McBits:

fast constant-time
code-based cryptography
(to appear at CHES 2013)
D. J. Bernstein

University of Illinois at Chicago \&
Technische Universiteit Eindhoven
Joint work with:
Tung Chou
Technische Universiteit Eindhoven
Peter Schwabe
Radboud University Nijmegen

Univariate "Coppersmith"

Lattice-basis reduction finds all small r with large $\operatorname{gcd}\{N, f(r)\}$.

Correct credits: 1984 Lenstra, 1986 Rivest-Shamir, 1988 Håstad, 1989 Vallée-Girault-Toffin, 1996 Coppersmith, 1997 Howgrave-Graham, 1997
Konyagin-Pomerance, 1998
Coppersmith-Howgrave-GrahamNagaraj, 1999 Goldreich-RonSudan, 1999 Boneh-Durfee-Howgrave-Graham, 2000 Boneh, 2001 Howgrave-Graham.

stant-time

sed cryptography
ar at CHES 2013)
rnstein
ty of Illinois at Chicago \& he Universiteit Eindhoven
rk with:
ou
he Universiteit Eindhoven
hwabe
University Nijmegen

Univariate "Coppersmith"

Lattice-basis reduction finds all small r with large $\operatorname{gcd}\{N, f(r)\}$.

Correct credits: 1984 Lenstra, 1986 Rivest-Shamir, 1988 Håstad, 1989 Vallée-Girault-Toffin, 1996 Coppersmith, 1997 Howgrave-Graham, 1997 Konyagin-Pomerance, 1998
Coppersmith-Howgrave-GrahamNagaraj, 1999 Goldreich-RonSudan, 1999 Boneh-Durfee-Howgrave-Graham, 2000 Boneh, 2001 Howgrave-Graham.

Importa
Given N find all with lare

For $N=$ find all with ma

Univariate "Coppersmith"

Lattice-basis reduction finds all small r with large $\operatorname{gcd}\{N, f(r)\}$.

Correct credits: 1984 Lenstra, 1986 Rivest-Shamir, 1988 Håstad, 1989 Vallée-Girault-Toffin, 1996 Coppersmith, 1997
Howgrave-Graham, 1997
Konyagin-Pomerance, 1998
Coppersmith-Howgrave-GrahamNagaraj, 1999 Goldreich-RonSudan, 1999 Boneh-Durfee-Howgrave-Graham, 2000 Boneh, 2001 Howgrave-Graham.

Important special Given $N, f \in \mathbf{Z}$, find all small $r \in$ with large $\operatorname{gcd}\{N$,

For $N=2 \cdot 3 \cdot 5$. find all small $r \in$ with many primes

Univariate "Coppersmith"

Lattice-basis reduction finds all small r with large $\operatorname{gcd}\{N, f(r)\}$.

Correct credits: 1984 Lenstra, 1986 Rivest-Shamir, 1988 Håstad, 1989 Vallée-Girault-Toffin, 1996 Coppersmith, 1997
Howgrave-Graham, 1997
Konyagin-Pomerance, 1998
Coppersmith-Howgrave-GrahamNagaraj, 1999 Goldreich-RonSudan, 1999 Boneh-Durfee-Howgrave-Graham, 2000 Boneh, 2001 Howgrave-Graham.

Important special case:
Given $N, f \in \mathbf{Z}$,
find all small $r \in \mathbf{Z}$ with large $\operatorname{gcd}\{N, f-r\}$.

For $N=2 \cdot 3 \cdot 5 \cdots y$: find all small $r \in \mathbf{Z}$ with many primes $\leq y$ in f

Univariate "Coppersmith"

Lattice-basis reduction finds all small r with large $\operatorname{gcd}\{N, f(r)\}$.

Correct credits: 1984 Lenstra, 1986 Rivest-Shamir, 1988 Håstad, 1989 Vallée-Girault-Toffin, 1996 Coppersmith, 1997 Howgrave-Graham, 1997 Konyagin-Pomerance, 1998 Coppersmith-Howgrave-GrahamNagaraj, 1999 Goldreich-RonSudan, 1999 Boneh-Durfee-Howgrave-Graham, 2000 Boneh, 2001 Howgrave-Graham.

Important special case:
Given $N, f \in \mathbf{Z}$,
find all small $r \in \mathbf{Z}$
with large $\operatorname{gcd}\{N, f-r\}$.
For $N=2 \cdot 3 \cdot 5 \cdots y$:
find all small $r \in \mathbf{Z}$
with many primes $\leq y$ in $f-r$.

Univariate "Coppersmith"

Lattice-basis reduction finds all small r with large $\operatorname{gcd}\{N, f(r)\}$.

Correct credits: 1984 Lenstra, 1986 Rivest-Shamir, 1988 Håstad, 1989 Vallée-Girault-Toffin, 1996 Coppersmith, 1997 Howgrave-Graham, 1997 Konyagin-Pomerance, 1998 Coppersmith-Howgrave-GrahamNagaraj, 1999 Goldreich-RonSudan, 1999 Boneh-Durfee-Howgrave-Graham, 2000 Boneh, 2001 Howgrave-Graham.

Important special case:
Given $N, f \in \mathbf{Z}$,
find all small $r \in \mathbf{Z}$
with large $\operatorname{gcd}\{N, f-r\}$.
For $N=2 \cdot 3 \cdot 5 \cdots y$:
find all small $r \in \mathbf{Z}$
with many primes $\leq y$ in $f-r$.
Easily replace \mathbf{Z} with $\mathbf{F}_{q}[x]$ in all of these methods; history not summarized here.

For $N=\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{n}\right)$,
distinct $\alpha_{1}, \ldots, \alpha_{n} \in \mathbf{F}_{q}$:
Find all small polys r
with many roots α_{i} of $f-r$.

te "Coppersmith"

pasis reduction finds all with large $\operatorname{gcd}\{N, f(r)\}$.
credits: 1984 Lenstra,
rest-Shamir, 1988 Håstad,
Ilée-Girault-Toffin,
ppersmith, 1997
e-Graham, 1997
n-Pomerance, 1998
mith-Howgrave-Graham-
1999 Goldreich-Ron1999 Boneh-Durfee-
e-Graham, 2000 Boneh, wgrave-Graham.

Important special case:
Given $N, f \in \mathbf{Z}$,
find all small $r \in \mathbf{Z}$
with large $\operatorname{gcd}\{N, f-r\}$.
For $N=2 \cdot 3 \cdot 5 \cdots y$:
find all small $r \in \mathbf{Z}$
with many primes $\leq y$ in $f-r$.
Easily replace \mathbf{Z} with $\mathbf{F}_{q}[x]$
in all of these methods;
history not summarized here.
For $N=\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{n}\right)$,
distinct $\alpha_{1}, \ldots, \alpha_{n} \in \mathbf{F}_{q}$:
Find all small polys r
with many roots α_{i} of $f-r$.

List dec

"Reed-S set of (r where r

Decodin given c

Standar Interpola
$c+e=$
Find all and mar For each $\left(r\left(\alpha_{1}\right)\right.$,

rsmith"

tion finds all $\operatorname{gcd}\{N, f(r)\}$.

984 Lenstra,
ir, 1988 Håstad,
It-Toffin,
1997
1997
nce, 1998
grave-Graham-dreich-Ron-h-Durfee2000 Boneh, raham.

Important special case:
Given $N, f \in \mathbf{Z}$,
find all small $r \in \mathbf{Z}$
with large $\operatorname{gcd}\{N, f-r\}$.
For $N=2 \cdot 3 \cdot 5 \cdots y$:
find all small $r \in \mathbf{Z}$
with many primes $\leq y$ in $f-r$.
Easily replace \mathbf{Z} with $\mathbf{F}_{q}[x]$
in all of these methods;
history not summarized here.
For $N=\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{n}\right)$, distinct $\alpha_{1}, \ldots, \alpha_{n} \in \mathbf{F}_{q}$:
Find all small polys r
with many roots α_{i} of $f-r$.

List decoding for

"Reed-Solomon c set of $\left(r\left(\alpha_{1}\right), \ldots\right.$, where $r \in \mathbf{F}_{q}[x]$,

Decoding problem given $c+e$ with

Standard"list dec Interpolate to find $c+e=\left(f\left(\alpha_{1}\right), \ldots\right.$
Find all polys r w and many roots α For each r evaluat $\left(r\left(\alpha_{1}\right), \ldots, r\left(\alpha_{n}\right)\right.$
all
$r)\}$
a,

Important special case:
Given $N, f \in \mathbf{Z}$,
find all small $r \in \mathbf{Z}$
with large $\operatorname{gcd}\{N, f-r\}$.
For $N=2 \cdot 3 \cdot 5 \cdots y$:
find all small $r \in \mathbf{Z}$
with many primes $\leq y$ in $f-r$.
Easily replace \mathbf{Z} with $\mathbf{F}_{q}[x]$
in all of these methods;
history not summarized here.
For $N=\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{n}\right)$, distinct $\alpha_{1}, \ldots, \alpha_{n} \in \mathbf{F}_{q}$:
Find all small polys r
with many roots α_{i} of $f-r$.

List decoding for RS codes
"Reed-Solomon code" $C \subseteq$ set of $\left(r\left(\alpha_{1}\right), \ldots, r\left(\alpha_{n}\right)\right)$ where $r \in \mathbf{F}_{q}[x]$, $\operatorname{deg} r<n$

Decoding problem: find $c \in$ given $c+e$ with low-weight Standard "list decoding" sol Interpolate to find $f \in \mathbf{F}_{q}[x$ $c+e=\left(f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{n}\right)\right)$
Find all polys r with $\operatorname{deg} r<$ and many roots α_{i} of $f-r$ For each r evaluate $\left(r\left(\alpha_{1}\right), \ldots, r\left(\alpha_{n}\right)\right)$.

Important special case:
Given $N, f \in \mathbf{Z}$,
find all small $r \in \mathbf{Z}$
with large $\operatorname{gcd}\{N, f-r\}$.
For $N=2 \cdot 3 \cdot 5 \cdots y$:
find all small $r \in \mathbf{Z}$
with many primes $\leq y$ in $f-r$.
Easily replace \mathbf{Z} with $\mathbf{F}_{q}[x]$ in all of these methods; history not summarized here.

For $N=\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{n}\right)$, distinct $\alpha_{1}, \ldots, \alpha_{n} \in \mathbf{F}_{q}$:
Find all small polys r
with many roots α_{i} of $f-r$.

List decoding for RS codes

"Reed-Solomon code" $C \subseteq F_{q}^{n}$: set of $\left(r\left(\alpha_{1}\right), \ldots, r\left(\alpha_{n}\right)\right)$ where $r \in \mathbf{F}_{q}[x]$, $\operatorname{deg} r<n-t$.

Decoding problem: find $c \in C$ given $c+e$ with low-weight e.

Standard "list decoding" solution: Interpolate to find $f \in \mathbf{F}_{q}[x]$ with $c+e=\left(f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{n}\right)\right)$.
Find all polys r with $\operatorname{deg} r<n-t$ and many roots α_{i} of $f-r$.
For each r evaluate $\left(r\left(\alpha_{1}\right), \ldots, r\left(\alpha_{n}\right)\right)$.
it special case:
, $f \in \mathbf{Z}$,
mall $r \in \mathbf{Z}$
se $\operatorname{gcd}\{N, f-r\}$.
$2 \cdot 3 \cdot 5 \cdots y:$
mall $r \in \mathbf{Z}$
ny primes $\leq y$ in $f-r$.
place \mathbf{Z} with $\mathbf{F}_{q}[x]$
these methods;
ot summarized here.

$$
\begin{aligned}
& \left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{n}\right), \\
& \alpha_{1}, \ldots, \alpha_{n} \in \mathbf{F}_{q}:
\end{aligned}
$$

small polys r
ny roots α_{i} of $f-r$.

List decoding for RS codes

"Reed-Solomon code" $C \subseteq F_{q}^{n}$:
set of $\left(r\left(\alpha_{1}\right), \ldots, r\left(\alpha_{n}\right)\right)$
where $r \in \mathbf{F}_{q}[x], \operatorname{deg} r<n-t$.
Decoding problem: find $c \in C$ given $c+e$ with low-weight e.

Standard "list decoding" solution: Interpolate to find $f \in \mathbf{F}_{q}[x]$ with
$c+e=\left(f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{n}\right)\right)$.
Find all polys r with $\operatorname{deg} r<n-t$ and many roots α_{i} of $f-r$.
For each r evaluate
$\left(r\left(\alpha_{1}\right), \ldots, r\left(\alpha_{n}\right)\right)$.

Lowest-c fastest c $\lfloor t / 2\rfloor \mathrm{er}$ Unique trivially $\left\{\left(\beta_{1} r(\alpha\right.\right.$

Today: classica $\Gamma_{2}\left(\alpha_{1}\right.$, assumin $g \in \mathbf{F}_{q}[x$ 1970 Go $\Gamma_{2}(\ldots, \varrho$ so actua
ith $\mathbf{F}_{q}[x]$
hods;
rized here.

$$
\begin{aligned}
& \cdots\left(x-\alpha_{n}\right), \\
& { }_{2} \in \mathbf{F}_{q}: \\
& \text { s } r \\
& \imath_{i} \text { of } f-r .
\end{aligned}
$$

List decoding for RS codes

"Reed-Solomon code" $C \subseteq F_{q}^{n}$:
set of $\left(r\left(\alpha_{1}\right), \ldots, r\left(\alpha_{n}\right)\right)$
where $r \in \mathbf{F}_{q}[x]$, $\operatorname{deg} r<n-t$.
Decoding problem: find $c \in C$ given $c+e$ with low-weight e.

Standard "list decoding" solution: Interpolate to find $f \in \mathbf{F}_{q}[x]$ with $c+e=\left(f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{n}\right)\right)$.
Find all polys r with $\operatorname{deg} r<n-t$ and many roots α_{i} of $f-r$.
For each r evaluate
$\left(r\left(\alpha_{1}\right), \ldots, r\left(\alpha_{n}\right)\right)$.

Lowest-dimension fastest case, "unio $\lfloor t / 2\rfloor$ errors. (196 Unique decoding a trivially generalize $\left\{\left(\beta_{1} r\left(\alpha_{1}\right), \ldots, \beta_{n}\right.\right.$ Today: unique ded classical binary $\Gamma_{2}\left(\alpha_{1}, \ldots, \alpha_{n}, g\right)$ assuming $\beta_{i}=g(c$ $g \in \mathbf{F}_{q}[x], \operatorname{deg} g=$ 1970 Goppa: g sq $\Gamma_{2}(\ldots, g)=\Gamma_{2}(\ldots$ so actually correct

List decoding for RS codes

"Reed-Solomon code" $C \subseteq F_{q}^{n}$:
set of $\left(r\left(\alpha_{1}\right), \ldots, r\left(\alpha_{n}\right)\right)$
where $r \in \mathbf{F}_{q}[x], \operatorname{deg} r<n-t$.
Decoding problem: find $c \in C$ given $c+e$ with low-weight e.

