[class (2; 2)] � 0:938; +

Right column is sign of aS;T .

Subset-sum walk (0:333 : : :)

Consider f defined by

f(1; J1) = Σ(J1)

for J1 � f1; : : : ; n=2g;
f(2; J2) = t� Σ(J2)

for J2 � fn=2 + 1; : : : ; ng.
Good chance of unique

collision Σ(J1) = t� Σ(J2).

n=2 + 1 bits of input,

so quantum walk costs 2n=3.

Easily tweak quantum walk

to handle more collisions,

ignore Σ(J1) = Σ(J 01), etc.

Generalized moduli

Choose M, t1, r with M � r.

(Original moduli algorithm

is the special case r = 2n=4.)

Take set S11, #S11 = r, where

J11 2 S11) J11 � f1; : : : ; n=4g.
(Original algorithm: S11 is the set

of all J11 � f1; : : : ; n=4g.)
Compute Σ(J11) mod M

for each J11 2 S11.

Similarly take a set S12 of r

subsets of fn=4 + 1; : : : ; n=2g.
Compute t1 � Σ(J12) mod M

for each J12 2 S12.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

27 negations and 1242 diffusions:

Pr[class (0; 0)] � 0:011;�
Pr[class (0; 1)] � 0:007; +

Pr[class (1; 0)] � 0:007;�
Pr[class (1; 1)] � 0:001;�
Pr[class (1; 2)] � 0:034; +

Pr[class (2; 1)] � 0:003; +

Pr[class (2; 2)] � 0:938; +

Right column is sign of aS;T .

Subset-sum walk (0:333 : : :)

Consider f defined by

f(1; J1) = Σ(J1)

for J1 � f1; : : : ; n=2g;
f(2; J2) = t� Σ(J2)

for J2 � fn=2 + 1; : : : ; ng.
Good chance of unique

collision Σ(J1) = t� Σ(J2).

n=2 + 1 bits of input,

so quantum walk costs 2n=3.

Easily tweak quantum walk

to handle more collisions,

ignore Σ(J1) = Σ(J 01), etc.

Generalized moduli

Choose M, t1, r with M � r.

(Original moduli algorithm

is the special case r = 2n=4.)

Take set S11, #S11 = r, where

J11 2 S11) J11 � f1; : : : ; n=4g.
(Original algorithm: S11 is the set

of all J11 � f1; : : : ; n=4g.)
Compute Σ(J11) mod M

for each J11 2 S11.

Similarly take a set S12 of r

subsets of fn=4 + 1; : : : ; n=2g.
Compute t1 � Σ(J12) mod M

for each J12 2 S12.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

27 negations and 1242 diffusions:

Pr[class (0; 0)] � 0:011;�
Pr[class (0; 1)] � 0:007; +

Pr[class (1; 0)] � 0:007;�
Pr[class (1; 1)] � 0:001;�
Pr[class (1; 2)] � 0:034; +

Pr[class (2; 1)] � 0:003; +

Pr[class (2; 2)] � 0:938; +

Right column is sign of aS;T .

Subset-sum walk (0:333 : : :)

Consider f defined by

f(1; J1) = Σ(J1)

for J1 � f1; : : : ; n=2g;
f(2; J2) = t� Σ(J2)

for J2 � fn=2 + 1; : : : ; ng.
Good chance of unique

collision Σ(J1) = t� Σ(J2).

n=2 + 1 bits of input,

so quantum walk costs 2n=3.

Easily tweak quantum walk

to handle more collisions,

ignore Σ(J1) = Σ(J 01), etc.

Generalized moduli

Choose M, t1, r with M � r.

(Original moduli algorithm

is the special case r = 2n=4.)

Take set S11, #S11 = r, where

J11 2 S11) J11 � f1; : : : ; n=4g.
(Original algorithm: S11 is the set

of all J11 � f1; : : : ; n=4g.)
Compute Σ(J11) mod M

for each J11 2 S11.

Similarly take a set S12 of r

subsets of fn=4 + 1; : : : ; n=2g.
Compute t1 � Σ(J12) mod M

for each J12 2 S12.

