High-speed cryptography,
part 4:

fast multiplication

and its applications

Daniel J. Bernstein
University of lllinois at Chicago &
Technische Universiteit Eindhoven

Survey paper:
cr.yp.to/papers.html#multapps

Integer-factorization bottleneck:
Given sequence of numbers,
find nonempty subsequence
with square product.

e.g. given 0, 7,3, 10, 15,
discover 6 - 10 - 15 = 302,

Discrete-log bottleneck:

Given sequence of numbers,
find 1 as nontrivial

product of powers.

e.g. given 6,7, 3, 10, 15,
discover 6°7987210°1573 = 1.

More generally: find kth power.

ed cryptography,

tiplication
pplications

. Bernstein
ty of lllinois at Chicago &
he Universiteit Eindhoven

aper:
>0/papers.html#multapps

Integer-factorization bottleneck:

Given sequence of numbers,
find nonempty subsequence
with square product.

e.g. given 0, 7, 3, 10, 15,
discover 6 - 10 - 15 = 30°.

Discrete-log bottleneck:

Given sequence of numbers,
find 1 as nontrivial

product of powers.

e.g. given 6, 7,3, 10, 15,
discover 637987210°1573 = 1.

More generally: find kth power.

Two ver
cryptogr
Multiply
multiply

graphy,

S

0
is at Chicago &
siteit Eindhoven

3. html#multapps

Integer-factorization bottleneck:

Given sequence of numbers,
find nonempty subsequence
with square product.

e.g. given 0, 7,3, 10, 15,
discover 6 - 10 - 15 = 302,

Discrete-log bottleneck:

Given sequence of numbers,
find 1 as nontrivial

product of powers.

e.g. given 6,7, 3, 10, 15,
discover 6°7987210°1573 = 1.

More generally: find kth power.

Two very commor

cryptographic bot:

Multi

multi

oly large poly

oly large inte

g0 &
hoven

1ltapps

Integer-factorization bottleneck:

Given sequence of numbers,
find nonempty subsequence
with square product.

e.g. given 0, 7, 3, 10, 15,
discover 6 - 10 - 15 = 30°.

Discrete-log bottleneck:

Given sequence of numbers,
find 1 as nontrivial

product of powers.

e.g. given 6,7, 3, 10, 15,
discover 637987210°1573 = 1.

More generally: find kth power.

Two very common
cryptographic bottlenecks:
Multiply large polynomials;
multiply large integers.

Integer-factorization bottleneck:

Given sequence of numbers,
find nonempty subsequence
with square product.

e.g. given 0, 7,3, 10, 15,
discover 6 - 10 - 15 = 302,

Discrete-log bottleneck:

Given sequence of numbers,
find 1 as nontrivial

product of powers.

e.g. given 6, 7,3, 10, 15,
discover 6°7987210°1573 = 1.

More generally: find kth power.

Two very common

cryptographic bottlenecks:

Multi

multi

oly large polynomials;

oly large integers.

Integer-factorization bottleneck:

Given sequence of numbers,
find nonempty subsequence
with square product.

e.g. given 0, 7,3, 10, 15,
discover 6 - 10 - 15 = 302,

Discrete-log bottleneck:

Given sequence of numbers,
find 1 as nontrivial

product of powers.

e.g. given 6, 7,3, 10, 15,
discover 6°7987210°1573 = 1.

More generally: find kth power.

Two very common
cryptographic bottlenecks:
Multiply large polynomials;

multiply large integers.

All of these computations
can be performed in
essentially linear time.

Integer-factorization bottleneck:

Given sequence of numbers,
find nonempty subsequence
with square product.

e.g. given 0, 7,3, 10, 15,
discover 6 - 10 - 15 = 302,

Discrete-log bottleneck:

Given sequence of numbers,
find 1 as nontrivial

product of powers.

e.g. given 6, 7,3, 10, 15,
discover 6°7987210°1573 = 1.

More generally: find kth power.

Two very common
cryptographic bottlenecks:
Multiply large polynomials;

multiply large integers.

All of these computations
can be performed in
essentially linear time.

Do real applications

reach large enough sizes

to benefit from these techniques?
In cryptanalysis, definitely.

In cryptography, sometimes:
Gaudry—Schost Kummer surface;
McBits; many more examples.

actorization bottleneck:

quence of numbers,
empty subsequence
are product.
n6,7,8,10,15,
6-10- 15 = 302,

-log bottleneck:
quence of numbers,

> nontrivial

of powers.
n6,7,8,10,15,
637987210°1573 = 1.

nerally: find kth power.

Two very common
cryptographic bottlenecks:
Multiply large polynomials;
multiply large integers.

All of these computations
can be performed in
essentially linear time.

Do real applications

reach large enough sizes

to benefit from these techniques?
In cryptanalysis, definitely.

In cryptography, sometimes:
Gaudry—Schost Kummer surface;
McBits; many more examples.

The fast

Use (co,
to repre:s

Summar

“f has 1
f does r

f = fol:
(co, co, .
(c1.¢3,.
represen
C|z]-mo
from C|:
maps fo

n bottleneck:

numbers,
)sequence
Ct.

0, 15,

= 30°.

neck:

numbers,

0. 15
03153 = 1.

nd kth power.

Two very common

cryptographic bottlenecks:

Multi

multi

oly large polynomials;

oly large integers.

All of these computations

can be performed in

essentially linear time.

Do real applications

reach

to benefit from these techniques?

large enough sizes

In cryptanalysis, definitely.

In cryptography, sometimes:

Gaudry—Schost Kummer surface;
McBits; many more examples.

The fast

Fourier ti

Use (cg,c1,...,cCn

to represent f =

Summary
“f has n

of repre:
coeffs’ .

f does not detern

(co,co, ...

(c1,c3,..
represent

Clz]-mor

) e C™
fo. f1 re

ohism y |

from C|z][y] to C
maps fo(y) + =1

eck:

NVer.

Two very common
cryptographic bottlenecks:
Multiply large polynomials;
multiply large integers.

All of these computations
can be performed in
essentially linear time.

Do real applications

reach large enough sizes

to benefit from these techniques?
In cryptanalysis, definitely.

In cryptography, sometimes:
Gaudry—Schost Kummer surface;
McBits; many more examples.

The fast Fourier transform

Use (Co, Cl,.-.., C'n,—l) c Cn
to represent f =) , cj:cj c

Summary of representation
“f has n coeffs”. Warning:
f does not determine n.

f = fo(z?) + zf1(z?) wher
(co,c2,...) € CIm/2]
(c1,¢3,...) € Cln/2
represent fo, f1 respectively.

C[z]-morphism y > z?

from C|z||y] to Clz]
maps fo(y) + zf1(y) to f.

Two very common
cryptographic bottlenecks:
Multiply large polynomials;

multiply large integers.

All of these computations
can be performed in
essentially linear time.

Do real applications

reach large enough sizes

to benefit from these techniques?
In cryptanalysis, definitely.

In cryptography, sometimes:
Gaudry—Schost Kummer surface;
McBits; many more examples.

The fast Fourier transform

Use (cg,c1,...,¢cpn_1) € C™
to represent f =) , c;z? € Clz].

Summary of representation size:
“f has n coeffs”. Warning:
f does not determine n.

f = fo(z?) + zf1(z?) where
(co,c2,...) € CIn/2]
(c1,¢3,...) € Cln/2
represent fo, f1 respectively.

C[z]-morphism y — z?

from C|z||y]| to C|z]
maps fo(y) + zf1(y) to f.

y common
aphic bottlenecks:
large polynomials;
large Integers.

ese computations
erformed in
ly linear time.

applications

‘ge enough sizes

it from these techniques?
analysis, definitely.
bgraphy, sometimes:
Schost Kummer surface:
many more examples.

The fast Fourier transform

Use (cg,c1,...,¢cp_1) € C™

to represent f =) , c;z’ € Clz].

Summary

“f has n

of representation size:
coeffs”. Warning:

f does not determine n.

f = fo(z?) + zf1(z?) where

(co,co, ..

(c1,c3,..
represent

Clz]-morphism y — z

) € cIn/2],
) e Ccln/2
fo, f1 respectively.
2

from Clz

[y] to C[z]

maps fo(y) + zf1(y) to f.

Quickly
by evalu

fla) -
f(—a) -

Evaluate
all o € (
by evalu
for all B
plus 102

Apply tf
nlgn ac
to evalu
for all &
if nis a

|
lenecks:
/nomials;
gers.

1tations
T

Ime.

1S
1 Sizes

ese techniques?
efinitely.
ometimes:
Immer surface;
e examples.

The fast Fourier transform

Use (cg,c1,- .., cp—1) € C"

to represent f =) , c;z? € Clz].

Summary of representation size:
“f has n coeffs”. Warning:
f does not determine n.

f = fo(z?) + zf1(z?) where
(co,c2,...) € CIn/2]
(c1,¢3,...) € Cln/2
represent fo, f1 respectively.

C[z]-morphism y — z?

from C|z||y]| to C|z]
maps fo(y) + zf1(y) to f.

Quickly evaluate j
by evaluating fo(c

fa) = fo(a®) -
f(=a) = fo(a®) -

Evaluate f(a) for,
all a € C with o
by evaluating fo([
for all B € C with
plus 1024 adds, b

Apply this recursi
nlgn adds, (n/2)
to evaluate n-coef
for all a € C with
if n is a power of

ques’

face:
S

The fast Fourier transform

Use (cg,c1, ..., cn—1) € C"

to represent f =) , c;z’ € Clz].

Summary of representation size:
“f has n coeffs”. Warning:
f does not determine n.

f = fo(z?) + zf1(z*) where
(co,c2,...) € CIm/2]
(c1,¢3,...) € Cln/2
represent fo, f1 respectively.

C[z]-morphism y > z?

from C|z||y] to Clz]
maps fo(y) + zf1(y) to f.

Quickly evaluate f(a), f

by evaluating fo(a?): f1
fla) = fo(e?) + afi(c
f(—a) = fo(a?) — afi(a

Evaluate f(a) for, e.g.,

all & € C with al02* =1
by evaluating fo(B8), f1(5)
for all B € C with 8°12 = 1
plus 1024 adds, 512 mults.

No

Apply this recursively =
nlgn adds, (n/2)lgn mult
to evaluate n-coeff f

for all a € C with a™ =1
if n 1s a power of 2.

The fast Fourier transform

Use (cg,c1,- .., cp—1) € C"

to represent f =) , c;z? € Clz].

Summary of representation size:
“f has n coeffs”. Warning:
f does not determine n.

f = fo(z?) + zf1(z?) where
(co,c2,...) € CIn/2]
(c1,¢3,...) € Cln/2
represent fo, f1 respectively.

C[z]-morphism y — z?

from C|z||y]| to C|z]
maps fo(y) + zf1(y) to f.

Quickly evaluate f(a), f

by evaluating fo(az); /1
f(a) = fo(a®) + afi(e”

f(—a) = fo(a®) — afi(a®

Evaluate f(a) for, e.g.,

all @ € C with al0?* =1
by evaluating fo(B8), f1(5)
for all B € C with 8°12 = 1.
plus 1024 adds, 512 mults.

Apply this recursively =
nlgn adds, (n/2)Ilgn mults
to evaluate n-coeff f

for all a € C with a™ =1

if n is a power of 2.

Fourier transform

c1, ..., cpn_1) € C?

sent f =) c;z’ € Clz].

y of representation size:
1 coeffs”. Warning:

10t determine n.

%) + z f1(z?) where
Yech/
) e cln/2
t fo., f1 respectively.
2

rphism y —
t][y] to Clz]
(y) +zfi(y) to f.

Quickly evaluate f(a), f(—a)
by evaluating fo(a?); f1(a?);
f(@) = foe®) + afi(a®);
f(=a) = fo(a®) — afi(a®).

Evaluate f(a) for, e.g.,

all & € C with al0?% =1
by evaluating fo(B8), f1(5)
for all B € C with 8°12 = 1
plus 1024 adds, 512 mults.

Apply this recursively =
nlgn adds, (n/2)Ilgn mults
to evaluate n-coeff f

for all a € C with a™ =1

if n 1s a power of 2.

Another

It f € C
f mod z
Co + C1X
f mod z
(co +c2
f mod z
(co — e
Clz]-mo
Clz]/(z

maps cg

ransform

_1) c C"

Z : cja:j - C[:C]

sentation size:
Warning:

ne n.

.

z°) where

/2]
2

spectively.

s 72

z]
(y) to .

Quickly evaluate f(a), f
by evaluating fo(a?): f1

f(a) = fo(a®) + afi(a
f(=a) = fo(a®) — afi(a’

Evaluate f(a) for, e.g.,

all @ € C with al0?* =1
by evaluating fo(B8), f1(5)
for all B € C with 8°12 = 1.
plus 1024 adds, 512 mults.

Apply this recursively =
nlgn adds, (n/2)Ilgn mults
to evaluate n-coeff f

for all a € C with a™ =1

if n is a power of 2.

Another view of tl

It f e Clz]

and

fmodz*—1=

Co + C1Z +

c2:1:2 -+

fmodz?—1=

(CO —+ 62) —+

(Cl—l—c

fmodz?+1=

(C() — C2) -+

C|z]-morph
Clz]/(z* -

(c1 —

ism C|
e C

maps ¢g + C1T + ¢

((co + ¢2) -

(co —¢c2) -

(Cl

Clz].

s1Ze:

Quickly evaluate f(a), f(—a)

by evaluating fo(a?); f1(a?);
f(@) = fo(e®) + afi(a®);

f(=a) = fo(a®) — afi(a®).