Standard "list decoding" solution: Interpolate to find $f \in \mathbf{F}_{q}[x]$ with
$c+e=\left(f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{n}\right)\right)$.
Find all polys r with $\operatorname{deg} r<n-t$ and many roots α_{i} of $f-r$.
For each r evaluate $\left(r\left(\alpha_{1}\right), \ldots, r\left(\alpha_{n}\right)\right)$.

Lowest-dimensional lattices fastest case, "unique decodi $\lfloor t / 2\rfloor$ errors. (1968 Berlekar Unique decoding and list de trivially generalize to $C=$ $\left\{\left(\beta_{1} r\left(\alpha_{1}\right), \ldots, \beta_{n} r\left(\alpha_{n}\right)\right)\right\}$.

Today: unique decoding for classical binary Goppa coc $\Gamma_{2}\left(\alpha_{1}, \ldots, \alpha_{n}, g\right)=\mathbf{F}_{2}^{n} \cap C$ assuming $\beta_{i}=g\left(\alpha_{i}\right) / N^{\prime}\left(\alpha_{i}\right.$ $g \in \mathbf{F}_{q}[x], \operatorname{deg} g=t, q \in 2 Z$

1970 Goppa: g squarefree $=$ $\Gamma_{2}(\ldots, g)=\Gamma_{2}\left(\ldots, g^{2}\right)$
so actually correct t errors.

List decoding for RS codes

"Reed-Solomon code" $C \subseteq F_{q}^{n}$:
set of $\left(r\left(\alpha_{1}\right), \ldots, r\left(\alpha_{n}\right)\right)$
where $r \in \mathbf{F}_{q}[x], \operatorname{deg} r<n-t$.
Decoding problem: find $c \in C$ given $c+e$ with low-weight e.

Standard "list decoding" solution: Interpolate to find $f \in \mathbf{F}_{q}[x]$ with $c+e=\left(f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{n}\right)\right)$.
Find all polys r with $\operatorname{deg} r<n-t$ and many roots α_{i} of $f-r$.
For each r evaluate $\left(r\left(\alpha_{1}\right), \ldots, r\left(\alpha_{n}\right)\right)$.

Lowest-dimensional lattices \Rightarrow fastest case, "unique decoding", $\lfloor t / 2\rfloor$ errors. (1968 Berlekamp)

Unique decoding and list decoding trivially generalize to $C=$ $\left\{\left(\beta_{1} r\left(\alpha_{1}\right), \ldots, \beta_{n} r\left(\alpha_{n}\right)\right)\right\}$.

Today: unique decoding for classical binary Goppa code $\Gamma_{2}\left(\alpha_{1}, \ldots, \alpha_{n}, g\right)=\mathbf{F}_{2}^{n} \cap C$ assuming $\beta_{i}=g\left(\alpha_{i}\right) / N^{\prime}\left(\alpha_{i}\right)$, $g \in \mathbf{F}_{q}[x], \operatorname{deg} g=t, q \in 2 \mathbf{Z}$.

1970 Goppa: g squarefree \Rightarrow
$\Gamma_{2}(\ldots, g)=\Gamma_{2}\left(\ldots, g^{2}\right)$
so actually correct t errors.

oding for RS codes

olomon code" $C \subseteq \mathbf{F}_{q}^{n}$: $\left.\left(\alpha_{1}\right), \ldots, r\left(\alpha_{n}\right)\right)$
$\in \mathbf{F}_{q}[x], \operatorname{deg} r<n-t$.
g problem: find $c \in C$
$+e$ with low-weight e.
"list decoding" solution: te to find $f \in \mathbf{F}_{q}[x]$ with $\left(f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{n}\right)\right)$.
polys r with $\operatorname{deg} r<n-t$ y roots α_{i} of $f-r$.
r evaluate
$\left.\ldots, r\left(\alpha_{n}\right)\right)$.

Lowest-dimensional lattices \Rightarrow fastest case, "unique decoding", $\lfloor t / 2\rfloor$ errors. (1968 Berlekamp)

Unique decoding and list decoding trivially generalize to $C=$ $\left\{\left(\beta_{1} r\left(\alpha_{1}\right), \ldots, \beta_{n} r\left(\alpha_{n}\right)\right)\right\}$.

Today: unique decoding for classical binary Goppa code $\Gamma_{2}\left(\alpha_{1}, \ldots, \alpha_{n}, g\right)=\mathbf{F}_{2}^{n} \cap C$ assuming $\beta_{i}=g\left(\alpha_{i}\right) / N^{\prime}\left(\alpha_{i}\right)$, $g \in \mathbf{F}_{q}[x], \operatorname{deg} g=t, q \in 2 \mathbf{Z}$.

1970 Goppa: g squarefree \Rightarrow $\Gamma_{2}(\ldots, g)=\Gamma_{2}\left(\ldots, g^{2}\right)$
so actually correct t errors.

Code-ba
Modern
Public k $t \lg q \times \imath$ Specifies Key gen

Typicall e.g., $n=$

Message $\left\{e \in \mathbf{F}_{2}^{n}\right.$
Encrypti
Use has key to e

ZS codes

$\mathrm{ode}^{\prime} C \subseteq \mathbf{F}_{q}^{n}$:
$\left.r\left(\alpha_{n}\right)\right)$
$\operatorname{leg} r<n-t$.
find $c \in C$
ow-weight e.
oding" solution:
$f \in \mathbf{F}_{q}[x]$ with ., $\left.f\left(\alpha_{n}\right)\right)$.
th $\operatorname{deg} r<n-t$ of $f-r$.

Lowest-dimensional lattices \Rightarrow fastest case, "unique decoding", $\lfloor t / 2\rfloor$ errors. (1968 Berlekamp)

Unique decoding and list decoding trivially generalize to $C=$ $\left\{\left(\beta_{1} r\left(\alpha_{1}\right), \ldots, \beta_{n} r\left(\alpha_{n}\right)\right)\right\}$.

Today: unique decoding for classical binary Goppa code $\Gamma_{2}\left(\alpha_{1}, \ldots, \alpha_{n}, g\right)=\mathbf{F}_{2}^{n} \cap C$ assuming $\beta_{i}=g\left(\alpha_{i}\right) / N^{\prime}\left(\alpha_{i}\right)$, $g \in \mathbf{F}_{q}[x], \operatorname{deg} g=t, q \in 2 \mathbf{Z}$.

1970 Goppa: g squarefree \Rightarrow
$\Gamma_{2}(\ldots, g)=\Gamma_{2}\left(\ldots, g^{2}\right)$
so actually correct t errors.

Code-based encryf
Modern variant of
Public key is syste $t \lg q \times n$ matrix r Specifies linear \mathbf{F}_{2}^{n} Key gen: KerK =

Typically $t \lg q \approx$ e.g., $n=q=204$

Messages suitable $\left\{e \in \mathbf{F}_{2}^{n}: \#\left\{i: e_{i}\right.\right.$

Encryption of e is Use hash of e as s key to encrypt mo

Lowest-dimensional lattices \Rightarrow fastest case, "unique decoding", $\lfloor t / 2\rfloor$ errors. (1968 Berlekamp)

Unique decoding and list decoding trivially generalize to $C=$ $\left\{\left(\beta_{1} r\left(\alpha_{1}\right), \ldots, \beta_{n} r\left(\alpha_{n}\right)\right)\right\}$.

Today: unique decoding for classical binary Goppa code $\Gamma_{2}\left(\alpha_{1}, \ldots, \alpha_{n}, g\right)=\mathbf{F}_{2}^{n} \cap C$ assuming $\beta_{i}=g\left(\alpha_{i}\right) / N^{\prime}\left(\alpha_{i}\right)$, $g \in \mathbf{F}_{q}[x], \operatorname{deg} g=t, q \in 2 \mathbf{Z}$.

1970 Goppa: g squarefree \Rightarrow $\Gamma_{2}(\ldots, g)=\Gamma_{2}\left(\ldots, g^{2}\right)$
so actually correct t errors.

Code-based encryption

Modern variant of 1978 Mcl
Public key is systematic-forr $t \lg q \times n$ matrix K over F_{2}. Specifies linear $\mathbf{F}_{2}^{n} \rightarrow \mathbf{F}_{2}^{t \lg q}$. Key gen: KerK $=\Gamma_{2}$ (secret

Typically $t \lg q \approx 0.2 n$;
e.g., $n=q=2048, t=40$.

Messages suitable for encryp $\left\{e \in \mathbf{F}_{2}^{n}: \#\left\{i: e_{i}=1\right\}=t\right.$ Encryption of e is $K e \in \mathbf{F}_{2}^{t_{\varepsilon}}$ Use hash of e as secret AES key to encrypt more data.

Lowest-dimensional lattices \Rightarrow fastest case, "unique decoding", $\lfloor t / 2\rfloor$ errors. (1968 Berlekamp)

Unique decoding and list decoding trivially generalize to $C=$ $\left\{\left(\beta_{1} r\left(\alpha_{1}\right), \ldots, \beta_{n} r\left(\alpha_{n}\right)\right)\right\}$.

Today: unique decoding for classical binary Goppa code $\Gamma_{2}\left(\alpha_{1}, \ldots, \alpha_{n}, g\right)=\mathbf{F}_{2}^{n} \cap C$ assuming $\beta_{i}=g\left(\alpha_{i}\right) / N^{\prime}\left(\alpha_{i}\right)$, $g \in \mathbf{F}_{q}[x], \operatorname{deg} g=t, q \in 2 \mathbf{Z}$.

1970 Goppa: g squarefree \Rightarrow $\Gamma_{2}(\ldots, g)=\Gamma_{2}\left(\ldots, g^{2}\right)$
so actually correct t errors.

Code-based encryption

Modern variant of 1978 McEliece:
Public key is systematic-form $t \lg q \times n$ matrix K over \mathbf{F}_{2}. Specifies linear $F_{2}^{n} \rightarrow \mathbf{F}_{2}^{t \lg q}$. Key gen: $\operatorname{Ker} K=\Gamma_{2}$ (secret key).

Typically $t \lg q \approx 0.2 n$;
e.g., $n=q=2048, t=40$.

Messages suitable for encryption:
$\left\{e \in \mathbf{F}_{2}^{n}: \#\left\{i: e_{i}=1\right\}=t\right\}$.
Encryption of e is $K e \in \mathbf{F}_{2}^{t \lg q}$.
Use hash of e as secret AES-GCM key to encrypt more data.
dimensional lattices \Rightarrow ase, "unique decoding",
rors. (1968 Berlekamp)
decoding and list decoding generalize to $C=$
1), $\left.\left.\ldots, \beta_{n} r\left(\alpha_{n}\right)\right)\right\}$.
unique decoding for

I binary Goppa code

$\left.\ldots, \alpha_{n}, g\right)=\mathbf{F}_{2}^{n} \cap C$
$\sigma \beta_{i}=g\left(\alpha_{i}\right) / N^{\prime}\left(\alpha_{i}\right)$,
;], $\operatorname{deg} g=t, q \in 2 Z$.
ppa: g squarefree \Rightarrow
$=\Gamma_{2}\left(\ldots, g^{2}\right)$
lly correct t errors.

Code-based encryption

Modern variant of 1978 McEliece:
Public key is systematic-form $t \lg q \times n$ matrix K over \mathbf{F}_{2}. Specifies linear $\mathbf{F}_{2}^{n} \rightarrow \mathbf{F}_{2}^{t \lg q}$. Key gen: KerK $=\Gamma_{2}$ (secret key).

Typically $t \lg q \approx 0.2 n$;
e.g., $n=q=2048, t=40$.

Messages suitable for encryption: $\left\{e \in \mathbf{F}_{2}^{n}: \#\left\{i: e_{i}=1\right\}=t\right\}$.
Encryption of e is $K e \in \mathbf{F}_{2}^{t \lg q}$.
Use hash of e as secret AES-GCM key to encrypt more data.

McBits
Set new for publi
al lattices \Rightarrow ue decoding", 8 Berlekamp)
and list decoding
to $C=$ $\left.\left.r\left(\alpha_{n}\right)\right)\right\}$.
coding for
ioppa code
$=\mathbf{F}_{2}^{n} \cap C$
$\left.\alpha_{i}\right) / N^{\prime}\left(\alpha_{i}\right)$,
$t, q \in 2 Z$.
uarefree \Rightarrow
.,$\left.g^{2}\right)$
t errors.

Code-based encryption

Modern variant of 1978 McEliece:
Public key is systematic-form $t \lg q \times n$ matrix K over \mathbf{F}_{2}. Specifies linear $\mathbf{F}_{2}^{n} \rightarrow \mathbf{F}_{2}^{t \lg q}$.
Key gen: $\operatorname{Ker} K=\Gamma_{2}$ (secret key).
Typically $t \lg q \approx 0.2 n$;
e.g., $n=q=2048, t=40$.

Messages suitable for encryption: $\left\{e \in \mathbf{F}_{2}^{n}: \#\left\{i: e_{i}=1\right\}=t\right\}$.
Encryption of e is $K e \in \mathbf{F}_{2}^{t \lg q}$.
Use hash of e as secret AES-GCM key to encrypt more data.

McBits objectives
Set new speed rec for public-key cryp

Code-based encryption

Modern variant of 1978 McEliece:
Public key is systematic-form
$t \lg q \times n$ matrix K over F_{2}.
Specifies linear $\mathbf{F}_{2}^{n} \rightarrow \mathbf{F}_{2}^{t \lg q}$.
Key gen: $\operatorname{Ker} K=\Gamma_{2}$ (secret key).
Typically $t \lg q \approx 0.2 n$;
e.g., $n=q=2048, t=40$.

Messages suitable for encryption:
$\left\{e \in \mathbf{F}_{2}^{n}: \#\left\{i: e_{i}=1\right\}=t\right\}$.
Encryption of e is $K e \in \mathbf{F}_{2}^{t \lg q}$.
Use hash of e as secret AES-GCM key to encrypt more data.

McBits objectives

Set new speed records for public-key cryptography.