Subset-sum walk (0:333 : : :)

Consider f defined by

f(1; J1) = Σ(J1)

for J1 � f1; : : : ; n=2g;
f(2; J2) = t� Σ(J2)

for J2 � fn=2 + 1; : : : ; ng.
Good chance of unique

collision Σ(J1) = t� Σ(J2).

n=2 + 1 bits of input,

so quantum walk costs 2n=3.

Easily tweak quantum walk

to handle more collisions,

ignore Σ(J1) = Σ(J 01), etc.

Generalized moduli

Choose M, t1, r with M � r.

(Original moduli algorithm

is the special case r = 2n=4.)

Take set S11, #S11 = r, where

J11 2 S11) J11 � f1; : : : ; n=4g.
(Original algorithm: S11 is the set

of all J11 � f1; : : : ; n=4g.)
Compute Σ(J11) mod M

for each J11 2 S11.

Similarly take a set S12 of r

subsets of fn=4 + 1; : : : ; n=2g.
Compute t1 � Σ(J12) mod M

for each J12 2 S12.

Subset-sum walk (0:333 : : :)

Consider f defined by

f(1; J1) = Σ(J1)

for J1 � f1; : : : ; n=2g;
f(2; J2) = t� Σ(J2)

for J2 � fn=2 + 1; : : : ; ng.
Good chance of unique

collision Σ(J1) = t� Σ(J2).

n=2 + 1 bits of input,

so quantum walk costs 2n=3.

Easily tweak quantum walk

to handle more collisions,

ignore Σ(J1) = Σ(J 01), etc.

Generalized moduli

Choose M, t1, r with M � r.

(Original moduli algorithm

is the special case r = 2n=4.)

Take set S11, #S11 = r, where

J11 2 S11) J11 � f1; : : : ; n=4g.
(Original algorithm: S11 is the set

of all J11 � f1; : : : ; n=4g.)
Compute Σ(J11) mod M

for each J11 2 S11.

Similarly take a set S12 of r

subsets of fn=4 + 1; : : : ; n=2g.
Compute t1 � Σ(J12) mod M

for each J12 2 S12.

Find all collisions

Σ(J11) � t1 � Σ(J12),

i.e., Σ(J1) � t1 (mod M)

where J1 = J11 [J12.

Compute each Σ(J1).

Similarly S21, S22)
list of J2 with Σ(J2) � t� t1
) each t� Σ(J2).

Find collisions Σ(J1) = t� Σ(J2).

Success probability r4=2n

at finding any particular J with

Σ(J) = t, Σ(J1) � t1 (mod M).

Assuming typical distribution:

cost r, since M � r.

Subset-sum walk (0:333 : : :)

Consider f defined by

f(1; J1) = Σ(J1)

for J1 � f1; : : : ; n=2g;
f(2; J2) = t� Σ(J2)

for J2 � fn=2 + 1; : : : ; ng.
Good chance of unique

collision Σ(J1) = t� Σ(J2).

n=2 + 1 bits of input,

so quantum walk costs 2n=3.

Easily tweak quantum walk

to handle more collisions,

ignore Σ(J1) = Σ(J 01), etc.

Generalized moduli

Choose M, t1, r with M � r.

(Original moduli algorithm

is the special case r = 2n=4.)

Take set S11, #S11 = r, where

J11 2 S11) J11 � f1; : : : ; n=4g.
(Original algorithm: S11 is the set

of all J11 � f1; : : : ; n=4g.)
Compute Σ(J11) mod M

for each J11 2 S11.

Similarly take a set S12 of r

subsets of fn=4 + 1; : : : ; n=2g.
Compute t1 � Σ(J12) mod M

for each J12 2 S12.

Find all collisions

Σ(J11) � t1 � Σ(J12),

i.e., Σ(J1) � t1 (mod M)

where J1 = J11 [J12.

Compute each Σ(J1).

Similarly S21, S22)
list of J2 with Σ(J2) � t� t1
) each t� Σ(J2).

Find collisions Σ(J1) = t� Σ(J2).

Success probability r4=2n

at finding any particular J with

Σ(J) = t, Σ(J1) � t1 (mod M).