Evaluate f(a) for, e.g.,

all & € C with al0?* =1
by evaluating fo(B8), f1(5)
for all B € C with 8°12 = 1
plus 1024 adds, 512 mults.

Apply this recursively =
nlgn adds, (n/2)Ilgn mults
to evaluate n-coeff f

for all a € C with a™ =1

if n 1s a power of 2.

Another view of the FFT

If f € Clz] and
fmodzt—1=

co + c1z + crz? + c3z3 ther
fmodz?—1=

(co +c2) + (c1 + c3)z,
fmodz?+1=

(Co — C2) + (C1 — C3):1:.

Clz
c

-$-

-morphism C[z]/(z* —

/(:1:2 — 1) EIBC[:r:]/(:c2 -+

maps ¢g + C1T + c2$2 + C37T
((cog + c2) + (c1 + c3)z,
(co — c2) + (c1 — c3)z).

Quickly evaluate f(a), f
by evaluating fo(az); /1

fla) = fo(a®) + afi(e
f(=a) = fo(a?) — afi(a®).

Evaluate f(a) for, e.g.,

all @ € C with a10?* =1
by evaluating fo(B8), f1(5)
for all 8 € C with 8°12 = 1.
plus 1024 adds, 512 mults.

Apply this recursively =
nlgn adds, (n/2)Ilgn mults
to evaluate n-coeff f

for all a € C with a™ =1

if n is a power of 2.

Another view of the FFT

If f € Clz]| and
fmodzt—1=

co + c1z + coz? + c3z3 then
fmodz?—1=

(co +c2) + (c1 + c3)z,
fmodz?+1=

(C() — C2) + (C1 — C3):B.

Clz
c

-x-

]-morphism C[z]/(z* — 1) <
|/(z? — 1) ® C[z]/(z* + 1)

maps ¢gp + C1T + c2:1:2 + C3a:3 to
((co + c2) + (c1 + c3)=,
(co — c2) 4+ (c1 — c3)z).

evaluate f(a), f(—a)
ating fo(a®); fi(a®);
= fo(a®) + afi(a?);
= fo(a®) — afi(a?).

 f(a) for, e.g.,
= with a10%4 =1

ating fo(B), f1(6)
e C with g2 = 1.
4 adds, 512 mults.

1S recursively =

Ids, (n/2)lgn mults
ate n-coeff f

c Cwitha™ =1
power of 2.

Another view of the FFT

If f € Clz] and

fmodzt—1=

co + c1z + coz? + c3z3 then
fmodz?—1=

(co +c2) + (c1 + c3)z,
fmodz?+1=

(Co — C2) + (C1 — C3):1:.
C[z]-morphism C[z]/(z* — 1) <

Clz]/(z? -

1)@ Clz]/(z? + 1)

maps ¢g + C1T + c2$2 + C3a:3 to

((co + ¢2) -

- (¢1 + ¢c3)z,

(co —¢c2) -

- (e1 — 3)z).

If f €C
f mod 1
Co + C1Z
f mod 1
(co + ac
(c2
f mod x
(co — ac

+ (2

Given cg
use . m
co + ac
co — Qg

5512 — 1
|2 mults.

ely =
lg n mults
f f

a =1

2.

Another view of the FFT

It f e Clz]

and

fmodz*—1=

Co + C1Z +

crz? + c3z> then

fmodz?—1=

(CO —+ 62) —+

(c1 + ¢3)z,

fmodz?+1=

(CO — C2) -+

Clz]/(z® -

(c1 — c3)z.

C[z]-morphism C[z]/(z* — 1) <

)& Clz]/(z? + 1)

maps ¢gp + C1T + c2:1:2 + C3a:3 to

((co + ¢2) -

- (e1 + c3)z,

(co —c2) -

- (e1 — 3)z).

If f € C[z] and
f mod z°™ — a? =
CO+ClT+ - -+C
f modz" — a =
(co + acn) + (c1 -
(c2 + acpy2,
f modz"™ + a =
(co — acn) + (c1 -
+ (¢cp — acpio

Given ¢g, c1, ..., c
use n mults, 2n a
Co + QCp, C1 + AC;
co — QCp, C1 — AC,

Another view of the FFT

If f € Clz] and
fmodzt—1=

co + c1z + coz? + c3z3 then
fmodz?—1=

(co +c2) + (c1 + c3)z,
fmodz?+1=

(Co — C2) + (C1 — C3):1:.

C[z]/(z° — 1) ® C[z]/(z* + 1)
maps ¢g + C1T + c2$2 + C3a:3
((cog + c2) + (c1 + c3)z,

(co — c2) + (c1 — c3)z).

to

C[z]-morphism C[z]/(z* — 1) <

If f € C[z] and

f mod 22" — a? =

CO+ClT+ "+ Con_1T

f modz" —a =

(co + acn) + (c1 + acpi1)a

(c2 + acpqo)z?

f modz"™ + a =

(co — acn) + (c1 — acpi1)a
+ (cp — acn+2)$2 o

2n—

Given ¢g, c1, .. ., con—1 € C,
use n mults, 2n adds to cor
Co + ACp,C1 + ACpt-1,-- -,
C)o — QCp,Cl — ACpt1,---.

Another view of the FFT

If f € Clz]| and
fmodzt—1=

co + c1z + coz? + c3z3 then
fmodz?—1=

(co +c2) + (c1 + c3)z,
fmodz?+1=

(CO — C2) + (C1 — C3):B.

C[z]/(z° — 1) ® C[z]/(z* + 1)
maps ¢gp + C1T + c2:1:2 + C3a:3
((co + c2) + (c1 + c3)=,

(co — c2) 4+ (c1 — c3)z).

to

C[z]-morphism C[z]/(z* — 1) <

If f € C[z] and
f mod z°™ — a? =
co+C1T+ -+ Czn_1$2n—1 then
f modz" — a =
(co + acn) + (c1 + acpi1)x
(c2 acn+2)332
f modz"™ + a =
(co — acn) + (c1 — acpi1)x
+ (¢ — acpi0)z® + - - -

Given ¢g, c1, . . ., con—1 € C,

use n mults, 2n adds to compute
co + acp,C1 + ACp+t1,-- -,

Co — ACp,Cl — ACpt1,y .- - -

view of the FFT

[z] and
41 =

+ crz? + c3z3 then

rphism Clz]/(z* — 1) <
> —1)® Clz]/(z% + 1)
+ C1T + c2$2 -+ C3a:3
) + (1 + c3)z,

) + (¢1 — ¢3)T).

to

If f € C[z] and

f mod 22" — a? =

co+C1Z+ -+ C2n_1$2n—1 then

f modz" —a =

(co + acn) + (c1 + acpi1)z

(co + acpio)z?

f modz"™ + a =

(co — acn) + (c1 — acpi1)x
+ (co — acpi0)z? + - - -

Given ¢g, c1, . . ., con—1 € C,

use n mults, 2n adds to compute
Co + ACp,C1 + ACpt-1,-- -,

C)o — QCp,Cl — ACpt1,---.

Apply tf

f mod

f mod
z— 1

f(1)

(basic F

this view

e FFT

c3z> then

If f € C[z] and

f mod z°™ — a? =

co+C1T+ -+ Czn_1$2n—1 then

f modz" —a =

(co + acn) + (c1 + acpi1)x

(co + acpio)z?

f modz"™ + a =

(co — acn) + (c1 — acpi1)x
+ (¢ — acpi0)z® + - - -

Given cg, c1, . . ., con—1 € C,

use n mults, 2n adds to compute
co + acp,C1 + ACp+t1,-- -,

Co — ACp,Cl — ACpt1,y .- - -

Apply this recursi

f mod 1
f mod z° — 1
f mod f mod
z—1 z+1
(1) F(-1)

(basic FFT idea:
this view: 1972 Fi

If f € C[z] and
f mod z°" — a? =

co+ 1z + - - + cop_12%" 1 then

f modz" —a =

(co + acn) + (c1 + acpi1)z

(co + acpio)z?

f modz"™ + a =

(co — acn) + (c1 — acpi1)x
+ (co — acpi0)z® + - - -

Given ¢g, c1, .. ., Con—1 € C,

use n mults, 2n adds to compute

co +acn,c1 + acptt, .-,
C)o — QCp,Cl — ACpt1,---.

Apply this recursively:

fmodz*—1

SN

fmodz?—1 f mod z?

NS

fmod fmod fmod f
r—1 z+1 z—1 3

Q) F-1) f6)

(basic FFT idea: 1866 Gaus
this view: 1972 Fiduccia)

If f € C[z] and

f mod z°™ — a? =

co+C1T+ -+ Czn_1$2n—1 then

f modz" —a =

(co + acn) + (c1 + acpi1)x

(co + acpio)z?

f modz"™ + a =

(co — acn) + (c1 — acpi1)x
+ (¢ — acpi0)z® + - - -

Given cg, c1, . . ., con—1 € C,

use n mults, 2n adds to compute
co + acp,C1 + ACp+t1,-- -,

Co — ACp,Cl — ACpt1,y .- - -

Apply this recursively:

fmodz*—1
fmodz?—1 fmodz?+1

AN

fmod fmod f mod f mod
r—1 z+4+1 z—1 xT+1

FA) F(-1) fG) (=)

(basic FFT idea: 1866 Gauss;
this view: 1972 Fiduccia)

[z] and
2N _ 42 —

4 4 c2n_13:2'”’_1 then

ults, 2n adds to compute
1, C1 T aCpt1, - - -,

1, C1 — ACptl, .-

Apply this recursively:

fmodz*—1

SN

fmodz?—1 fmodz?+1

AN

fmod fmod fmod f mod
r—1 z+4+1 z—1 x-+1

FA) F-1) @) f(—i)

(basic FFT idea: 1866 Gauss;
this view: 1972 Fiduccia)

1966 Sa
Can ven
in Clz]/
by mapy

Given f,
compute
using T
Comput

Given f,
compute
Its Imag

n—1 € C,

Apply this recursively:

fmodz*—1

SN

fmodz?—1 fmodz?+1

AN

fmod fmod f mod f mod
r—1 z+4+1 z—1 xT+1

FA) F(-1) fG) (=)

(basic FFT idea: 1866 Gauss;
this view: 1972 Fiduccia)

1966 Sande, 1966
Can very quickly r
in Clz]/(z" — 1)
by mapping C[z]/
Given f, g € Clz],
compute fg as T~
using T : Clz]/(z’
Compute 7 quickl

Given f, g € C|z],
compute fg from
its image in Clz]/

1 then

npute

Apply this recursively:

fmodz*—1

SN

fmodz?—1 fmodz?+1

AN

fmod fmod fmod f mod
r—1 z+4+1 z—1 x-+1

FA) F-1) @) f(—i)

(basic FFT idea: 1866 Gauss;
this view: 1972 Fiduccia)

1966 Sande, 1966 Stockhan
Can very quickly multiply

in Clz|/(z™ — 1) or C|z] or
by mapping Clz]/(z" — 1) 1

Given f,g € Clz]/(z™ — 1):
compute fg as T YT (f)T!
using T : Clz]|/(z" — 1) —»
Compute 7 quickly by the F

Given f,g € Clz], deg fg <
compute fg from
its image in Clz|/(z™ — 1).

Apply this recursively: 1966 Sande, 1966 Stockham:
Can very quickly multiply

f mod 2% —1 in C[z]/(z™ — 1) or C[z] or R[]
/ \ by mapping Clz]/(z"™ — 1) to C".
fmodz?—1 fmodz®+1 Given f,g € Clz]|/(z™ — 1):

compute fg as T HT(f)T(g))
using T : Clz]/(z™ — 1) < C".
Compute T quickly by the FFT.

fmod fmod fmod f mod |
z—1 z+1 -1 43 Given f, g € C[z], deg fg < n:

— compute fg from

71 f(-1) fz) f(—2) its image in Clz]/(z" — 1).

(basic FFT idea: 1866 Gauss;
this view: 1972 Fiduccia)

Apply this recursively: 1966 Sande, 1966 Stockham:

. Can very quickly multiply
Jmode”—1 in C[z]/(z™ — 1) or C[z] or R[]

/ \ by mapping Clz]/(z"™ — 1) to C".

2 2
fmodz®—1 fmodz®+1 Given f,g € Clz]|/(z™ — 1):

compute fg as T HT(f)T(g))
using T : Clz]/(z™ — 1) < C".
Compute T quickly by the FFT.

fmod fmod fmod f mod |
z—1 z+1 -1 43 Given f, g € C[z], deg fg < n:

— compute fg from

71 f(-1) fz) f(—2) its image in Clz]/(z" — 1).

(basic FFT idea: 1866 Gauss; Later authors: Replace C with,
this view: 1972 Fiduccia) eg., R=2/(3-2"1 +1);

23 has order 2% in R*.

1S recursively:

fmodz*—1

SN

z2—1 Ffmodz?+1

\

fmod fmod f mod
zr+1 xz—1 x-+1
f(=1) f(z) f(—2)
FT idea: 1866 Gauss:
/: 1972 Fiduccia)

1966 Sande, 1966 Stockham:
Can very quickly multiply

in Clz]/(z™ — 1) or C|z] or R[z]
by mapping C[z]/(z" —

Given f,g € Clz]/(z™ — 1):

compute fg as T~ H(T(£)T(9))
using T : Clz]/(z™ — 1) < C".
Compute T quickly by the FFT.