Code-based encryption

Modern variant of 1978 McEliece:
Public key is systematic-form $t \lg q \times n$ matrix K over F_{2}.
Specifies linear $\mathbf{F}_{2}^{n} \rightarrow \mathbf{F}_{2}^{t \lg q}$.
Key gen: KerK $=\Gamma_{2}$ (secret key).
Typically $t \lg q \approx 0.2 n$;
e.g., $n=q=2048, t=40$.

Messages suitable for encryption:
$\left\{e \in \mathbf{F}_{2}^{n}: \#\left\{i: e_{i}=1\right\}=t\right\}$.
Encryption of e is $K e \in \mathbf{F}_{2}^{t \lg q}$.
Use hash of e as secret AES-GCM key to encrypt more data.

McBits objectives

Set new speed records for public-key cryptography.

Code-based encryption

Modern variant of 1978 McEliece:
Public key is systematic-form $t \lg q \times n$ matrix K over F_{2}.
Specifies linear $\mathbf{F}_{2}^{n} \rightarrow \mathbf{F}_{2}^{t \lg q}$.
Key gen: KerK $=\Gamma_{2}$ (secret key).
Typically $t \lg q \approx 0.2 n$;
e.g., $n=q=2048, t=40$.

Messages suitable for encryption:
$\left\{e \in \mathbf{F}_{2}^{n}: \#\left\{i: e_{i}=1\right\}=t\right\}$.
Encryption of e is $K e \in \mathbf{F}_{2}^{t \lg q}$.
Use hash of e as secret AES-GCM key to encrypt more data.

McBits objectives

Set new speed records for public-key cryptography.
... at a high security level.

Code-based encryption

Modern variant of 1978 McEliece:
Public key is systematic-form $t \lg q \times n$ matrix K over F_{2}.
Specifies linear $\mathbf{F}_{2}^{n} \rightarrow \mathbf{F}_{2}^{t \lg q}$.
Key gen: KerK $=\Gamma_{2}$ (secret key).
Typically $t \lg q \approx 0.2 n$;
e.g., $n=q=2048, t=40$.

Messages suitable for encryption:
$\left\{e \in \mathbf{F}_{2}^{n}: \#\left\{i: e_{i}=1\right\}=t\right\}$.
Encryption of e is $K e \in \mathbf{F}_{2}^{t \lg q}$.
Use hash of e as secret AES-GCM key to encrypt more data.

McBits objectives

Set new speed records for public-key cryptography.
... at a high security level.
... including protection against quantum computers.

Code-based encryption

Modern variant of 1978 McEliece:
Public key is systematic-form $t \lg q \times n$ matrix K over \mathbf{F}_{2}.
Specifies linear $\mathbf{F}_{2}^{n} \rightarrow \mathbf{F}_{2}^{t \lg q}$.
Key gen: $\operatorname{Ker} K=\Gamma_{2}$ (secret key).
Typically $t \lg q \approx 0.2 n$;
e.g., $n=q=2048, t=40$.

Messages suitable for encryption:
$\left\{e \in \mathbf{F}_{2}^{n}: \#\left\{i: e_{i}=1\right\}=t\right\}$.
Encryption of e is $K e \in \mathbf{F}_{2}^{t \lg q}$.
Use hash of e as secret AES-GCM key to encrypt more data.

McBits objectives

Set new speed records for public-key cryptography.
... at a high security level.
... including protection against quantum computers.
... including full protection against cache-timing attacks, branch-prediction attacks, etc.

Code-based encryption

Modern variant of 1978 McEliece:
Public key is systematic-form $t \lg q \times n$ matrix K over \mathbf{F}_{2}.
Specifies linear $\mathbf{F}_{2}^{n} \rightarrow \mathbf{F}_{2}^{t \lg q}$.
Key gen: KerK $=\Gamma_{2}$ (secret key).
Typically $t \lg q \approx 0.2 n$;
e.g., $n=q=2048, t=40$.

Messages suitable for encryption:
$\left\{e \in \mathbf{F}_{2}^{n}: \#\left\{i: e_{i}=1\right\}=t\right\}$.
Encryption of e is $K e \in \mathbf{F}_{2}^{t \lg q}$.
Use hash of e as secret AES-GCM key to encrypt more data.

McBits objectives

Set new speed records for public-key cryptography.
... at a high security level.
... including protection against quantum computers.
... including full protection against cache-timing attacks, branch-prediction attacks, etc.
... using code-based crypto with a solid track record.

Code-based encryption

Modern variant of 1978 McEliece:
Public key is systematic-form $t \lg q \times n$ matrix K over \mathbf{F}_{2}.
Specifies linear $\mathbf{F}_{2}^{n} \rightarrow \mathbf{F}_{2}^{t \lg q}$.
Key gen: KerK $=\Gamma_{2}$ (secret key).
Typically $t \lg q \approx 0.2 n$;
e.g., $n=q=2048, t=40$.

Messages suitable for encryption:
$\left\{e \in \mathbf{F}_{2}^{n}: \#\left\{i: e_{i}=1\right\}=t\right\}$.
Encryption of e is $K e \in \mathbf{F}_{2}^{t \lg q}$.
Use hash of e as secret AES-GCM key to encrypt more data.

McBits objectives

Set new speed records for public-key cryptography.
... at a high security level.
... including protection against quantum computers.
... including full protection against cache-timing attacks, branch-prediction attacks, etc.
... using code-based crypto with a solid track record.
... all of the above at once.

sed encryption

variant of 1978 McEliece:
ey is systematic-form
\imath matrix K over F_{2}.
linear $\mathbf{F}_{2}^{n} \rightarrow \mathbf{F}_{2}^{t \lg q}$.
KerK $=\Gamma_{2}$ (secret key).
$t \lg q \approx 0.2 n$
$=q=2048, t=40$.
s suitable for encryption:
$\left.: \#\left\{i: e_{i}=1\right\}=t\right\}$.
on of e is $K e \in \mathbf{F}_{2}^{t \lg q}$.
of e as secret AES-GCM
ncrypt more data.

McBits objectives

Set new speed records for public-key cryptography.
... at a high security level.
... including protection against quantum computers.
... including full protection against cache-timing attacks, branch-prediction attacks, etc.
... using code-based crypto with a solid track record.
... all of the above at once.

The con bench.

CPU cyc (Intel C to encry 46940 61440 94464 398912
mceliec $(n, t)=$ from Bis See pap

tion

1978 McEliece:

matic-form
K over \mathbf{F}_{2}.
$\rightarrow \mathbf{F}_{2}^{t \lg q}$
Γ_{2} (secret key).
$2 n$
$3, t=40$.
for encryption:
$=1\}=t\}$.
$K e \in \mathbf{F}_{2}^{t \lg q}$
ecret AES-GCM
re data.

McBits objectives

Set new speed records for public-key cryptography.
... at a high security level.
... including protection against quantum computers.
... including full protection against cache-timing attacks, branch-prediction attacks, etc.
... using code-based crypto with a solid track record.
... all of the above at once.

The competition

bench.cr.yp.to:
CPU cycles on h9 (Intel Core i5-321(to encrypt 59 byte 46940 ronald10 61440 mceliece 94464 ronald20 398912 ntruees7
mceliece:
$(n, t)=(2048,32)$
from Biswas and See paper at PQC

McBits objectives

Set new speed records for public-key cryptography.
... at a high security level.
... including protection against quantum computers.
... including full protection against cache-timing attacks, branch-prediction attacks, etc.
... using code-based crypto with a solid track record.
... all of the above at once.

The competition

bench.cr.yp.to:
CPU cycles on h9ivy
(Intel Core i5-3210M, Ivy B to encrypt 59 bytes:

$$
\begin{aligned}
& 46940 \text { ronald1024 (RSA- } \\
& 61440 \text { mceliece } \\
& 94464 \text { ronald2048 } \\
& 398912 \text { ntruees787ep1 }
\end{aligned}
$$

mceliece:
$(n, t)=(2048,32)$ software
from Biswas and Sendrier.
See paper at PQCrypto 200

McBits objectives

Set new speed records for public-key cryptography.
... at a high security level.
... including protection against quantum computers.
... including full protection against cache-timing attacks, branch-prediction attacks, etc.
... using code-based crypto with a solid track record.
... all of the above at once.

The competition

bench.cr.yp.to:
CPU cycles on h9ivy
(Intel Core i5-3210M, Ivy Bridge)
to encrypt 59 bytes:

```
4 6 9 4 0 ~ r o n a l d 1 0 2 4 ~ ( R S A - 1 0 2 4 )
6 1 4 4 0 \text { mceliece}
94464 ronald2048
398912 ntruees787ep1
mceliece:
```

$(n, t)=(2048,32)$ software from Biswas and Sendrier. See paper at PQCrypto 2008.

objectives

speed records
c-key cryptography.
high security level.
Iding protection quantum computers.
ding full protection cache-timing attacks, rediction attacks, etc.
g code-based crypto olid track record.
f the above at once.

The competition

bench.cr.yp.to:
CPU cycles on h9ivy
(Intel Core i5-3210M, Ivy Bridge)
to encrypt 59 bytes:

$$
\begin{aligned}
& 46940 \text { ronald1024 (RSA-1024) } \\
& 61440 \text { mceliece } \\
& 94464 \text { ronald2048 } \\
& 398912 \text { ntruees787ep1 }
\end{aligned}
$$

mceliece:
$(n, t)=(2048,32)$ software
from Biswas and Sendrier.
See paper at PQCrypto 2008.

Sounds
What's

The competition

bench.cr.yp.to:
CPU cycles on h9ivy
(Intel Core i5-3210M, Ivy Bridge)
to encrypt 59 bytes:
46940 ronald1024 (RSA-1024)
61440 mceliece
94464 ronald2048
398912 ntruees787ep1
mceliece:
$(n, t)=(2048,32)$ software
from Biswas and Sendrier.
See paper at PQCrypto 2008.

Sounds reasonably What's the proble
ection zomputers.
orotection ng attacks, attacks, etc.
sed crypto record.
e at once.
ords
tography.
rity level.

The competition

bench.cr.yp.to:
CPU cycles on h9ivy
(Intel Core i5-3210M, Ivy Bridge)
to encrypt 59 bytes:
46940 ronald1024 (RSA-1024)
61440 mceliece
94464 ronald2048
398912 ntruees787ep1
mceliece:
$(n, t)=(2048,32)$ software from Biswas and Sendrier. See paper at PQCrypto 2008.

Sounds reasonably fast. What's the problem?

The competition

bench.cr.yp.to:
CPU cycles on h9ivy
(Intel Core i5-3210M, Ivy Bridge) to encrypt 59 bytes:

```
4 6 9 4 0 ~ r o n a l d 1 0 2 4 ~ ( R S A - 1 0 2 4 )
6 1 4 4 0 \text { mceliece}
94464 ronald2048
398912 ntruees787ep1
mceliece:
```

$(n, t)=(2048,32)$ software from Biswas and Sendrier. See paper at PQCrypto 2008.

Sounds reasonably fast.
What's the problem?

The competition

bench.cr.yp.to:
CPU cycles on h9ivy
(Intel Core i5-3210M, Ivy Bridge)
to encrypt 59 bytes:
46940 ronald1024 (RSA-1024)
61440 mceliece
94464 ronald2048
398912 ntruees787ep1
mceliece:
$(n, t)=(2048,32)$ software from Biswas and Sendrier. See paper at PQCrypto 2008.

Sounds reasonably fast.
What's the problem?
Decryption is much slower:
700512 ntruees787ep1
1219344 mceliece
1340040 ronald1024
5766752 ronald2048

The competition

bench.cr.yp.to:
CPU cycles on h9ivy
(Intel Core i5-3210M, Ivy Bridge)
to encrypt 59 bytes:
46940 ronald1024 (RSA-1024)
61440 mceliece
94464 ronald2048
398912 ntruees787ep1
mceliece:
$(n, t)=(2048,32)$ software from Biswas and Sendrier. See paper at PQCrypto 2008.

Sounds reasonably fast.
What's the problem?
Decryption is much slower:
700512 ntruees787ep1
1219344 mceliece
1340040 ronald1024
5766752 ronald2048
But Biswas and Sendrier
say they're faster now, even beating NTRU.
What's the problem?

petition

rr.yp.to:
zles on h9ivy
ore i5-3210M, Ivy Bridge)
pt 59 bytes:
ronald1024 (RSA-1024)
mceliece
ronald2048
ntruees787ep1
e:
$(2048,32)$ software was and Sendrier. er at PQCrypto 2008.

Sounds reasonably fast.
What's the problem?
Decryption is much slower:
700512 ntruees787ep1
1219344 mceliece
1340040 ronald1024
5766752 ronald2048
But Biswas and Sendrier
say they're faster now, even beating NTRU.
What's the problem?

The seri
Some D bench.

77468
(binary
116944
(hyperel
182632
(conserv
Use DH
Decrypt
Encrypti

+ key-g

	Sounds reasonably fast.	The serious comp
	What's the problem?	Some Diffie-He
vy	Decryption is much slower:	bench.cr.yp.
OM, Ivy Bridge)	700512 ntruees787ep1	77468 g1s254
s:	1219344 mceliece	(binary elliptic cur
24 (RSA-1024)	1340040 ronald1024	116944 kumfp12
	5766752 ronald2048	(hyperelliptic; E
48	But Biswas and Sendrier	182632 curve2
87 ep 1	say they're faster now, even beating NTRU.	Use DH for pu
	What's the problem?	Decryption time
		Encryption time
endrier. rypto 2008.		+ key-generation

Sounds reasonably fast. What's the problem?

Decryption is much slower:
700512 ntruees787ep1
1219344 mceliece
1340040 ronald1024
5766752 ronald2048
But Biswas and Sendrier
say they're faster now, even beating NTRU.
What's the problem?

The serious competition

Some Diffie-Hellman speeds bench.cr.yp.to:

77468 gls254
(binary elliptic curve; CHES
116944 kumfp127g
(hyperelliptic; Eurocrypt 201
182632 curve25519
(conservative elliptic curve)
Use DH for public-key encry
Decryption time $\approx \mathrm{DH}$ time Encryption time \approx DH time

+ key-generation time.

Sounds reasonably fast.
What's the problem?
Decryption is much slower:
700512 ntruees787ep1
1219344 mceliece
1340040 ronald1024
5766752 ronald2048
But Biswas and Sendrier say they're faster now, even beating NTRU.
What's the problem?

The serious competition

Some Diffie-Hellman speeds from bench.cr.yp.to:

77468 gls254
(binary elliptic curve; CHES 2013)
116944 kumfp127g
(hyperelliptic; Eurocrypt 2013)
182632 curve25519
(conservative elliptic curve)
Use DH for public-key encryption.
Decryption time \approx DH time.
Encryption time \approx DH time

+ key-generation time.
reasonably fast. the problem?
ion is much slower:
2 ntruees787ep1
mceliece
ronald1024
ronald2048
vas and Sendrier 're faster now, ting NTRU. the problem?

