Complexity news:
discrete logarithms in
multiplicative groups of
small-characteristic finite fieldsthe algorithm of Barbulescu,
Gaudry, Joux, Thomé
D. J. Bernstein

University of Illinois at Chicago \& Technische Universiteit Eindhoven

Advertisement, maybe related:
iml.univ-mrs.fr/ati/
geocrypt2013/
2013.10.07-11, Tahiti.

Submit talks this month!

Also somewhat related:
I'm starting to analyze cost of NFS + CVP
for class groups, unit groups, short generators of ideals, etc.; exploiting subfields (find short norms first), small Galois groups, etc. Anyone else working on this?

Cryptanalytic applications: attack NTRU, Ring-LWE, FHE. I think NTRU should switch to random prime-degree extensions with big Galois groups.

Discrete logarithms

Goal: Compute some
group isomorphism
$\mathbf{F}_{q}^{*} \rightarrow \mathbf{Z} /(q-1)$,
represented in the usual way.
Algorithm input:
$h_{1}, h_{2}, \ldots \in \mathbf{F}_{q}^{*}$.
Algorithm output:
$\log _{g} h_{1}, \log _{g} h_{2}, \ldots \in \mathbf{Z} /(q-1)$ for some g.
" $\log _{g}$ " means the isomorphism $g \mapsto 1$, if it exists.
"Generic" $\log _{g}$ algorithms:
on average $q^{1 / 2+o(1)}$ operations
uniform, $q^{1 / 3+o(1)}$ non-uniform.
Want something faster.
"Generic" $\log _{g}$ algorithms:
on average $q^{1 / 2+o(1)}$ operations uniform, $q^{1 / 3+o(1)}$ non-uniform.
Want something faster.
"Basic index calculus": 1968
Western-Miller, 1979 Merkle,
1979 Adleman, 1983 Hellman-
Reyneri, 1984 Blake-Fuji-Hara-
Mullin-Vanstone, 1985 ElGamal,
1986 Coppersmith-Odlyzko-
Schroeppel, 1991 LaMacchia-
Odlyzko, 1993 Adleman-
DeMarrais, 1995 Semaev,
1998 Bender-Pomerance.
"NFS": 1991 Schirokauer, 1993
Gordon, 1993 Schirokauer, 1994
Odlyzko, 1996 Schirokauer-
Weber-Denny, 1996 Weber,
1998 Weber-Denny, 2001 JouxLercier, 2006 Joux-Lercier-Smart-Vercauteren.
"FFS": 1984 Coppersmith, 1985
Coppersmith-Davenport, 1985
Odlyzko, 1990 McCurley, 1992
Gordon-McCurley, 1994 Adleman,
1999 Adleman-Huang, 2001
Joux-Lercier, 2006 Joux-Lercier,
2010/2012 Hayashi-Shinohara-
Wang-Matsuo-Shirase-Takagi.
"FFS", continued: 2012 Hayashi-Shimoyama-Shinohara-Takagi, 2012.10 Barbulescu-Bouvier-Detrey-Gaudry-Jeljeli-Thomé-
Videau-Zimmermann, 2013.04
Barbulescu-Bouvier-Detrey-
Gaudry-Jeljeli-Thomé-Videau-
Zimmermann.
"FFS", continued: 2012 Hayashi-
Shimoyama-Shinohara-Takagi,
2012.10 Barbulescu-Bouvier-

Detrey-Gaudry-Jeljeli-Thomé-
Videau-Zimmermann, 2013.04 Barbulescu-Bouvier-Detrey-
Gaudry-Jeljeli-Thomé-VideauZimmermann.
"Not your grandpa's FFS":
2012.12 Joux, 2013.02 Joux,
2013.02 Göloğlu-Granger-McGuire-Zumbrägel, 2013.05
Göloğlu-Granger-McGuire-
Zumbrägel, 2013.06 Barbulescu-
Gaudry-Joux-Thomé.