Given f, g € Clz], deg fg < n:
compute fg from
its image in C|z]/(z"™ — 1).

Later authors: Replace C with,
eg., R=2Z/(3-2% +1);
23 has order 24! in R*.

Multiplic

1) to C™.

Given 7,
In time -

where b

(1971 P
1971 Ni
1971 Sc

Also tim

where b
Given 7,
compute

(reductic
1966 Co

f mod z° + 1

/\

f mod f mod
T—1 <T+1

F6) F(=)
1866 Gauss;
duccia)

1966 Sande, 1966 Stockham:

Can very quickly multiply

in Clz]/(z™ — 1) or C|z] or R[z]
by mapping Clz|/(z" — 1) to C".

Given f,g € Clz]/(z™ — 1):

compute fg as T~ H(T(f)T(g))
using T : Clz]/(z™ — 1) — C".
Compute 7 quickly by the FFT.

Given f,g € Clz], deg fg < n:
compute fg from
its image in Clz]/(z" — 1).

Later authors: Replace C with,
eg, R=2Z/(3-2% +1);
23 has order 24! in R*.

Multiplication and

Given r,s € Z, ca
in time < b(Igb)!
where b Is number

(1971 Pollard; ind
1971 Nicholson: ir
1971 Schonhage S

Also time < b(Igb
where b Is number
Given r,s € Z wit

compute |r/s| an

(reduction to prod
1966 Cook)

1966 Sande, 1966 Stockham:

Can very quickly multiply

in Clz]/(z™ — 1) or C|z] or R[z]
by mapping Clz|/(z" — 1) to C".

Given f,g € Clz]/(z™ — 1):

compute fg as T~ H(T(f)T(g))
using T : Clz]/(z™ — 1) < C".
Compute T quickly by the FFT.

Given f,g € Clz], deg fg < n:
compute fg from
its image in Clz|/(z™ — 1).

Later authors: Replace C with,
eg., R=2Z/(3-2% +1);
23 has order 24! in R*.

Multiplication and division

Given r, s € Z, can compute
in time < b(Ig b)1to(l)
where b is number of input |

(1971 Pollard; independentl
1971 Nicholson; independen
1971 Schonhage Strassen)

Also time < b(Ig b)11o(1)
where b is number of input |
Given r,s € Z with s # 0,
compute |r/s| and 7 mod s

(reduction to product:
1966 Cook)

1966 Sande, 1966 Stockham:

Can very quickly multiply
in Clz]/(z™ — 1) or C|z] or R[z]

by mapping Clz|/(z" — 1) to C".

Given f,g € Clz]/(z™ — 1):

compute fg as T~ H(T(f)T(g))
using T : Clz]/(z™ — 1) < C".
Compute 7 quickly by the FFT.

Given f,g € Clz], deg fg < n:
compute fg from
its image in Clz|/(z™ — 1).

Later authors: Replace C with,
eg., R=2Z/(3-2% +1);
23 has order 24! in R*.

Multiplication and division

Given r,s € Z, can compute s
in time < b(Igb)LTo)
where b is number of input bits.

(1971 Pollard; independently
1971 Nicholson; independently
1971 Schonhage Strassen)

Also time < b(Ig b)1Ho(1)
where b is number of input bits:
Given r,s € Z with s # 0,

compute |r/s| and r mod s.

(reduction to product:
1966 Cook)

nde, 1966 Stockham:

/ quickly multiply

(z™ — 1) or C|z] or R|z]
ing Clz|/(z™ — 1) to C".

g € Clz]/(z" —1):

fg as TH(T(H)T(9))
: Clz]/(z™ — 1) < C™.
e T quickly by the FFT.

g € Clz], deg fg < n:
 fg from
e in Clz]|/(z" — 1).

thors: Replace C with,
= Z/(3-2% 4+ 1);
rder 241 in R*.

Multiplication and division

Given r, s € Z, can compute rs
in time < b(Ig b)1to(l)

where b is number of input bits.

(1971 Pollard; independently
1971 Nicholson; independently
1971 Schonhage Strassen)

Also time < b(Ig b)11o(1)

Given r,s € Z with s # 0,
compute |r/s| and r mod s.

(reduction to product:
1966 Cook)

Product

where b is number of input bits:

Time <
where b
Given -
compute

Actually
product
Root Is
Has left
product
Also rigl
product

Stockham:
nultiply

or Clz] or R[z]
(z"™ — 1) to C™.

(" — 1)

HT()T(9))
'—1) — C".
y by the FFT.

deg fg < n:

(z"™ —1).

vlace C with,
H 1),
1 R*.

Multiplication and division

Given r,s € Z, can compute s
in time < b(Igb)LTo)

where b is number of input bits.

(1971 Pollard; independently
1971 Nicholson; independently
1971 Schonhage Strassen)

Also time < b(Ig b)1Ho(1)

Given r,s € Z with s # 0,
compute |r/s| and r mod s.

(reduction to product:
1966 Cook)

Product trees

where b is number of input bits:

Time < b(lg b)?+°
where 6 I1s number
Given z1,Zo, ..., :
compute 1z - - -

Actually compute
product tree of z
Root Is z1zo - - - .
Has left subtree if
product tree of x4
Also right subtree
product tree of Ty

9))
cn.
FT.

th,

Multiplication and division

Given r, s € Z, can compute rs
in time < b(Ig b)1to(l)

where b is number of input bits.

(1971 Pollard; independently
1971 Nicholson; independently
1971 Schonhage Strassen)

Also time < b(Ig b)11o(1)

Given r,s € Z with s # 0,
compute |r/s| and r mod s.

(reduction to product:
1966 Cook)

Product trees

where b is number of input bits:

Time < b(lg b)2+o(1)

where b is number of input |
Given z1,Zo, ..., T, € L,
compute 1o - - - Ty,.

Actually compute

product tree of z1, o, ...,
Root Is z1Zy - - - Ty

Has left subtree if n > 2:
product tree of zq, ..., Tln/
Also right subtree if n > 2:
product tree of Try, /0741,

Multiplication and division

Given r,s € Z, can compute rs
in time < b(Igb)LTo)

where b is number of input bits.

(1971 Pollard; independently
1971 Nicholson; independently
1971 Schonhage Strassen)

Also time < b(Ig b)1Ho(1)

Given r,s € Z with s # 0,
compute |r/s| and r mod s.

(reduction to product:
1966 Cook)

Product trees

where b is number of input bits:

Time < b(lg b)21+o(1)

where b is number of input bits:
Given z1,Zo, ..., Ty € L,
compute 1o - - - Ty,.

Actually compute

product tree of z1,zo, ..., Ty, .
Root Is z1zy - - - Ty

Has left subtree if n > 2:
product tree of z4, ..., Tln/2]-
Also right subtree it n > 2:
product tree of Try, /0741, -, T, .

“ation and division

s € Z, can compute rs
< b(lg b)+ oV

IS number of input bits.

ollard; independently
“holson; independently
honhage Strassen)

e < b(lgb)Lto(l)

IS number of input bits:

s € Z with s # 0,
 |r/s| and r mod s.

on to product:
ok)

Product trees

Time < b(lg b)2+o(1)

where b is number of input bits:
Given z1,Z>,...,Zn € Z,
compute 1o - - - Ty,.

Actually compute

product tree of z1, o, ..., Ty, .
Root Is z1Z9 - - - .

Has left subtree if n > 2:
product tree of z4, ..., Tln/2]-
Also right subtree if n > 2:

product tree of Try, /0741, Ty

e.g. tree

Tree has
Each lev

Obtain e
In time -

by multi

_division

N compute s
-o(1)

-of input bits.

ependently
idependently
trassen)

)1+0(1)

~of Input bits:

hs+#D0,
d mod s.

uct:

Product trees

Time < b(lg b)2+o(1)

where b is number of input bits:
Given z1, 7, .. ., Ty € L,
compute 1o - - - Ty,.

Actually compute

product tree of z1,zo, ..., Ty, .
Root Is z1Zy - - Ty

Has left subtree if n > 2:
product tree of zq, ..., Tln/2]-
Also right subtree if n > 2:

product tree of Try, /0741, -, T, .

e.g. tree for 23, 29

92614

7
56028

7N
667 8

7\
23 29

4

Tree has < (Igb)t
Each level has < ¢

Obtain each level
in time < b(Igb)!"
by multiplying low

=TS

Oits.

tly

Dits:

Product trees

Time < b(lg b)2+o(1)

where b is number of input bits:

Given z1,Zo, ..., Tn € Z,
compute 1o - - - Ty,.

Actually compute

product tree of z1, o, ..., T, .

Root Is z1Z9 - - - .

Has left subtree if n > 2:
product tree of zq, ..., Tln/2]-
Also right subtree it n > 2:

product tree of Try, /0741, -, T,,.

e.g. tree for 23, 29, 84, 15, b¢

026142840
7T
56028 1
7N e
667 84 870
7\ 7\
23 29 15 58

Tree has < (Igb)11°() |evel
Each level has < b(lg)9+

Obtain each level
in time < b(Ig b)1to(l)

by multiplying lower-level pc

Product trees

Time < b(lg b)21+o(1)

where b is number of input bits:
Given z1, 2o, .. ., Ty € L,
compute 1o - - - Ty,.

Actually compute

product tree of z1,zo, ..., Ty, .
Root Is z1Z9 - - - Ty

Has left subtree if n > 2:
product tree of z1, ..., Tln/2]-
Also right subtree if n > 2:

product tree of Try, /0741, -, T, .

e.g. tree for 23, 29, 84, 15, 58, 19:

026142840
ST
56028 16530
7N N
667 84 870 19
7\ 7\
23 29 15 58

Tree has < (Igb)1T°() Jevels.
Each level has < b(Ig 6)0t°(1) pits.

Obtain each level
in time < b(Igb)1 o)

by multiplying lower-level pairs.

trees

b('g b)2—|—0(1)
IS number of input bits:

 L1TD - " Tyy.

compute

tree of 21, 2o, . . ., Ty, .
T1L2 - Ty.

subtree if n > 2:

tree of T4, ..., Tln/2]-
1t subtree if n > 2:

tree of x(‘n/ﬂ—kl Z,,.

e.g. tree for 23, 29, 84, 15, 58, 19:

026142840
7T
56028 16530
7N N
667 84 870 19
7\ 7\
23 29 15 58

Tree has < (Igb)1T°() Jevels.

Each level has < b(Ig 6)0+°(1) pits.

Obtain each level
in time < b(Ig b)1to(l)

by multiplying lower-level pairs.

Remainc

Remain
of r, z1,
one nod
in produ

e.g. rem
2230923

46
Y\

(1)

-of input bits:

e.g. tree for 23, 29, 84, 15, 58, 19:

026142840
ST
56028 16530
7N N
667 84 870 19
7\ 7\
23 29 15 58

Tree has < (Igb)1t°() Jevels.

Each level has < b(Ig 6)0+°(1) pits.

Obtain each level
in time < b(Igb)1To)
by multiplying lower-level pairs.

Remainder trees

Remainder tree

one node r mod ¢
in product tree of

e.g. remainder tre
2230923870, 23, 29,

223092

yd
45402

v\
46 4

/N
0 17

2

Oits:

e.g. tree for 23, 29, 84, 15, 58, 19:

026142840
7T
56028 16530
7N N
667 84 870 19
7\ 7\
23 29 15 58

Tree has < (Igb)1T°() Jevels.

Each level has < b(Ig 6)01°(1) pits.

Obtain each level
in time < b(Ig b)1to(l)

by multiplying lower-level pairs.

Remainder trees

Remainder tree

of r,x1,Zo, ..., T, has

one node r mod ¢t for each r
in product tree of z1, zo, . ..

e.g. remainder tree of
223092870, 23, 29, 84, 15, 58

2230923870
S~
45402 3
S\ /
46 42 510
/N /N

0 17 0 46

e.g. tree for 23, 29, 84, 15, 58, 19:

026142840
ST
56028 16530
7N N
667 84 870 19
7\ 7\
23 29 15 58

Tree has < (Igb)1T°() Jevels.

Each level has < b(Ig 6)0+°(1) pits.

Obtain each level
in time < b(Igb)1To)
by multiplying lower-level pairs.

Remainder trees

Remainder tree

of r,x1,Zo, ..., T, has

one node r mod t for each node ¢
in product tree of z1,zo, ..., Tr,.

e.g. remainder tree of
223092870, 23, 29, 84, 15, 58, 19:

223092870
S T~
45402 3990
S\ S\
46 42 510 0
AN /N

0 17 0 46

for 23,29, 84, 15, 58, 19:

026142840
7T
56028 16530
7 X\ N
84 870 19
7N\
9 15 58

< (Igb)11o(1) Jevels.

el has < b(Ig 6)0°) bits.

ach level
< b(Ig b)* otV
plying lower-level pairs.

Remainder trees

Remainder tree

of r,x1,Zo, ..., T, has

one node r mod t for each node ¢
in product tree of =1, zo, ..., T

e.g. remainder tree of
223092870, 23, 29, 84, 15, 58, 19:

223092870
TN
45402 3990
PR Z N
46 42 510 0
/ \ / \

0 17 0 46

Time <
Given r
nonzero
compute
of r, z1,

In partic
r mod I

(1972 MV
for “sing
whateve

, 84, 15,58, 19:

23840

~_
16530

7N
870 19

7\
15 58

+o(1) |evels.

