Complexity news: discrete logarithms in multiplicative groups of small-characteristic finite fields the algorithm of Barbulescu, Gaudry, Joux, Thomé

D. J. Bernstein University of Illinois at Chicago & Technische Universiteit Eindhoven

Advertisement, maybe related: iml.univ-mrs.fr/ati/ geocrypt2013/ 2013.10.07–11, Tahiti. Submit talks this month!

Also somewhat related:

I'm starting to analyze cost of NFS + CVP for class groups, unit groups, short generators of ideals, etc.; exploiting subfields (find short *norms* first), small Galois groups, etc. Anyone else working on this?

Cryptanalytic applications: attack NTRU, Ring-LWE, FHE. I think NTRU should switch to random prime-degree extensions with big Galois groups.

kity news:

- logarithms in
- cative groups of
- aracteristic finite fields—
- rithm of Barbulescu,
- Joux, Thomé
- ernstein
- ty of Illinois at Chicago & che Universiteit Eindhoven
- ement, maybe related:
- lv-mrs.fr/ati/
- ot2013/
- 07–11, Tahiti.
- talks this month!

Also somewhat related:

I'm starting to analyze cost of NFS + CVP for class groups, unit groups, short generators of ideals, etc.; exploiting subfields (find short *norms* first), small Galois groups, etc. Anyone else working on this?

Cryptanalytic applications: attack NTRU, Ring-LWE, FHE. I think NTRU should switch to random prime-degree extensions with big Galois groups. Discrete

Goal: Constraints of $\mathbf{F}_q^* \to \mathbf{Z}_q$

represen

Algorith $h_1, h_2, .$

Algorith $\log_g h_1$,

for some

" \log_g " r $g\mapsto 1$, i

s in ups of c finite fields— Sarbulescu, omé

is at Chicago & siteit Eindhoven

aybe related: c/ati/

hiti. month! Also somewhat related:

I'm starting to analyze cost of NFS + CVP for class groups, unit groups, short generators of ideals, etc.; exploiting subfields (find short *norms* first), small Galois groups, etc. Anyone else working on this? Cryptanalytic applications:

Cryptanalytic applications: attack NTRU, Ring-LWE, FHE. I think NTRU should switch to random prime-degree extensions with big Galois groups.

Discrete logarithm

Goal: Compute so group isomorphism $\mathbf{F}_{q}^{*} \rightarrow \mathbf{Z}/(q-1),$

represented in the

Algorithm input: $h_1, h_2, \ldots \in \mathbf{F}_q^*$.

Algorithm output: $\log_g h_1, \log_g h_2, ...$ for some *g*.

" \log_g " means the $g \mapsto 1$, if it exists.

ago & hoven

lds—

ed:

Also somewhat related:

I'm starting to analyze cost of NFS + CVP for class groups, unit groups, short generators of ideals, etc.; exploiting subfields (find short *norms* first), small Galois groups, etc. Anyone else working on this? Cryptanalytic applications: attack NTRU, Ring-LWE, FHE. I think NTRU should switch to random prime-degree extensions with big Galois groups.

for some g.

Discrete logarithms

- Goal: Compute some group isomorphism $\mathbf{F}_{q}^{*} \rightarrow \mathbf{Z}/(q-1),$
- represented in the usual way
- Algorithm input:
- $h_1, h_2, \ldots \in \mathbf{F}_q^*$.
- Algorithm output:
- $\log_q h_1, \log_q h_2, \ldots \in \mathbf{Z}/(q \mathbf{Z})$
- "log_q" means the isomorphi $g \mapsto 1$, if it exists.

Also somewhat related:

I'm starting to analyze cost of NFS + CVP for class groups, unit groups, short generators of ideals, etc.; exploiting subfields (find short *norms* first), small Galois groups, etc. Anyone else working on this?

Cryptanalytic applications: attack NTRU, Ring-LWE, FHE. I think NTRU should switch to random prime-degree extensions with big Galois groups.

Discrete logarithms

Goal: Compute some group isomorphism $\mathbf{F}_{q}^{*} \rightarrow \mathbf{Z}/(q-1)$, represented in the usual way. Algorithm input: $h_1, h_2, \ldots \in \mathbf{F}_a^*$. Algorithm output:

for some *q*.

"log_a" means the isomorphism $q \mapsto 1$, if it exists.

newhat related:

ing to analyze VFS + CVP

groups, unit groups,

nerators of ideals, etc.;

g subfields

ort *norms* first),

lois groups, etc.

else working on this?

alytic applications: ITRU, Ring-LWE, FHE. **ITRU** should switch to prime-degree extensions

Galois groups.

Discrete logarithms

Goal: Compute some group isomorphism $\mathbf{F}_{q}^{*} \rightarrow \mathbf{Z}/(q-1),$ represented in the usual way. Algorithm input:

 $h_1, h_2, \ldots \in \mathbf{F}_a^*.$

Algorithm output: $\log_q h_1, \log_q h_2, \ldots \in \mathbf{Z}/(q-1)$ for some *q*.

"log_{*q*}" means the isomorphism $g \mapsto 1$, if it exists.

"Generic on avera uniform, Want so

ated:

alyze 'P

nit groups,

f ideals, etc.;

S

first),

s, etc.

ng on this?

ications:

g-LWE, FHE.

uld switch to

ree extensions

oups.

Discrete logarithms

Goal: Compute some group isomorphism $\mathbf{F}_{q}^{*} \rightarrow \mathbf{Z}/(q-1),$ represented in the usual way. Algorithm input: $h_1, h_2, \ldots \in \mathbf{F}_q^*.$ Algorithm output: $\log_q h_1, \log_q h_2, \ldots \in \mathbf{Z}/(q-1)$ for some *q*.

" \log_g " means the isomorphism $g \mapsto 1$, if it exists.

"Generic" \log_g algo on average $q^{1/2+o}$ uniform, $q^{1/3+o(1)}$ Want something for ; :C.;

?

HE. to

ions

Discrete logarithms

Goal: Compute some group isomorphism $\mathbf{F}_a^* \rightarrow \mathbf{Z}/(q-1),$ represented in the usual way. Algorithm input: $h_1, h_2, \ldots \in \mathbf{F}_a^*$. Algorithm output: $\log_q h_1, \log_q h_2, \ldots \in \mathbf{Z}/(q-1)$ for some *q*.

" \log_g " means the isomorphism $g \mapsto 1$, if it exists.

"Generic" \log_g algorithms: on average $q^{1/2+o(1)}$ operation uniform, $q^{1/3+o(1)}$ non-unifor Want something faster.

Discrete logarithms

Goal: Compute some group isomorphism $\mathbf{F}_{q}^{*} \rightarrow \mathbf{Z}/(q-1),$ represented in the usual way.

Algorithm input: $h_1, h_2, \ldots \in \mathbf{F}_a^*$.

Algorithm output: $\log_q h_1, \log_q h_2, \ldots \in \mathbf{Z}/(q-1)$ for some *q*.

"log_a" means the isomorphism $q \mapsto 1$, if it exists.

"Generic" log_q algorithms: on average $q^{1/2+o(1)}$ operations uniform, $q^{1/3+o(1)}$ non-uniform. Want something faster.

Discrete logarithms

Goal: Compute some group isomorphism $\mathbf{F}_{q}^{*} \rightarrow \mathbf{Z}/(q-1),$ represented in the usual way.

Algorithm input: $h_1, h_2, \ldots \in \mathbf{F}_q^*$.

Algorithm output: $\log_q h_1, \log_q h_2, \ldots \in \mathbf{Z}/(q-1)$ for some *q*.

"log_a" means the isomorphism $q \mapsto 1$, if it exists.

"Generic" log_q algorithms: on average $q^{1/2+o(1)}$ operations uniform, $q^{1/3+o(1)}$ non-uniform. Want something faster. "Basic index calculus": 1968 Western–Miller, 1979 Merkle, 1979 Adleman, 1983 Hellman-

Reyneri, 1984 Blake–Fuji-Hara– Mullin–Vanstone, 1985 ElGamal, 1986 Coppersmith–Odlyzko– Schroeppel, 1991 LaMacchia-Odlyzko, 1993 Adleman– DeMarrais, 1995 Semaev, 1998 Bender–Pomerance.

logarithms

ompute some

omorphism

/(q-1),

ted in the usual way.

m input:

 $\ldots \in \mathbf{F}_{q}^{*}$.

m output:

 $\log_q h_2, \ldots \in \mathbf{Z}/(q-1)$ *g*.

neans the isomorphism f it exists.

"Generic" log_q algorithms: on average $q^{1/2+o(1)}$ operations uniform, $q^{1/3+o(1)}$ non-uniform. Want something faster.

"Basic index calculus": 1968 Western–Miller, 1979 Merkle, 1979 Adleman, 1983 Hellman-Reyneri, 1984 Blake–Fuji-Hara– Mullin–Vanstone, 1985 ElGamal, 1986 Coppersmith–Odlyzko– Schroeppel, 1991 LaMacchia-Odlyzko, 1993 Adleman-DeMarrais, 1995 Semaev, 1998 Bender–Pomerance.

"NFS": Gordon, Odlyzko Weber-I 1998 We Lercier, Smart–\ "FFS": Coppers Odlyzko Gordon-1999 Ad Joux-Le 2010/20Wang-N

<u>s</u> me

ו

usual way.

 $d\in {f Z}/(q-1)$

isomorphism

"Generic" \log_g algorithms: on average $q^{1/2+o(1)}$ operations uniform, $q^{1/3+o(1)}$ non-uniform. Want something faster.

"Basic index calculus": 1968 Western–Miller, 1979 Merkle, 1979 Adleman, 1983 Hellman-Reyneri, 1984 Blake–Fuji-Hara– Mullin–Vanstone, 1985 ElGamal, 1986 Coppersmith–Odlyzko– Schroeppel, 1991 LaMacchia-Odlyzko, 1993 Adleman-DeMarrais, 1995 Semaev, 1998 Bender–Pomerance.

"NFS": 1991 Schi Gordon, 1993 Sch Odlyzko, 1996 Scł Weber-Denny, 199 1998 Weber-Denr Lercier, 2006 Joux Smart–Vercautere "FFS": 1984 Copp Coppersmith–Dave Odlyzko, 1990 Mc Gordon–McCurley, 1999 Adleman–Hı Joux-Lercier, 2006 2010/2012 Hayash Wang–Matsuo–Sh

"Generic" \log_g algorithms: on average $q^{1/2+o(1)}$ operations uniform, $q^{1/3+o(1)}$ non-uniform. Want something faster.

"Basic index calculus": 1968 Western–Miller, 1979 Merkle, 1979 Adleman, 1983 Hellman-Reyneri, 1984 Blake–Fuji-Hara– Mullin–Vanstone, 1985 ElGamal, 1986 Coppersmith–Odlyzko– Schroeppel, 1991 LaMacchia-Odlyzko, 1993 Adleman-DeMarrais, 1995 Semaev, 1998 Bender–Pomerance.

"NFS": 1991 Schirokauer, 1 Gordon, 1993 Schirokauer, 1 Odlyzko, 1996 Schirokauer-Weber–Denny, 1996 Weber, 1998 Weber-Denny, 2001 Jo Lercier, 2006 Joux–Lercier– Smart–Vercauteren. "FFS": 1984 Coppersmith, 1 Coppersmith–Davenport, 19 Odlyzko, 1990 McCurley, 19 Gordon–McCurley, 1994 Adl 1999 Adleman-Huang, 2001 Joux-Lercier, 2006 Joux-Le 2010/2012 Hayashi–Shinoha Wang–Matsuo–Shirase–Taka

sm

- 1)

"Generic" \log_g algorithms: on average $q^{1/2+o(1)}$ operations uniform, $q^{1/3+o(1)}$ non-uniform. Want something faster.