Reasonable conjectures
for fixed characteristic:
FFS costs $\leq T$ where $\log T \in(\log q)^{1 / 3+o(1)}$.

Reasonable conjectures for fixed characteristic:

FFS costs $\leq T$ where $\log T \in(\log q)^{1 / 3+o(1)}$.
2013.02 Joux algorithm:
$\log T \in(\log q)^{1 / 4+o(1)}$.

Reasonable conjectures for fixed characteristic:

FFS costs $\leq T$ where $\log T \in(\log q)^{1 / 3+o(1)}$.
2013.02 Joux algorithm:
$\log T \in(\log q)^{1 / 4+o(1)}$.
2013.06 Barbulescu-Gaudry-

Joux-Thomé algorithm:
$\log T \in(\log \log q)^{2+o(1)}$.

Reasonable conjectures
for fixed characteristic:
FFS costs $\leq T$ where $\log T \in(\log q)^{1 / 3+o(1)}$.
2013.02 Joux algorithm:
$\log T \in(\log q)^{1 / 4+o(1)}$.
2013.06 Barbulescu-Gaudry-

Joux-Thomé algorithm:
$\log T \in(\log \log q)^{2+o(1)}$.
1994 Shor algorithm:
$\log T \in(\log \log q)^{1+o(1)}$, proven;
but needs a quantum computer.

Field construction

I'll make simplifying assumption:
$q=p^{2 n}$ where
p is an odd prime power,
$n \in \mathbf{Z}, \sqrt{p} \leq n \leq p$.
Most interesting: $n \approx p$.
Example: $p=1009, n=997$.
(Can you find all primes dividing
$p^{2 n}-1=\left(p^{n}-1\right)\left(p^{n}+1\right)$?)
Find "random" poly in $\mathrm{F}_{p^{2}}[x]$ with an irreducible divisor φ of degree n.

Construct \mathbf{F}_{q} as $\mathbf{F}_{p^{2}}[x] / \varphi$.

How many polys to try?

What's chance that $r \in \mathbf{F}_{p^{2}}[x]$ has an irreducible divisor φ of degree n ?

For $n \leq \operatorname{deg} r<2 n$:
express each successful r
uniquely as φ - cofactor.
$\approx\left(p^{2}\right)^{\operatorname{deg} r+1}$ polys r,
$\approx\left(p^{2}\right)^{n} / n$ manic irreds φ,
$\approx\left(p^{2}\right)^{\operatorname{deg} r-n+1}$ cofactors \Rightarrow
chance $\approx 1 / n$ that r works.
Similar story for $\operatorname{deg} r \geq 2 n$.
Factoring r is fast.
\Rightarrow Quickly find r, φ.

Don't use random polys!
(Starting now: abandon proofs.)
Find φ dividing
$x^{p}-x^{2}-\beta$ for some $\beta \in \mathbf{F}_{p^{2}}$.
Then $x^{p}=x^{2}+\beta$ in \mathbf{F}_{q}.
p^{2} choices of $\beta \in \mathbf{F}_{p^{2}}$,
so overwhelmingly likely
that at least one works.
e.g. $p=1009, n=997$:
can have $\beta^{2}+92 \beta+447=0$.
Easily generalize: e.g., take
$x^{p}=x^{2}+\beta x+\gamma$ or
$x^{p}=(x+\beta) /(x+\gamma)$.
But larger degrees are slower.

Low-degree discrete logs

First step of algorithm:
build table of $h \mapsto \log _{g} h$ for
each small $h \in \mathbf{F}_{p^{2}}[x]-\varphi \mathbf{F}_{p^{2}}[x]$.
Easily choose g at same time.
"Small h ": $\operatorname{deg} h \leq D$. Choose $D \geq 1 ; D \in O(\log n / \log \log n)$.