(Ig 6)0+0(1) pits.

-o(1)

er-level pairs.

Remainder trees

Remainder tree

of r,x1,Zo, ..., T, has

one node r mod t for each node ¢
in product tree of 1, o, ..., Tr,.

e.g. remainder tree of
223092870, 23, 29, 84, 15, 58, 19:

223092870
S T~
45402 3990
S\ S\
46 42 510 0
AN /N

0 17 0 46

Time < b(lg b)?+°
Given r € Z and

nonzero i, ..., T,
compute remainde

In particular, see v
CB1 :cn d|V|de 1

(1972 Moenck Bo
for “single precisic
whatever exactly t

3, 19:

6530

19

) bits.

1rS.

Remainder trees

Remainder tree

of r,x1,Zo, ..., T, has

one node r mod t for each node ¢
in product tree of =1, zo, ..., T

e.g. remainder tree of
223092870, 23, 29, 84, 15, 58, 19:

223092870
TN
45402 3990

v\
46 42

/ \ / \
0 17 0 46

Time < b(Ig b)2to1);
Given r € Z and
nonzero 1, ..., Ty € L,
compute remainder tree

In particular, compute
r mod z1, ..., r mod Z,,.

In particular, see which of
1, ..., T, divide 7.

(1972 Moenck Borodin,
for “single precision” z;'s,
whatever exactly that mean:

Remainder trees

Remainder tree

of r,x1,Zo, ..., T, has

one node r mod t for each node ¢
in product tree of 1, o, ..., Tr,.

e.g. remainder tree of
223092870, 23, 29, 84, 15, 58, 19:

223092870
TN
45402 3990

PR PR
46 42 510 0

/ \ Y\
0 17 0 46

Time < b(Ig b)2to(1);
Given r € Z and
nonzero 71, ..., Ty, € L,
compute remainder tree

In particular, compute
r mod z1, ..., r mod Z,,.

In particular, see which of
1, ..., T, divide 7.

(1972 Moenck Borodin,
for “single precision” z;'s,
whatever exactly that means)

ler trees

der tree

e r mod ¢t for each node ¢
ct tree of 21, 29, ..., Tr,.

ainder tree of
70,23,29, 84, 15,58, 19:

223092870
TN
15402 3990
R Z N\
42 510 0
/ \
7 0 46

Time < b(Ig b)2to(1);
Given r € Z and
nonzero 1, ..., Ty € L,
compute remainder tree

In particular, compute
r mod z1, ..., r mod Z,,.

In particular, see which of
1, ..., T, divide 7.

(1972 Moenck Borodin,
for “single precision” z;'s,
whatever exactly that means)

Small pr

Time <
Given
finite se

{peQ

In partic
see whe!
any of

Algorith
1. Use ¢
COME

2. Use ¢
whicl

, has
for each node ¢
$1,$2,...,£Bn.

> of
34 15,58, 19:

2870

Time < b(Ig b)2tol1);
Given r € Z and
nonzero 71, ..., Ty, € L,
compute remainder tree
of r,z1,...,Zy.

In particular, compute

r mod z1,...,r mod z,,.

In particular, see which of
1, ..., T, divide 7.

(1972 Moenck Borodin,
for “single precision” z;'s,
whatever exactly that means)

Small primes, u

nic

Time < b(lgb)?

Given z1, Z7, . ..

+o

¥ 4
y LV

finite set C Z —

{PEQ::Bla:Q-

In particular, w

= = '
LY

Ner

see whether p ¢

VI

any of z1, o, ...,

Algorithm:

1. Use a product °

compute r =z

2. Use a remainde

which » € @

di

ode t

19:

990

Time < b(Ig b)2to1);
Given r € Z and
nonzero z1,...,%n € Z,
compute remainder tree
of r,z1,...,Zn.

In particular, compute
r mod z1,...,r mod z,,.

In particular, see which of
Z1,...,ZTn divide 7.

(1972 Moenck Borodin,
for “single precision” z;'s,
whatever exactly that means)

Small primes, u

nion

Time < b(lgb)?
Given z1, Zo, ..

+o(1).

., Tn € Z an

finite set @ C Z — {0}, com

peQ:z1zo-

In particular, w

-+ Ly, mod p

nen p IS prim

see whether p ¢

any of 1,9, . ..

Algorithm:

Ivides
Ty

1. Use a product tree to

compute r =1y - - - Ty,

2. Use a remainder tree to ¢

which p € @

divide 7.

Time < b(Ig b)2to(1);
Given r € Z and
nonzero z1,...,Zn € Z,
compute remainder tree
of r,z1,...,Zy.

In particular, compute
r mod z1,...,r mod z,,.

In particular, see which of
z1,...,%Tn divide 7.

(1972 Moenck Borodin,
for “single precision” x;'s,
whatever exactly that means)

Small primes, union

Time < b(Ig b)2to(1);

Given z1,%Z>,...,Zn € Z and
finite set @ C Z — {0}, compute
{peEQ:z120 - TH mod p = 0}.

In particular, when » Is prime,

see whether p divides
any of £1,xo,..., 2Ty,

Algorithm:

1. Use a product tree to
compute r =1y - - - Ty,.

2. Use a remainder tree to see
which p € @ divide r.

b(lg b)> o).

€ Z and
z1,...,Tn € L,
' remainder tree

ular, compute

1,...,7 mod z,,.

ular, see which of
L, divide 7.

loenck Borodin,
le precision” z;'s,
r exactly that means)

Small primes, union

Time < b(Ig b)2to1);

Given z1,Z>,...,Zn € Z and
finite set @ C Z — {0}, compute
{p€eEQ:z120 - TH mod p = 0}.

In particular, when » iIs prime,

see whether p divides
any of £1,%9,...,2Zy.

Algorithm:

1. Use a product tree to
compute r =1y - - - Ty,.

2. Use a remainder tree to see
which p € @ divide r.

Small pr

Time <
Given
finite se
compute

., {p
(2000 B

Algorith
1. Repl:

{p €
2. It n -

3. Recu

4. Recu

g E Zv
r tree

ute
od T,,.

vhich of
r.

rodin,
’nn mirs,
hat means)

Small primes, union

Time < b(Ig b)2to(1);

Given z1,Z>,...,Zn € Z and
finite set @ C Z — {0}, compute
{p€eEQ:z122 - TH mod p = 0}.

In particular, when » Is prime,

see whether p divides
any of £1,xo,..., 2Ty,

Algorithm:

1. Use a product tree to
compute r =1y - - - Ty,.

2. Use a remainder tree to see
which p € @ divide r.

Small primes, seps

Time < b(lg b)3+°
Given 1,22, ...,

finite set Q of prir
compute {p € Q :

o fpEeEQ Ty
(2000 Bernstein)

Algorit
1. Rep

nm for n >

ace () with

{pre@ z1---

2. It n

= 1, print

3. Recurse on zq,

. Recurse on zr,

Small primes, union

Time < b(Ig b)2to1);

Given z1,Z>,...,Zn € Z and
finite set @ C Z — {0}, compute
{p€eEQ:z120 - TH mod p = 0}.

In particular, when p iIs prime,

see whether p divides
any of 1,9, ..., T, .

Algorithm:

1. Use a product tree to
compute r =12 - - - Ty,.

2. Use a remainder tree to see
which p € @ divide r.

Small primes, separately

Time < b(Ig b)3+°(1);

Given z1,Z>,...,Zn € Z an
finite set @ of primes,
compute {p € Q : £1 mod p
., ir€eER :zymodp=0
(2000 Bernstein)

Algorithm for n > 1:

1. Replace @ with
{peEQ :z1 Ty modp

2. If n =1, print @ and sto

3. Recurseon zy,..., T/

4. Recurse on /5141, - -

Small primes, union

Time < b(Ig b)2to(1);

Given z1,%Z>,...,Zn € Z and
finite set @ C Z — {0}, compute
{peEQ:z120 - TH mod p = 0}.

In particular, when » Is prime,

see whether p divides
any of 1,9, ..., L.

Algorithm:

1. Use a product tree to
compute r =1y - - - Ty,.

2. Use a remainder tree to see
which p € @ divide r.

Small primes, separately

Time < b(Ig b)3+°(1);

Given z1,%Z>,...,Zn € Z and

finite set) of primes,
compute {p € Q : £1 mod p

o,

.., {P €Q : z, mod p = 0}.

(2000 Bernstein)

Algorithm for n > 1:

1. Replace @ with
{peEQ :z1 - xyn modp

2. If n =1, print @ and sto

3. Recurse on zy, ..., Ty >
4. Recurse on /o741,

~ 0.

D.

Q.

imes, union Small primes, separately Factor

over
b(Ig b)2 L) Time < b(Ig b)3+°(1);
LT, ..., T, € Z and Given z1,Zo, ..., T, € Z and
- CZ— {0}, compute finite set @ of primes,
ZT1Zo - Tp, mod p = 0}. compute {p € Q : 1 mod p = 0}, 2543,
| B OV¢
ular, when p is prime, - AP €W zn modp =0}, 2,3, 7

her p divides

(2000 Bernstein) /

1, L2, .., T Algorithm for n > 1.
- 1. Replace @ with 2543

|) - — over
' product tree to {p €Q: 3:1_ T mod p O}' 2 17

2. If n =1, print @ and stop. '

ute 7 = 12 - - - Tyy. 3 R 0
' remainder tree to see 4' Recurse on I,y Ln/2]: & Each lev
' p € Q divide 7. . Recurse on zpy, 5741, - - -, T, Q.

n

(1).

t, € Z and
{0}, compute
tn, mod p = 0}.

1 D IS prime,
des
Ty, .

[ree to

1$2 - mn.
r tree to see
vide 7.

Small primes, separately

Time < b(Ig b)3+o(1);

Given z1, o, ..., zn € Z and
finite set) of primes,

compute {p € Q : 1 mod p = 0},
.., {P €Q : z, mod p = 0}.
(2000 Bernstein)

Algorithm for n > 1:
1. Replace @ with

{peEQ :z1- - Tn, modp =0}
2. If n =1, print Q and stop.
3. Recurse on z4,..., Zrp/2]: Q.

4. Recurse on Zry, /2141, - -, T, , Q.

Factor 2543, 676
over {2,3,5,7,

/

2543,6766
over
2,3,7,17

/ \

2543 6766
over over
2,17 2,17

Each level has < ¢

EC

Small primes, separately

Time < b(Ig b)3+o(1):

Given z1,Zo, ..., T, € Z and
finite set of primes,

compute {p € § : 1 mod p = 0},
.., {p € Q :zn, mod p = 0}.
(2000 Bernstein)

Algorithm for n > 1:

1. Replace @ with
{peEQ:z1- - Tn, modp =0}

2. If n =1, print @ and stop.

3. Recurse on z4, ..., Zrn/2]: Q.

4. Recurse on /0141, - - -, T,, Q.

Factor 2543, 6766, 8967, 7°
over {2,3,5,7,11,13,17

/ 0\

2543,6766 8967, 75
over over
2,3,7,17 2,3,7,1

AT

2543 6/66 8967 7
over over over O
2,1r 2,17 2,3,7 2

Each level has < b(lg)9+

Small primes, separately

Time < b(Ig b)3+o(1);
Given z1,Zo, ..., zn € Z and
finite set) of primes,

compute {p € Q : 1 mod p = 0},

.., {p€Q :zy mod p =0}
(2000 Bernstein)

Algorithm for n > 1:
1. Replace @ with

{peEQ :z1- - Tn, modp =0}

2. If n =1, print Q and stop.
3. Recurse on z4, ..., Zrp/2]: Q.

4. Recurse on Zry, /2141, - -, T, , Q.

Factor 2543, 6766, 8967, 7598
over {2,3,5,7,11,13,17}

/ 0\

2543,6766 8967, 71598
over over
2,3,7,17 2,3,7,17

AYra

25043 6/66 38967 7593
over over over over
2,17 2,17 2,3,7 2,3,7

Each level has < b(lg 6)%t°(1) bits.

Imes, separately

b(lg b)3—|—0(1):

= () of primes,

 {p € Q :z1 mod p =0},
= 1z, mod p =0},

ernstein)

m for n > 1.
ice () with

Q:z1---Tn, modp =0}
=1, print) and sto

D.

_'Q-

Factor 2543, 6766, 8967, 7598
over {2,3,5,7,11,13,17}

/ 0\

2543, 6766 8967, 7598
over over
2,3,7,17 2,3, 7,17

AYa

2543 6/66 38967 7593
over over over over
2,17 2,17 2,3,7 2,3,7

Each level has < b(lg 6)%t°(1) bits.

Exponer

Time <
Given nc
find e, »

Algorith
1. Ifzr
Print
2. Find
with
3. If rn
2f +
4. Print

rately

(1),
t, € Z and
nes,

1 mod p = 0},
nod p = 0}.

Factor 2543, 6766, 8967, 7598
over {2,3,5,7,11,13,17}

/ 0\

2543,6766 8967, 71598
over over
2,3,7,17 2,3,7,17

AYra

25043 6766 38967 7593
over over over over
2,17 2,17 2,3,7 2,3,7

Each level has < b(lg 6)91t°(1) bits.