"Basic index calculus": 1968 Western–Miller, 1979 Merkle, 1979 Adleman, 1983 Hellman-Reyneri, 1984 Blake–Fuji-Hara– Mullin–Vanstone, 1985 ElGamal, 1986 Coppersmith–Odlyzko– Schroeppel, 1991 LaMacchia-Odlyzko, 1993 Adleman-DeMarrais, 1995 Semaev, 1998 Bender–Pomerance.

"NFS": 1991 Schirokauer, 1993 Gordon, 1993 Schirokauer, 1994 Odlyzko, 1996 Schirokauer-Weber–Denny, 1996 Weber, 1998 Weber-Denny, 2001 Joux-Lercier, 2006 Joux–Lercier– Smart–Vercauteren. "FFS": 1984 Coppersmith, 1985 Coppersmith–Davenport, 1985 Odlyzko, 1990 McCurley, 1992 Gordon–McCurley, 1994 Adleman, 1999 Adleman–Huang, 2001 Joux-Lercier, 2006 Joux-Lercier, 2010/2012 Hayashi–Shinohara– Wang–Matsuo–Shirase–Takagi.

" \log_g algorithms: $ge q^{1/2+o(1)}$ operations $q^{1/3+o(1)}$ non-uniform. mething faster.

ndex calculus": 1968 -Miller, 1979 Merkle, leman, 1983 Hellman-1984 Blake–Fuji-Hara– /anstone, 1985 ElGamal, ppersmith–Odlyzko– pel, 1991 LaMacchia-, 1993 Adlemanais, 1995 Semaev, nder–Pomerance.

"NFS": 1991 Schirokauer, 1993 Gordon, 1993 Schirokauer, 1994 Odlyzko, 1996 Schirokauer– Weber–Denny, 1996 Weber, 1998 Weber–Denny, 2001 Joux– Lercier, 2006 Joux–Lercier– Smart–Vercauteren.

"FFS": 1984 Coppersmith, 1985 Coppersmith–Davenport, 1985 Odlyzko, 1990 McCurley, 1992 Gordon–McCurley, 1994 Adleman, 1999 Adleman–Huang, 2001 Joux–Lercier, 2006 Joux–Lercier, 2010/2012 Hayashi–Shinohara– Wang–Matsuo–Shirase–Takagi. "FFS", o Shimoya 2012.10 Detrey— Videau— Barbules Gaudry— Zimmerr orithms: (1) operations

non-uniform.

aster.

lus": 1968

979 Merkle,

83 Hellman–

ke–Fuji-Hara–

1985 ElGamal,

–Odlyzko–

LaMacchia-

leman–

Semaev,

erance.

"NFS": 1991 Schirokauer, 1993 Gordon, 1993 Schirokauer, 1994 Odlyzko, 1996 Schirokauer– Weber–Denny, 1996 Weber, 1998 Weber–Denny, 2001 Joux– Lercier, 2006 Joux–Lercier– Smart–Vercauteren.

"FFS": 1984 Coppersmith, 1985
Coppersmith–Davenport, 1985
Odlyzko, 1990 McCurley, 1992
Gordon–McCurley, 1994 Adleman,
1999 Adleman–Huang, 2001
Joux–Lercier, 2006 Joux–Lercier,
2010/2012 Hayashi–Shinohara–
Wang–Matsuo–Shirase–Takagi.

"FFS", continued: Shimoyama–Shino 2012.10 Barbulesc Detrey–Gaudry–Je Videau–Zimmerma Barbulescu–Bouvie Gaudry–Jeljeli–The Zimmermann.

ons rm.

8

е,

n–

nra-

imal,

a—

"NFS": 1991 Schirokauer, 1993 Gordon, 1993 Schirokauer, 1994 Odlyzko, 1996 Schirokauer– Weber–Denny, 1996 Weber, 1998 Weber–Denny, 2001 Joux– Lercier, 2006 Joux–Lercier– Smart–Vercauteren.

"FFS": 1984 Coppersmith, 1985 Coppersmith–Davenport, 1985 Odlyzko, 1990 McCurley, 1992 Gordon–McCurley, 1994 Adleman, 1999 Adleman–Huang, 2001 Joux–Lercier, 2006 Joux–Lercier, 2010/2012 Hayashi–Shinohara– Wang–Matsuo–Shirase–Takagi. "FFS", continued: 2012 Hay Shimoyama–Shinohara–Taka 2012.10 Barbulescu–Bouvier Detrey–Gaudry–Jeljeli–Thon Videau–Zimmermann, 2013. Barbulescu–Bouvier–Detrey– Gaudry–Jeljeli–Thomé–Videa Zimmermann.

"NFS": 1991 Schirokauer, 1993 Gordon, 1993 Schirokauer, 1994 Odlyzko, 1996 Schirokauer-Weber–Denny, 1996 Weber, 1998 Weber–Denny, 2001 Joux– Lercier, 2006 Joux–Lercier– Smart–Vercauteren.

"FFS": 1984 Coppersmith, 1985 Coppersmith–Davenport, 1985 Odlyzko, 1990 McCurley, 1992 Gordon–McCurley, 1994 Adleman, 1999 Adleman–Huang, 2001 Joux-Lercier, 2006 Joux-Lercier, 2010/2012 Hayashi–Shinohara– Wang–Matsuo–Shirase–Takagi.

"FFS", continued: 2012 Hayashi-Shimoyama–Shinohara–Takagi, 2012.10 Barbulescu–Bouvier– Detrey–Gaudry–Jeljeli–Thomé– Videau–Zimmermann, 2013.04 Barbulescu–Bouvier–Detrey– Gaudry–Jeljeli–Thomé–Videau– Zimmermann.

"NFS": 1991 Schirokauer, 1993 Gordon, 1993 Schirokauer, 1994 Odlyzko, 1996 Schirokauer-Weber–Denny, 1996 Weber, 1998 Weber–Denny, 2001 Joux– Lercier, 2006 Joux–Lercier– Smart–Vercauteren.

"FFS": 1984 Coppersmith, 1985 Coppersmith–Davenport, 1985 Odlyzko, 1990 McCurley, 1992 Gordon–McCurley, 1994 Adleman, 1999 Adleman–Huang, 2001 Joux-Lercier, 2006 Joux-Lercier, 2010/2012 Hayashi–Shinohara– Wang–Matsuo–Shirase–Takagi.

"FFS", continued: 2012 Hayashi-Shimoyama–Shinohara–Takagi, 2012.10 Barbulescu–Bouvier– Detrey–Gaudry–Jeljeli–Thomé– Videau–Zimmermann, 2013.04 Barbulescu–Bouvier–Detrey– Gaudry–Jeljeli–Thomé–Videau– Zimmermann.

"Not your grandpa's FFS": 2012.12 Joux, 2013.02 Joux, 2013.02 Göloğlu–Granger– McGuire–Zumbrägel, 2013.05 Göloğlu–Granger–McGuire– Zumbrägel, 2013.06 Barbulescu-Gaudry–Joux–Thomé.

1991 Schirokauer, 1993 1993 Schirokauer, 1994 , 1996 Schirokauer-Denny, 1996 Weber, eber–Denny, 2001 Joux– 2006 Joux–Lercier– ercauteren.

1984 Coppersmith, 1985 mith-Davenport, 1985 , 1990 McCurley, 1992 McCurley, 1994 Adleman, leman–Huang, 2001 rcier, 2006 Joux–Lercier, 12 Hayashi–Shinohara– latsuo–Shirase–Takagi.

"FFS", continued: 2012 Hayashi-Shimoyama–Shinohara–Takagi, 2012.10 Barbulescu–Bouvier– Detrey–Gaudry–Jeljeli–Thomé– Videau–Zimmermann, 2013.04 Barbulescu–Bouvier–Detrey– Gaudry–Jeljeli–Thomé–Videau– Zimmermann.

"Not your grandpa's FFS": 2012.12 Joux, 2013.02 Joux, 2013.02 Göloğlu–Granger– McGuire–Zumbrägel, 2013.05 Göloğlu–Granger–McGuire– Zumbrägel, 2013.06 Barbulescu-Gaudry–Joux–Thomé.

Reasona for fixed FFS cos

$\log T \in$

rokauer, 1993 irokauer, 1994 nirokauer– 96 Weber, ny, 2001 Joux– c–Lercier– n.

persmith, 1985 enport, 1985 Curley, 1992 1994 Adleman, ang, 2001 5 Joux–Lercier, ni–Shinohara– irase–Takagi. "FFS", continued: 2012 Hayashi– Shimoyama–Shinohara–Takagi, 2012.10 Barbulescu–Bouvier– Detrey–Gaudry–Jeljeli–Thomé– Videau–Zimmermann, 2013.04 Barbulescu–Bouvier–Detrey– Gaudry–Jeljeli–Thomé–Videau– Zimmermann.

"Not your grandpa's FFS": 2012.12 Joux, 2013.02 Joux, 2013.02 Göloğlu–Granger– McGuire–Zumbrägel, 2013.05 Göloğlu–Granger–McGuire– Zumbrägel, 2013.06 Barbulescu– Gaudry–Joux–Thomé.

Reasonable conject for fixed character FFS costs $\leq T$ whe

$\log T \in (\log q)^{1/3+1}$

993 .994

oux-

1985 85

92

eman,

rcier,

ra-

agi.

"FFS", continued: 2012 Hayashi-Shimoyama–Shinohara–Takagi, 2012.10 Barbulescu–Bouvier– Detrey–Gaudry–Jeljeli–Thomé– Videau–Zimmermann, 2013.04 Barbulescu–Bouvier–Detrey– Gaudry–Jeljeli–Thomé–Videau– Zimmermann.

"Not your grandpa's FFS": 2012.12 Joux, 2013.02 Joux, 2013.02 Göloğlu–Granger– McGuire–Zumbrägel, 2013.05 Göloğlu–Granger–McGuire– Zumbrägel, 2013.06 Barbulescu-Gaudry–Joux–Thomé.

Reasonable conjectures for fixed characteristic:

FFS costs < T where $\log T \in (\log q)^{1/3 + o(1)}$.

"FFS", continued: 2012 Hayashi-Shimoyama–Shinohara–Takagi, 2012.10 Barbulescu–Bouvier– Detrey–Gaudry–Jeljeli–Thomé– Videau–Zimmermann, 2013.04 Barbulescu–Bouvier–Detrey– Gaudry–Jeljeli–Thomé–Videau– Zimmermann.

"Not your grandpa's FFS": 2012.12 Joux, 2013.02 Joux, 2013.02 Göloğlu–Granger– McGuire–Zumbrägel, 2013.05 Göloğlu–Granger–McGuire– Zumbrägel, 2013.06 Barbulescu-Gaudry–Joux–Thomé.

Reasonable conjectures for fixed characteristic:

FFS costs $\leq T$ where $\log T \in (\log q)^{1/3 + o(1)}$.

"FFS", continued: 2012 Hayashi-Shimoyama–Shinohara–Takagi, 2012.10 Barbulescu–Bouvier– Detrey–Gaudry–Jeljeli–Thomé– Videau–Zimmermann, 2013.04 Barbulescu–Bouvier–Detrey– Gaudry–Jeljeli–Thomé–Videau– Zimmermann.

"Not your grandpa's FFS": 2012.12 Joux, 2013.02 Joux, 2013.02 Göloğlu–Granger– McGuire–Zumbrägel, 2013.05 Göloğlu–Granger–McGuire– Zumbrägel, 2013.06 Barbulescu-Gaudry–Joux–Thomé.