Low-degree discrete logs

First step of algorithm:
build table of $h \mapsto \log _{g} h$ for each small $h \in \mathbf{F}_{p^{2}}[x]-\varphi \mathbf{F}_{p^{2}}[x]$. Easily choose g at same time.
"Small h ": $\operatorname{deg} h \leq D$. Choose $D \geq 1 ; D \in O(\log n / \log \log n)$.

Non-uniform approach: algorithm A_{q} knows table!

Low-degree discrete logs

First step of algorithm:
build table of $h \mapsto \log _{g} h$ for each small $h \in \mathbf{F}_{p^{2}}[x]-\varphi \mathbf{F}_{p^{2}}[x]$. Easily choose g at same time.
"Small h ": $\operatorname{deg} h \leq D$. Choose $D \geq 1 ; D \in O(\log n / \log \log n)$.

Non-uniform approach: algorithm A_{q} knows table!

Two reasons to be more explicit:

1. Want A with q as an input.
2. Method to build table
will be reused for larger h.

The first relation for $D=1$

$\prod_{\alpha \in \mathbf{F}_{p}}(x-\alpha) \equiv x^{2}-x+\beta$.
$" \equiv "$ for $\mathbf{F}_{p^{2}}[x]$: equal \bmod
$x^{p}-x^{2}-\beta$; forces $=$ in F_{q}.
Hope that $x^{2}-x+\beta$ splits in $\mathbf{F}_{p^{2}}[x]$, say as $f_{1} \cdot f_{2}$. Not an unreasonable hope: $\approx 50 \%$ of quadratics split.

Then $\log _{g} f_{1}+\log _{g} f_{2}=$
$\sum_{\alpha \in \mathbf{F}_{p}} \log _{g}(x-\alpha)$.
This is a "relation" among discrete logs of monic linear polys.

More relations for $D=1$

For $a, b, c, d \in \mathbf{F}_{p^{2}}$:
$(c x+d) \prod(a x+b-\alpha(c x+d))$ $\alpha \in \mathbf{F}_{p}$
$=(c x+d)(a x+b)^{p}$
$-(a x+b)(c x+d)^{p}$
$=(c x+d)\left(a^{p} x^{p}+b^{p}\right)$
$-(a x+b)\left(c^{p} x^{p}+d^{p}\right)$
$\equiv(c x+d)\left(a^{p}\left(x^{2}+\beta\right)+b^{p}\right)$
$-(a x+b)\left(c^{p}\left(x^{2}+\beta\right)+d^{p}\right)$.
Left side is product of
linear polys in $\mathbf{F}_{p^{2}}[x]$.
Often right side is too.
$\lambda \in \mathbf{F}_{p^{2}}^{*}, M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G L_{2}\left(\mathbf{F}_{p^{2}}\right)$ $\Rightarrow M, \lambda M$ are redundant.
$m \in \mathrm{GL}_{2}\left(\mathbf{F}_{p}\right), M \in \mathrm{GL}_{2}\left(\mathbf{F}_{p^{2}}\right)$ $\Rightarrow M, m M$ are redundant.

No other obvious redundancies.
Is there a nice way to represent the set of cosets of $\mathrm{PGL}_{2}\left(\mathbf{F}_{p}\right)$ in $\mathrm{PGL}_{2}\left(\mathbf{F}_{p^{2}}\right)$? Best hints so far: Cremona points me to $\mathbf{F}_{p^{4}}^{*} / \mathbf{F}_{p^{2}}^{*}$; Bartel gives solution for GL_{2}.

Mindless enumeration of cosets is not a real bottleneck here but want fast multipoint eval.
$p^{3}+p$ potential relations,
conjecturally \approx independent.
Each succeeds with chance $\approx 1 / 6$.
Only p^{2} monic linear polys.
Expect enough relations
to determine their logs
(or most logs: ok to miss a few), unless p is very small.