Exponents of a si

Time < b(lg b)?+°
Given nonzero p, 2
find e, p®, z/p° wi

Algorithm:

1. If z modp#O
Print 0,1,z an

2. Find f, (pz)f,'r
with maximal ;

3. frmodp=0

2f +2,(p%)
4. Print 2f + 1, (;

Factor 2543, 6766, 8967, 7598
over {2,3,5,7,11,13,17}

/ 0\

2543, 6766 8967, 71598
over over
2,3,7,17 2,3, 7,17

AYa

2543 6766 38967 7593
over over over over
2,17 2,17 2,3,7 2,3,7

Each level has < b(lg 6)9t°(1) bits.

Exponents of a small prime

Time < b(Ig b)2to1);
Given nonzero »,x € Z,
find e, p®, ¢ /p® with maxim:

Algorithm:
1. If z mod p # 0:
Print 0, 1, z and stop.
2. Find £, (p°)7 .7 = (z/p),
with maximal f.
3. If r mod p=0: Print
2f +2,(p°)/p*, 7/p and
4. Print 2f + 1, (p°) », 7.

Factor 2543, 6766, 8967, 7598
over {2,3,5,7,11,13,17}

/ 0\

2543,6766 8967, 71598
over over
2,3,7,17 2,3,7,17

AYa

25043 6/66 38967 7593
over over over over
2,17 2,17 2,3,7 2,3,7

Each level has < b(lg 6)%t°(1) bits.

Exponents of a small prime

Time < b(Ig b)2to(1);
Given nonzero v,z € Z,
find e, p®, /p® with maximal e.

Algorithm:
1. If z mod p # O:
Print 0, 1, z and stop.
2. Find £, (p%)] . r = (z/p)/(0*)
with maximal f.
3. If r mod p=0: Print
2f + 2, (p?)! p?, r/p and stop.
4. Print 2f + 1, (p?)/ p, 7.

2543, 6766, 8967, 7598
{2,3,5,7,11,13,17}

/ 0\

0766 8967, 7593
over
2,3, 7,17

i

6/66 8967 7598
over over over
2,17 2,3,7 2,3,7

el has < b(lg 6)0t°(1) bits.

Exponents of a small prime

Time < b(Ig b)2to1);
Given nonzero »,x € Z,
find e, p®, /p® with maximal e.

Algorithm:
1. If z mod p # 0:
Print 0, 1, z and stop.
2. Find f,(p*)7. 7 = (z/p)/(p*)!
with maximal f.
3. If r mod p=20: Print
2Ff + 2, (p?)! p?, r /v and stop.
4. Print 2f + 1, (p?) », 7.

Exponer

Time <
Given fir
and non

€, HpEQ

Algorith
1. Replc

65,8967, 7598
11,13, 17}

\

8967, 7593
over
2,3,7,17

/ \

3967 7596
over over
.3, 7 2,3, 7

(Ig 6)+°() bits.

Exponents of a small prime

Time < b(Ig b)2to(1);
Given nonzero v,z € Z,
find e, p®, /p® with maximal e.

Algorithm:
1. If z mod p # O:
Print 0, 1, z and stop.
2. Find £, (p%)] . r = (z/p)/(0*)
with maximal f.
3. If r mod p=0: Print
2f + 2, (p?)! p?, r/p and stop.
4. Print 2f + 1, (p?) p, 7.

Exponents of sma

Time < b(lg b)3+°
Given finite set @
and nonzero € 4

€, HpEQ pe(p), iB/ [

Algorithm:
1. Replace @ witt
{p € Q : £ moc
2. Find maximal ;
2
3. Find T={p e
4. Output e, s| |,
where e(p) = 2

93

)OS

593
ver

3,7

) bits.

Exponents of a small prime

Time < b(Ig b)2to1);
Given nonzero »,x € Z,
find e, p®, /p® with maximal e.

Algorithm:
1. If z mod p # 0:
Print 0, 1, z and stop.
2. Find f,(p*)7. 7 = (z/p)/(p*)!
with maximal f.
3. If r mod p=0: Print
2Ff + 2, (p?)! p?, r /v and stop.
4. Print 2f + 1, (p?) », 7.

Exponents of small primes

Time < b(Ig b)3+°(1);
Given finite set () of primes
and nonzero z € Z, find ma

e, [peo pe(P) g/ [Mpeo pe(P

Algorithm:
1. Replace @ with
{pe @ :zmodp=0}
2. Find maximal f, s, r with
2
s=[1(*)""), r=(z/|
3. Find T ={p € Q : » mod
4. Output e, s| |,er o7/ |
where e(p) = 2f(p°) + [1

Exponents of a small prime

Time < b(Ig b)2to(1);
Given nonzero v,z € Z,
find e, p®, /p® with maximal e.

Algorithm:
1. If z mod p # O:

Print 0, 1, z and stop.
2. Find £, (p%)] . r = (z/p)/(0*)
with maximal f.
3. If r mod p=0: Print
2f + 2, (p?)! p?, r/p and stop.
4. Print 2f + 1, (p?) p, 7.

Exponents of small primes

Time < b(Ig b)3+°(1);
Given finite set () of primes

and nonzero z € Z, find maximal

e [peq PP 2/ [peq v°)

Algorit

1M

1. Rep

ace () with

{pe @ :zmodp=0}%
2. Find maximal f, s, r with

g —

M)), 7= (2/[1p)/s.

3. Find T={p € Q:7 modp=0}.

4. Out

put e, s[Ter 2.7/ [Tyer P

where e(p) = 2f(p2) +|p € T].

ts of a small prime

b('g b)2—|—0(1):
nzero p, T € Z,

°, x/p® with maximal e.

m:
nod p # O:

0,1, z and stop.
f.(0°) . r = (z/p)/(p°)!
maximal f.

1od p = 0: Print

2, (p2)fp2,'r/p and stop.
2f + 1, (p2)fp, r.

Exponents of small primes

Time < b(Ig b)3+°(1);
Given finite set) of primes
and nonzero z € Z, find maximal

e, [peq PP 2/ [peq v°%)

Algorithm:
1. Replace @ with

{pe @ :zmodp=0}
2. Find maximal f, s, r with

s=[1?)*7), r=(z/[p)/s.
3. Find T={p € Q : mod p=0}.

4. Qutput e, s HpET o, T/ HpET D
where e(p) = 2f(p*) + [p € T].

Smooth

Time <
Given nc
and finit
compute
()-smoo
(J-smoo

()-smoo
of powel

(J-smoo!
largest (
In partic
T1,I9,.

1all prime

(1).
> € Z,
th maximal e.

d stop.

= (z/p)/(0*)!

F.

~ Print

.7 /p and stop.
) p, 7.

Exponents of small primes

Time < b(Ig b)3+o(1);
Given finite set) of primes
and nonzero z € Z, find maximal

e [peq PP 2/ [peq v°)

Algorithm:
1. Replace @ with

{pe @ :zmodp=0}%
2. Find maximal f, s, r with

s= 1?7, r=(z/[p)/s.
3. Find T={p € Q : 7 mod p=0}.

4. Output e, s [,er 2.7/ |peT P
where e(p) = 2f(p°) +[p € T].

Smooth parts, old

Time < b(lg b)3+°
Given nonzero 1,
and finite set () of
compute (J-smoot
(Q-smooth part of

()-smooth part of

(J-smooth means
of powers of eleme

(J-smooth part me
largest ()-smooth
In particular, see v

) e.

stop.

Exponents of small primes

Time < b(Ig b)3+o(1):
Given finite set () of primes

and nonzero z € Z, find maximal
e, [peq PP 2/ [peq v°%)

Algorit

1.

Rep

1M

ace () with

{pe @ :zmodp=0}

S —

. Find maximal f, s, r with
y

[1(p?)), r=(z/[]p)/s.

. Find T={p € Q:r modp=0}.

. Out

put e, s[Tyer 2.7/ [Tyer P

where e(p) = 2f(p2) +|p € T].

Smooth parts, old approach

Time < b(Ig b)3+°(1);

Given nonzero z1,Z>,...,T;
and finite set () of primes,
compute ()-smooth part of :
(Q-smooth part of z», ...,

()-smooth part of z,,.

(J-smooth means product
of powers of elements of Q.

(J-smooth part means
largest (-smooth divisor.
In particular, see which of

T1,Z>,...,Tn are smooth.

Exponents of small primes

Time < b(Ig b)3+o(1);
Given finite set () of primes

and nonzero z € Z, find maximal

e [peq PP 2/ [peq v°)

Algorithm:
1. Replace with

{pe @ :zmodp=0}%
2. Find maximal f,s,r with

2

s= 1)), r=(/[1p)/s
3. Find T={p € @ :r mod p=0}.
4. Qutput e, s HpET D, T/ HpGT D

where e(p) = 2f(p2) +|p € T].

Smooth parts, old approach

Time < b(Ig b)3+°(1);

Given nonzero 1, Zo, .. ., Ty € L
and finite set () of primes,
compute J-smooth part of z1,
(Q-smooth part of z», ...,

()-smooth part of z,,.

(?-smooth means product
of powers of elements of Q.

(J-smooth part means
largest ()-smooth divisor.
In particular, see which of
T1,To,..., T, are smooth.

ts of small primes

b(lg b)3—|—0(1):
ite set () of primes

zero £ € Z, find maximal
pe(P) g/ [Mpeo pe(P).

m:
ice ¢ with

Q : z mod p = 0}.
maximal f, s, r with

1)), r=(z/[p)/s
I'={pe@:rmodp=0}.

ut e, s HpET P, T/ HpET p
= e(p) = 2f(p°)+[p € T]

Smooth parts, old approach

Time < b(Ig b)3+°(1);

Given nonzero 1, Zo, .. ., Ty € L
and finite set () of primes,
compute J-smooth part of z1,
(Q-smooth part of z», ...,

()-smooth part of z,,.

(J-smooth means product
of powers of elements of Q.

(J-smooth part means
largest (-smooth divisor.
In particular, see which of
T1,To,..., T, are smooth.

Algorit

N

1. Finc

2. For

oy

€

Find

S p—
Prin

f

t

e.g. fac

over {2,
2543 ovi
6766 ov
8967 ovi
7598 ov

| primes

(1).

of primes

7 find maximal
lpeq pelP).

| p = 0}.
F s, r with

r=(z/[1p)/s.
@ : v mod p=0}.

cT P 'r/ HpGT P
f(*)+peT]

Smooth parts, old approach

Time < b(Ig b)3+o(1);

Given nonzero 1, Zo, .. ., Ty € L
and finite set () of primes,
compute J-smooth part of z1,
(Q-smooth part of z», ...,

()-smooth part of z,,.

(?-smooth means product
of powers of elements of Q.

(J-smooth part means
largest ()-smooth divisor.
In particular, see which of
T1,To,..., Z,, are smooth.

Algorithm:
1. Find Q1 ={p:

2. For each 1 seps
Find maximal e

Print s.

e.g. factor 2543, €
over {2,3,5,7,11,
2543 over {}, smc
6766 over {2,17},
8967 over {3,7},
7598 over {2}, sm

ximal

Smooth parts, old approach

Time < b(lg b)31+o(1)
Given nonzero z1, Zo, .. ., Ty € L

and finite set () of primes,

compute -smooth part of z1,

()-smoot
()-smoot

N

N

part of zo, ...,

nart of z,,.

(J-smooth means product

of powers of elements of Q.

(J-smooth part means

largest (-smooth divisor.

In particular, see which of

T, are smooth.

Algorit

1M

1. Finc

2. For

@1 ={p:z1 moc

., @n={p:zn, modp

each 1 separately:

P

Find maximal e, s, r with
S = HpeQi pe(p)’ T = Zq

Prin

f s.

e.g. factor 2543, 6766, 8967

over {2,3,5,7,11,13, 17}

2543 over {}, smooth part]
6766 over {2,17}, smooth
8967 over {3, 7}, smooth pz
7598 over {2}, smooth part

Smooth parts, old approach

Time < b(Ig b)3+o(1);

Given nonzero z1,Zo, .. ., T, € L
and finite set () of primes,
compute J-smooth part of z1,
)-smooth part of z», ...,

()-smooth part of z,.

(?-smooth means product
of powers of elements of Q.

(J-smooth part means

Algorithm:
1. Find @1 = {p: 1 mod p = 0},

oo, Qn=Ap:zn mod p =0}
2. For each 1 separately:

Find maximal e, s, r with

S = HpEQi pe(p), T =T;/s.
Print s.

e.g. factor 2543,6766,8967, 7598
over {2,3,5,7,11,13,17}:
2543 over {}, smooth part 1,

6766 over {2,17}, smooth part 34;
8967 over {3, 7}, smooth part 147,
7598 over {2}, smooth part 2.

largest ()-smooth divisor.
In particular, see which of
T1,To,..., T, are smooth.

parts, old approach

b(Ig b)3*+o(L);

)nzero 1, Ty, . . ., T, € L
e set () of primes,

» (0-smooth part of z1,

th part of zo, ...,

'h part of z,,.

th means product
s of elements of Q.

th part means
)-smooth divisor.
ular, see which of
.., Tyn are smooth.

Algorithm:

1. Find @1 = {p: 1 mod p = 0},
oty Q@ =Ap:zp mod p =0}

2. For each 7 separately:

Find maximal e, s, r with

S = HpeQi pe(p)’ T =T;/s.
Print s.

e.g. factor 2543,6766,8967, 7598
over {2,3,5,7,11,13,17}:

2543 over {}, smooth part 1;

6766 over {2,17}, smooth part 34;
8967 over {3, 7}, smooth part 147;
7598 over {2}, smooth part 2.