The serious competition

Some Diffie-Hellman speeds from bench.cr.yp.to:

77468 gls254
(binary elliptic curve; CHES 2013)
116944 kumf p127g
(hyperelliptic; Eurocrypt 2013)
182632 curve25519
(conservative elliptic curve)
Use DH for public-key encryption.
Decryption time \approx DH time.
Encryption time \approx DH time

+ key-generation time.

Elliptic/ fast encı
(Also sig key exch let's foc Also sho let's foc
kumf 12 protect branch-

Broken but high for the
fast. $m ?$
h slower:
787 ep 1
e
024
048
endrier
now,
U.
m?

The serious competition

Some Diffie-Hellman speeds from bench.cr.yp.to:

77468 gls254
(binary elliptic curve; CHES 2013)
116944 kumfp127g
(hyperelliptic; Eurocrypt 2013)
182632 curve25519
(conservative elliptic curve)
Use DH for public-key encryption.
Decryption time \approx DH time.
Encryption time \approx DH time

+ key-generation time.

Elliptic/hyperellipt fast encryption an
(Also signatures, key exchange, mor let's focus on encr Also short keys et let's focus on spee
kumfp127g and c protect against tin branch-prediction

Broken by quantu but high security I for the short term

The serious competition

Some Diffie-Hellman speeds from bench.cr.yp.to:

77468 gls254
(binary elliptic curve; CHES 2013)
116944 kumfp127g
(hyperelliptic; Eurocrypt 2013)
182632 curve25519
(conservative elliptic curve)
Use DH for public-key encryption.
Decryption time \approx DH time.
Encryption time \approx DH time

+ key-generation time.

Elliptic/hyperelliptic curves fast encryption and decrypti
(Also signatures, non-intera key exchange, more; but let's focus on encrypt/decry Also short keys etc.; but let's focus on speed.)
kumfp127g and curve2551 protect against timing attac branch-prediction attacks, e

Broken by quantum comput but high security level for the short term.

The serious competition

Some Diffie-Hellman speeds from bench.cr.yp.to:
77468 gls254
(binary elliptic curve; CHES 2013)
116944 kumf 127 g
(hyperelliptic; Eurocrypt 2013)
182632 curve25519
(conservative elliptic curve)
Use DH for public-key encryption.
Decryption time \approx DH time. Encryption time \approx DH time

+ key-generation time.

Elliptic/hyperelliptic curves offer fast encryption and decryption.
(Also signatures, non-interactive key exchange, more; but let's focus on encrypt/decrypt. Also short keys etc.; but let's focus on speed.)
kumfp127g and curve25519 protect against timing attacks, branch-prediction attacks, etc.

Broken by quantum computers, but high security level for the short term.

ous competition

iffie-Hellman speeds from
rr.yp.to:
gls254
elliptic curve; CHES 2013)
kumf p127g
liptic; Eurocrypt 2013)
curve25519
ative elliptic curve)
for public-key encryption. on time $\approx \mathrm{DH}$ time. on time $\approx \mathrm{DH}$ time eneration time.

Elliptic/hyperelliptic curves offer fast encryption and decryption.
(Also signatures, non-interactive key exchange, more; but let's focus on encrypt/decrypt.
Also short keys etc.; but let's focus on speed.)
kumf p127g and curve25519 protect against timing attacks, branch-prediction attacks, etc.

Broken by quantum computers, but high security level for the short term.

New dec
$(n, t)=$

etition

Ian speeds from

```
ve; CHES 2013)
```

g
ocrypt 2013)
19
tic curve)
-key encryption.
DH time.
DH time time.

Elliptic/hyperelliptic curves offer fast encryption and decryption.
(Also signatures, non-interactive key exchange, more; but let's focus on encrypt/decrypt. Also short keys etc.; but let's focus on speed.)
kumfp127g and curve25519 protect against timing attacks, branch-prediction attacks, etc.

Broken by quantum computers, but high security level for the short term.

New decoding spe

$$
(n, t)=(4096,41)
$$

Elliptic/hyperelliptic curves offer fast encryption and decryption.
(Also signatures, non-interactive key exchange, more; but let's focus on encrypt/decrypt. Also short keys etc.; but let's focus on speed.)
kumfp127g and curve25519 protect against timing attacks, branch-prediction attacks, etc.

Broken by quantum computers, but high security level for the short term.

New decoding speeds

$$
(n, t)=(4096,41) ; 2^{128} \mathrm{secl}
$$

Elliptic/hyperelliptic curves offer fast encryption and decryption.
(Also signatures, non-interactive key exchange, more; but let's focus on encrypt/decrypt.
Also short keys etc.; but let's focus on speed.)
kumfp127g and curve25519 protect against timing attacks, branch-prediction attacks, etc.

Broken by quantum computers, but high security level for the short term.

New decoding speeds
$(n, t)=(4096,41) ; 2^{128}$ security:

Elliptic/hyperelliptic curves offer fast encryption and decryption.
(Also signatures, non-interactive key exchange, more; but let's focus on encrypt/decrypt. Also short keys etc.; but let's focus on speed.)
kumfp127g and curve25519 protect against timing attacks, branch-prediction attacks, etc.

Broken by quantum computers, but high security level for the short term.

New decoding speeds
$(n, t)=(4096,41) ; 2^{128}$ security:
60493 Ivy Bridge cycles.
Talk will focus on this case.
(Decryption is slightly slower: includes hash, cipher, MAC.)

Elliptic/hyperelliptic curves offer fast encryption and decryption.
(Also signatures, non-interactive key exchange, more; but let's focus on encrypt/decrypt. Also short keys etc.; but let's focus on speed.)
kumfp127g and curve25519 protect against timing attacks, branch-prediction attacks, etc.

Broken by quantum computers, but high security level for the short term.

New decoding speeds

$(n, t)=(4096,41) ; 2^{128}$ security:
60493 Ivy Bridge cycles.
Talk will focus on this case.
(Decryption is slightly slower: includes hash, cipher, MAC.)
$(n, t)=(2048,32) ; 2^{80}$ security:
26544 Ivy Bridge cycles.

Elliptic/hyperelliptic curves offer fast encryption and decryption.
(Also signatures, non-interactive key exchange, more; but let's focus on encrypt/decrypt. Also short keys etc.; but let's focus on speed.)
kumfp127g and curve25519 protect against timing attacks, branch-prediction attacks, etc.

Broken by quantum computers, but high security level for the short term.

New decoding speeds

$(n, t)=(4096,41) ; 2^{128}$ security:
60493 Ivy Bridge cycles.
Talk will focus on this case.
(Decryption is slightly slower: includes hash, cipher, MAC.)
$(n, t)=(2048,32) ; 2^{80}$ security:
26544 Ivy Bridge cycles.
All load/store addresses and all branch conditions are public. Eliminates cache-timing attacks etc.

Similar improvements for CFS.
hyperelliptic curves offer yption and decryption. natures, non-interactive ange, more; but us on encrypt/decrypt. rt keys etc.; but us on speed.)

27 g and curve25519 against timing attacks, rediction attacks, etc.
oy quantum computers, security level hort term.

New decoding speeds
$(n, t)=(4096,41) ; 2^{128}$ security:
60493 lvy Bridge cycles.
Talk will focus on this case.
(Decryption is slightly slower: includes hash, cipher, MAC.)

$$
(n, t)=(2048,32) ; 2^{80} \text { security: }
$$

26544 Ivy Bridge cycles.
All load/store addresses
and all branch conditions
are public. Eliminates
cache-timing attacks etc.
Similar improvements for CFS.

Constan
The ext to elimir Handle using on XOR (~
ic curves offer d decryption.
on-interactive
e; but
ypt/decrypt.
c.; but
d.)
urve25519 ning attacks, attacks, etc.
m computers, evel

New decoding speeds

$(n, t)=(4096,41) ; 2^{128}$ security: 60493 Ivy Bridge cycles.
Talk will focus on this case.
(Decryption is slightly slower: includes hash, cipher, MAC.)

$$
(n, t)=(2048,32) ; 2^{80} \text { security: }
$$

26544 Ivy Bridge cycles.
All load/store addresses and all branch conditions are public. Eliminates
cache-timing attacks etc.
Similar improvements for CFS.

Constant-time fan
The extremist's ap to eliminate timin Handle all secret c using only bit ope XOR (${ }^{\wedge}$), AND (\&

New decoding speeds

$(n, t)=(4096,41) ; 2^{128}$ security:
60493 Ivy Bridge cycles.
Talk will focus on this case.
(Decryption is slightly slower: includes hash, cipher, MAC.) $(n, t)=(2048,32) ; 2^{80}$ security:
26544 Ivy Bridge cycles.
All load/store addresses and all branch conditions are public. Eliminates cache-timing attacks etc.

Similar improvements for CFS.

Constant-time fanaticism
The extremist's approach to eliminate timing attacks: Handle all secret data using only bit operationsXOR (${ }^{\wedge}$), AND (\&), etc.

New decoding speeds

$(n, t)=(4096,41) ; 2^{128}$ security:
60493 lvy Bridge cycles.
Talk will focus on this case.
(Decryption is slightly slower: includes hash, cipher, MAC.)
$(n, t)=(2048,32) ; 2^{80}$ security:
26544 Ivy Bridge cycles.
All load/store addresses and all branch conditions are public. Eliminates cache-timing attacks etc.

Similar improvements for CFS.

Constant-time fanaticism

The extremist's approach to eliminate timing attacks:
Handle all secret data using only bit operationsXOR (${ }^{\circ}$), AND (\&), etc.

New decoding speeds

$(n, t)=(4096,41) ; 2^{128}$ security:
60493 lvy Bridge cycles.
Talk will focus on this case.
(Decryption is slightly slower: includes hash, cipher, MAC.)
$(n, t)=(2048,32) ; 2^{80}$ security:
26544 Ivy Bridge cycles.
All load/store addresses and all branch conditions are public. Eliminates cache-timing attacks etc.

Similar improvements for CFS.

Constant-time fanaticism

The extremist's approach to eliminate timing attacks:
Handle all secret data using only bit operationsXOR (${ }^{\circ}$), AND (\&), etc.

We take this approach.

New decoding speeds

$(n, t)=(4096,41) ; 2^{128}$ security:
60493 lvy Bridge cycles.
Talk will focus on this case.
(Decryption is slightly slower: includes hash, cipher, MAC.)
$(n, t)=(2048,32) ; 2^{80}$ security:
26544 Ivy Bridge cycles.
All load/store addresses and all branch conditions are public. Eliminates cache-timing attacks etc.

Similar improvements for CFS.

Constant-time fanaticism

The extremist's approach to eliminate timing attacks:
Handle all secret data using only bit operationsXOR (${ }^{\wedge}$), AND (\&), etc.

We take this approach.
"How can this be competitive in speed?
Are you really simulating field multiplication with hundreds of bit operations instead of simple log tables?"

oding speeds

$(4096,41) ; 2^{128}$ security:
vy Bridge cycles.
focus on this case.
tion is slightly slower:
hash, cipher, MAC.)
$(2048,32) ; 2^{80}$ security:
vy Bridge cycles.
/store addresses
ranch conditions

ic. Eliminates

ming attacks etc.
mprovements for CFS.

Constant-time fanaticism

The extremist's approach to eliminate timing attacks:
Handle all secret data
using only bit operations-
XOR (${ }^{\circ}$), AND (\&), etc.
We take this approach.
"How can this be competitive in speed?
Are you really simulating field multiplication with hundreds of bit operations instead of simple log tables?"

Yes, we
Not as s
On a ty the XOF
is actual operatin on vecto
; 2^{128} security: cycles. this case.
htly slower:
ier, MAC.)
$; 2^{80}$ security:
cycles.
resses
ditions
ates
ks etc.
nts for CFS.

Constant-time fanaticism

The extremist's approach to eliminate timing attacks:
Handle all secret data
using only bit operations-
XOR (${ }^{\wedge}$), AND (\&), etc.
We take this approach.
"How can this be competitive in speed?
Are you really simulating field multiplication with hundreds of bit operations instead of simple log tables?"

Yes, we are.
Not as slow as it On a typical 32-bi the XOR instructi is actually 32-bit) operating in parall on vectors of $32 b$

Constant-time fanaticism

The extremist's approach to eliminate timing attacks:
Handle all secret data using only bit operationsXOR (${ }^{\circ}$), AND (\&), etc.

We take this approach.
"How can this be competitive in speed?
Are you really simulating field multiplication with hundreds of bit operations instead of simple log tables?"

Yes, we are.
Not as slow as it sounds! On a typical 32-bit CPU, the XOR instruction is actually 32-bit XOR, operating in parallel on vectors of 32 bits.

Constant-time fanaticism

The extremist's approach to eliminate timing attacks:
Handle all secret data
using only bit operationsXOR (${ }^{\wedge}$), AND (\&), etc.

We take this approach.
"How can this be
competitive in speed?
Are you really simulating field multiplication with hundreds of bit operations instead of simple log tables?"

Yes, we are.
Not as slow as it sounds! On a typical 32-bit CPU, the XOR instruction is actually 32-bit XOR, operating in parallel on vectors of 32 bits.

Constant-time fanaticism

The extremist's approach to eliminate timing attacks:
Handle all secret data
using only bit operationsXOR (${ }^{\wedge}$), AND (\&), etc.

We take this approach.
"How can this be competitive in speed?
Are you really simulating field multiplication with hundreds of bit operations instead of simple log tables?"

Yes, we are.
Not as slow as it sounds!
On a typical 32-bit CPU, the XOR instruction is actually 32-bit XOR, operating in parallel on vectors of 32 bits.

Low-end smartphone CPU: 128-bit XOR every cycle.

Ivy Bridge:
256-bit XOR every cycle, or three 128-bit XORs.

t-time fanaticism

emist's approach rate timing attacks:
all secret data
ly bit operations, AND (\&), etc.
this approach.
n this be tive in speed?
really simulating Itiplication with
s of bit operations of simple log tables?"

Yes, we are.
Not as slow as it sounds!
On a typical 32-bit CPU, the XOR instruction is actually 32-bit XOR, operating in parallel on vectors of 32 bits.

Low-end smartphone CPU: 128-bit XOR every cycle.

Ivy Bridge:
256-bit XOR every cycle, or three 128-bit XORs.

Not imn that this saves tir multiplic

aticism

pproach
s attacks:
lata
rations-
), etc.
oach.
ed?
ulating
with
erations
og tables?"