Assuming typical distribution:

cost r, since M � r.

Subset-sum walk (0:333 : : :)

Consider f defined by

f(1; J1) = Σ(J1)

for J1 � f1; : : : ; n=2g;
f(2; J2) = t� Σ(J2)

for J2 � fn=2 + 1; : : : ; ng.
Good chance of unique

collision Σ(J1) = t� Σ(J2).

n=2 + 1 bits of input,

so quantum walk costs 2n=3.

Easily tweak quantum walk

to handle more collisions,

ignore Σ(J1) = Σ(J 01), etc.

Generalized moduli

Choose M, t1, r with M � r.

(Original moduli algorithm

is the special case r = 2n=4.)

Take set S11, #S11 = r, where

J11 2 S11) J11 � f1; : : : ; n=4g.
(Original algorithm: S11 is the set

of all J11 � f1; : : : ; n=4g.)
Compute Σ(J11) mod M

for each J11 2 S11.

Similarly take a set S12 of r

subsets of fn=4 + 1; : : : ; n=2g.
Compute t1 � Σ(J12) mod M

for each J12 2 S12.

Find all collisions

Σ(J11) � t1 � Σ(J12),

i.e., Σ(J1) � t1 (mod M)

where J1 = J11 [J12.

Compute each Σ(J1).

Similarly S21, S22)
list of J2 with Σ(J2) � t� t1
) each t� Σ(J2).

Find collisions Σ(J1) = t� Σ(J2).

Success probability r4=2n

at finding any particular J with

Σ(J) = t, Σ(J1) � t1 (mod M).

Assuming typical distribution:

cost r, since M � r.

Generalized moduli

Choose M, t1, r with M � r.

(Original moduli algorithm

is the special case r = 2n=4.)

Take set S11, #S11 = r, where

J11 2 S11) J11 � f1; : : : ; n=4g.
(Original algorithm: S11 is the set

of all J11 � f1; : : : ; n=4g.)
Compute Σ(J11) mod M

for each J11 2 S11.

Similarly take a set S12 of r

subsets of fn=4 + 1; : : : ; n=2g.
Compute t1 � Σ(J12) mod M

for each J12 2 S12.

Find all collisions

Σ(J11) � t1 � Σ(J12),

i.e., Σ(J1) � t1 (mod M)

where J1 = J11 [J12.

Compute each Σ(J1).

Similarly S21, S22)
list of J2 with Σ(J2) � t� t1
) each t� Σ(J2).

Find collisions Σ(J1) = t� Σ(J2).

Success probability r4=2n

at finding any particular J with

Σ(J) = t, Σ(J1) � t1 (mod M).

Assuming typical distribution:

cost r, since M � r.

Generalized moduli

Choose M, t1, r with M � r.

(Original moduli algorithm

is the special case r = 2n=4.)

Take set S11, #S11 = r, where

J11 2 S11) J11 � f1; : : : ; n=4g.
(Original algorithm: S11 is the set

of all J11 � f1; : : : ; n=4g.)
Compute Σ(J11) mod M

for each J11 2 S11.

Similarly take a set S12 of r

subsets of fn=4 + 1; : : : ; n=2g.
Compute t1 � Σ(J12) mod M

for each J12 2 S12.

Find all collisions

Σ(J11) � t1 � Σ(J12),

i.e., Σ(J1) � t1 (mod M)

where J1 = J11 [J12.

Compute each Σ(J1).

Similarly S21, S22)
list of J2 with Σ(J2) � t� t1
) each t� Σ(J2).

Find collisions Σ(J1) = t� Σ(J2).

Success probability r4=2n

at finding any particular J with

Σ(J) = t, Σ(J1) � t1 (mod M).

Assuming typical distribution:

cost r, since M � r.

Quantum moduli (0:3)

Capture execution of

generalized moduli algorithm

as data structure

D(S11; S12; S21; S22).

Easy to move

from Sij to adjacent Tij .

Convert into quantum walk:

cost r +
p
r2n=2=r2.

20:2n for r � 20:2n.

Use “amplitude amplification”

to search for correct t1.

Total cost 20:3n.

Generalized moduli

Choose M, t1, r with M � r.