Reasonable conjectures for fixed characteristic:

FFS costs < T where $\log T \in (\log q)^{1/3 + o(1)}$.

2013.02 Joux algorithm: $\log T \in (\log q)^{1/4 + o(1)}$.

"FFS", continued: 2012 Hayashi– Shimoyama–Shinohara–Takagi, 2012.10 Barbulescu–Bouvier– Detrey–Gaudry–Jeljeli–Thomé– Videau–Zimmermann, 2013.04 Barbulescu–Bouvier–Detrey– Gaudry–Jeljeli–Thomé–Videau– Zimmermann.

"Not your grandpa's FFS": 2012.12 Joux, 2013.02 Joux, 2013.02 Göloğlu–Granger– McGuire–Zumbrägel, 2013.05 Göloğlu–Granger–McGuire– Zumbrägel, 2013.06 Barbulescu– Gaudry–Joux–Thomé.

Reasonable conjectures for fixed characteristic: FFS costs < T where $\log T \in (\log q)^{1/3 + o(1)}$. 2013.02 Joux algorithm: $\log T \in (\log q)^{1/4 + o(1)}$. 2013.06 Barbulescu–Gaudry– Joux–Thomé algorithm: $\log T \in (\log \log q)^{2+o(1)}.$

"FFS", continued: 2012 Hayashi– Shimoyama–Shinohara–Takagi, 2012.10 Barbulescu–Bouvier– Detrey–Gaudry–Jeljeli–Thomé– Videau–Zimmermann, 2013.04 Barbulescu–Bouvier–Detrey– Gaudry–Jeljeli–Thomé–Videau– Zimmermann.

"Not your grandpa's FFS": 2012.12 Joux, 2013.02 Joux, 2013.02 Göloğlu–Granger– McGuire–Zumbrägel, 2013.05 Göloğlu–Granger–McGuire– Zumbrägel, 2013.06 Barbulescu– Gaudry–Joux–Thomé.

Reasonable conjectures for fixed characteristic: FFS costs < T where $\log T \in (\log q)^{1/3 + o(1)}$. 2013.02 Joux algorithm: $\log T \in (\log q)^{1/4 + o(1)}$. 2013.06 Barbulescu–Gaudry– Joux–Thomé algorithm: $\log T \in (\log \log q)^{2+o(1)}.$ 1994 Shor algorithm: $\log T \in (\log \log q)^{1+o(1)}$, proven; but needs a quantum computer.

continued: 2012 Hayashima-Shinohara-Takagi, Barbulescu–Bouvier– Gaudry–Jeljeli–Thomé– Zimmermann, 2013.04 scu-Bouvier-Detrey-Jeljeli–Thomé–Videau– mann.

ur grandpa's FFS":

Joux, 2013.02 Joux,

Göloğlu–Granger–

–Zumbrägel, 2013.05

-Granger–McGuire–

gel, 2013.06 Barbulescu-Joux–Thomé.

Reasonable conjectures for fixed characteristic:

FFS costs $\leq T$ where $\log T \in (\log q)^{1/3 + o(1)}$.

2013.02 Joux algorithm: $\log T \in (\log q)^{1/4 + o(1)}$.

2013.06 Barbulescu–Gaudry– Joux–Thomé algorithm: $\log T \in (\log \log q)^{2+o(1)}.$

1994 Shor algorithm: $\log T \in (\log \log q)^{1+o(1)}$, proven; but needs a quantum computer.

Field co I'll make $q = p^{2n}$ p is an c $n\in\mathsf{Z}$, , Most int Example (Can you $p^{2n} - 1$ Find "ra with an φ of deg Construe

2012 Hayashi– hara–Takagi, u–Bouvier– eljeli–Thomé– ann, 2013.04 er–Detrey– omé–Videau–

a's FFS":

3.02 Joux,

Granger-

gel, 2013.05

McGuire-

)6 Barbulescu–

mé.

Reasonable conjectures for fixed characteristic:

FFS costs $\leq T$ where log $T \in (\log q)^{1/3+o(1)}$.

2013.02 Joux algorithm: log $T \in (\log q)^{1/4+o(1)}$.

2013.06 Barbulescu–Gaudry– Joux–Thomé algorithm: $\log T \in (\log \log q)^{2+o(1)}$.

1994 Shor algorithm: $\log T \in (\log \log q)^{1+o(1)}$, proven; but needs a quantum computer.

Field construction

- I'll make simplifyir
- $q = p^{2n}$ where
- p is an odd prime

 $n\in \mathsf{Z}$, $\sqrt{p}\leq n\leq$

Most interesting: Example: p = 100(Can you find all p $p^{2n} - 1 = (p^n - 1)$

Find "random" power with an irreducible φ of degree n.

Construct \mathbf{F}_q as \mathbf{F}

```
yashi-
ngi,
-----
né–
04
au-
7
5
scu-
```

Reasonable conjectures for fixed characteristic: FFS costs $\leq T$ where $\log T \in (\log q)^{1/3 + o(1)}$. 2013.02 Joux algorithm: $\log T \in (\log q)^{1/4 + o(1)}$. 2013.06 Barbulescu–Gaudry– Joux–Thomé algorithm: $\log T \in (\log \log q)^{2+o(1)}$. 1994 Shor algorithm: $\log T \in (\log \log q)^{1+o(1)}$, proven; but needs a quantum computer.

with an irreducible divisor φ of degree n.

Field construction

- I'll make simplifying assump $q = p^{2n}$ where
- *p* is an odd prime power,

 $n \in \mathbb{Z}, \sqrt{p} \leq n \leq p.$

- Most interesting: $n \approx p$.
- Example: p = 1009, n = 99
- (Can you find all primes divi
- $p^{2n} 1 = (p^n 1)(p^n + 1)$
- Find "random" poly in \mathbf{F}_{p^2}
- Construct \mathbf{F}_q as $\mathbf{F}_{p^2}[x]/\varphi$.

Reasonable conjectures for fixed characteristic:

FFS costs < T where $\log T \in (\log q)^{1/3 + o(1)}$.

2013.02 Joux algorithm: $\log T \in (\log q)^{1/4 + o(1)}$.

2013.06 Barbulescu–Gaudry– Joux–Thomé algorithm: $\log T \in (\log \log q)^{2+o(1)}$.

1994 Shor algorithm: $\log T \in (\log \log q)^{1+o(1)}$, proven; but needs a quantum computer.

Field construction

I'll make simplifying assumption: $q = p^{2n}$ where p is an odd prime power, $n \in \mathbf{Z}, \sqrt{p} \leq n \leq p$. Most interesting: $n \approx p$. Example: p = 1009, n = 997.

 $p^{2n} - 1 = (p^n - 1)(p^n + 1)?)$

Find "random" poly in $\mathbf{F}_{p^2}[x]$ with an irreducible divisor φ of degree n.

Construct \mathbf{F}_q as $\mathbf{F}_{p^2}[x]/\varphi$.

(Can you find all primes dividing

ble conjectures characteristic:

ts < T where $(\log q)^{1/3+o(1)}$.

Joux algorithm: $(\log q)^{1/4+o(1)}.$

Barbulescu–Gaudry– nomé algorithm: $(\log \log q)^{2+o(1)}.$

or algorithm: $(\log \log q)^{1+o(1)}$, proven; ls a quantum computer.

Field construction

I'll make simplifying assumption: $q = p^{2n}$ where *p* is an odd prime power, $n \in \mathbf{Z}, \sqrt{p} \leq n \leq p.$

Most interesting: $n \approx p$. Example: p = 1009, n = 997. (Can you find all primes dividing $p^{2n} - 1 = (p^n - 1)(p^n + 1)?)$

Find "random" poly in $\mathbf{F}_{p^2}[x]$ with an irreducible divisor φ of degree n.

Construct \mathbf{F}_q as $\mathbf{F}_{p^2}[x]/\varphi$.

How ma What's has an i φ of deg For $n \leq$ express of uniquely $pprox (p^2)^{deg}$ $\approx (p^2)^n/$ $pprox (p^2)^{deg}$ chance ? Similar s Factorin \Rightarrow Quic

tures istic:

ere -*o*(1)

rithm: -*o*(1)

u–Gaudry– rithm: 2+o(1)

m: ^{1+o(1)}, proven;

um computer.

Field construction

I'll make simplifying assumption: $q = p^{2n}$ where p is an odd prime power, $n \in \mathbf{Z}, \sqrt{p} \le n \le p$. Most interesting: $n \approx p$.

Example: p = 1009, n = 997.

(Can you find all primes dividing $p^{2n} - 1 = (p^n - 1)(p^n + 1)$?)

Find "random" poly in $\mathbf{F}_{p^2}[x]$ with an irreducible divisor φ of degree n.

Construct \mathbf{F}_q as $\mathbf{F}_{p^2}[x]/\varphi$.

How many polys to What's chance that has an irreducible φ of degree n?

For $n \leq \deg r < 2$ express each succe uniquely as $\varphi \cdot cof$ $pprox (p^2)^{\deg r+1}$ polys $pprox (p^2)^n/n$ monic i $pprox (p^2)^{\deg r - n + 1}$ co chance $\approx 1/n$ that Similar story for d Factoring r is fast

 \Rightarrow Quickly find r,

Field construction

I'll make simplifying assumption: $q = p^{2n}$ where p is an odd prime power, $n \in \mathbb{Z}, \sqrt{p} \le n \le p.$

Most interesting: $n \approx p$. Example: p = 1009, n = 997. (Can you find all primes dividing $p^{2n} - 1 = (p^n - 1)(p^n + 1)$?) Find "random" poly in $\mathbf{F}_{n^2}[x]$

Find "random" poly in $\mathbf{F}_{p^2}[x]$ with an irreducible divisor φ of degree n.

Construct \mathbf{F}_q as $\mathbf{F}_{p^2}[x]/\varphi$.

How many polys to try? What's chance that $r \in \mathbf{F}_{p^2}$ has an irreducible divisor φ of degree n? For $n < \deg r < 2n$: express each successful runiquely as φ · cofactor. $\approx (p^2)^{\deg r+1}$ polys r, $\approx (p^2)^n/n$ monic irreds φ , $\approx (p^2)^{\deg r - n + 1}$ cofactors \Rightarrow chance $\approx 1/n$ that r works. Similar story for deg r > 2nFactoring r is fast. \Rightarrow Quickly find r, φ .

oven; uter.

Field construction

I'll make simplifying assumption: $q = p^{2n}$ where p is an odd prime power, $n \in \mathbf{Z}, \sqrt{p} \leq n \leq p.$

Most interesting: $n \approx p$. Example: p = 1009, n = 997. (Can you find all primes dividing $p^{2n} - 1 = (p^n - 1)(p^n + 1)?)$

Find "random" poly in $\mathbf{F}_{p^2}[x]$ with an irreducible divisor φ of degree n.

Construct \mathbf{F}_q as $\mathbf{F}_{p^2}[x]/\varphi$.

How many polys to try? What's chance that $r \in \mathbf{F}_{p^2}[x]$ has an irreducible divisor φ of degree n? For $n \leq \deg r < 2n$: express each successful runiquely as φ · cofactor. $\approx (p^2)^{\deg r+1}$ polys r, $\approx (p^2)^n/n$ monic irreds φ , $\approx (p^2)^{\deg r - n + 1}$ cofactors \Rightarrow chance $\approx 1/n$ that r works. Similar story for deg r > 2n. Factoring r is fast. \Rightarrow Quickly find r, φ .

nstruction

- e simplifying assumption:
- where
- odd prime power,

$$/\overline{p} \leq n \leq p.$$

- ceresting: $n \approx p$. e: p = 1009, n = 997. u find all primes dividing $= (p^n - 1)(p^n + 1)?)$
- ndom" poly in $\mathbf{F}_{v^2}[x]$ irreducible divisor

gree n.

ct
$$\mathbf{F}_q$$
 as $\mathbf{F}_{p^2}[x]/arphi$.