Yes, we are.
Not as slow as it sounds!
On a typical 32-bit CPU, the XOR instruction is actually 32-bit XOR, operating in parallel on vectors of 32 bits.

Low-end smartphone CPU: 128-bit XOR every cycle.

Ivy Bridge:
256-bit XOR every cycle, or three 128-bit XORs.

Not immediately that this "bitslicin saves time for, e.g multiplication in \mathbf{F}

Yes, we are.
Not as slow as it sounds! On a typical 32-bit CPU, the XOR instruction is actually 32-bit XOR, operating in parallel on vectors of 32 bits.

Low-end smartphone CPU:
128-bit XOR every cycle.
Ivy Bridge:
256-bit XOR every cycle, or three 128-bit XORs.

Not immediately obvious that this "bitslicing" saves time for, e.g., multiplication in \mathbf{F}_{212}.

Yes, we are.
Not as slow as it sounds!
On a typical 32-bit CPU, the XOR instruction is actually 32-bit XOR, operating in parallel on vectors of 32 bits.

Low-end smartphone CPU: 128-bit XOR every cycle.

Ivy Bridge:
256-bit XOR every cycle, or three 128-bit XORs.

Not immediately obvious that this "bitslicing"
saves time for, e.g., multiplication in \mathbf{F}_{212}.

Yes, we are.
Not as slow as it sounds!
On a typical 32-bit CPU, the XOR instruction is actually 32-bit XOR, operating in parallel on vectors of 32 bits.

Low-end smartphone CPU: 128-bit XOR every cycle.

Ivy Bridge:
256-bit XOR every cycle, or three 128-bit XORs.

Not immediately obvious that this "bitslicing"
saves time for, e.g., multiplication in \mathbf{F}_{212}.

But quite obvious that it saves time for addition in \mathbf{F}_{212}.

Yes, we are.
Not as slow as it sounds!
On a typical 32-bit CPU, the XOR instruction is actually 32-bit XOR, operating in parallel on vectors of 32 bits.

Low-end smartphone CPU: 128-bit XOR every cycle.

Ivy Bridge:
256-bit XOR every cycle, or three 128-bit XORs.

Not immediately obvious that this "bitslicing"
saves time for, e.g., multiplication in \mathbf{F}_{212}.

But quite obvious that it saves time for addition in $\mathbf{F}_{2^{12}}$.

Typical decoding algorithms have add, mult roughly balanced.

Coming next: how to save many adds and most mults. Nice synergy with bitslicing.
are.
low as it sounds!
sical 32-bit CPU, instruction ly 32-bit XOR, g in parallel rs of 32 bits.
smartphone CPU:
XOR every cycle.
ge:
XOR every cycle,
128-bit XORs.

Not immediately obvious
that this "bitslicing"
saves time for, e.g., multiplication in \mathbf{F}_{212}.

But quite obvious that it saves time for addition in $\mathbf{F}_{2^{12}}$.

Typical decoding algorithms have add, mult roughly balanced.

Coming next: how to save many adds and most mults.
Nice synergy with bitslicing.

The add
Fix $n=$
Big final is to finc of $f=c$

For each comput 41 adds,

Not immediately obvious that this "bitslicing"
saves time for, e.g., multiplication in \mathbf{F}_{212}.

But quite obvious that it saves time for addition in $\mathbf{F}_{2^{12}}$.

Typical decoding algorithms
have add, mult roughly balanced.
Coming next: how to save many adds and most mults.
Nice synergy with bitslicing.

The additive FFT
Fix $n=4096=2$
Big final decoding is to find all roots of $f=c_{41} x^{41}+$.

For each $\alpha \in \mathbf{F}_{2^{12}}$ compute $f(\alpha)$ by 41 adds, 41 mults

Not immediately obvious that this "bitslicing"
saves time for, e.g., multiplication in \mathbf{F}_{212}.

But quite obvious that it saves time for addition in $\mathbf{F}_{2^{12}}$.

Typical decoding algorithms have add, mult roughly balanced.

Coming next: how to save many adds and most mults. Nice synergy with bitslicing.

The additive FFT

Fix $n=4096=2^{12}, t=41$.
Big final decoding step is to find all roots in $\mathbf{F}_{2^{12}}$ of $f=c_{41} x^{41}+\cdots+c_{0} x^{0}$.

For each $\alpha \in \mathbf{F}_{2^{12}}$, compute $f(\alpha)$ by Horner's r 41 adds, 41 mults.

Not immediately obvious that this "bitslicing" saves time for, e.g., multiplication in \mathbf{F}_{212}.

But quite obvious that it saves time for addition in $\mathbf{F}_{2^{12}}$.

Typical decoding algorithms have add, mult roughly balanced.

Coming next: how to save many adds and most mults. Nice synergy with bitslicing.

The additive FFT

Fix $n=4096=2^{12}, t=41$.
Big final decoding step
is to find all roots in F_{212}
of $f=c_{41} x^{41}+\cdots+c_{0} x^{0}$.
For each $\alpha \in \mathbf{F}_{2^{12}}$, compute $f(\alpha)$ by Horner's rule: 41 adds, 41 mults.

Not immediately obvious that this "bitslicing"
saves time for, e.g., multiplication in \mathbf{F}_{212}.

But quite obvious that it saves time for addition in $\mathbf{F}_{2^{12}}$.

Typical decoding algorithms have add, mult roughly balanced.

Coming next: how to save many adds and most mults. Nice synergy with bitslicing.

The additive FFT

Fix $n=4096=2^{12}, t=41$.
Big final decoding step
is to find all roots in F_{212}
of $f=c_{41} x^{41}+\cdots+c_{0} x^{0}$.
For each $\alpha \in \mathbf{F}_{2^{12}}$, compute $f(\alpha)$ by Horner's rule: 41 adds, 41 mults.

Or use Chien search: compute $c_{i} g^{i}, c_{i} g^{2 i}, c_{i} g^{3 i}$, etc. Cost per point: again 41 adds, 41 mults.

Not immediately obvious that this "bitslicing"
saves time for, e.g., multiplication in \mathbf{F}_{212}.

But quite obvious that it saves time for addition in $\mathbf{F}_{2^{12}}$.

Typical decoding algorithms have add, mult roughly balanced.

Coming next: how to save many adds and most mults. Nice synergy with bitslicing.

The additive FFT

Fix $n=4096=2^{12}, t=41$.
Big final decoding step
is to find all roots in $F_{2^{12}}$
of $f=c_{41} x^{41}+\cdots+c_{0} x^{0}$.
For each $\alpha \in \mathbf{F}_{2^{12}}$,
compute $f(\alpha)$ by Horner's rule:
41 adds, 41 mults.
Or use Chien search: compute $c_{i} g^{i}, c_{i} g^{2 i}, c_{i} g^{3 i}$, etc. Cost per point: again 41 adds, 41 mults.

Our cost: 6.01 adds, 2.09 mults.
nediately obvious
"bitslicing"
ne for, e.g.,
ation in $\mathbf{F}_{2^{12}}$.
e obvious that it ne for addition in $\mathbf{F}_{2^{12}}$.
decoding algorithms
d, mult roughly balanced.
next: how to save Ids and most mults. ergy with bitslicing.

The additive FFT

Fix $n=4096=2^{12}, t=41$.
Big final decoding step is to find all roots in F_{212}
of $f=c_{41} x^{41}+\cdots+c_{0} x^{0}$.
For each $\alpha \in \mathbf{F}_{2^{12}}$,
compute $f(\alpha)$ by Horner's rule:
41 adds, 41 mults.
Or use Chien search: compute $c_{i} g^{i}, c_{i} g^{2 i}, c_{i} g^{3 i}$, etc. Cost per point: again 41 adds, 41 mults.

Our cost: 6.01 adds, 2.09 mults.

Asymptc normally
so Horn
$\Theta(n t)=$
bvious
that it ition in F_{2}.
lgorithms ughly balanced.
to save ost mults. bitslicing.

The additive FFT

Fix $n=4096=2^{12}, t=41$.
Big final decoding step is to find all roots in F_{212}
of $f=c_{41} x^{41}+\cdots+c_{0} x^{0}$.
For each $\alpha \in \mathbf{F}_{2^{12}}$,
compute $f(\alpha)$ by Horner's rule:
41 adds, 41 mults.
Or use Chien search: compute $c_{i} g^{i}, c_{i} g^{2 i}, c_{i} g^{3 i}$, etc. Cost per point: again 41 adds, 41 mults.

Our cost: 6.01 adds, 2.09 mults.

Asymptotics: normally $t \in \Theta(n)$ so Horner's rule cc $\Theta(n t)=\Theta\left(n^{2} / \lg \right.$

The additive FFT

Fix $n=4096=2^{12}, t=41$.
Big final decoding step
is to find all roots in $\mathbf{F}_{2^{12}}$
of $f=c_{41} x^{41}+\cdots+c_{0} x^{0}$.
For each $\alpha \in \mathbf{F}_{2^{12}}$,
compute $f(\alpha)$ by Horner's rule:
41 adds, 41 mults.
Or use Chien search: compute $c_{i} g^{i}, c_{i} g^{2 i}, c_{i} g^{3 i}$, etc. Cost per point: again 41 adds, 41 mults.

Our cost: 6.01 adds, 2.09 mults.

Asymptotics:
normally $t \in \Theta(n / \lg n)$,
so Horner's rule costs
$\Theta(n t)=\Theta\left(n^{2} / \lg n\right)$.

The additive FFT

Fix $n=4096=2^{12}, t=41$.
Big final decoding step is to find all roots in F_{212}
of $f=c_{41} x^{41}+\cdots+c_{0} x^{0}$.
For each $\alpha \in \mathbf{F}_{2^{12}}$,
compute $f(\alpha)$ by Horner's rule:
41 adds, 41 mults.
Or use Chien search: compute $c_{i} g^{i}, c_{i} g^{2 i}, c_{i} g^{3 i}$, etc. Cost per point: again 41 adds, 41 mults.

Our cost: 6.01 adds, 2.09 mults.

Asymptotics:
normally $t \in \Theta(n / \lg n)$,
so Horner's rule costs
$\Theta(n t)=\Theta\left(n^{2} / \lg n\right)$.

The additive FFT

Fix $n=4096=2^{12}, t=41$.
Big final decoding step is to find all roots in \mathbf{F}_{212}
of $f=c_{41} x^{41}+\cdots+c_{0} x^{0}$.
For each $\alpha \in \mathbf{F}_{2^{12}}$,
compute $f(\alpha)$ by Horner's rule:
41 adds, 41 mults.
Or use Chien search: compute $c_{i} g^{i}, c_{i} g^{2 i}, c_{i} g^{3 i}$, etc. Cost per point: again 41 adds, 41 mults.

Our cost: 6.01 adds, 2.09 mults.

Asymptotics:
normally $t \in \Theta(n / \lg n)$,
so Horner's rule costs
$\Theta(n t)=\Theta\left(n^{2} / \lg n\right)$.
Wait a minute.
Didn't we learn in school that FFT evaluates
an n-coeff polynomial
at n points
using $n^{1+o(1)}$ operations?
Isn't this better than $n^{2} / \lg n$?

itive FFT

$4096=2^{12}, t=41$.
decoding step
d all roots in $\mathbf{F}_{2^{12}}$
${ }_{41} x^{41}+\cdots+c_{0} x^{0}$.
$\alpha \in \mathbf{F}_{2^{12}}$,
$f(\alpha)$ by Horner's rule:
41 mults.
Chien search: compute
${ }^{2 i}, c_{i} g^{3 i}$, etc. Cost per
gain 41 adds, 41 mults.
6.01 adds, 2.09 mults.

Asymptotics:
normally $t \in \Theta(n / \lg n)$,
so Horner's rule costs
$\Theta(n t)=\Theta\left(n^{2} / \lg n\right)$.
Wait a minute.
Didn't we learn in school
that FFT evaluates
an n-coeff polynomial
at n points
using $n^{1+o(1)}$ operations?
Isn't this better than $n^{2} / \lg n$?

Standar
Want to
$f=c_{0}$ at all th

Write f
Observe
$f(\alpha)=$ $f(-\alpha)=$
f_{0} has n evaluate
by same
Similarly
$12, t=41$.
step
in $F_{2^{12}}$
$\cdot+c_{0} x^{0}$.

Horner's rule:
ch: compute etc. Cost per dds, 41 mults. ds, 2.09 mults.

Asymptotics:

normally $t \in \Theta(n / \lg n)$,
so Horner's rule costs
$\Theta(n t)=\Theta\left(n^{2} / \lg n\right)$.
Wait a minute.
Didn't we learn in school that FFT evaluates
an n-coeff polynomial
at n points
using $n^{1+o(1)}$ operations?
Isn't this better than $n^{2} / \lg n$?

Standard radix-2
Want to evaluate $f=c_{0}+c_{1} x+\cdot \cdot$ at all the nth root

Write f as $f_{0}\left(x^{2}\right)$ Observe big overla $f(\alpha)=f_{0}\left(\alpha^{2}\right)+$ $f(-\alpha)=f_{0}\left(\alpha^{2}\right)$
f_{0} has $n / 2$ coeffs; evaluate at ($n / 2$) by same idea recu Similarly f_{1}.

Asymptotics:
normally $t \in \Theta(n / \lg n)$,
so Horner's rule costs
$\Theta(n t)=\Theta\left(n^{2} / \lg n\right)$.
Wait a minute.
Didn't we learn in school that FFT evaluates
an n-coeff polynomial
at n points
using $n^{1+o(1)}$ operations?
Isn't this better than $n^{2} / \lg n$?

Standard radix-2 FFT:
Want to evaluate $f=c_{0}+c_{1} x+\cdots+c_{n-1} x$ at all the nth roots of 1 .

Write f as $f_{0}\left(x^{2}\right)+x f_{1}\left(x^{2}\right.$ Observe big overlap betweer $f(\alpha)=f_{0}\left(\alpha^{2}\right)+\alpha f_{1}\left(\alpha^{2}\right)$, $f(-\alpha)=f_{0}\left(\alpha^{2}\right)-\alpha f_{1}\left(\alpha^{2}\right)$
f_{0} has $n / 2$ coeffs; evaluate at ($n / 2$)nd roots o by same idea recursively. Similarly f_{1}.

Asymptotics:
normally $t \in \Theta(n / \lg n)$,
so Horner's rule costs
$\Theta(n t)=\Theta\left(n^{2} / \lg n\right)$.
Wait a minute.
Didn't we learn in school that FFT evaluates
an n-coeff polynomial
at n points
using $n^{1+o(1)}$ operations?
Isn't this better than $n^{2} / \lg n$?