BGJT say sparse linear algebra; but fast matrix multiplication gives better const in exponent.
(How to avoid annihilating $\mathbf{F}_{p^{2}}^{*}$? Maybe cleanest: $x^{p}=\beta x^{2}+1$, where β generates $\mathbf{F}_{p^{2}}^{*}$.)

More relations for arbitrary D

For each small $h \in \mathbf{F}_{p^{2}}[x]$:
$(c h+d)\lceil(a h+b-\alpha(c h+d))$ $\alpha \in \mathbf{F}_{p}$
$=(c h+d)(a h+b)^{p}$
$-(a h+b)(c h+d)^{p}$
$=(c h+d)\left(a^{p} h^{p}+b^{p}\right)$
$-(a h+b)\left(c^{p} h^{p}+d^{p}\right)$
$\equiv(c h+d)\left(a^{p} h\left(x^{2}+\beta\right)+b^{p}\right)$
$-(a h+b)\left(c^{p} h\left(x^{2}+\beta\right)+d^{p}\right)$.
Left side is product of small polys; sometimes right side is too. $\approx 5 \%$ as $D \rightarrow \infty$. BGJT say $1 / 6$.

Larger discrete logs

What if $D<\operatorname{deg} h \leq 2 D$?
Use same equation:
$(c h+d) \prod(a h+b-\alpha(c h+d))$
$\alpha \in \mathbf{F}_{p}$
$\equiv(c h+d)\left(a^{p} h\left(x^{2}+\beta\right)+b^{p}\right)$
$-(a h+b)\left(c^{p} h\left(x^{2}+\beta\right)+d^{p}\right)$.
Occasionally right side is product of small polys.
We now know those discrete logs.
Left side is product on new
factor base: $\left\{h+\gamma: \gamma \in \mathbf{F}_{p^{2}}\right\}$.
Solve for each $\log _{g}(h+\gamma)$.

For $\operatorname{deg} h \leq(u / 3) D$:
D-smoothness chance $\approx u^{-u}$ so $\approx u^{-u} p^{3}$ relations.

Need $\approx p^{2}$ relations.
Note free relations: smooth $h+\gamma$.
Works for $u \approx \log p / \log \log p$.
Reminiscent of linear sieve (1977 Schroeppel):
$(\lceil\sqrt{q}\rceil+a)(\lceil\sqrt{q}\rceil+b)$
$\equiv(a+b)\lceil\sqrt{q}\rceil+a b+\lceil\sqrt{q}\rceil^{2}-q$ mod large prime q.
Factor base in linear sieve:
$\{\lceil\sqrt{q}\rceil+a\} \cup\{$ small primes $\}$.

Arbitrary discrete logs

For $(u / 3) D<\operatorname{deg} h \leq(u / 3)^{2} D$:
Use same equation
$(c h+d)\rceil(a h+b-\alpha(c h+d))$ $\alpha \in \mathbf{F}_{p}$
$\equiv(c h+d)\left(a^{p} h\left(x^{2}+\beta\right)+b^{p}\right)$
$-(a h+b)\left(c^{p} h\left(x^{2}+\beta\right)+d^{p}\right)$.
Occasionally $(u / 3) D$-smooth right side; again $\{h+\gamma\}$ for left side. Have seen subroutine to compute $(u / 3) D$-smooth discrete logs.
$p^{O(1)}$ subroutine calls,
of which $\Theta\left(p^{2}\right)$ are important.

For larger h : recurse.
Reach degree $n-1$ using
$\frac{\log n}{\log (u / 3)} \in \Theta\left(\frac{\log n}{\log \log n}\right)$ levels of recursion.

Total cost $p^{\Theta(\log n / \log \log n)}$
$=\exp \Theta\left(\frac{(\log n)^{2}}{\log \log n}\right)$
$=\exp \Theta\left(\frac{(\log \log q)^{2}}{\log \log \log q}\right)$.
What about $p^{2 n}$ with $p<n$?
Embed into an extension field.
Can also use $x^{\text {char }}$ etc.