(Original moduli algorithm

is the special case r = 2n=4.)

Take set S11, #S11 = r, where

J11 2 S11) J11 � f1; : : : ; n=4g.
(Original algorithm: S11 is the set

of all J11 � f1; : : : ; n=4g.)
Compute Σ(J11) mod M

for each J11 2 S11.

Similarly take a set S12 of r

subsets of fn=4 + 1; : : : ; n=2g.
Compute t1 � Σ(J12) mod M

for each J12 2 S12.

Find all collisions

Σ(J11) � t1 � Σ(J12),

i.e., Σ(J1) � t1 (mod M)

where J1 = J11 [J12.

Compute each Σ(J1).

Similarly S21, S22)
list of J2 with Σ(J2) � t� t1
) each t� Σ(J2).

Find collisions Σ(J1) = t� Σ(J2).

Success probability r4=2n

at finding any particular J with

Σ(J) = t, Σ(J1) � t1 (mod M).

Assuming typical distribution:

cost r, since M � r.

Quantum moduli (0:3)

Capture execution of

generalized moduli algorithm

as data structure

D(S11; S12; S21; S22).

Easy to move

from Sij to adjacent Tij .

Convert into quantum walk:

cost r +
p
r2n=2=r2.

20:2n for r � 20:2n.

Use “amplitude amplification”

to search for correct t1.

Total cost 20:3n.

Generalized moduli

Choose M, t1, r with M � r.

(Original moduli algorithm

is the special case r = 2n=4.)

Take set S11, #S11 = r, where

J11 2 S11) J11 � f1; : : : ; n=4g.
(Original algorithm: S11 is the set

of all J11 � f1; : : : ; n=4g.)
Compute Σ(J11) mod M

for each J11 2 S11.

Similarly take a set S12 of r

subsets of fn=4 + 1; : : : ; n=2g.
Compute t1 � Σ(J12) mod M

for each J12 2 S12.

Find all collisions

Σ(J11) � t1 � Σ(J12),

i.e., Σ(J1) � t1 (mod M)

where J1 = J11 [J12.

Compute each Σ(J1).

Similarly S21, S22)
list of J2 with Σ(J2) � t� t1
) each t� Σ(J2).

Find collisions Σ(J1) = t� Σ(J2).

Success probability r4=2n

at finding any particular J with

Σ(J) = t, Σ(J1) � t1 (mod M).

Assuming typical distribution:

cost r, since M � r.

Quantum moduli (0:3)

Capture execution of

generalized moduli algorithm

as data structure

D(S11; S12; S21; S22).

Easy to move

from Sij to adjacent Tij .

Convert into quantum walk:

cost r +
p
r2n=2=r2.

20:2n for r � 20:2n.

Use “amplitude amplification”

to search for correct t1.

Total cost 20:3n.

Find all collisions

Σ(J11) � t1 � Σ(J12),

i.e., Σ(J1) � t1 (mod M)

where J1 = J11 [J12.

Compute each Σ(J1).

Similarly S21, S22)
list of J2 with Σ(J2) � t� t1
) each t� Σ(J2).

Find collisions Σ(J1) = t� Σ(J2).

Success probability r4=2n

at finding any particular J with

Σ(J) = t, Σ(J1) � t1 (mod M).

Assuming typical distribution:

cost r, since M � r.

Quantum moduli (0:3)

Capture execution of

generalized moduli algorithm

as data structure

D(S11; S12; S21; S22).

Easy to move

from Sij to adjacent Tij .

Convert into quantum walk:

cost r +
p
r2n=2=r2.

20:2n for r � 20:2n.

Use “amplitude amplification”

to search for correct t1.

Total cost 20:3n.

Find all collisions

Σ(J11) � t1 � Σ(J12),

i.e., Σ(J1) � t1 (mod M)

where J1 = J11 [J12.

Compute each Σ(J1).

Similarly S21, S22)
list of J2 with Σ(J2) � t� t1
) each t� Σ(J2).

Find collisions Σ(J1) = t� Σ(J2).

Success probability r4=2n

at finding any particular J with

Σ(J) = t, Σ(J1) � t1 (mod M).