Standard radix-2 FFT:
Want to evaluate

$$
f=c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}
$$

at all the nth roots of 1 .
Write f as $f_{0}\left(x^{2}\right)+x f_{1}\left(x^{2}\right)$.
Observe big overlap between
$f(\alpha)=f_{0}\left(\alpha^{2}\right)+\alpha f_{1}\left(\alpha^{2}\right)$,
$f(-\alpha)=f_{0}\left(\alpha^{2}\right)-\alpha f_{1}\left(\alpha^{2}\right)$.
f_{0} has $n / 2$ coeffs;
evaluate at ($n / 2$) nd roots of 1 by same idea recursively.
Similarly f_{1}.
tics:

$$
t \in \Theta(n / \lg n)
$$

er's rule costs
$=\Theta\left(n^{2} / \lg n\right)$
ninute.
re learn in school
「 evaluates
eff polynomial

nts

$+o(1)$ operations?
better than $n^{2} / \lg n$?

Standard radix-2 FFT:
Want to evaluate
$f=c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}$
at all the nth roots of 1 .
Write f as $f_{0}\left(x^{2}\right)+x f_{1}\left(x^{2}\right)$.
Observe big overlap between
$f(\alpha)=f_{0}\left(\alpha^{2}\right)+\alpha f_{1}\left(\alpha^{2}\right)$,
$f(-\alpha)=f_{0}\left(\alpha^{2}\right)-\alpha f_{1}\left(\alpha^{2}\right)$.
f_{0} has $n / 2$ coeffs;
evaluate at ($n / 2$) nd roots of 1
by same idea recursively.
Similarly f_{1}.

Useless
Standar
FFT cor
1988 W
indepens
"additiv
Still quit
1996 vo
some im
2010 Ga much be

We use plus son

$(\lg n)$

 sts$n)$.
school
S
nial
rations?
an $n^{2} / \lg n ?$

Standard radix-2 FFT:

Want to evaluate
$f=c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}$
at all the nth roots of 1 .
Write f as $f_{0}\left(x^{2}\right)+x f_{1}\left(x^{2}\right)$.
Observe big overlap between
$f(\alpha)=f_{0}\left(\alpha^{2}\right)+\alpha f_{1}\left(\alpha^{2}\right)$,
$f(-\alpha)=f_{0}\left(\alpha^{2}\right)-\alpha f_{1}\left(\alpha^{2}\right)$.
f_{0} has $n / 2$ coeffs;
evaluate at ($n / 2$) nd roots of 1 by same idea recursively.
Similarly f_{1}.

Useless in char 2: Standard workarol FFT considered in

1988 Wang-Zhu, independently 198 "additive FFT" in Still quite expensi

1996 von zur Gath some improvemen 2010 Gao-Mateer much better addit

We use Gao-Mate plus some new im

Standard radix-2 FFT:
Want to evaluate
$f=c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}$
at all the nth roots of 1 .
Write f as $f_{0}\left(x^{2}\right)+x f_{1}\left(x^{2}\right)$.
Observe big overlap between
$f(\alpha)=f_{0}\left(\alpha^{2}\right)+\alpha f_{1}\left(\alpha^{2}\right)$,
$f(-\alpha)=f_{0}\left(\alpha^{2}\right)-\alpha f_{1}\left(\alpha^{2}\right)$.
f_{0} has $n / 2$ coeffs;
evaluate at ($n / 2$)nd roots of 1
by same idea recursively.
Similarly f_{1}.

Useless in char 2: $\alpha=-\alpha$. Standard workarounds are p FFT considered impractical.

1988 Wang-Zhu, independently 1989 Cantor: "additive FFT" in char 2. Still quite expensive.

1996 von zur Gathen-Gerha some improvements.

2010 Gao-Mateer:
much better additive FFT.
We use Gao-Mateer, plus some new improvement

Standard radix-2 FFT:
Want to evaluate

$$
f=c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}
$$

at all the nth roots of 1 .
Write f as $f_{0}\left(x^{2}\right)+x f_{1}\left(x^{2}\right)$.
Observe big overlap between
$f(\alpha)=f_{0}\left(\alpha^{2}\right)+\alpha f_{1}\left(\alpha^{2}\right)$,
$f(-\alpha)=f_{0}\left(\alpha^{2}\right)-\alpha f_{1}\left(\alpha^{2}\right)$.
f_{0} has $n / 2$ coeffs;
evaluate at ($n / 2$)nd roots of 1 by same idea recursively. Similarly f_{1}.

Useless in char 2: $\alpha=-\alpha$.
Standard workarounds are painful.
FFT considered impractical.
1988 Wang-Zhu,
independently 1989 Cantor:
"additive FFT" in char 2.
Still quite expensive.
1996 von zur Gathen-Gerhard:
some improvements.
2010 Gao-Mateer:
much better additive FFT.
We use Gao-Mateer,
plus some new improvements.
radix-2 FFT:

evaluate

$-c_{1} x+\cdots+c_{n-1} x^{n-1}$
e nth roots of 1 .
as $f_{0}\left(x^{2}\right)+x f_{1}\left(x^{2}\right)$.
big overlap between
$f_{0}\left(\alpha^{2}\right)+\alpha f_{1}\left(\alpha^{2}\right)$,
$=f_{0}\left(\alpha^{2}\right)-\alpha f_{1}\left(\alpha^{2}\right)$.
/2 coeffs;
at ($n / 2$)nd roots of 1 idea recursively.
f_{1}.

Useless in char 2: $\alpha=-\alpha$.
Standard workarounds are painful.
FFT considered impractical.
1988 Wang-Zhu,
independently 1989 Cantor:
"additive FFT" in char 2.
Still quite expensive.
1996 von zur Gathen-Gerhard:
some improvements.
2010 Gao-Mateer:
much better additive FFT.
We use Gao-Mateer,
plus some new improvements.

Gao and
$f=c_{0}$
on a siz
Main id
$f_{0}\left(x^{2}+\right.$
Big over
$f_{0}\left(\alpha^{2}+\right.$ and $f(\alpha$ $f_{0}\left(\alpha^{2}+\right.$
"Twist"
Then \{c size-(n)
Apply sa

FT:
$\cdot+c_{n-1} x^{n-1}$
s of 1 .
$+x f_{1}\left(x^{2}\right)$
p between
$\alpha f_{1}\left(\alpha^{2}\right)$,
$\alpha f_{1}\left(\alpha^{2}\right)$.
nd roots of 1
rsively.

Useless in char 2: $\alpha=-\alpha$.
Standard workarounds are painful.
FFT considered impractical.
1988 Wang-Zhu, independently 1989 Cantor: "additive FFT" in char 2.
Still quite expensive.
1996 von zur Gathen-Gerhard:
some improvements.
2010 Gao-Mateer:
much better additive FFT.
We use Gao-Mateer,
plus some new improvements.

Gao and Mateer e $f=c_{0}+c_{1} x+$. on a size-n \mathbf{F}_{2}-lin

Main idea: Write $f_{0}\left(x^{2}+x\right)+x f_{1}($

Big overlap betwe $f_{0}\left(\alpha^{2}+\alpha\right)+\alpha f_{1}$ and $f(\alpha+1)=$ $f_{0}\left(\alpha^{2}+\alpha\right)+(\alpha-$
"Twist" to ensure Then $\left\{\alpha^{2}+\alpha\right\}$ is size- $(n / 2) \mathbf{F}_{2}$-line Apply same idea r

Useless in char 2: $\alpha=-\alpha$.
Standard workarounds are painful.
FFT considered impractical.
1988 Wang-Zhu, independently 1989 Cantor: "additive FFT" in char 2.
Still quite expensive.
1996 von zur Gathen-Gerhard: some improvements.

2010 Gao-Mateer:
much better additive FFT.
We use Gao-Mateer, plus some new improvements.

Gao and Mateer evaluate
$f=c_{0}+c_{1} x+\cdots+c_{n-1} x$
on a size- $n \mathbf{F}_{2}$-linear space.
Main idea: Write f as
$f_{0}\left(x^{2}+x\right)+x f_{1}\left(x^{2}+x\right)$.
Big overlap between $f(\alpha)=$ $f_{0}\left(\alpha^{2}+\alpha\right)+\alpha f_{1}\left(\alpha^{2}+\alpha\right)$ and $f(\alpha+1)=$
$f_{0}\left(\alpha^{2}+\alpha\right)+(\alpha+1) f_{1}\left(\alpha^{2}\right.$
"Twist" to ensure $1 \in \operatorname{spac\epsilon }$
Then $\left\{\alpha^{2}+\alpha\right\}$ is a
size- $(n / 2) \mathbf{F}_{2}$-linear space.
Apply same idea recursively.

Useless in char 2: $\alpha=-\alpha$.
Standard workarounds are painful.
FFT considered impractical.
1988 Wang-Zhu, independently 1989 Cantor:
"additive FFT" in char 2.
Still quite expensive.
1996 von zur Gathen-Gerhard: some improvements.

2010 Gao-Mateer:
much better additive FFT.
We use Gao-Mateer,
plus some new improvements.

Gao and Mateer evaluate
$f=c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}$
on a size- $n F_{2}$-linear space.
Main idea: Write f as
$f_{0}\left(x^{2}+x\right)+x f_{1}\left(x^{2}+x\right)$.
Big overlap between $f(\alpha)=$ $f_{0}\left(\alpha^{2}+\alpha\right)+\alpha f_{1}\left(\alpha^{2}+\alpha\right)$ and $f(\alpha+1)=$ $f_{0}\left(\alpha^{2}+\alpha\right)+(\alpha+1) f_{1}\left(\alpha^{2}+\alpha\right)$.
"Twist" to ensure $1 \in$ space.
Then $\left\{\alpha^{2}+\alpha\right\}$ is a size- $(n / 2) \mathbf{F}_{2}$-linear space.
Apply same idea recursively.
n char $2: \alpha=-\alpha$.
workarounds are painful.
sidered impractical.
ang-Zhu,
dently 1989 Cantor:
e FFT" in char 2.
e expensive.
n zur Gathen-Gerhard:
provements.
o-Mateer:
tter additive FFT.
Gao-Mateer,
ie new improvements.

Gao and Mateer evaluate
$f=c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}$
on a size- $n \mathbf{F}_{2}$-linear space.
Main idea: Write f as
$f_{0}\left(x^{2}+x\right)+x f_{1}\left(x^{2}+x\right)$.
Big overlap between $f(\alpha)=$
$f_{0}\left(\alpha^{2}+\alpha\right)+\alpha f_{1}\left(\alpha^{2}+\alpha\right)$
and $f(\alpha+1)=$
$f_{0}\left(\alpha^{2}+\alpha\right)+(\alpha+1) f_{1}\left(\alpha^{2}+\alpha\right)$.
"Twist" to ensure $1 \in$ space.
Then $\left\{\alpha^{2}+\alpha\right\}$ is a
size- $(n / 2) \mathbf{F}_{2}$-linear space.
Apply same idea recursively.

We gene
$f=c_{0}$ for any
\Rightarrow sever
not all o by simpl

For $t=$
For $t \in$ f_{1} is a c Instead this con multiply and com
$\alpha=-\alpha$.
unds are painful.
mpractical.

9 Cantor:
char 2.
ve.
en-Gerhard:
ts.

ive FFT.

er,
provements.

Gao and Mateer evaluate
$f=c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}$
on a size- $n \mathbf{F}_{2}$-linear space.
Main idea: Write f as
$f_{0}\left(x^{2}+x\right)+x f_{1}\left(x^{2}+x\right)$.
Big overlap between $f(\alpha)=$
$f_{0}\left(\alpha^{2}+\alpha\right)+\alpha f_{1}\left(\alpha^{2}+\alpha\right)$
and $f(\alpha+1)=$
$f_{0}\left(\alpha^{2}+\alpha\right)+(\alpha+1) f_{1}\left(\alpha^{2}+\alpha\right)$.
"Twist" to ensure $1 \in$ space.
Then $\left\{\alpha^{2}+\alpha\right\}$ is a
size- $(n / 2) \mathbf{F}_{2}$-linear space.
Apply same idea recursively.

We generalize to
$f=c_{0}+c_{1} x+\cdot \cdot$ for any $t<n$.
\Rightarrow several optimiz not all of which ar by simply tracking

For $t=0$: copy c
For $t \in\{1,2\}$:
f_{1} is a constant. Instead of multiply this constant by e multiply only by g and compute subs

Gao and Mateer evaluate
on a size- $n \mathbf{F}_{2}$-linear space.
Main idea: Write f as
$f_{0}\left(x^{2}+x\right)+x f_{1}\left(x^{2}+x\right)$.
Big overlap between $f(\alpha)=$ $f_{0}\left(\alpha^{2}+\alpha\right)+\alpha f_{1}\left(\alpha^{2}+\alpha\right)$ and $f(\alpha+1)=$ $f_{0}\left(\alpha^{2}+\alpha\right)+(\alpha+1) f_{1}\left(\alpha^{2}+\alpha\right)$.
"Twist" to ensure $1 \in$ space.
Then $\left\{\alpha^{2}+\alpha\right\}$ is a size- $(n / 2) \mathbf{F}_{2}$-linear space. Apply same idea recursively.

We generalize to
$f=c_{0}+c_{1} x+\cdots+c_{t} x^{t}$
for any $t<n$.
\Rightarrow several optimizations, not all of which are automa by simply tracking zeros.

For $t=0$: copy c_{0}.
For $t \in\{1,2\}$:
f_{1} is a constant.
Instead of multiplying this constant by each α, multiply only by generators and compute subset sums.

Gao and Mateer evaluate
$f=c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}$
on a size- $n \mathbf{F}_{2}$-linear space.
Main idea: Write f as
$f_{0}\left(x^{2}+x\right)+x f_{1}\left(x^{2}+x\right)$.
Big overlap between $f(\alpha)=$ $f_{0}\left(\alpha^{2}+\alpha\right)+\alpha f_{1}\left(\alpha^{2}+\alpha\right)$ and $f(\alpha+1)=$ $f_{0}\left(\alpha^{2}+\alpha\right)+(\alpha+1) f_{1}\left(\alpha^{2}+\alpha\right)$.
"Twist" to ensure $1 \in$ space.
Then $\left\{\alpha^{2}+\alpha\right\}$ is a size- $(n / 2) \mathbf{F}_{2}$-linear space. Apply same idea recursively.

We generalize to
$f=c_{0}+c_{1} x+\cdots+c_{t} x^{t}$
for any $t<n$.
\Rightarrow several optimizations,
not all of which are automated by simply tracking zeros.