Smooth

Recall ci
find kth
product
T1, T, .

Choose
Define G
See whic
are y-sn
Know tf
Do linea
on the €

‘approach

- primes,
h part of z1,

product
nts of (.

ans
divisor.
vhich of

smooth.

Algorithm:

1. Find @1 = {p: 1 mod p = 0},
oo, Qn=Ap:zn mod p =0}

2. For each 1 separately:

Find maximal e, s, r with

S = HpEQi pe(p), T =T;/s.
Print s.

e.g. factor 2543,6766,8967, 7598
over {2,3,5,7,11,13,17}:

2543 over {}, smooth part 1,

6766 over {2,17}, smooth part 34;
8967 over {3, 7}, smooth part 147;
7598 over {2}, smooth part 2.

Smooth mul

tiplica

Recall cryptanalyt

find kth power no

product of powers

Choose ¥; imagine

Define @) as
See which o

set of
T, X

are Y-smoot

N, 1.e.

Know their factori

Do linear algebra «

on the exponent v

€L

Algorit

1M

1. Find Q1 = {p : £1 moc

2. For

Qn =4p: zy Moc
each 1 separately:

p =0},
p =0}

Find maximal e, s, r with
S = HpeQi pe(p)’ r=2zi/s.

Prin

f s.

e.g. factor 2543,6766, 8967, 7598

over {2,3,5,7,11,13, 17}

2543 over {}, smooth part 1;

6766 over {2,17}, smooth part 34;
8967 over {3, 7}, smooth part 147

7598 over {2}, smooth part 2.

Smooth multiplicative deper

Recall cryptanalytic bottlene
find £th power nontrivially ¢
product of powers of

Choose y; imagine y = 249
Define) as set of primes <
See which of z1, 2>, .. ., T,

are y-smooth, i.e., -smoot

Know their factorizations.
Do linear algebra over Z/k
on the exponent vectors.

Algorit

M-

1. Find Q1 = {p : £1 moc

2. For

Qrn =4p: Ty Moc
each 1 separately:

p =0},
p =0}

Find maximal e, s, r with

S = HpEQi pe(p), T =T;/s.
Print s.

e.g. factor 2543,6766,8967, 7598

over {2,3,5,7,11,13,17}:

2543 over {}, smooth part 1,

6766 over {2,17}, smooth part 34;
8967 over {3, 7}, smooth part 147,

7598 over {2}, smooth part 2.

Smooth multiplicative dependencies

Recall cryptanalytic bottleneck:
find £th power nontrivially as
product of powers of

Choose y; imagine y = 29,
Define as set of primes < y.

See which of z1, z»o, ..., T,

are y-smooth, i.e., J-smooth.
Know their factorizations.

Do linear algebra over Z/k
on the exponent vectors.

m:
Q1 ={p:z1 mod p = 0},
2n = {p : zn, mod p = 0}.
ach 1 separately:

maximal e, s, r with

—‘pEQZ- pe(p)’ r=2zi/s.
S.

or 2543, 6766, 8967, 7598
3,5,7,11,13,17}:

er {}, smooth part 1;

er {2, 17}, smooth part 34;
er {3, 7}, smooth part 147;
er {2}, smooth part 2.

Smooth multiplicative dependencies

Recall cryptanalytic bottleneck:
find £th power nontrivially as
product of powers of
T1,Z2,...,Tn.

Choose y; imagine y = 249
Define) as set of primes < y.
See which of z1, 2>, .. ., T
are y-smooth, i.e., -smooth.

Know their factorizations.
Do linear algebra over Z/k
on the exponent vectors.

Smooth

Given nc
and finit
Time ty)
to obtail

(2004 Fi
Morain \

Algorith
Comput:
Comput
For eact
Replace
z;/ged{
repeatec

1 mod p = 0},

T, mod p = 0}.
rately:

S, T with

) = T;/s.

766, 8967, 7598
13,17}:

oth part 1;
smooth part 34;
smooth part 147;
ooth part 2.

Smooth multiplicative dependencies

Recall cryptanalytic bottleneck:
find £th power nontrivially as
product of powers of
T1,Z2,...,Tn.

Choose y; imagine y = 29,
Define as set of primes < y.
See which of z1, 2>, ..., 25

are y-smooth, i.e., J-smooth.
Know their factorizations.

Do linear algebra over Z/k
on the exponent vectors.

Smooth parts, nev

Given nonzero z1,
and finite set () of
Time typically <'¢
to obtain smooth

(2004 Franke Klei
Morain Wirth, in |

Algorithm:
Compute 7 = |,
Compute r mod =
For each 2 separat
Replace z; by
z;/gcd{z;, r mod
repeatedly until gc

art 34;
rt 147;
2.

Smooth multiplicative dependencies

Recall cryptanalytic bottleneck:
find £th power nontrivially as
product of powers of

$1,$2,...,$n.

Choose y; imagine y = 249
Define) as set of primes < .
See which of z1,z>,...,2n
are y-smooth, i.e., -smooth.

Know their factorizations.
Do linear algebra over Z/k
on the exponent vectors.

Smooth parts, new approact

Given nonzero z1,Z2, ..., T;
and finite set () of primes:
Time typically < b(lg b)2to(
to obtain smooth parts of z
(2004 Franke Kleinjung
Morain Wirth, in ECPP con

Algorithm:
Compute 7 = |,co P-
Compute r mod z1,...,r m

For each 1 separately:
Replace z; by
z;/gcd{z;, r mod z;}
repeatedly until gcd is 1.

Smooth multiplicative dependencies

Recall cryptanalytic bottleneck:
find £th power nontrivially as
product of powers of

$1,$2,...,$n.

Choose y; imagine y = 29,
Define as set of primes < y.
See which of z1,2»>, ..., 25

are y-smooth, i.e., J-smooth.
Know their factorizations.

Do linear algebra over Z/k
on the exponent vectors.

Smooth parts, new approach

Given nonzero z1,Z>,...,%n € Z
and finite set) of primes:

Time typically < b(lg b)2+o(1)

to obtain smooth parts of z's.
(2004 Franke Kleinjung

Morain Wirth, in ECPP context)

Algorithm:
Compute r = HpeQ D.
Compute r mod z1,...,7r mod z,,.

For each 1 separately:
Replace z; by
z;/gcd{z;, r mod z;}
repeatedly until gcd is 1.

multiplicative dependencies

Smooth parts, new approach

yptanalytic bottleneck:
power nontrivially as
of powers of

y; Imagine y = 240
) as set of primes < y.
h of z1,z>,..., 2y
ooth, i.e., @-smooth.

eir factorizations.
r algebra over Z/k
Xponent vectors.

Given nonzero z1,Z>,...,%n € Z
and finite set () of primes:

Time typically < b(Ig 6)2o(1)

to obtain smooth parts of z's.
(2004 Franke Kleinjung

Morain Wirth, in ECPP context)

Algorithm:
Compute r = HpeQ D.
Compute » mod z1,...,r mod z,,.

For each 1 separately:
Replace z; by
z;/gcd{z;, r mod z;}
repeatedly until gcd is 1.

Slight v:
Time al

Comput

gcd{mi,
where k

Subrout;
takes tir
(1971 S

core idex:
b(lg b)>

Or, to s
see if (7

tive dependencies

c bottleneck:

ntrivially as
of

Y = 240
primes < .

zations.
over Z/k
ectors.

Smooth parts, new approach

Given nonzero 1, Zo, ..., Ty € L
and finite set () of primes:

Time typically < b(lg 6)2+o(1)

to obtain smooth parts of z's.
(2004 Franke Kleinjung

Morain Wirth, in ECPP context)

Algorithm:
Compute 7 = | |,co P-

Compute r mod z1, ..., r mod T, .

For each 1 separately:
Replace z; by
z;/gcd{z;, r mod z;}
repeatedly until gcd is 1.

Slight variant (20(
Time always < 6(|

Compute smooth
gcd{z;, (r mod z;
where k = [Iglgz

Subroutine: Comg
takes time < b(Ig
(1971 Schonhage;
core idea: 1938 Lc¢
b(Ig b)>*o(1): 197

Or, to see if z; is
see if (r mod z;)?

1dencies

ck:
S

Smooth parts, new approach

Given nonzero 1, o, .. ., Ty, € L
and finite set () of primes:

Time typically < b(Ig 6)2o(1)

to obtain smooth parts of z's.
(2004 Franke Kleinjung

Morain Wirth, in ECPP context)

Algorithm:
Compute 7 = |,co P-

Compute r mod z1, ..., r mod T,,.

For each 1 separately:
Replace z; by
z;/gcd{z;, r mod z;}
repeatedly until gcd is 1.

Slight variant (2004 Bernste
Time always < b(lg b)2+0(1).

Compute smooth part of z;

ok

gcd{z;, (r mod ;)= mod 1

where £ = [Iglgx;]|.

Subroutine: Computing gcd
takes time < b(Ig b)2+o(1).
(1971 Schonhage;

core idea: 1938 Lehmer;
b(Ig 6)°+°(1): 1971 Knuth)

Or, to see if z; is smooth,

see if (r mod mi)zk mod z; :

Smooth parts, new approach

Given nonzero 1, Zo, ..., Ty € L
and finite set) of primes:

Time typically < b(Ig b)2+o(1)

to obtain smooth parts of z's.
(2004 Franke Kleinjung

Morain Wirth, in ECPP context)

Algorithm:
Compute 7 = | |,co P-

Compute r mod z1, ..., r mod T,

For each 1 separately:
Replace z; by
z;/gcd{z;, r mod z;}
repeatedly until gcd is 1.

Slight variant (2004 Bernstein):
Time always < b(lgb)21+o(1).

Compute smooth part of z; as
gcd{z;, (r mod :r;z-)QIC mod z; }
where k£ = [lIglgz;].

Subroutine: Computing gcd
takes time < b(Ig b)2*+o(1)
(1971 Schonhage;

core idea: 1938 Lehmer;
b(Ig)°+°(1): 1971 Knuth)

Or, to see if z; is smooth,

see if (r mod a;z-)zk mod z; = 0.

parts, new approach

)Nzero 1,7, . . .

e set () of primes:

vically < b(lg b)?

+0(1)

N smooth parts of z's.

-anke Kleinjung

Wirth, in ECPP context)

m:
S T — HPEQ D.
e r mod z1, ...,

1 separately:

T; by

z;, 7 mod x; }
ly until ged i1s 1.

r mod T,,.

Slight variant (2004 Bernstein):

Time always < b(lg b)2+o(1).

Compute smooth part of z; as

ok

gcd{z;, (r mod ;)= mod z; }

where £ = [Iglgx;]|.

Subroutine: Computing gcd
takes time < b(Ig b)2+o(1).
(1971 Schonhage;

core idea: 1938 Lehmer;
b(Ig 6)°+°(1): 1971 Knuth)

Or, to see if z; is smooth,

see if (r mod mi)zk

mod z; = 0.

Minor pi
finds the
but does

v_approach

- primes:

(Ig b)2+0(1)
parts of z's.
njung

~CPP context)

Slight variant (2004 Bernstein):

Time always < b(lg b)21+o(1).

Compute smooth part of z; as
gcd{z;, (r mod :r;z-)QIC mod z; }
where k£ = [lIglgz;].

Subroutine: Computing gcd
takes time < b(Ig b)2o(1).
(1971 Schonhage;

core idea: 1938 Lehmer;
b(Ig b)°+°(1): 1971 Knuth)

Or, to see if z; is smooth,

see if (r mod a;z-)zk

mod z; = 0.

Minor problem: N
finds the smooth 1
but doesn't factor

text)

Slight variant (2004 Bernstein):

Time always < b(lg b)21+o(1).

Compute smooth part of z; as

gcd{z;, (r mod mi)2k' mod z; }

where £ = [Iglgx;]|.

Subroutine: Computing gcd
takes time < b(Ig b)2+o(1).
(1971 Schonhage;

core idea: 1938 Lehmer;
b(Ig 6)°+°(1): 1971 Knuth)

Or, to see if z; is smooth,

see if (r mod mi)zk

mod z; = 0.

Minor problem: New algorit
finds the smooth numbers
but doesn't factor them.

Slight variant (2004 Bernstein):

Time always < b(lgb)21+o(1).

Compute smooth part of z; as
gcd{z;, (r mod :r;z-)QIC mod z; }
where k£ = [lIglgz;].

Subroutine: Computing gcd
takes time < b(lg b)2to(1),
(1971 Schonhage;

core idea: 1938 Lehmer;
b(Ig b)°+°(1): 1971 Knuth)

Or, to see if z; is smooth,

see if (r mod a;z-)zk

mod z; = 0.

Minor problem: New algorithm
finds the smooth numbers
but doesn’'t factor them.

Slight variant (2004 Bernstein):

Time always < b(lgb)21+o(1).

Compute smooth part of z; as
gcd{z;, (r mod :r;z-)QIC mod z; }
where k£ = [lIglgz;].

Subroutine: Computing gcd
takes time < b(lg b)2to(1),
(1971 Schonhage;

core idea: 1938 Lehmer;
b(Ig b)°+°(1): 1971 Knuth)

Or, to see if z; is smooth,

see if (r mod a;z-)zk

mod z; = 0.

Minor problem: New algorithm
finds the smooth numbers
but doesn’'t factor them.

Solution:

Feed the smooth numbers
to the old algorithm.

Very few smooth numbers,
so this is very fast.