Assuming typical distribution:

cost r, since M � r.

Quantum moduli (0:3)

Capture execution of

generalized moduli algorithm

as data structure

D(S11; S12; S21; S22).

Easy to move

from Sij to adjacent Tij .

Convert into quantum walk:

cost r +
p
r2n=2=r2.

20:2n for r � 20:2n.

Use “amplitude amplification”

to search for correct t1.

Total cost 20:3n.

Quantum reps (0:241 : : :)

Central result of the paper:

Combine quantum walk

with “representations” idea of

2010 Howgrave-Graham–Joux.

Subset-sum exponent 0:241 : : :;

new record.

Lower-level improvement:

Ambainis uses ad-hoc

“combination of a hash table

and a skip list” to ensure

history-independence.

We use radix trees.

Much easier, presumably faster.

Find all collisions

Σ(J11) � t1 � Σ(J12),

i.e., Σ(J1) � t1 (mod M)

where J1 = J11 [J12.

Compute each Σ(J1).

Similarly S21, S22)
list of J2 with Σ(J2) � t� t1
) each t� Σ(J2).

Find collisions Σ(J1) = t� Σ(J2).

Success probability r4=2n

at finding any particular J with

Σ(J) = t, Σ(J1) � t1 (mod M).

Assuming typical distribution:

cost r, since M � r.

Quantum moduli (0:3)

Capture execution of

generalized moduli algorithm

as data structure

D(S11; S12; S21; S22).

Easy to move

from Sij to adjacent Tij .

Convert into quantum walk:

cost r +
p
r2n=2=r2.

20:2n for r � 20:2n.

Use “amplitude amplification”

to search for correct t1.

Total cost 20:3n.

Quantum reps (0:241 : : :)

Central result of the paper:

Combine quantum walk

with “representations” idea of

2010 Howgrave-Graham–Joux.

Subset-sum exponent 0:241 : : :;

new record.

Lower-level improvement:

Ambainis uses ad-hoc

“combination of a hash table

and a skip list” to ensure

history-independence.

We use radix trees.

Much easier, presumably faster.

Find all collisions

Σ(J11) � t1 � Σ(J12),

i.e., Σ(J1) � t1 (mod M)

where J1 = J11 [J12.

Compute each Σ(J1).

Similarly S21, S22)
list of J2 with Σ(J2) � t� t1
) each t� Σ(J2).

Find collisions Σ(J1) = t� Σ(J2).

Success probability r4=2n

at finding any particular J with

Σ(J) = t, Σ(J1) � t1 (mod M).

Assuming typical distribution:

cost r, since M � r.

Quantum moduli (0:3)

Capture execution of

generalized moduli algorithm

as data structure

D(S11; S12; S21; S22).

Easy to move

from Sij to adjacent Tij .

Convert into quantum walk:

cost r +
p
r2n=2=r2.

20:2n for r � 20:2n.

Use “amplitude amplification”

to search for correct t1.

Total cost 20:3n.

Quantum reps (0:241 : : :)

Central result of the paper:

Combine quantum walk

with “representations” idea of

2010 Howgrave-Graham–Joux.

Subset-sum exponent 0:241 : : :;

new record.

Lower-level improvement:

Ambainis uses ad-hoc

“combination of a hash table

and a skip list” to ensure

history-independence.

We use radix trees.

Much easier, presumably faster.

Quantum moduli (0:3)

Capture execution of

generalized moduli algorithm

as data structure

D(S11; S12; S21; S22).

Easy to move

from Sij to adjacent Tij .

Convert into quantum walk:

cost r +
p
r2n=2=r2.

20:2n for r � 20:2n.

Use “amplitude amplification”

to search for correct t1.

Total cost 20:3n.

Quantum reps (0:241 : : :)

Central result of the paper:

Combine quantum walk

with “representations” idea of

2010 Howgrave-Graham–Joux.

Subset-sum exponent 0:241 : : :;

new record.

Lower-level improvement:

Ambainis uses ad-hoc

“combination of a hash table

and a skip list” to ensure

history-independence.

We use radix trees.

Much easier, presumably faster.