For $t=0$: copy c_{0}.
For $t \in\{1,2\}$:
f_{1} is a constant.
Instead of multiplying
this constant by each α, multiply only by generators and compute subset sums.

Mateer evaluate

$-c_{1} x+\cdots+c_{n-1} x^{n-1}$
e-n \mathbf{F}_{2}-linear space.
ea: Write f as
$x)+x f_{1}\left(x^{2}+x\right)$.
lap between $f(\alpha)=$
$\alpha)+\alpha f_{1}\left(\alpha^{2}+\alpha\right)$
$+1)=$
$\alpha)+(\alpha+1) f_{1}\left(\alpha^{2}+\alpha\right)$.
to ensure $1 \in$ space.
$\left.x^{2}+\alpha\right\}$ is a
2) \mathbf{F}_{2}-linear space.
me idea recursively.

We generalize to
$f=c_{0}+c_{1} x+\cdots+c_{t} x^{t}$
for any $t<n$.
\Rightarrow several optimizations,
not all of which are automated by simply tracking zeros.

For $t=0$: copy c_{0}.
For $t \in\{1,2\}$:
f_{1} is a constant. Instead of multiplying this constant by each α, multiply only by generators and compute subset sums.

Syndron

Initial d
$s_{0}=r_{1}$
$s_{1}=r_{1}$
$s_{2}=r_{1}$
:
$s_{t}=r_{1} c$
$r_{1}, r_{2},$. scaled b
Typically mapping
Not as s
still n^{2+}
valuate
$\cdot+c_{n-1} x^{n-1}$
ear space.
f as
$\left.x^{2}+x\right)$.
en $f(\alpha)=$
$\left(\alpha^{2}+\alpha\right)$

1) $f_{1}\left(\alpha^{2}+\alpha\right)$.
$1 \in$ space.
a
ar space.
ecursively.

We generalize to
$f=c_{0}+c_{1} x+\cdots+c_{t} x^{t}$
for any $t<n$.
\Rightarrow several optimizations, not all of which are automated by simply tracking zeros.

For $t=0$: copy c_{0}.
For $t \in\{1,2\}$:
f_{1} is a constant.
Instead of multiplying this constant by each α, multiply only by generators and compute subset sums.

Syndrome comput

Initial decoding st
$s_{0}=r_{1}+r_{2}+\cdots$
$s_{1}=r_{1} \alpha_{1}+r_{2} \alpha_{2}$
$s_{2}=r_{1} \alpha_{1}^{2}+r_{2} \alpha_{2}^{2}$
\vdots,
$s_{t}=r_{1} \alpha_{1}^{t}+r_{2} \alpha_{2}^{t}$
$r_{1}, r_{2}, \ldots, r_{n}$ are scaled by Goppa c
Typically precomp mapping bits to sy Not as slow as Ch still $n^{2+o(1)}$ and h

We generalize to
$f=c_{0}+c_{1} x+\cdots+c_{t} x^{t}$
for any $t<n$.
\Rightarrow several optimizations,
not all of which are automated by simply tracking zeros.

For $t=0$: copy c_{0}.
For $t \in\{1,2\}$:
f_{1} is a constant.
Instead of multiplying
this constant by each α, multiply only by generators and compute subset sums.

Syndrome computation

Initial decoding step: comp
$s_{0}=r_{1}+r_{2}+\cdots+r_{n}$,
$s_{1}=r_{1} \alpha_{1}+r_{2} \alpha_{2}+\cdots+r$
$s_{2}=r_{1} \alpha_{1}^{2}+r_{2} \alpha_{2}^{2}+\cdots+r$
\vdots,
$s_{t}=r_{1} \alpha_{1}^{t}+r_{2} \alpha_{2}^{t}+\cdots+r_{1}$
$r_{1}, r_{2}, \ldots, r_{n}$ are received b scaled by Goppa constants.
Typically precompute matrix mapping bits to syndrome.
Not as slow as Chien search still $n^{2+o(1)}$ and huge secret

We generalize to
$f=c_{0}+c_{1} x+\cdots+c_{t} x^{t}$
for any $t<n$.
\Rightarrow several optimizations,
not all of which are automated by simply tracking zeros.

For $t=0$: copy c_{0}.
For $t \in\{1,2\}$:
f_{1} is a constant.
Instead of multiplying
this constant by each α, multiply only by generators and compute subset sums.

Syndrome computation

Initial decoding step: compute

$$
\begin{aligned}
& s_{0}=r_{1}+r_{2}+\cdots+r_{n}, \\
& s_{1}=r_{1} \alpha_{1}+r_{2} \alpha_{2}+\cdots+r_{n} \alpha_{n}, \\
& s_{2}=r_{1} \alpha_{1}^{2}+r_{2} \alpha_{2}^{2}+\cdots+r_{n} \alpha_{n}^{2},
\end{aligned}
$$

$$
\vdots
$$

$$
s_{t}=r_{1} \alpha_{1}^{t}+r_{2} \alpha_{2}^{t}+\cdots+r_{n} \alpha_{n}^{t}
$$

$r_{1}, r_{2}, \ldots, r_{n}$ are received bits scaled by Goppa constants.
Typically precompute matrix mapping bits to syndrome.
Not as slow as Chien search but still $n^{2+o(1)}$ and huge secret key.
ralize to
$-c_{1} x+\cdots+c_{t} x^{t}$
$<n$.
al optimizations,
f which are automated
y tracking zeros.
0 : copy c_{0}.
$\{1,2\}$:
onstant.
of multiplying stant by each α, only by generators pute subset sums.

Syndrome computation

Initial decoding step: compute

$$
\begin{aligned}
& s_{0}=r_{1}+r_{2}+\cdots+r_{n}, \\
& s_{1}=r_{1} \alpha_{1}+r_{2} \alpha_{2}+\cdots+r_{n} \alpha_{n}, \\
& s_{2}=r_{1} \alpha_{1}^{2}+r_{2} \alpha_{2}^{2}+\cdots+r_{n} \alpha_{n}^{2},
\end{aligned}
$$

Compar
$f\left(\alpha_{1}\right)=$
$f\left(\alpha_{2}\right)=$
\vdots,
$f\left(\alpha_{n}\right)=$
$s_{t}=r_{1} \alpha_{1}^{t}+r_{2} \alpha_{2}^{t}+\cdots+r_{n} \alpha_{n}^{t}$.
$r_{1}, r_{2}, \ldots, r_{n}$ are received bits scaled by Goppa constants.
Typically precompute matrix mapping bits to syndrome.
Not as slow as Chien search but still $n^{2+o(1)}$ and huge secret key.

$$
\cdot+c_{t} x^{t}
$$

ations,
e automated zeros.
ing
ach α,
enerators
et sums.

Syndrome computation

Initial decoding step: compute $s_{0}=r_{1}+r_{2}+\cdots+r_{n}$,
$s_{1}=r_{1} \alpha_{1}+r_{2} \alpha_{2}+\cdots+r_{n} \alpha_{n}$, $s_{2}=r_{1} \alpha_{1}^{2}+r_{2} \alpha_{2}^{2}+\cdots+r_{n} \alpha_{n}^{2}$,
\vdots,
$s_{t}=r_{1} \alpha_{1}^{t}+r_{2} \alpha_{2}^{t}+\cdots+r_{n} \alpha_{n}^{t}$.
$r_{1}, r_{2}, \ldots, r_{n}$ are received bits
scaled by Goppa constants.
Typically precompute matrix mapping bits to syndrome.
Not as slow as Chien search but still $n^{2+o(1)}$ and huge secret key.

Compare to multi $f\left(\alpha_{1}\right)=c_{0}+c_{1} \alpha$ $f\left(\alpha_{2}\right)=c_{0}+c_{1} \alpha$ \vdots,
$f\left(\alpha_{n}\right)=c_{0}+c_{1} \alpha$

Syndrome computation

Initial decoding step: compute

$$
\begin{aligned}
& s_{0}=r_{1}+r_{2}+\cdots+r_{n}, \\
& s_{1}=r_{1} \alpha_{1}+r_{2} \alpha_{2}+\cdots+r_{n} \alpha_{n}, \\
& s_{2}=r_{1} \alpha_{1}^{2}+r_{2} \alpha_{2}^{2}+\cdots+r_{n} \alpha_{n}^{2}, \\
& \vdots \\
& s_{t}=r_{1} \alpha_{1}^{t}+r_{2} \alpha_{2}^{t}+\cdots+r_{n} \alpha_{n}^{t} .
\end{aligned}
$$

$r_{1}, r_{2}, \ldots, r_{n}$ are received bits scaled by Goppa constants.
Typically precompute matrix mapping bits to syndrome.
Not as slow as Chien search but still $n^{2+o(1)}$ and huge secret key.

Compare to multipoint evalı

$$
\begin{aligned}
& f\left(\alpha_{1}\right)=c_{0}+c_{1} \alpha_{1}+\cdots+ \\
& f\left(\alpha_{2}\right)=c_{0}+c_{1} \alpha_{2}+\cdots+ \\
& \vdots \\
& f\left(\alpha_{n}\right)=c_{0}+c_{1} \alpha_{n}+\cdots+
\end{aligned}
$$

Syndrome computation

Initial decoding step: compute

$$
\begin{aligned}
& s_{0}=r_{1}+r_{2}+\cdots+r_{n}, \\
& s_{1}=r_{1} \alpha_{1}+r_{2} \alpha_{2}+\cdots+r_{n} \alpha_{n}, \\
& s_{2}=r_{1} \alpha_{1}^{2}+r_{2} \alpha_{2}^{2}+\cdots+r_{n} \alpha_{n}^{2},
\end{aligned}
$$

$$
s_{t}=r_{1} \alpha_{1}^{t}+r_{2} \alpha_{2}^{t}+\cdots+r_{n} \alpha_{n}^{t}
$$

$r_{1}, r_{2}, \ldots, r_{n}$ are received bits scaled by Goppa constants.
Typically precompute matrix mapping bits to syndrome.
Not as slow as Chien search but still $n^{2+o(1)}$ and huge secret key.

Compare to multipoint evaluation:

$$
\begin{aligned}
& f\left(\alpha_{1}\right)=c_{0}+c_{1} \alpha_{1}+\cdots+c_{t} \alpha_{1}^{t} \\
& f\left(\alpha_{2}\right)=c_{0}+c_{1} \alpha_{2}+\cdots+c_{t} \alpha_{2}^{t}
\end{aligned}
$$

$$
f\left(\alpha_{n}\right)=c_{0}+c_{1} \alpha_{n}+\cdots+c_{t} \alpha_{n}^{t}
$$

Syndrome computation

Initial decoding step: compute

$$
\begin{aligned}
& s_{0}=r_{1}+r_{2}+\cdots+r_{n} \\
& s_{1}=r_{1} \alpha_{1}+r_{2} \alpha_{2}+\cdots+r_{n} \alpha_{n} \\
& s_{2}=r_{1} \alpha_{1}^{2}+r_{2} \alpha_{2}^{2}+\cdots+r_{n} \alpha_{n}^{2}
\end{aligned}
$$

$$
s_{t}=r_{1} \alpha_{1}^{t}+r_{2} \alpha_{2}^{t}+\cdots+r_{n} \alpha_{n}^{t}
$$

$r_{1}, r_{2}, \ldots, r_{n}$ are received bits scaled by Goppa constants.
Typically precompute matrix mapping bits to syndrome.
Not as slow as Chien search but still $n^{2+o(1)}$ and huge secret key.

Compare to multipoint evaluation:

$$
\begin{aligned}
& f\left(\alpha_{1}\right)=c_{0}+c_{1} \alpha_{1}+\cdots+c_{t} \alpha_{1}^{t} \\
& f\left(\alpha_{2}\right)=c_{0}+c_{1} \alpha_{2}+\cdots+c_{t} \alpha_{2}^{t}
\end{aligned}
$$

\vdots,
$f\left(\alpha_{n}\right)=c_{0}+c_{1} \alpha_{n}+\cdots+c_{t} \alpha_{n}^{t}$.
Matrix for syndrome computation is transpose of matrix for multipoint evaluation.

Syndrome computation

Initial decoding step: compute

$$
\begin{aligned}
& s_{0}=r_{1}+r_{2}+\cdots+r_{n}, \\
& s_{1}=r_{1} \alpha_{1}+r_{2} \alpha_{2}+\cdots+r_{n} \alpha_{n}, \\
& s_{2}=r_{1} \alpha_{1}^{2}+r_{2} \alpha_{2}^{2}+\cdots+r_{n} \alpha_{n}^{2}
\end{aligned}
$$

$$
s_{t}=r_{1} \alpha_{1}^{t}+r_{2} \alpha_{2}^{t}+\cdots+r_{n} \alpha_{n}^{t}
$$

$r_{1}, r_{2}, \ldots, r_{n}$ are received bits scaled by Goppa constants.
Typically precompute matrix mapping bits to syndrome.
Not as slow as Chien search but still $n^{2+o(1)}$ and huge secret key.

Compare to multipoint evaluation:

$$
\begin{aligned}
& f\left(\alpha_{1}\right)=c_{0}+c_{1} \alpha_{1}+\cdots+c_{t} \alpha_{1}^{t} \\
& f\left(\alpha_{2}\right)=c_{0}+c_{1} \alpha_{2}+\cdots+c_{t} \alpha_{2}^{t}
\end{aligned}
$$

\vdots,
$f\left(\alpha_{n}\right)=c_{0}+c_{1} \alpha_{n}+\cdots+c_{t} \alpha_{n}^{t}$.
Matrix for syndrome computation is transpose of matrix for multipoint evaluation.

Amazing consequence:
syndrome computation is as few ops as multipoint evaluation.
Eliminate precomputed matrix.
ie computation
ecoding step: compute
$+r_{2}+\cdots+r_{n}$,
$\alpha_{1}+r_{2} \alpha_{2}+\cdots+r_{n} \alpha_{n}$,
$\alpha_{1}^{2}+r_{2} \alpha_{2}^{2}+\cdots+r_{n} \alpha_{n}^{2}$
$\chi_{1}^{t}+r_{2} \alpha_{2}^{t}+\cdots+r_{n} \alpha_{n}^{t}$
,r_{n} are received bits
y Goppa constants.
precompute matrix
bits to syndrome.
low as Chien search but
$o(1)$ and huge secret key.