Bottom line for cryptanalysis:
time per input number to

find and factor smooth numbers
has dropped by (Igb)1o(1).

riant (2004 Bernstein):

vays < b(lgb)2toll),

e smooth part of z; as

(7 mod mi)2k' mod z; }

= [lglg z;].

ne: Computing gcd
ne < b(lg b)2toll),
“honhage;

: 1938 Lehmer:
o(1): 1971 Knuth)

e If z; Is smooth,

mod .1!32')2/‘C

mod z; = 0.

Minor problem: New algorithm
finds the smooth numbers
but doesn’'t factor them.

Solution:

Feed the smooth numbers
to the old algorithm.

Very few smooth numbers,
so this is very fast.

Bottom line for cryptanalysis:
time per input number to

find and factor smooth numbers
has dropped by (Ig6)1o(1).

|s smoot

After fin
do first
Throw a
only onc
numbers

repeat u

Don't w
Want sn

they are
divide tt

)4 Bernstein):

o b)2+0(1)_

part of z; as
)
i |
uting gcd
b)2—|—0(1)_

mod :cz}

hmer:

. Knuth)

smooth,
’

mod z; = 0.

Minor problem: New algorithm
finds the smooth numbers
but doesn’'t factor them.

Solution:

Feed the smooth numbers
to the old algorithm.

Very few smooth numbers,
so this is very fast.

Bottom line for cryptanalysis:
time per input number to

find and factor smooth numbers
has dropped by (Igb)1o(1).

Is smooth the righ

After finding smoc
do first step of lin:
Throw away prime
only once; throw ¢
numbers with tho:s

repeat until stable

Don't want all sm
Want smooth nun
they are built fron
divide the other n

Minor problem: New algorithm
finds the smooth numbers
but doesn’'t factor them.

Solution:

Feed the smooth numbers
to the old algorithm.

Very few smooth numbers,
so this is very fast.

Bottom line for cryptanalysis:
time per input number to

find and factor smooth numbers
has dropped by (Igb)1o(1).

|s smooth the right question

After finding smooth numbe
do first step of linear algebr:
Throw away primes that apy
only once; throw away

numbers with those primes;

repeat until stable.

Don’'t want all smooth num
Want smooth numbers only
they are built from primes tl
divide the other numbers.

Minor problem: New algorithm
finds the smooth numbers
but doesn’'t factor them.

Solution:

Feed the smooth numbers
to the old algorithm.

Very few smooth numbers,
so this is very fast.

Bottom line for cryptanalysis:
time per input number to

find and factor smooth numbers
has dropped by (Igb)1o(1).

|s smooth the right question?

After finding smooth numbers,
do first step of linear algebra:
Throw away primes that appear
only once; throw away

numbers with those primes;

repeat until stable.

Don't want all smooth numbers.
Want smooth numbers only if
they are built from primes that
divide the other numbers.

-oblem: New algorithm
» smooth numbers
n't factor them.

> smooth numbers
ld algorithm.

/ smooth numbers,
5 very fast.

line for cryptanalysis:
“Input number to
factor smooth numbers

ped by (Igb)Ltoll),

Is smooth the right question?

After finding smooth numbers,
do first step of linear algebra:
Throw away primes that appear
only once; throw away

numbers with those primes;

repeat until stable.

Don't want all smooth numbers.

Want smooth numbers only if
they are built from primes that
divide the other numbers.

An alter

Given nc
Comput

Comput:

(r/zn) 1

For each

((r/z:)

where k

Finds 4
are divis
Time <

(2004 B

ew algorithm
1umbers

them.

ywumbers
m.

Tumbers,

yptanalysis:
nber to

ooth numbers
. b)l—l—o(l)_

|s smooth the right question?

After finding smooth numbers,
do first step of linear algebra:
Throw away primes that appear
only once; throw away

numbers with those primes;

repeat until stable.

Don't want all smooth numbers.

Want smooth numbers only if
they are built from primes that
divide the other numbers.

An alternate apprc¢

Given nonzero 1,
Compute r = z1x

Compute (r/z1) r
(r/zy) mod zy.

For each 7 separat
(r/2;) mod ;)
where £k = |Iglgz

Finds x; iff all prir
are divisors of oth
Time < b(lg b)?+°

(2004 Bernstein)

bers

Is smooth the right question?

After finding smooth numbers,
do first step of linear algebra:
Throw away primes that appear
only once; throw away

numbers with those primes;

repeat until stable.

Don't want all smooth numbers.

Want smooth numbers only if
they are built from primes that
divide the other numbers.

An alternate approach

Given nonzero z1,Z2, ..., T;
Compute r = 212> - - To,;.

Compute (r/z1) mod z1, ..
(r/zy) mod zy,.

For each 1 separately: see if
((r/z;) mod iB?;)zk mod z; =

where £ = [Iglgx;]|.

Finds x; iff all primes in z;
are divisors of other z's.
Time < b(Ig b)2to1),

(2004 Bernstein)

|s smooth the right question?

After finding smooth numbers,
do first step of linear algebra:
Throw away primes that appear
only once; throw away

numbers with those primes;

repeat until stable.

Don't want all smooth numbers.

Want smooth numbers only if
they are built from primes that
divide the other numbers.

An alternate approach

Given nonzero z1,Z>, ..., %y € Z:

Compute r = 12> - - To,.

Compute (r/z1) mod z1, ...,
(r/zy) mod zy.

For each 1 separately: see if
((r/x;) mod :I;Z')zlg mod z; = 0
where k£ = [lIglgz;].

Finds z; iff all primes in z;
are divisors of other z's.
Time < b(Ig b)2tol1),

(2004 Bernstein)

h the right question?

ding smooth numbers,
step of linear algebra:
way primes that appear
e; throw away

, with those primes;

ntil stable.

ant all smooth numbers.

1ooth numbers only if
built from primes that
e other numbers.

An alternate approach

Given nonzero 1,Z>,...,%n € Z:

Compute r = 212> - - - T,.

Compute (r/z1) mod z1, ...,
(r/zy) mod zy.

For each 1 separately: see if
((r/z;) mod :;i:i)zlC mod z; = 0
where £ = [Iglgx;]|.

Finds z; iff all primes in z;
are divisors of other z's.
Time < b(Ig b)2tol1),

(2004 Bernstein)

Comput

(r/zn)
r mod x
(1972 V

t question?

th numbers,
car algebra:

s that appear
\way

€ primes;

ooth numbers.

\bers only if
1 primes that
umbers.

An alternate approach

Given nonzero 1, Zo, ..., Tn € Z:

Compute r = 2129 -- - T;.

Compute (r/z1) mod z1, ...,
(r/zy) mod zy.

For each 1 separately: see if
((r/x;) mod :I;Z')zlg mod z; = 0
where k£ = [lIglgz;].

Finds z; iff all primes in z;
are divisors of other z's.
Time < b(Ig b)2tol1),

(2004 Bernstein)

Compute (r/z1) r
(r/zy) mod z, by

(1972 Moenck Bo

bers.

't
1at

An alternate approach

Given nonzero 1, o, .. ., T, € Z:

Compute r = 212> - - - T,.

Compute (r/z1) mod z1, ...,
(r/zy) mod zy.

For each 1 separately: see if
((r/z;) mod :;i:i)zlC mod z; = 0
where £ = [Iglgx;]|.

Finds z; iff all primes in z;
are divisors of other z's.
Time < b(Ig b)2tol1),

(2004 Bernstein)

Compute (r/z1) mod z1, ..
(r/zy) mod z, by computir
7 mod :c% r mod z2.
(1972 Moenck Borodin)

An alternate approach

Given nonzero 1, Zo, ..., Tn € Z:

Compute r = 2120 -- - Tp;.

Compute (r/z1) mod z1, ...,
(r/zy) mod zy.

For each 1 separately: see if
((r/x;) mod :I;Z')zlg mod z; = 0
where k£ = [lIglgz;].

Finds z; iff all primes in z;
are divisors of other z's.
Time < b(Ig b)2tol1),

(2004 Bernstein)

Compute (r/z1) mod zq, ...,
(r/xy) mod z,, by computing
7 mod :1:% r mod T2,
(1972 Moenck Borodin)

An alternate approach

Given nonzero 1, Zo, ..., Tn € Z:

Compute r = 2120 -- - Tp;.

Compute (r/z1) mod z1, ...,
(r/zy) mod zy.

For each 1 separately: see if
((r/x;) mod :I;Z')zlg mod z; = 0
where k£ = [lIglgz;].

Finds z; iff all primes in z;
are divisors of other z's.
Time < b(Ig b)2tol1),

(2004 Bernstein)

Compute (r/z1) mod zq, ...,
(r/xy) mod z,, by computing
7 mod :1:% r mod T2,
(1972 Moenck Borodin)

Problem: Recognizing the
Interesting z's Is not enough;
also need their factorizations.

An alternate approach Compute (r/z1) mod zq, ...,

Given nonzero T1,Z2,...,Tn € Z: (r/2n) mod zp, by computing
7 mod :1:% r mod z2.

Compute r = 12> ---T+,.
ol ; (1972 Moenck Borodin)

Compute (r/z1) mod z1, ...,

(1/zy) mod zy,. Problem: Recognizing the

For each 1 separately: see if Interesting z's Is not enough;
((r/z;) mod :I;Z')zlg mod z; = 0 also need their factorizations.
where k£ = [lIglgz;]. Solution:

Finds z; iff all primes in z; Again, very few of them.

are divisors of other z's. Have ample time to

Time < b(Ig b)2tol1), use rho method (1974 Pollard)

or use ECM (1987 Lenstra)

(2004 Bernstein) | |
or factor into coprimes.

nate approach

)Nzero £1,%2,...,Tn € £L:

e T =T1T2 - Tn.
e (r/x1) mod zq, ...,
nod z,,.

¢ separately: see if

ok

mod z;)° mod z; =0

= [lglg z;].

iff all primes in z;

ors of other z’s.
b('g b)2—|—0(1)_

ernstein)

Compute (r/z1) mod z1, ...,
(r/zy) mod z, by computing
7 mod :1:%7' mod z2 .
(1972 Moenck Borodin)

Problem: Recognizing the
Interesting z's Is not enough;
also need their factorizations.

Solution:
Again, very few of them.
Have ample time to

use rho method (1974 Pollard)

or use ECM (1987 Lenstra)
or factor into coprimes.

Factorin

Time <
Given pc
find cop

and comr
of each

(announ

journal \

Immedia
for the c
Subsequ
constant

bach

$2,,$n62

nodscl,...,

ely: see if
mod z; =0

i |-

nes in I,

or TS,

(1),

Compute (r/z1) mod zq, ...,
(r/xy) mod z,, by computing
7 mod a:%r mod z2 .
(1972 Moenck Borodin)

Problem: Recognizing the
Interesting z's Is not enough;
also need their factorizations.

Solution:

Again, very few of them.

Have ample time to

use rho method (1974 Pollard)

or use ECM (1987 Lenstra)
or factor into coprimes.

Factoring into cop

Time < b(lg)91
Given positive z1,
find coprime set (

and complete fact
of each z; over Q.

(announced 1995
journal version: 2(

Immediately gives
for the other factc
Subsequent resear
constant-factor sp

'),EZZ

Compute (r/z1) mod zq, ...,
(r/zy) mod z, by computing
7 mod :c% r mod z2.
(1972 Moenck Borodin)

Problem: Recognizing the
Interesting z's Is not enough;
also need their factorizations.

Solution:
Again, very few of them.
Have ample time to

use rho method (1974 Pollard)

or use ECM (1987 Lenstra)
or factor into coprimes.

Factoring into coprimes

Time < b(lg 6)°):
Given positive 1, Z2, ..., T,
find coprime set @

and complete factorization
of each z; over .

(announced 1995 Bernstein;

journal version: 2005)

Immediately gives b(Ig 6)°(

for the other factoring probl
Subsequent research: Ig spe
constant-factor speedups, et

Compute (r/z1) mod zq, ..., Factoring into coprimes

(r/xp) n;od Tp by comzputmg Time < b(lg b)°(1):
r mod z7,..., r mod Z7,. . .
| Given positive T1,Z2,..., Ty,
(1972 Moenck Borodin) . .
find coprime set
Problem: Recognizing the and complete factorization
interesting x's is not enough; of each z; over Q.

also need their factorizations. .
(announced 1995 Bernstein;

Solution: journal version: 2005)

Again, very few of them. Immediately gives b(lg b)O(l)

Have ample time to
use rho method (1974 Pollard)
or use ECM (1987 Lenstra)

or factor into coprimes.

for the other factoring problems.
Subsequent research: |g speedups,
constant-factor speedups, etc.

e (r/x1) mod 21, ...,
nod ,, by computing

loenck Borodin)

. Recognizing the
ng T's Is not enough;
d their factorizations.

ery few of them.
ple time to

method (1974 Pollard)

CM (1987 Lenstra)
- Into coprimes.

Factoring into coprimes

Time < b(lg 6)°):
Given positive 1,2, ..., Tn,
find coprime set @

and complete factorization
of each z; over .

(announced 1995 Bernstein;
journal version: 2005)

Immediately gives b(lg 6)°(1)

for the other factoring problems.
Subsequent research: lg speedups,
constant-factor speedups, etc.

Typical .
detectin;

Does 91
equal 15

Each sid
~ 1946C

nod z1, ...,
. computing
od T2
rodin)

zing the
ot enough;
torizations.

“them.