How many polys to try? What's chance that $r \in \mathbf{F}_{p^2}[x]$ has an irreducible divisor φ of degree n?

For $n \leq \deg r < 2n$: express each successful runiquely as φ · cofactor. $pprox (p^2)^{\deg r+1}$ polys r, $\approx (p^2)^n/n$ monic irreds φ , $\approx (p^2)^{\deg r - n + 1}$ cofactors \Rightarrow chance $\approx 1/n$ that r works. Similar story for deg $r \geq 2n$. Factoring r is fast. \Rightarrow Quickly find r, φ .

Don't us (Starting Find φ d $x^p - x^2$ Then x^p p^2 choic so overw that at I e.g. *p* = can have Easily ge $x^p = x^2$ $x^p = (x$ But larg ng assumption:

power,

р.

 $n \approx p$. 9, n = 997. orimes dividing $(p^n + 1)?)$ by in $\mathbf{F}_{p^2}[x]$

e divisor

 $p^2[x]/\varphi$.

How many polys to try? What's chance that $r \in \mathbf{F}_{p^2}[x]$ has an irreducible divisor φ of degree n?

For $n < \deg r < 2n$: express each successful runiquely as φ · cofactor. $pprox (p^2)^{\deg r+1}$ polys r, $\approx (p^2)^n/n$ monic irreds φ , $\approx (p^2)^{\deg r - n + 1}$ cofactors \Rightarrow chance $\approx 1/n$ that r works. Similar story for deg $r \geq 2n$. Factoring r is fast. \Rightarrow Quickly find r, φ .

Don't use random (Starting now: ab Find φ dividing $x^p - x^2 - eta$ for so Then $x^p = x^2 + \beta$ p^2 choices of $\beta \in$ so overwhelmingly that at least one v e.g. p = 1009, n =can have $\beta^2 + 92\mu$ Easily generalize: $x^p = x^2 + eta x + \gamma$ $x^p = (x+eta)/(x-eta)$ But larger degrees
tion:

7. ding ?) x|

How many polys to try? What's chance that $r \in \mathbf{F}_{p^2}[x]$ has an irreducible divisor φ of degree n? For $n \leq \deg r < 2n$: express each successful runiquely as φ · cofactor. $pprox (p^2)^{\deg r+1}$ polys r, $\approx (p^2)^n/n$ monic irreds φ , $\approx (p^2)^{\deg r - n + 1}$ cofactors \Rightarrow chance $\approx 1/n$ that r works. Similar story for deg r > 2n. Factoring r is fast. \Rightarrow Quickly find r, φ .

Don't use random polys! (Starting now: abandon pro Find φ dividing $x^p - x^2 - eta$ for some $eta \in \mathbf{F}$ Then $x^p = x^2 + \beta$ in \mathbf{F}_q . p^2 choices of $\beta \in \mathbf{F}_{p^2}$, so overwhelmingly likely that at least one works. e.g. p = 1009, n = 997: can have $\beta^2 + 92\beta + 447 =$ Easily generalize: e.g., take $x^p = x^2 + eta x + \gamma$ or $x^p = (x + \beta)/(x + \gamma).$ But larger degrees are slowe

How many polys to try? What's chance that $r \in \mathbf{F}_{p^2}[x]$ has an irreducible divisor φ of degree n?

For $n < \deg r < 2n$: express each successful runiquely as φ · cofactor. $\approx (p^2)^{\deg r+1}$ polys r, $\approx (p^2)^n/n$ monic irreds φ , $\approx (p^2)^{\deg r - n + 1}$ cofactors \Rightarrow chance $\approx 1/n$ that r works.

Similar story for deg r > 2n.

Factoring r is fast. \Rightarrow Quickly find r, φ .

Don't use random polys! (Starting now: abandon proofs.) Find φ dividing $x^p - x^2 - \beta$ for some $\beta \in \mathbf{F}_{p^2}$. Then $x^p = x^2 + \beta$ in \mathbf{F}_q . p^2 choices of $\beta \in \mathbf{F}_{p^2}$, so overwhelmingly likely that at least one works. e.g. p = 1009, n = 997: can have $\beta^2 + 92\beta + 447 = 0$. Easily generalize: e.g., take $x^p = x^2 + eta x + \gamma$ or $x^p = (x+eta)/(x+\gamma).$ But larger degrees are slower.

ny polys to try? chance that $r\in {\sf F}_{p^2}[x]$ rreducible divisor gree n?

 $\deg r < 2n$: each successful r as $\varphi \cdot cofactor$. g^{r+1} polys r, '*n* monic irreds φ , e^{r-n+1} cofactors \Rightarrow $\approx 1/n$ that r works.

story for deg $r \geq 2n$.

g r is fast.

kly find r, φ .

Don't use random polys! (Starting now: abandon proofs.) Find φ dividing $x^p - x^2 - eta$ for some $eta \in \mathsf{F}_{p^2}$. Then $x^p = x^2 + \beta$ in \mathbf{F}_q . p^2 choices of $\beta \in \mathbf{F}_{p^2}$, so overwhelmingly likely that at least one works. e.g. p = 1009, n = 997: can have $\beta^2 + 92\beta + 447 = 0$.

Easily generalize: e.g., take $x^p = x^2 + eta x + \gamma$ or $x^p = (x + \beta)/(x + \gamma).$ But larger degrees are slower.

Low-deg

First ste build tal each sm Easily ch "Small /

 $D\geq 1;$,

o try? At $r \in {f F}_{p^2}[x]$ divisor

n:

essful r

actor.

5 **r**,

rreds φ ,

 ϕ factors \Rightarrow

r works.

 $\operatorname{eg} r \geq 2n.$

arphi .

•

Don't use random polys! (Starting now: abandon proofs.) Find φ dividing $x^p - x^2 - \beta$ for some $\beta \in \mathbf{F}_{p^2}$. Then $x^p = x^2 + \beta$ in \mathbf{F}_q . p^2 choices of $\beta \in \mathbf{F}_{p^2}$, so overwhelmingly likely that at least one works. e.g. p = 1009, n = 997: can have $\beta^2 + 92\beta + 447 = 0$. Easily generalize: e.g., take $x^p = x^2 + eta x + \gamma$ or $x^p = (x + \beta)/(x + \gamma).$ But larger degrees are slower.

Low-degree discret

First step of algorid build table of $h \mapsto$ each small $h \in \mathbf{F}_p$ Easily choose g at "Small h": deg h

 $D \geq 1$; $D \in O(\log D)$

[x]

Don't use random polys! (Starting now: abandon proofs.) Find φ dividing $x^p - x^2 - \beta$ for some $\beta \in \mathbf{F}_{p^2}$. Then $x^p = x^2 + \beta$ in \mathbf{F}_{σ} . p^2 choices of $\beta \in \mathbf{F}_{p^2}$, so overwhelmingly likely that at least one works. e.g. p = 1009, n = 997: can have $\beta^2 + 92\beta + 447 = 0$. Easily generalize: e.g., take $x^p = x^2 + eta x + \gamma$ or $x^p = (x+eta)/(x+\gamma).$

But larger degrees are slower.

Low-degree discrete logs

First step of algorithm: build table of $h \mapsto \log_q h$ fo each small $h \in \mathsf{F}_{p^2}[x] - \varphi \mathsf{F}_p$ Easily choose g at same tim "Small h": deg $h \leq D$. Cho

 $D \geq 1$; $D \in O(\log n / \log \log n)$

Don't use random polys! (Starting now: abandon proofs.)

Find φ dividing $x^p - x^2 - \beta$ for some $\beta \in \mathbf{F}_{p^2}$. Then $x^p = x^2 + \beta$ in \mathbf{F}_q .

 p^2 choices of $\beta \in \mathbf{F}_{p^2}$, so overwhelmingly likely that at least one works. e.g. p = 1009, n = 997: can have $\beta^2 + 92\beta + 447 = 0$.

Easily generalize: e.g., take $x^p = x^2 + eta x + \gamma$ or $x^p = (x+\beta)/(x+\gamma).$

But larger degrees are slower.

Low-degree discrete logs

First step of algorithm: build table of $h \mapsto \log_q h$ for each small $h \in \mathbf{F}_{p^2}[x] - \varphi \mathbf{F}_{p^2}[x]$. Easily choose g at same time.

"Small h": deg h < D. Choose $D \geq 1$; $D \in O(\log n / \log \log n)$.

Don't use random polys! (Starting now: abandon proofs.)

Find φ dividing $x^p - x^2 - eta$ for some $eta \in \mathsf{F}_{p^2}$. Then $x^p = x^2 + \beta$ in \mathbf{F}_q .

 p^2 choices of $\beta \in \mathbf{F}_{p^2}$, so overwhelmingly likely that at least one works. e.g. p = 1009, n = 997: can have $\beta^2 + 92\beta + 447 = 0$.

Easily generalize: e.g., take $x^p = x^2 + eta x + \gamma$ or $x^p = (x+\beta)/(x+\gamma).$ But larger degrees are slower. Low-degree discrete logs

First step of algorithm: build table of $h \mapsto \log_q h$ for each small $h \in \mathsf{F}_{p^2}[x] - \varphi \mathsf{F}_{p^2}[x]$. Easily choose g at same time.

"Small h": deg h < D. Choose $D \geq 1$; $D \in O(\log n / \log \log n)$.

Non-uniform approach: algorithm A_q knows table!

Don't use random polys! (Starting now: abandon proofs.)

Find φ dividing $x^p - x^2 - eta$ for some $eta \in \mathsf{F}_{p^2}$. Then $x^p = x^2 + \beta$ in \mathbf{F}_q .

 p^2 choices of $\beta \in \mathbf{F}_{p^2}$, so overwhelmingly likely that at least one works. e.g. p = 1009, n = 997: can have $\beta^2 + 92\beta + 447 = 0$.

Easily generalize: e.g., take $x^p = x^2 + eta x + \gamma$ or $x^p = (x + \beta)/(x + \gamma).$ But larger degrees are slower.

Low-degree discrete logs

First step of algorithm: build table of $h \mapsto \log_q h$ for each small $h \in \mathbf{F}_{p^2}[x] - \varphi \mathbf{F}_{p^2}[x]$. Easily choose g at same time. "Small h": deg h < D. Choose D > 1; $D \in O(\log n / \log \log n)$. Non-uniform approach:

algorithm A_q knows table!

Two reasons to be more explicit:

- 1. Want A with q as an input.
- 2. Method to build table

will be reused for larger h.

se random polys! g now: abandon proofs.)

dividing

 $-\beta$ for some $\beta \in \mathbf{F}_{p^2}$. $\mathbf{F} = x^2 + eta$ in \mathbf{F}_q .

es of $\beta \in \mathbf{F}_{p^2}$, helmingly likely

east one works.

1009, n = 997: $\beta^2 + 92\beta + 447 = 0.$

eneralize: e.g., take

$$+eta x+\gamma$$
 or

$$+eta)/(x+\gamma).$$

er degrees are slower.

Low-degree discrete logs

First step of algorithm: build table of $h \mapsto \log_q h$ for each small $h \in \mathsf{F}_{p^2}[x] - \varphi \mathsf{F}_{p^2}[x]$. Easily choose g at same time.

"Small h": deg $h \leq D$. Choose $D \ge 1$; $D \in O(\log n / \log \log n)$.