Compare to multipoint evaluation:
$f\left(\alpha_{1}\right)=c_{0}+c_{1} \alpha_{1}+\cdots+c_{t} \alpha_{1}^{t}$,
$f\left(\alpha_{2}\right)=c_{0}+c_{1} \alpha_{2}+\cdots+c_{t} \alpha_{2}^{t}$,
\vdots,
$f\left(\alpha_{n}\right)=c_{0}+c_{1} \alpha_{n}+\cdots+c_{t} \alpha_{n}^{t}$.
Matrix for syndrome computation
is transpose of
matrix for multipoint evaluation.
Amazing consequence:
syndrome computation is as few
ops as multipoint evaluation.
Eliminate precomputed matrix.

Transpo If a linea compute then rev exchang comput 1956 Bo indepen for Bool

1973 Fic preserve preserve number

ation

ep: compute
$+r_{n}$,
$+\cdots+r_{n} \alpha_{n}$,
$+\cdots+r_{n} \alpha_{n}^{2}$
$+\cdots+r_{n} \alpha_{n}^{t}$ received bits onstants.
ute matrix ndrome.
ien search but uge secret key.

Compare to multipoint evaluation:

$$
\begin{aligned}
f\left(\alpha_{1}\right) & =c_{0}+c_{1} \alpha_{1}+\cdots+c_{t} \alpha_{1}^{t}, \\
f\left(\alpha_{2}\right) & =c_{0}+c_{1} \alpha_{2}+\cdots+c_{t} \alpha_{2}^{t},
\end{aligned}
$$

$$
\vdots
$$

$$
f\left(\alpha_{n}\right)=c_{0}+c_{1} \alpha_{n}+\cdots+c_{t} \alpha_{n}^{t} .
$$

Matrix for syndrome computation
is transpose of
matrix for multipoint evaluation.
Amazing consequence:
syndrome computation is as few
ops as multipoint evaluation.
Eliminate precomputed matrix.

Transposition prin If a linear algorith computes a matri> then reversing edg exchanging inputs computes the tran

1956 Bordewijk; independently 195 for Boolean matric

1973 Fiduccia ana preserves number preserves number number of nontriv

Compare to multipoint evaluation:

$$
\begin{aligned}
& f\left(\alpha_{1}\right)=c_{0}+c_{1} \alpha_{1}+\cdots+c_{t} \alpha_{1}^{t} \\
& f\left(\alpha_{2}\right)=c_{0}+c_{1} \alpha_{2}+\cdots+c_{t} \alpha_{2}^{t}
\end{aligned}
$$

\vdots,
$f\left(\alpha_{n}\right)=c_{0}+c_{1} \alpha_{n}+\cdots+c_{t} \alpha_{n}^{t}$.
Matrix for syndrome computation
is transpose of
matrix for multipoint evaluation.
Amazing consequence:
syndrome computation is as few
ops as multipoint evaluation.
but key.

Transposition principle: If a linear algorithm computes a matrix M then reversing edges and exchanging inputs/outputs computes the transpose of I 1956 Bordewijk; independently 1957 Lupano for Boolean matrices.

1973 Fiduccia analysis: preserves number of mults; preserves number of adds pl number of nontrivial output

Compare to multipoint evaluation: $f\left(\alpha_{1}\right)=c_{0}+c_{1} \alpha_{1}+\cdots+c_{t} \alpha_{1}^{t}$, $f\left(\alpha_{2}\right)=c_{0}+c_{1} \alpha_{2}+\cdots+c_{t} \alpha_{2}^{t}$,

$$
f\left(\alpha_{n}\right)=c_{0}+c_{1} \alpha_{n}+\cdots+c_{t} \alpha_{n}^{t}
$$

Matrix for syndrome computation is transpose of matrix for multipoint evaluation.

Amazing consequence:
syndrome computation is as few ops as multipoint evaluation. Eliminate precomputed matrix.

Transposition principle:
If a linear algorithm
computes a matrix M then reversing edges and exchanging inputs/outputs computes the transpose of M.

1956 Bordewijk; independently 1957 Lupanov for Boolean matrices.

1973 Fiduccia analysis: preserves number of mults; preserves number of adds plus number of nontrivial outputs.
to multipoint evaluation:

$$
\begin{aligned}
& c_{0}+c_{1} \alpha_{1}+\cdots+c_{t} \alpha_{1}^{t} \\
& c_{0}+c_{1} \alpha_{2}+\cdots+c_{t} \alpha_{2}^{t}
\end{aligned}
$$

$$
=c_{0}+c_{1} \alpha_{n}+\cdots+c_{t} \alpha_{n}^{t}
$$

or syndrome computation ose of
or multipoint evaluation.
consequence:
e computation is as few ultipoint evaluation.
e precomputed matrix.

Transposition principle:
If a linear algorithm
computes a matrix M then reversing edges and exchanging inputs/outputs computes the transpose of M.

1956 Bordewijk;
independently 1957 Lupanov for Boolean matrices.

1973 Fiduccia analysis:
preserves number of mults; preserves number of adds plus number of nontrivial outputs.

We built producir Too maı gcc ran
ooint evaluation:
$1+\cdots+c_{t} \alpha_{1}^{t}$,
$2+\cdots+c_{t} \alpha_{2}^{t}$,

$$
n+\cdots+c_{t} \alpha_{n}^{t}
$$

ne computation
int evaluation.
ence:
ation is as few
evaluation.
uted matrix.

Transposition principle:
If a linear algorithm
computes a matrix M then reversing edges and
exchanging inputs/outputs computes the transpose of M.

1956 Bordewijk;
independently 1957 Lupanov for Boolean matrices.

1973 Fiduccia analysis:
preserves number of mults; preserves number of adds plus number of nontrivial outputs.

We built transposi producing C code. Too many variable gcc ran out of me
uation: ${ }_{t} \alpha_{1}^{t}$,
$c_{t} \alpha_{2}^{t}$ $c_{t} \alpha_{n}^{t}$ tation tion.
few
ix.

Transposition principle:
If a linear algorithm
computes a matrix M then reversing edges and exchanging inputs/outputs computes the transpose of M. 1956 Bordewijk; independently 1957 Lupanov for Boolean matrices.

1973 Fiduccia analysis: preserves number of mults; preserves number of adds plus number of nontrivial outputs.

We built transposing compil producing C code.
Too many variables for $m=$ gcc ran out of memory.

Transposition principle:

If a linear algorithm
computes a matrix M
then reversing edges and exchanging inputs/outputs computes the transpose of M. 1956 Bordewijk; independently 1957 Lupanov for Boolean matrices.

1973 Fiduccia analysis: preserves number of mults; preserves number of adds plus number of nontrivial outputs.

We built transposing compiler producing C code.
Too many variables for $m=13$;
gcc ran out of memory.

Transposition principle:

If a linear algorithm
computes a matrix M
then reversing edges and exchanging inputs/outputs computes the transpose of M.

1956 Bordewijk; independently 1957 Lupanov for Boolean matrices.

1973 Fiduccia analysis: preserves number of mults; preserves number of adds plus number of nontrivial outputs.

We built transposing compiler producing C code.
Too many variables for $m=13$;
gcc ran out of memory.
Used qhasm register allocator to optimize the variables.
Worked, but not very quickly.

Transposition principle:

If a linear algorithm
computes a matrix M
then reversing edges and exchanging inputs/outputs computes the transpose of M.

1956 Bordewijk; independently 1957 Lupanov for Boolean matrices.

1973 Fiduccia analysis: preserves number of mults; preserves number of adds plus number of nontrivial outputs.

We built transposing compiler producing C code.
Too many variables for $m=13$;
gcc ran out of memory.
Used qhasm register allocator to optimize the variables.
Worked, but not very quickly.
Wrote faster register allocator. Still excessive code size.

Transposition principle:
If a linear algorithm
computes a matrix M
then reversing edges and exchanging inputs/outputs computes the transpose of M.

1956 Bordewijk; independently 1957 Lupanov for Boolean matrices.

1973 Fiduccia analysis: preserves number of mults; preserves number of adds plus number of nontrivial outputs.

We built transposing compiler producing C code.
Too many variables for $m=13$;
gcc ran out of memory.
Used qhasm register allocator to optimize the variables.
Worked, but not very quickly.
Wrote faster register allocator. Still excessive code size.

Built new interpreter, allowing some code compression. Still big; still some overhead.
sition principle:
algorithm
s a matrix M
ersing edges and ing inputs/outputs
s the transpose of M.
rdewijk;
dently 1957 Lupanov
ean matrices.
duccia analysis:
s number of mults;
s number of adds plus
of nontrivial outputs.

We built transposing compiler producing C code.
Too many variables for $m=13$;
gcc ran out of memory.
Used qhasm register allocator to optimize the variables.
Worked, but not very quickly.
Wrote faster register allocator.
Still excessive code size.
Built new interpreter,
allowing some code compression.
Still big; still some overhead.

Better s stared a wrote d with san

Small cc
Speedup translat to trans

Further merged scaling
ciple:

```
m
```

M
es and /outputs spose of M.

7 Lupanov ces. lysis:
of mults;
of adds plus
ial outputs.

We built transposing compiler producing C code.
Too many variables for $m=13$; gcc ran out of memory.

Used qhasm register allocator to optimize the variables.
Worked, but not very quickly.
Wrote faster register allocator.
Still excessive code size.
Built new interpreter, allowing some code compression. Still big; still some overhead.

Better solution:
stared at additive wrote down transp with same loops e

Small code, no ov
Speedups of addit translate easily to transposed algo

Further savings:
merged first stage
scaling by Goppa

We built transposing compiler producing C code.
Too many variables for $m=13$;
gcc ran out of memory.
Used qhasm register allocator to optimize the variables.
Worked, but not very quickly.
Wrote faster register allocator. Still excessive code size.

Built new interpreter, allowing some code compression. Still big; still some overhead.

Better solution:
stared at additive FFT, wrote down transposition with same loops etc.

Small code, no overhead.
Speedups of additive FFT translate easily
to transposed algorithm.
Further savings:
merged first stage with
scaling by Goppa constants.

We built transposing compiler producing C code.
Too many variables for $m=13$;
gcc ran out of memory.
Used qhasm register allocator to optimize the variables.
Worked, but not very quickly.
Wrote faster register allocator. Still excessive code size.

Built new interpreter, allowing some code compression. Still big; still some overhead.

Better solution:
stared at additive FFT,
wrote down transposition with same loops etc.

Small code, no overhead.
Speedups of additive FFT translate easily
to transposed algorithm.
Further savings:
merged first stage with scaling by Goppa constants.
transposing compiler g C code.
yy variables for $m=13$; out of memory.
asm register allocator ize the variables.
but not very quickly.
aster register allocator.
essive code size.
w interpreter, some code compression. still some overhead.

Better solution:
stared at additive FFT,
wrote down transposition with same loops etc.

Small code, no overhead.
Speedups of additive FFT
translate easily
to transposed algorithm.
Further savings:
merged first stage with
scaling by Goppa constants.

Secret p
Additive
field eler
This is r needed
Must ap part of t

Same is
Solution
Almost
Beneš n
ng compiler
s for $m=13$;
mory.
er allocator riables.
ery quickly. ter allocator. e size.
ter,
e compression. overhead.

Better solution:
stared at additive FFT,
wrote down transposition with same loops etc.

Small code, no overhead.
Speedups of additive FFT
translate easily
to transposed algorithm.
Further savings:
merged first stage with
scaling by Goppa constants.

Secret permutatio
Additive FFT \Rightarrow J field elements in a

This is not the orc needed in code-ba Must apply a secr part of the secret

Same issue for syr
Solution: Batcher Almost done with Beneš network.

Better solution:
stared at additive FFT,
wrote down transposition with same loops etc.

Small code, no overhead.
Speedups of additive FFT
translate easily
to transposed algorithm.
Further savings:
merged first stage with
scaling by Goppa constants.

Secret permutation

Additive $\mathrm{FFT} \Rightarrow f$ values at field elements in a standard

This is not the order needed in code-based cryptc Must apply a secret permut part of the secret key.

Same issue for syndrome.
Solution: Batcher sorting.
Almost done with faster solı Beneš network.

Better solution:
stared at additive FFT,
wrote down transposition with same loops etc.

Small code, no overhead.
Speedups of additive FFT translate easily to transposed algorithm.

Further savings:
merged first stage with scaling by Goppa constants.

Secret permutation

Additive $\mathrm{FFT} \Rightarrow f$ values at field elements in a standard order.

This is not the order needed in code-based crypto!
Must apply a secret permutation, part of the secret key.

Same issue for syndrome.
Solution: Batcher sorting.
Almost done with faster solution:
Beneš network.
olution: t additive FFT,
own transposition re loops etc. de, no overhead.
s of additive FFT
easily
oosed algorithm.
savings:
first stage with
y Goppa constants.

Secret permutation

Additive $\mathrm{FFT} \Rightarrow f$ values at field elements in a standard order.

This is not the order needed in code-based crypto!
Must apply a secret permutation, part of the secret key.

Same issue for syndrome.
Solution: Batcher sorting.
Almost done with faster solution:
Beneš network.

Results

 60493 IV 8622 fc 20846 f 7714 fc 14794 fc 8520 fcCode wi
We're st
More inf cr.yp.t

Secret permutation

Additive $\mathrm{FFT} \Rightarrow f$ values at field elements in a standard order.

This is not the order needed in code-based crypto!
Must apply a secret permutation, part of the secret key.

Same issue for syndrome.
Solution: Batcher sorting.
Almost done with faster solution:
Beneš network.

Results

60493 Ivy Bridge
8622 for permuta
20846 for syndrom
7714 for BM.
14794 for roots.
8520 for permuta
Code will be publi
We're still speedin
More information: cr.yp.to/paper:

Secret permutation

Additive $\mathrm{FFT} \Rightarrow f$ values at field elements in a standard order.

This is not the order needed in code-based crypto!
Must apply a secret permutation, part of the secret key.

Same issue for syndrome.
Solution: Batcher sorting.
Almost done with faster solution:
Beneš network.

Results

60493 Ivy Bridge cycles:

8622 for permutation.

20846 for syndrome. 7714 for BM.
14794 for roots. 8520 for permutation.

Code will be public domain. We're still speeding it up.

More information:
cr.yp.to/papers.html\#m

Secret permutation

Additive $\mathrm{FFT} \Rightarrow f$ values at field elements in a standard order.

This is not the order needed in code-based crypto!
Must apply a secret permutation, part of the secret key.

Same issue for syndrome.
Solution: Batcher sorting.
Almost done with faster solution:
Beneš network.

Results

60493 Ivy Bridge cycles:
8622 for permutation.
20846 for syndrome.
7714 for BM.
14794 for roots.
8520 for permutation.
Code will be public domain.
We're still speeding it up.
More information:
cr.yp.to/papers.html\#mcbits