Non-uniform approach: algorithm A_q knows table!

Two reasons to be more explicit:

- 1. Want A with q as an input.
- 2. Method to build table will be reused for larger h.

The first

 $| |_{\alpha \in \mathbf{F}_p}($

" \equiv " for $x^p - x^2$

Hope th splits in Not an i \approx 50% o

Then log $\sum_{\alpha \in \mathbf{F}_p} |$

This is a

among c of monio polys! andon proofs.)

ome $oldsymbol{eta} \in \mathbf{F}_{p^2}.$ 3 in $\mathbf{F}_q.$

 \mathbf{F}_{p^2} , likely

vorks.

= 997:

3 + 447 = 0.

e.g., take

or

 $+\gamma).$

are slower.

Low-degree discrete logs

First step of algorithm: build table of $h \mapsto \log_g h$ for each small $h \in \mathbf{F}_{p^2}[x] - \varphi \mathbf{F}_{p^2}[x]$. Easily choose g at same time.

"Small h": deg $h \le D$. Choose $D \ge 1$; $D \in O(\log n / \log \log n)$.

Non-uniform approach: algorithm A_q knows table!

Two reasons to be more explicit:

- 1. Want A with q as an input.
- 2. Method to build table

will be reused for larger h.

The first relation f

of monic linear po

ofs.)

 p^2

0.

r.

Low-degree discrete logs

First step of algorithm: build table of $h \mapsto \log_q h$ for each small $h \in \mathsf{F}_{p^2}[x] - \varphi \mathsf{F}_{p^2}[x]$. Easily choose g at same time.

"Small h": deg h < D. Choose $D \ge 1$; $D \in O(\log n / \log \log n)$.

Non-uniform approach: algorithm A_q knows table!

Two reasons to be more explicit:

- 1. Want A with q as an input.
- 2. Method to build table will be reused for larger h.

<u>The first relation for D = 1</u>

- $igcap_{lpha\in\mathsf{F}_{p}}(x-lpha)\equiv x^{2}-x+\mu$
- " \equiv " for $\mathbf{F}_{p^2}[x]$: equal mod $x^p - x^2 - \beta$; forces = in \mathbf{F}_q
- Hope that $x^2 x + eta$
- splits in $\mathbf{F}_{p^2}[x]$, say as $f_1 \cdot f$ Not an unreasonable hope: \approx 50% of quadratics split.
- Then $\log_q f_1 + \log_q f_2 =$ $\sum_{lpha\in\mathsf{F}_{\mathcal{D}}}\log_g(x-lpha).$
- This is a "relation" among discrete logs of monic linear polys.

Low-degree discrete logs

First step of algorithm: build table of $h \mapsto \log_q h$ for each small $h \in \mathsf{F}_{p^2}[x] - \varphi \mathsf{F}_{p^2}[x]$. Easily choose g at same time.

"Small h": deg h < D. Choose D > 1; $D \in O(\log n / \log \log n)$.

Non-uniform approach: algorithm A_q knows table!

Two reasons to be more explicit: 1. Want A with q as an input. 2. Method to build table will be reused for larger h.

The first relation for D = 1 $igcap_{lpha\in\mathsf{F}_{p}}(x-lpha)\equiv x^{2}-x+eta.$ " \equiv " for $\mathbf{F}_{p^2}[x]$: equal mod $x^p - x^2 - \beta$; forces = in \mathbf{F}_q . Hope that $x^2 - x + eta$ splits in $\mathbf{F}_{p^2}[x]$, say as $f_1 \cdot f_2$. Not an unreasonable hope: \approx 50% of quadratics split. Then $\log_q f_1 + \log_q f_1$ $\sum_{lpha \in \mathsf{F}_{p}} \log_{g}(x -$ This is a "relation" among discrete logs of monic linear polys.

$$pg_g f_2 = \alpha$$
).

ree discrete logs

- p of algorithm: ble of $h \mapsto \log_g h$ for all $h \in \mathbf{F}_{p^2}[x] - \varphi \mathbf{F}_{p^2}[x]$. noose g at same time.
- $n'': \deg h \leq D$. Choose $D \in O(\log n / \log \log n)$.
- form approach: n A_q knows table!
- sons to be more explicit: A with q as an input. od to build table eused for larger *h*.

<u>The first relation for D = 1</u> $\prod_{\alpha \in \mathbf{F}_p} (x - \alpha) \equiv x^2 - x + \beta.$ " \equiv " for $\mathbf{F}_{p^2}[x]$: equal mod $x^p - x^2 - \beta$; forces = in \mathbf{F}_q . Hope that $x^2 - x + \beta$ splits in $\mathbf{F}_{p^2}[x]$, say as $f_1 \cdot f_2$. Not an unreasonable hope:

 $\approx\!50\%$ of quadratics split.

Then $\log_g f_1 + \log_g f_2 = \sum_{lpha \in \mathbf{F}_p} \log_g (x - lpha).$

This is a "relation" among discrete logs of monic linear polys.

More rel For a, b, (cx+d)= (cx +-(ax += (cx +-(ax + $\equiv (cx +$ -(ax +Left side linear po

Often rig

te logs

thm:

- $\log_g h$ for $p_2[x] - \varphi \mathbf{F}_{p^2}[x].$ same time.
- $\leq D$. Choose $n / \log \log n$.

bach:

vs table!

e more explicit:

as an input.

d table

larger h.

<u>The first relation for D = 1</u> $igcap_{lpha\in\mathsf{F}_{p}}(x-lpha)\equiv x^{2}-x+eta.$ " \equiv " for $\mathbf{F}_{p^2}[x]$: equal mod $x^p - x^2 - \beta$; forces = in \mathbf{F}_q . Hope that $x^2 - x + eta$ splits in $\mathbf{F}_{p^2}[x]$, say as $f_1 \cdot f_2$. Not an unreasonable hope: \approx 50% of quadratics split. Then $\log_q f_1 + \log_q f_2 =$ $\sum_{\alpha\in\mathsf{F}_{\mathcal{D}}}\log_g(x-\alpha).$

This is a "relation" among discrete logs of monic linear polys.

More relations for For $a, b, c, d \in \mathbf{F}_{p^2}$ $(cx+d) \mid (ax - d)$ $\alpha \in \mathbf{F}_{p}$ = (cx+d)(ax+b)-(ax+b)(cx+b) $= (cx+d)(a^px^p -(ax+b)(c^px^p+b)$ $\equiv (cx+d)(a^p(x^2))$ $-(ax+b)(c^p(x^2))$ Left side is produc linear polys in \mathbf{F}_{p^2} Often right side is

r _{p2}[x]. e.

ose (n).

olicit: ut.

The first relation for D = 1 $\prod_{lpha\in\mathsf{F}_p}(x-lpha)\equiv x^2-x+eta.$ " \equiv " for $\mathbf{F}_{p^2}[x]$: equal mod $x^p - x^2 - \beta$; forces = in \mathbf{F}_q . Hope that $x^2 - x + \beta$ splits in $\mathbf{F}_{p^2}[x]$, say as $f_1 \cdot f_2$. Not an unreasonable hope: \approx 50% of quadratics split. Then $\log_q f_1 + \log_q f_2 =$ $\sum_{lpha\in\mathsf{F}_p}\log_g(x-lpha).$ This is a "relation" among discrete logs of monic linear polys.

More relations for D = 1

For $a, b, c, d \in \mathbf{F}_{p^2}$:

- $(cx+d)\prod_{lpha\in \mathsf{F}_p}(ax+b-lpha(cx))$
- $= (cx+d)(ax+b)^p$
- $-(ax+b)(cx+d)^p$
- $=(cx+d)(a^px^p+b^p)\ -(ax+b)(c^px^p+d^p)$
- $egin{array}{l} \equiv (cx+d)(a^p(x^2+eta)+b^p\ -(ax+b)(c^p(x^2+eta)+d^p) \end{array}$
- Left side is product of linear polys in $F_{p^2}[x]$. Often right side is too.

The first relation for D = 1

$$igcap_{lpha\in\mathsf{F}_p}(x-lpha)\equiv x^2-x+eta$$
 .

" \equiv " for $\mathbf{F}_{v^2}[x]$: equal mod $x^p - x^2 - \beta$; forces = in \mathbf{F}_q .

Hope that $x^2 - x + eta$ splits in $\mathbf{F}_{p^2}[x]$, say as $f_1 \cdot f_2$. Not an unreasonable hope: \approx 50% of quadratics split.

Then
$$\log_g f_1 + \log_g f_2 = \sum_{lpha \in \mathbf{F}_p} \log_g (x - lpha).$$

This is a "relation" among discrete logs of monic linear polys.

More relations for D = 1For $a, b, c, d \in \mathbf{F}_{p^2}$: $(cx+d) \mid (ax+b-\alpha(cx+d))$ $\alpha \in \mathbf{F}_{p}$ $= (cx+d)(ax+b)^p$ $-(ax+b)(cx+d)^p$ $= (cx+d)(a^px^p+b^p)$ $(ax+b)(c^px^p+d^p)$ $\equiv (cx+d)(a^p(x^2+\beta)+b^p)$ $-(ax+b)(c^p(x^2+\beta)+d^p).$

Left side is product of linear polys in $\mathbf{F}_{p^2}[x]$. Often right side is too.

<u>relation for D = 1</u>

$$(x-lpha)\equiv x^2-x+eta_{1}$$

- $\mathbf{F}_{p^2}[x]$: equal mod $-\beta$; forces = in **F**_q.
- at $x^2-x+eta$ $\mathbf{F}_{p^2}[x]$, say as $f_1 \cdot f_2$. inreasonable hope: f quadratics split.

$$\log_g f_1 + \log_g f_2 = \ \log_g (x-lpha).$$

- " "relation" liscrete logs
- c linear polys.

More relations for D = 1For $a, b, c, d \in \mathbf{F}_{p^2}$: $(cx+d) \mid (ax+b-\alpha(cx+d))$ $\alpha \in \mathbf{F}_{p}$ $= (cx+d)(ax+b)^p$ $-(ax+b)(cx+d)^p$ $= (cx+d)(a^px^p+b^p)$ $-(ax+b)(c^px^p+d^p)$ $\equiv (cx+d)(a^p(x^2+\beta)+b^p)$ $-(ax+b)(c^p(x^2+\beta)+d^p).$

Left side is product of linear polys in $\mathbf{F}_{p^2}[x]$. Often right side is too.

 $\lambda \in {\sf F}^*_{p^2}$ $\Rightarrow M, \lambda$ $m \in \mathsf{GL}$ $\Rightarrow M, m$ No othe Is there the set of in PGL₂ Cremona Bartel g Mindless is not a but wan

for D = 1

$$x^2 - x + eta$$
.

qual mod es = in \mathbf{F}_q .

$$+\beta$$

y as $f_1 \cdot f_2$. ole hope:

cs split.

$$g_g f_2 =$$

,,

gs lys.

<u>More relations for D = 1</u> For $a, b, c, d \in \mathbf{F}_{p^2}$: $(cx+d) \mid (ax+b-\alpha(cx+d))$ $\alpha \in \mathbf{F}_{p}$ $= (cx+d)(ax+b)^p$ $-(ax+b)(cx+d)^p$ $= (cx+d)(a^px^p+b^p)$ $-(ax+b)(c^px^p+d^p)$ $\equiv (cx+d)(a^p(x^2+\beta)+b^p)$ $-(ax+b)(c^p(x^2+\beta)+d^p).$

Left side is product of linear polys in $F_{p^2}[x]$. Often right side is too.

	More relations for $D = 1$	$\lambda \in {\sf F}_{p^2}^*$
3.	For $a, b, c, d \in \mathbf{F}_{p^2}$:	$\Rightarrow M, \lambda$
	$(cx+d) \prod_{lpha \in F_p} (ax+b-lpha (cx+d))$	$m \in Gl$ $\Rightarrow M, r$
	$= (cx+d)(ax+b)^p$	No othe
2.	$egin{aligned} &-(ax+b)(cx+d)^p\ &=(cx+d)(a^px^p+b^p)\ &-(ax+b)(c^px^p+d^p)\ &\equiv(cx+d)(a^p(x^2+eta)+b^p)\ &-(ax+b)(c^p(x^2+eta)+d^p). \end{aligned}$	Is there the set in PGL Cremor Bartel g
	Left side is product of linear polys in $F_{p^2}[x]$. Often right side is too.	Mindles is not a but war

 $_{2}$, $M=ig(egin{smallmatrix} a&b\ c&d \end{smallmatrix}ig)\in {\sf GL}_{2}({\sf I})$ λM are redundant.

 $L_2(\mathbf{F}_p), M \in \operatorname{GL}_2(\mathbf{F}_{p^2})$ mM are redundant.

er obvious redundanc

e a nice way to repres of cosets of $PGL_2(\mathbf{F}_p)$ $_2(\mathbf{F}_{p^2})$? Best hints so ha points me to $\mathbf{F}_{p^4}^*/$ gives solution for GL_2

ss enumeration of cos a real bottleneck here nt fast multipoint eva

More relations for D = 1For $a, b, c, d \in \mathbf{F}_{p^2}$: $(cx+d) \mid (ax+b-\alpha(cx+d))$ $\alpha \in \mathbf{F}_{\mathcal{D}}$ $= (cx+d)(ax+b)^p$ $-(ax+b)(cx+d)^p$ $= (cx+d)(a^px^p+b^p)$ $-(ax+b)(c^px^p+d^p)$ $\equiv (cx+d)(a^p(x^2+\beta)+b^p)$ $-(ax+b)(c^p(x^2+\beta)+d^p).$

Left side is product of linear polys in $\mathbf{F}_{p^2}[x]$. Often right side is too.

 $\lambda \in \mathbf{F}^*_{p^2}$, $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{GL}_2(\mathbf{F}_{p^2})$ \Rightarrow *M*, λM are redundant. $m \in \operatorname{GL}_2(\mathbf{F}_p), M \in \operatorname{GL}_2(\mathbf{F}_{p^2})$ \Rightarrow *M*, *mM* are redundant. No other obvious redundancies. Is there a nice way to represent the set of cosets of $PGL_2(\mathbf{F}_p)$ in $PGL_2(\mathbf{F}_{p^2})$? Best hints so far: Cremona points me to $\mathbf{F}_{n^4}^*/\mathbf{F}_{n^2}^*$; Bartel gives solution for GL_2 . Mindless enumeration of cosets is not a real bottleneck here but want fast multipoint eval.

ations for D = 1 $c, d \in \mathbf{F}_{p^2}$: $| (ax+b-\alpha(cx+d))|$ $\alpha \in \mathbf{F}_{p}$ $d)(ax+b)^p$ $(cx+d)^p$ $d)(a^px^p+b^p)$ $(c^p x^p + d^p)$ $d)(a^{p}(x^{2}+\beta)+b^{p})$ $(c^p(x^2+\beta)+d^p).$ e is product of

by in $\mathbf{F}_{p^2}[x]$. ght side is too. $\lambda \in \mathbf{F}_{p^2}^*, M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{GL}_2(\mathbf{F}_{p^2})$ $\Rightarrow M, \lambda M$ are redundant.

 $m \in \operatorname{GL}_2(\mathbf{F}_p), M \in \operatorname{GL}_2(\mathbf{F}_{p^2})$ \Rightarrow *M*, *mM* are redundant.

No other obvious redundancies.

Is there a nice way to represent the set of cosets of $PGL_2(\mathbf{F}_p)$ in $PGL_2(\mathbf{F}_{p^2})$? Best hints so far: Cremona points me to $\mathbf{F}_{p^4}^*/\mathbf{F}_{p^2}^*$; Bartel gives solution for GL_2 .

Mindless enumeration of cosets is not a real bottleneck here but want fast multipoint eval.

 $p^{3} + p p$ conjectu Each su Only p^2 Expect e to deter (or most unless p**BGJT** sa but fast gives be (How to Maybe c where β

D = 1

:

$$+b-lpha(cx+d))$$

$$(b)^p$$

 (b^p)
 (b^p)
 (d^p)

 $(+eta)+b^p) + d^p).$

t of

[x].

too.

 $\lambda \in \mathbf{F}_{p^2}^*, M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{GL}_2(\mathbf{F}_{p^2})$ \Rightarrow *M*, λM are redundant. $m \in \operatorname{GL}_2(\mathbf{F}_p), M \in \operatorname{GL}_2(\mathbf{F}_{p^2})$ \Rightarrow *M*, *mM* are redundant. No other obvious redundancies. Is there a nice way to represent the set of cosets of $PGL_2(\mathbf{F}_p)$ in $PGL_2(\mathbf{F}_{p^2})$? Best hints so far: Cremona points me to $\mathbf{F}_{p^4}^*/\mathbf{F}_{p^2}^*$; Bartel gives solution for GL_2 . Mindless enumeration of cosets

is not a real bottleneck here but want fast multipoint eval. $p^3 + p$ potential re conjecturally \approx ind Each succeeds wit Only p^2 monic line Expect enough rel to determine their (or *most* logs: ok unless p is very sm **BGJT** say sparse I but fast matrix mi gives better const (How to avoid and Maybe cleanest: a where β generates

 $\lambda \in \mathbf{F}_{p^2}^*, M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{GL}_2(\mathbf{F}_{p^2})$ $\Rightarrow M, \lambda M$ are redundant. $m \in \operatorname{GL}_2(\mathbf{F}_p), M \in \operatorname{GL}_2(\mathbf{F}_{p^2})$ \Rightarrow *M*, *mM* are redundant. No other obvious redundancies. Is there a nice way to represent the set of cosets of $PGL_2(\mathbf{F}_p)$ in $PGL_2(\mathbf{F}_{p^2})$? Best hints so far: Cremona points me to $\mathbf{F}_{p^4}^*/\mathbf{F}_{p^2}^*$; Bartel gives solution for GL_2 . Mindless enumeration of cosets is not a real bottleneck here but want fast multipoint eval.

 $p^3 + p$ potential relations, conjecturally \approx independent. Each succeeds with chance a Only p^2 monic linear polys. Expect enough relations to determine their logs (or *most* logs: ok to miss a unless p is very small. BGJT say sparse linear algel but fast matrix multiplicatio gives better const in expone (How to avoid annihilating Maybe cleanest: $x^p = eta x^2$ -

(c+d))

).

- where β generates $\mathbf{F}_{n^2}^*$.)

 $\lambda \in \mathbf{F}_{p^2}^*, M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{GL}_2(\mathbf{F}_{p^2})$ \Rightarrow *M*, λM are redundant.

 $m \in \operatorname{GL}_2(\mathbf{F}_p), M \in \operatorname{GL}_2(\mathbf{F}_{p^2})$ \Rightarrow M, mM are redundant.

No other obvious redundancies.

Is there a nice way to represent the set of cosets of $PGL_2(\mathbf{F}_p)$ in $PGL_2(\mathbf{F}_{p^2})$? Best hints so far: Cremona points me to $\mathbf{F}_{p^4}^*/\mathbf{F}_{p^2}^*$; Bartel gives solution for GL_2 .

Mindless enumeration of cosets is not a real bottleneck here but want fast multipoint eval.

 $p^3 + p$ potential relations, conjecturally \approx independent. Each succeeds with chance $\approx 1/6$. Only p^2 monic linear polys. Expect enough relations to determine their logs (or *most* logs: ok to miss a few), unless p is very small. BGJT say sparse linear algebra; but fast matrix multiplication gives better const in exponent. (How to avoid annihilating $\mathbf{F}_{p^2}^*$? Maybe cleanest: $x^p = \beta x^2 + 1$, where β generates $\mathbf{F}_{n^2}^*$.)

 $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{GL}_2(\mathbf{F}_{p^2})$ *M* are redundant.

 $_2(\mathbf{F}_p), M \in \mathrm{GL}_2(\mathbf{F}_{p^2})$ M are redundant.

r obvious redundancies.

a nice way to represent of cosets of $PGL_2(\mathbf{F}_p)$ (\mathbf{F}_{p^2}) ? Best hints so far: a points me to $\mathbf{F}_{p^4}^*/\mathbf{F}_{p^2}^*;$ ives solution for GL_2 .

s enumeration of cosets real bottleneck here t fast multipoint eval.

 $p^3 + p$ potential relations, conjecturally \approx independent. Each succeeds with chance $\approx 1/6$.

Only p^2 monic linear polys. Expect enough relations to determine their logs (or *most* logs: ok to miss a few), unless p is very small.

BGJT say sparse linear algebra; but fast matrix multiplication gives better const in exponent.

(How to avoid annihilating $\mathbf{F}_{p^2}^*$? Maybe cleanest: $x^p = eta x^2 + 1$, where β generates $\mathbf{F}_{n^2}^*$.)

More rel For each (ch+d)= (ch +-(ah += (ch +-(ah + $\equiv (ch +$ -(ah +Left side sometim \approx 5% as

 $f_l \in \operatorname{GL}_2(\mathbf{F}_{p^2})$ undant.

 $\in \operatorname{GL}_2(\mathbf{F}_{p^2})$ dundant.

redundancies.

to represent of $PGL_2(\mathbf{F}_p)$ est hints so far: ie to $\mathbf{F}_{p^4}^*/\mathbf{F}_{p^2}^*$; on for GL_2 .

tion of cosets eneck here tipoint eval. $p^3 + p$ potential relations, conjecturally \approx independent. Each succeeds with chance $\approx 1/6$. Only p^2 monic linear polys. Expect enough relations to determine their logs (or *most* logs: ok to miss a few),

unless p is very small.

BGJT say sparse linear algebra; but fast matrix multiplication gives better const in exponent.

(How to avoid annihilating $\mathbf{F}_{p^2}^*$? Maybe cleanest: $x^p = \beta x^2 + 1$, where β generates $\mathbf{F}_{p^2}^*$.)

More relations for For each small $h \in$ $(ch+d) \mid (ah + d)$ $\alpha \in \mathbf{F}_{p}$ = (ch + d)(ah + b)-(ah+b)(ch+c) $= (ch + d)(a^ph^p -(ah+b)(c^ph^p \equiv (ch+d)(a^ph(x$ $-(ah+b)(c^ph(x))$ Left side is produc sometimes right si \approx 5% as $D \rightarrow \infty$.

 $F_{p^2})$

ies.

)

ent v) o far: $\mathbf{F}_{p^2}^*;$ 2.

sets

al.

 $p^3 + p$ potential relations, conjecturally \approx independent. Each succeeds with chance $\approx 1/6$. Only p^2 monic linear polys. Expect enough relations to determine their logs (or *most* logs: ok to miss a few), unless p is very small.

BGJT say sparse linear algebra; but fast matrix multiplication gives better const in exponent.

(How to avoid annihilating $\mathbf{F}_{p^2}^*$? Maybe cleanest: $x^p = \beta x^2 + 1$, where β generates $\mathbf{F}_{n^2}^*$.)

More relations for arbitrary

For each small $h \in \mathbf{F}_{p^2}[x]$:

- $(ch+d) \mid (ah+b-\alpha(ch))$ $\alpha \in \mathbf{F}_{p}$
- $= (ch+d)(ah+b)^p$
- $-(ah+b)(ch+d)^p$
- $= (ch+d)(a^ph^p+b^p)$ $-(ah+b)(c^ph^p+d^p)$
- $\equiv (ch+d)(a^ph(x^2+eta)+b)$ $-(ah+b)(c^ph(x^2+\beta)+c)$
- Left side is product of small sometimes right side is too. $\approx 5\%$ as $D \rightarrow \infty$. BGJT say

 $p^3 + p$ potential relations, conjecturally \approx independent. Each succeeds with chance $\approx 1/6$. Only p^2 monic linear polys. Expect enough relations to determine their logs (or *most* logs: ok to miss a few), unless p is very small.

BGJT say sparse linear algebra; but fast matrix multiplication gives better const in exponent.

(How to avoid annihilating $\mathbf{F}_{p^2}^*$? Maybe cleanest: $x^p = \beta x^2 + 1$, where β generates $\mathbf{F}_{n^2}^*$.)

More relations for arbitrary D For each small $h \in \mathbf{F}_{p^2}[x]$: $(ch+d) \mid (ah+b-\alpha(ch+d))$ $\alpha \in \mathbf{F}_{p}$ $= (ch+d)(ah+b)^p$ $-(ah+b)(ch+d)^p$ $= (ch+d)(a^ph^p+b^p)$ $-(ah+b)(c^ph^p+d^p)$ $\equiv (ch+d)(a^ph(x^2+\beta)+b^p)$ $-(ah+b)(c^{p}h(x^{2}+\beta)+d^{p}).$

Left side is product of small polys; sometimes right side is too. $\approx 5\%$ as $D \rightarrow \infty$. BGJT say 1/6.

- otential relations,
- rally \approx independent.
- cceeds with chance $\approx 1/6$.
- monic linear polys.
- enough relations
- mine their logs
- t logs: ok to miss a few), is very small.
- ay sparse linear algebra; matrix multiplication tter const in exponent.

avoid annihilating $\mathbf{F}_{p^2}^*$? cleanest: $x^p = eta x^2 + 1$, generates $\mathbf{F}_{n^2}^*$.)

More relations for arbitrary D For each small $h \in \mathbf{F}_{p^2}[x]$: $(ch+d) \mid (ah+b-\alpha(ch+d))$ $\alpha \in \mathbf{F}_{p}$ $= (ch+d)(ah+b)^p$ $-(ah+b)(ch+d)^p$ $= (ch+d)(a^ph^p+b^p)$ $-(ah+b)(c^ph^p+d^p)$ $\equiv (ch+d)(a^ph(x^2+\beta)+b^p)$ $-(ah+b)(c^{p}h(x^{2}+\beta)+d^{p}).$

Left side is product of small polys; sometimes right side is too. $\approx 5\%$ as $D \rightarrow \infty$. BGJT say 1/6.

Larger d

What if Use sam (ch+d)

 $\equiv (ch +$ -(ah +

Occasio product We now

Left side factor ba Solve fo

elations,

ependent.

h chance $\approx 1/6$.

ear polys.

ations

logs

to miss a few), nall.

inear algebra;

ultiplication

in exponent.

 $\begin{array}{l} \text{initiating } \mathbf{F}_{p^2}^* \\ \mathbf{F}_{p^2}^p = \beta x^2 + 1, \\ \mathbf{F}_{p^2}^*. \end{array} \end{array}$

More relations for arbitrary D For each small $h \in \mathbf{F}_{p^2}[x]$: $(ch+d) \mid (ah+b-\alpha(ch+d))$ $\alpha \in \mathbf{F}_{p}$ $= (ch+d)(ah+b)^p$ $-(ah+b)(ch+d)^p$ $= (ch+d)(a^ph^p+b^p)$ $-(ah+b)(c^ph^p+d^p)$ $\equiv (ch+d)(a^ph(x^2+\beta)+b^p)$ $-(ah+b)(c^{p}h(x^{2}+\beta)+d^{p}).$

Left side is product of small polys; sometimes right side is too. $\approx 5\%$ as $D \rightarrow \infty$. BGJT say 1/6.

Larger discrete log What if $D < \deg I$ Use same equation $(ch+d) \mid (ah - b)$ $\alpha \in \mathbf{F}_{p}$ $\equiv (ch+d)(a^ph(x$ $-(ah+b)(c^ph(x))$ Occasionally right product of small p We now know tho Left side is produc factor base: $\{h + \}$ Solve for each log

$$\approx 1/6.$$
For each small $h \in \mathbf{F}_{p^2}[x]$:

$$(ch+d) \prod_{\alpha \in \mathbf{F}_p} (ah+b-\alpha(ch+d))$$

$$= (ch+d)(ah+b)^p$$

$$- (ah+b)(ch+d)^p$$

$$= (ch+d)(a^ph^p+b^p)$$

$$- (ah+b)(c^ph^p+d^p)$$

$$\equiv (ch+d)(a^ph(x^2+\beta)+b^p)$$

$$- (ah+b)(c^ph(x^2+\beta)+d^p).$$
Eff side is product of small polys;
sometimes right side is too.

$$\approx 5\% \text{ as } D \to \infty.$$
 BGJT say 1/6.

n

 $a\equiv (ch+d)(a^ph(x^2+eta)+b)$ $-(ah+b)(c^ph(x^2+\beta)+c)$

Larger discrete logs

What if $D < \deg h \le 2D$?

Use same equation: $(ch+d) \left[\begin{array}{c} ah+b-lpha(ch) \end{array} \right]$ $\alpha \in \mathbf{F}_{p}$

- Occasionally right side is
- product of small polys.
- We now know those discrete
- Left side is product on new
- factor base: $\{h + \gamma : \gamma \in \mathbf{F}_{\eta}\}$
- Solve for each $\log_q(h + \gamma)$.

More relations for arbitrary DFor each small $h \in \mathbf{F}_{p^2}[x]$: $(ch+d) \mid (ah+b-\alpha(ch+d))$ $\alpha \in \mathbf{F}_{\mathcal{D}}$ $= (ch+d)(ah+b)^p$ $-(ah+b)(ch+d)^p$ $= (ch+d)(a^ph^p+b^p)$ $-(ah+b)(c^ph^p+d^p)$ $\equiv (ch+d)(a^ph(x^2+\beta)+b^p)$ $-(ah+b)(c^{p}h(x^{2}+\beta)+d^{p}).$

Left side is product of small polys; sometimes right side is too. $\approx 5\%$ as $D \rightarrow \infty$. BGJT say 1/6.

Larger discrete logs What if $D < \deg h < 2D$? Use same equation: $\alpha \in \mathbf{F}_{p}$ $\equiv (ch+d)(a^ph(x^2+\beta)+b^p)$ $-(ah+b)(c^{p}h(x^{2}+\beta)+d^{p}).$

Occasionally right side is product of small polys. We now know those discrete logs.

Left side is product on new factor base: $\{h + \gamma : \gamma \in \mathbf{F}_{p^2}\}$. Solve for each $\log_q(h + \gamma)$.

- $(ch+d) \mid (ah+b-\alpha(ch+d))$

ations for arbitrary D small $h \in \mathsf{F}_{p^2}[x]$: $| (ah+b-\alpha(ch+d))|$ $\alpha \in \mathbf{F}_{p}$ $d)(ah+b)^p$ $(ch+d)^p$ $d)(a^ph^p+b^p)$ $(c^{p}h^{p} + d^{p})$ $d)(a^{p}h(x^{2}+\beta)+b^{p})$ $(c^ph(x^2+\beta)+d^p).$

e is product of small polys; es right side is too.

 $D \rightarrow \infty$. BGJT say 1/6.

Larger discrete logs

What if $D < \deg h < 2D$?

Use same equation: $(ch+d) \mid (ah+b-\alpha(ch+d))$ $\alpha \in \mathbf{F}_{p}$ $\equiv (ch+d)(a^ph(x^2+\beta)+b^p)$ $-(ah+b)(c^{p}h(x^{2}+\beta)+d^{p}).$

Occasionally right side is product of small polys. We now know those discrete logs.

Left side is product on new factor base: $\{h + \gamma : \gamma \in \mathbf{F}_{p^2}\}$. Solve for each $\log_q(h + \gamma)$.

For deg D-smoo so $\approx u^{-2}$ Need \approx_{i} Note fre Works for Reminise (1977 Se $\left(\left|\sqrt{q}\right| +\right)$ $\equiv (a + b)$ mod larg Factor b $\left\{ \left| \sqrt{q} \right| \right\}$

arbitrary D

 $\mathbf{F}_{p^2}[x]$:

+b-lpha(ch+d))

$$(b)^p$$

 $(+b^p)$
 $(+d^p)$
 $(2^2 + \beta) + b^p)$
 $(2^2 + \beta) + d^p).$

t of small polys; de is too.

BGJT say 1/6.

Larger discrete logs

What if $D < \deg h \le 2D$? Use same equation: $(ch+d) \prod_{\alpha \in \mathbf{F}_p} (ah+b-\alpha(ch+d))$ $\equiv (ch+d)(a^ph(x^2+\beta)+b^p)$ $-(ah+b)(c^ph(x^2+\beta)+d^p).$

Occasionally right side is product of small polys. We now know those discrete logs.

Left side is product on new factor base: $\{h + \gamma : \gamma \in \mathbf{F}_{p^2}\}$. Solve for each $\log_q(h + \gamma)$.

For deg $h \leq (u/3)$ D-smoothness cha so $\approx u^{-u}p^3$ relation Need $\approx p^2$ relation Note free relations Works for $u \approx \log$ Reminiscent of line (1977 Schroeppel) $(\left\lceil \sqrt{q} \right\rceil + a)(\left\lceil \sqrt{q} \right\rceil)$ $\equiv (a+b)\left[\sqrt{q}\right] +$ mod large prime q Factor base in line $\left\{\left\lceil \sqrt{q}\right\rceil + a\right\} \cup \left\{\operatorname{sr}\right\}$

<u>D</u>

(n+d))

 (p^p) .

polys;

/ 1/6.

Larger discrete logs

What if $D < \deg h \le 2D$? Use same equation: $(ch+d) \prod_{\alpha \in \mathbf{F}_p} (ah+b-\alpha(ch+d))$ $\equiv (ch+d)(a^ph(x^2+\beta)+b^p)$ $-(ah+b)(c^ph(x^2+\beta)+d^p).$

Occasionally right side is product of small polys. We now know those discrete logs. Left side is product on new factor base: $\{h + \gamma : \gamma \in \mathbf{F}_{p^2}\}$. Solve for each $\log_q(h + \gamma)$.

For deg $h \leq (u/3)D$: *D*-smoothness chance $\approx u^{-i}$ so $\approx u^{-u}p^3$ relations. Need $\approx p^2$ relations. Note free relations: smooth Works for $u \approx \log p / \log \log p$ Reminiscent of linear sieve (1977 Schroeppel): $(\left\lceil \sqrt{q} \right\rceil + a)(\left\lceil \sqrt{q} \right\rceil + b)$ $\equiv (a+b) \left\lceil \sqrt{q} \right\rceil + ab + \left\lceil \sqrt{q} \right\rceil$ mod large prime q. Factor base in linear sieve: $\left\{ \left\lceil \sqrt{q} \right\rceil + a \right\} \cup \left\{ \text{small primes} \right\}$

Larger discrete logs

What if $D < \deg h < 2D$?

Use same equation: $(ch+d) \mid (ah+b-\alpha(ch+d))$ $\alpha \in \mathbf{F}_{p}$ $\equiv (ch+d)(a^ph(x^2+\beta)+b^p)$ $-(ah+b)(c^{p}h(x^{2}+\beta)+d^{p}).$

Occasionally right side is product of small polys. We now know those discrete logs.

Left side is product on new factor base: $\{h + \gamma : \gamma \in \mathbf{F}_{p^2}\}$. Solve for each $\log_q(h + \gamma)$.

For deg h < (u/3)D: *D*-smoothness chance $\approx u^{-u}$ so $\approx u^{-u}p^3$ relations. Need $\approx p^2$ relations. Works for $u \approx \log p / \log \log p$. Reminiscent of linear sieve (1977 Schroeppel): $(\left\lceil \sqrt{q} \right\rceil + a)(\left\lceil \sqrt{q} \right\rceil + b)$ $\equiv (a+b) \left\lceil \sqrt{q} \right\rceil + ab + \left\lceil \sqrt{q} \right\rceil^2 - q$ mod large prime q. Factor base in linear sieve: $\{\lceil \sqrt{q} \rceil + a\} \cup \{\text{small primes}\}.$

- Note free relations: smooth $h + \gamma$.
iscrete logs

 $D < \deg h < 2D?$

e equation:

$$igg| (ah+b-lpha(ch+d))$$

 $lpha\in F_p$
 $d)(a^ph(x^2+eta)+b^p))$
 $b)(c^ph(x^2+eta)+d^p).$

nally right side is

of small polys.

know those discrete logs.

e is product on new ase: $\{h + \boldsymbol{\gamma} : \boldsymbol{\gamma} \in \boldsymbol{\mathsf{F}}_{p^2}\}.$ r each $\log_q(h+oldsymbol\gamma)$.

For deg $h \leq (u/3)D$: *D*-smoothness chance $\approx u^{-u}$ so $\approx u^{-u}p^3$ relations. Need $\approx p^2$ relations. Note free relations: smooth $h + \gamma$. Works for $u \approx \log p / \log \log p$. Reminiscent of linear sieve (1977 Schroeppel): $(\left\lceil \sqrt{q} \right\rceil + a)(\left\lceil \sqrt{q} \right\rceil + b)$ $\equiv (a+b) \left\lceil \sqrt{q} \right\rceil + ab + \left\lceil \sqrt{q} \right\rceil^2 - q$ mod large prime q. Factor base in linear sieve: $\left\{ \left\lceil \sqrt{q} \right\rceil + a \right\} \cup \{\text{small primes} \}.$

Arbitrary For (u/3)Use sam (ch+d) $\equiv (ch +$ -(ah +Occasio side; aga Have see (u/3)D $p^{O(1)}$ su of which

S

 $n \leq 2D?$

ר:+ b - lpha (ch + d))

 $(2+eta)+b^p)$ $(2+eta)+d^p).$

side is

olys.

se discrete logs.

t on new

$$oldsymbol{\gamma}:oldsymbol{\gamma}\in {f F}_{p^2}\}.$$
g $(h+oldsymbol{\gamma}).$

For deg $h \leq (u/3)D$: *D*-smoothness chance $\approx u^{-u}$ so $\approx u^{-u}p^3$ relations. Need $\approx p^2$ relations. Note free relations: smooth $h + \gamma$. Works for $u \approx \log p / \log \log p$. Reminiscent of linear sieve (1977 Schroeppel): $(\left\lceil \sqrt{q} \right\rceil + a)(\left\lceil \sqrt{q} \right\rceil + b)$ $\equiv (a+b) \left\lceil \sqrt{q} \right\rceil + ab + \left\lceil \sqrt{q} \right\rceil^2 - q$ mod large prime q. Factor base in linear sieve: $\left\{ \left\lceil \sqrt{q} \right\rceil + a \right\} \cup \{\text{small primes} \}.$

Arbitrary discrete

For $(u/3)D < \deg$ Use same equation $(ch + d) \prod (ah + a) (ah + b)(a^ph(x + a))$ $\equiv (ch + d)(a^ph(x + b))(c^ph(x + b))$ Occasionally (u/3)

side; again $\{h + \gamma \}$ Have seen subrout (u/3)D-smooth di

 $p^{O(1)}$ subroutine c of which $\Theta(p^2)$ ar

$$(a + d))$$

 $b^p)$ l^p).

e logs.

₂}.

For deg $h \leq (u/3)D$: *D*-smoothness chance $\approx u^{-u}$ so $\approx u^{-u}p^3$ relations. Need $\approx p^2$ relations. Note free relations: smooth $h + \gamma$. Works for $u \approx \log p / \log \log p$. Reminiscent of linear sieve (1977 Schroeppel): $(\left\lceil \sqrt{q} \right\rceil + a)(\left\lceil \sqrt{q} \right\rceil + b)$ $\equiv (a+b) \left\lceil \sqrt{q} \right\rceil + ab + \left\lceil \sqrt{q} \right\rceil^2 - q$ mod large prime q. Factor base in linear sieve: $\left\{ \left\lceil \sqrt{q} \right\rceil + a \right\} \cup \{\text{small primes} \}.$

 $p^{O(1)}$ subroutine calls, of which $\Theta(p^2)$ are important

Arbitrary discrete logs

For $(u/3)D < \deg h < (u/3)$

Use same equation $(ch+d) \mid (ah+b-\alpha(ch))$ $\alpha \in \mathbf{F}_{p}$

- $\equiv (ch+d)(a^ph(x^2+eta)+b)$ $-(ah+b)(c^ph(x^2+\beta)+c)$
- Occasionally (u/3)D-smoot
- side; again $\{h + \gamma\}$ for left s
- Have seen subroutine to con
- (u/3)D-smooth discrete log

For deg $h \leq (u/3)D$: D-smoothness chance $\approx u^{-u}$ so $\approx u^{-u}p^3$ relations.

Need $\approx p^2$ relations. Note free relations: smooth $h + \gamma$.

Works for $u \approx \log p / \log \log p$.

Reminiscent of linear sieve (1977 Schroeppel): $(\left\lceil \sqrt{q} \right\rceil + a)(\left\lceil \sqrt{q} \right\rceil + b)$ $\equiv (a+b) \left\lceil \sqrt{q} \right\rceil + ab + \left\lceil \sqrt{q} \right\rceil^2 - q$ mod large prime q. Factor base in linear sieve: $\left\{ \left\lceil \sqrt{q} \right\rceil + a \right\} \cup \{\text{small primes} \}.$

Arbitrary discrete logs

For $(u/3)D < \deg h < (u/3)^2D$:

Use same equation $\alpha \in \mathbf{F}_{p}$ $\equiv (ch+d)(a^ph(x^2+\beta)+b^p)$ $-(ah+b)(c^{p}h(x^{2}+\beta)+d^{p}).$

side; again $\{h + \gamma\}$ for left side. Have seen subroutine to compute (u/3)D-smooth discrete logs. $p^{O(1)}$ subroutine calls,

of which $\Theta(p^2)$ are important.

- $(ch+d) \mid (ah+b-\alpha(ch+d))$
- Occasionally (u/3)D-smooth right

- $h \leq (u/3)D$: thness chance $pprox u^{-u}$ $^{\mu}p^{3}$ relations.
- p^2 relations.
- e relations: smooth $h + \gamma$.
- or $u \approx \log p / \log \log p$.
- cent of linear sieve chroeppel): $(\left\lceil \sqrt{q} \right\rceil + b)$ b) $\left\lceil \sqrt{q} \right\rceil + ab + \left\lceil \sqrt{q} \right\rceil^2 - q$ ge prime q.
- ase in linear sieve:
- $\vdash a \} \cup \{\text{small primes}\}.$

Arbitrary discrete logs

For $(u/3)D < \deg h < (u/3)^2D$:

Use same equation $(ch+d) \mid (ah+b-\alpha(ch+d))$ $\alpha \in \mathbf{F}_{p}$ $\equiv (ch+d)(a^ph(x^2+\beta)+b^p)$ $-(ah+b)(c^{p}h(x^{2}+\beta)+d^{p}).$

Occasionally (u/3)D-smooth right side; again $\{h + \gamma\}$ for left side. Have seen subroutine to compute (u/3)D-smooth discrete logs.

 $p^{O(1)}$ subroutine calls, of which $\Theta(p^2)$ are important.

For large Reach d $\log n$ $\log(u/3)$ levels of Total co $= \exp \Theta$ $= \exp \Theta$ What al Embed i Can also

D: nce $\approx u^{-u}$ ons.

S.

s: smooth $h + \gamma$.

 $p/\log\log p$.

ear sieve

•

 $(b) + \left\lceil \sqrt{q} \right\rceil^2 - q$

ar sieve: nall primes}. Arbitrary discrete logs

For $(u/3)D < \deg h \le (u/3)^2 D$: Use same equation $(ch+d) \prod (ah+b-\alpha(ch+d))$ $\alpha \in \mathbf{F}_p$ $\equiv (ch+d)(a^ph(x^2+\beta)+b^p)$ $-(ah+b)(c^ph(x^2+\beta)+d^p).$

Occasionally (u/3)D-smooth right side; again $\{h + \gamma\}$ for left side. Have seen subroutine to compute (u/3)D-smooth discrete logs.

 $p^{O(1)}$ subroutine calls, of which $\Theta(p^2)$ are important.

 $h+\gamma$.

p.

 $]^2 - q$

s}.

Arbitrary discrete logs

For
$$(u/3)D < \deg h \le (u/3)^2 D$$
:
Use same equation
 $(ch+d) \prod (ah+b-\alpha(ch+d))$
 $\alpha \in \mathbf{F}_p$
 $\equiv (ch+d)(a^ph(x^2+\beta)+b^p))$
 $- (ah+b)(c^ph(x^2+\beta)+d^p).$

Occasionally (u/3)D-smooth right side; again $\{h + \gamma\}$ for left side. Have seen subroutine to compute (u/3)D-smooth discrete logs. $p^{O(1)}$ subroutine calls, of which $\Theta(p^2)$ are important.

Reach degree n - 1 using $\frac{\log n}{\log(u/3)} \in \Theta\left(\frac{\log n}{\log\log n}\right)$ levels of recursion.

Total cost $p^{\Theta(\log n / \log \log n)}$ $= \exp \Theta \left(\frac{(\log n)^2}{\log \log n} \right)$ $= \exp \Theta \Big(\frac{(\log \log q)^2}{\log \log \log q} \Big).$

What about p^{2n} with p < nEmbed into an extension fie Can also use x^{char} etc.

For larger *h*: recurse.

Arbitrary discrete logs

For $(u/3)D < \deg h < (u/3)^2D$:

Use same equation

$$(ch+d) \prod_{\alpha \in \mathbf{F}_p} (ah+b-\alpha(ch+d))$$

 $\equiv (ch+d)(a^ph(x^2+\beta)+b^p)$
 $- (ah+b)(c^ph(x^2+\beta)+d^p).$

Occasionally (u/3)D-smooth right side; again $\{h + \gamma\}$ for left side. Have seen subroutine to compute (u/3)D-smooth discrete logs.

 $p^{O(1)}$ subroutine calls, of which $\Theta(p^2)$ are important.

For larger *h*: recurse. Reach degree n-1 using $\frac{\log n}{\log(u/3)} \in \Theta\left(\frac{\log n}{\log\log n}\right)$ levels of recursion. Total cost $p^{\Theta(\log n / \log \log n)}$ $= \exp \Theta \left(\frac{(\log n)^2}{\log \log n} \right)$ $= \exp \Theta \left(\frac{(\log \log q)^2}{\log \log \log q} \right).$ What about p^{2n} with p < n? Embed into an extension field. Can also use x^{char} etc.