O

974 Pollard)
Lenstra)
Imes.

Factoring into coprimes

Time < b(lg 6)°):
Given positive 1, Z2,..., Ty,
find coprime set

and complete factorization
of each z; over Q.

(announced 1995 Bernstein;
journal version: 2005)

Immediately gives b(lg 6)°(1)

for the other factoring problems.
Subsequent research: |g speedups,
constant-factor speedups, etc.

Typical applicatior
detecting multiplic

Does 9119920817 1¢
equal 15471708632

Each side has logz
~ 19466590.6748

18

V)

rd)

Factoring into coprimes

Time < b(lg 6)°):
Given positive 1,2, ..., Tn,
find coprime set @

and complete factorization
of each z; over .

(announced 1995 Bernstein;

journal version: 2005)

Immediately gives b(lg 6)°(1)

for the other factoring problems.
Subsequent research: |g speedups,
constant-factor speedups, etc.

Typical application:
detecting multiplicative relaf

Does 911952681119151333522:
equal 15471708632689807343

Each side has logarithm
~ 19466590.674872.

Factoring into coprimes Typical application:
detecting multiplicative relations.

Time < b(lg 6)°):
Given positive 1, Z2,..., Ty,
find coprime set @ equal 154717080326898(0734393407

and complete factorization

Does 911952681 1 191513335 221634643

N Each side has logarithm
of each z; over (. ~ 19466590.674872.

(announced 1995 Bernstein;

journal version: 2005)

Immediately gives b(lg 6)°(1)

for the other factoring problems.
Subsequent research: |g speedups,
constant-factor speedups, etc.

Factoring into coprimes Typical application:
detecting multiplicative relations.

Time < b(lg 6)°):
Given positive 1, Z2,..., Ty,
find coprime set @ equal 154717080326898(0734393407

and complete factorization

Does 911952681 1 191513335 221634643

N Each side has logarithm
of each z; over (. ~ 19466590.674872.

(announced 1995 Bernstein;
More generally:

journal version: 2005) What is kernel of (a, b,¢,d, e) —
Immediately gives b(lg 6)°(1) 012119%221¢1547-46898073 7

for the other factoring problems. . .
&P Kernel lets us find relations,

Subsequent research: lg speedups, . . .
a & 5P P not just verify relations.

constant-factor speedups, etc.

g Into coprimes

b(Ig 6)°L):

sitive 1, o, . . ., T,

rime set ()
plete factorization
T, over (.

ced 1995 Bernstein:
/ersion: 2005)

tely gives b(lg 6)°(1)
ther factoring problems.

ent research: Ig speedups,

-factor speedups, etc.

Typical application:
detecting multiplicative relations.

Does 91 1952681 1 191513335 29 1634643
equal 1547170803268080734393407

Each side has logarithm
~ 19466590.674872.

More generally:
What is kernel of (a, b,¢,d, e) —
01%119°221¢1547 46898073 ¢7

Kernel lets us find relations,
not just verify relations.

Factor 1
01 =7-
221 =1
6393073

(a, b, c,c

012119°
7a+b—d—

Kernel i
(1,1,1,:

orization

Bernstein:
)05)

b(lg b))

ring problems.

ch: lg speedups,

eedups, etc.

Typical application:
detecting multiplicative relations.

Does 91 1952681 1 191513335 29 1634643
equal 154717080326g098(734393467

Each side has logarithm
~ 19466590.674872.

More generally:
What is kernel of (a, b, ¢, d, e) —
01%119%221¢1547%46898073 €7

Kernel lets us find relations,
not just verify relations.

Factor into coprim
01 =7-13; 119 =
221 = 13- 17; 154
6398073 = 7+ - 13

(a,b,c,d,e)—

012119%221¢1547"
70 Lb—d 4el3a+c—<

Kernel Is generate
(1,1,1,2,0) and (

€MmS.

edups,

Typical application:
detecting multiplicative relations.

Does 9119526811191513335221634643
equal 154717086326898(734393407

Each side has logarithm
~ 19466590.674872.

More generally:
What is kernel of (a, b,¢,d, e) —
01%119%221¢1547 6898073 €7

Kernel lets us find relations,
not just verify relations.

Factor into coprimes:
01=7-13;119=7-17;
221 =13 -17; 1547 =7 -13
6898073 = 74 - 132 - 17.

(a,b,c,d, e)—

0121190221¢1547 2689807 -
7alb d 4el3alc d 2el7b+c-

Kernel Is generated by
(1,1,1,2,0) and (3,2,0,1, 1

Typical application:
detecting multiplicative relations.

Does 91 1952681 1 191513335 29 1634643
equal 154717086326898(734393407

Each side has logarithm
~ 19466590.674872.

More generally:
What is kernel of (a, b, ¢, d, e) —
01%119%221¢1547%46898073 €7

Kernel lets us find relations,
not just verify relations.

Factor into coprimes:
01=7-13;119=7-17;

221 =13 -17; 1547 =7 -13 - 17;
6898073 = 74 - 132 - 17.

(a,b,c,d,e) —

012119°221¢1547 246898073 ¢ =
7alb d 4el3alc d 2617blc d e

Kernel Is generated by
(1,1,1,2,0) and (3,2,0,1,1).

Typical application:
detecting multiplicative relations.

Does 91 1952681 1 191513335 29 1634643
equal 154717086326898(734393407

Each side has logarithm
~ 19466590.674872.

More generally:
What is kernel of (a, b, ¢, d, e) —
01%119%221¢1547%46898073 €7

Kernel lets us find relations,
not just verify relations.

Factor into coprimes:
01=7-13;119=7-17;

221 =13 -17; 1547 =7 -13 - 17;
6898073 = 74 - 132 - 17.

(a,b,c,d,e) —

012119°221¢1547 246898073 ¢ =
7alb d 4el3alc d 2617blc d e

Kernel Is generated by
(1,1,1,2,0) and (3,2,0,1,1).

Factoring into coprimes
remains fast for larger numbers.
Factoring into primes does not.

application:
o multiplicative relations.

1952681 1 191513335 29 1634643
"471708632 6898073439346 ?

e has logarithm
590.674872.

nerally:
kernel of (a,b,c, d,e) —
221¢1547%6898073 €7

ots us find relations,
verify relations.

Factor into coprimes:
01=7-13;119=7-17;

221 =13 -17; 1547 =7 -13 - 17;
6898073 = 74 - 132 - 17.

(a,b,c,d, e)—

0121190221¢1547 96898073 ¢ =
7alb d 4el3alc d 2el7blc d e

Kernel Is generated by
(1,1,1,2,0) and (3,2,0,1,1).

Factoring into coprimes
remains fast for larger numbers.
Factoring into primes does not.

Can app
In more

replace |

Typical
Take a s

What ar

One ans
for {h €
as a vec
Factor g
This list

all 1rredt

(1993 N

1.

ative relations.

)1513335 221634643
58080734393467

rithm
2.

(a,b,c,d,e)—
46898073 €7

relations,
tions.

Factor into coprimes:
01=7-13;119=7-17;

221 =13 -17; 1547 =7 -13 - 17;
6898073 = 74 - 132 - 17.

(a,b,c,d,e) —

012119°221¢1547 246898073 ¢ =
7alb d 4el3alc d 2617blc d e

Kernel I1s generated by
(1,1,1,2,0) and (3,2,0,1,1).

Factoring into coprimes
remains fast for larger numbers.
Factoring into primes does not.

Can apply same al
iIn more generality
replace integers w

Typical applicatior
Take a squarefree

What are g's irred

One answer: Fina
for {h € (Z/2)[z
as a vector space

Factor g, h1, Ao, ..
This list of coprim
all irreducible divic

(1993 Niederreiter

'10oNS.

1634643
93467

Factor into coprimes:
01=7-13;119=7-17;

221 =13 -17; 1547 =7 -13 - 17;
6898073 = 74 - 132 - 17.

(a,b,c,d, e)—

0121190221¢1547 96898073 ¢ =
7alb d 4el3alc d 2el7blc d e

Kernel Is generated by
(1,1,1,2,0) and (3,2,0,1,1).

Factoring into coprimes
remains fast for larger numbers.
Factoring into primes does not.

Can apply same algorithms
in more generality: e.g.,
replace integers with polyno

Typical application:
Take a squarefree g € (Z/2)
What are g's irreducible divi

One answer: Find basis A1,
for {h € (Z/2)[z] : (gh)" =
as a vector space over Z/2.

Factor g, h1, ho, ... Into cor
This list of coprimes contair
all irreducible divisors of g.

(1993 Niederreiter, 1994 Go

Factor into coprimes:
01=7-13;119=7-17;

221 =13 -17; 1547 =7 -13 - 17;
6898073 = 74 - 132 - 17.

(a,b,c,d,e) —

012119°221¢1547 246898073 ¢ =
7alb d 4el3alc d 2617blc d e

Kernel Is generated by
(1,1,1,2,0) and (3,2,0,1,1).

Factoring into coprimes
remains fast for larger numbers.
Factoring into primes does not.

Can apply same algorithms
In more generality: e.g.,
replace integers with polynomials.

Typical application:
Take a squarefree g € (Z/2)[z].
What are g's irreducible divisors?

One answer: Find basis A1, Ao, . ..
for {h € (Z/2)[z] : (gh)' = h?}
as a vector space over Z/2.

Factor g, A1, ho, ... Into coprimes.
This list of coprimes contains

all irreducible divisors of g.

(1993 Niederreiter, 1994 Gottfert)

1to coprimes:

13: 119=7-17;

3-17; 1547 =7-13-17;
=74.13%.17.

[, e) —

221€1547 96898073 ¢ =
-4el3alc d 2e17blc d e

5 generated by
2,0) and (3,2,0,1,1).

g Into coprimes
fast for larger numbers.
g Into primes does not.

Can apply same algorithms
in more generality: e.g.,
replace integers with polynomials.

Typical application:
Take a squarefree g € (Z/2)[z].
What are g's irreducible divisors?

One answer: Find basis A1, Ao, . ..
for {h € (Z/2)[z] : (gh)' = h?}
as a vector space over Z/2.

Factor g, A1, ho, ... Into coprimes.
This list of coprimes contains

all irreducible divisors of g.

(1993 Niederreiter, 1994 Gottfert)

More ex
of factot
1890 Sti
1985 Ka
Dora Di
Bach M
zur Gatk
1989 Po
Teitelbal
Bach Dr
1994 Bu
Bernstel
Cohen L

Storjoha
Cr.yp.t

|CS.

7 - 17;
7=7-13-17;
2. 17.
~26808073 ¢ =
i—2el7blc d e
d by
3,2,0,1,1).
rimes

rger numbers.
nes does not.

Can apply same algorithms
In more generality: e.g.,
replace integers with polynomials.

Typical application:
Take a squarefree g € (Z/2)[z].
What are g's irreducible divisors?

One answer: Find basis A1, Ao, . ..
for {h € (Z/2)[z] : (gh)' = h?}
as a vector space over Z/2.

Factor g, A1, ho, ... Into coprimes.
This list of coprimes contains
all irreducible divisors of g.

(1993 Niederreiter, 1994 Gottfert)

More examples, ap
of factoring into c
1890 Stieltjes; 197
1985 Kaltofen; 19
Dora DiCrescenzo
Bach Miller Shalli
zur Gathen: 1986
1989 Pohst Zasser
Teitelbaum; 1990
Bach Driscoll Shal
1994 Buchmann L
Bernstein: 1997 Si
Cohen Diaz y Dia:
Storjohann; . ..

cr.yp.to/coprir

-17:

ers.
10t.

Can apply same algorithms
in more generality: e.g.,
replace integers with polynomials.

Typical application:
Take a squarefree g € (Z/2)[z].
What are g's irreducible divisors?

One answer: Find basis A1, Ao, . ..
for {h € (Z/2)[z] : (gh)' = h?}
as a vector space over Z/2.

Factor g, A1, ho, ... Into coprimes.
This list of coprimes contains
all irreducible divisors of g.

(1993 Niederreiter, 1994 Gottfert)

More examples, applications
of factoring into coprimes: ¢
1890 Stieltjes; 1974 Collins;
1985 Kaltofen; 1985 Della
Dora DiCrescenzo Duval: 19
Bach Miller Shallit; 1986 vo
zur Gathen; 1986 Luneburg;
1989 Pohst Zassenhaus; 19€
Teitelbaum; 1990 Smedley;

Bach Driscoll Shallit: 1994 (
1994 Buchmann Lenstra; 19
Bernstein: 1997 Silverman:

Cohen Diaz y Diaz Olivier;
Storjohann; ...
cr.yp.to/coprimes.html

Can apply same algorithms More examples, applications
In more generality: e.g., of factoring into coprimes: see
replace integers with polynomials. 1890 Stieltjes; 1974 Collins;
1985 Kaltofen; 1985 Della
Dora DiCrescenzo Duval; 1986
Bach Miller Shallit: 1986 von
zur Gathen; 1986 Luneburg;

Typical application:
Take a squarefree g € (Z/2)[z].
What are g's irreducible divisors?

One answer: Find basis A1, ho, . .. 1989 Pohst Zassenhaus: 1990
for {h, € (Z/2)[z] : (gh) = /7:2} Teitelbaum; 1990 Smedley; 1993
as a vector space over Z/2. Bach Driscoll Shallit; 1994 Ge;
Factor g, A1, hp, ... Into coprimes. 1994 Buchmann Lenstra; 1996
This list of coprimes contains Bernstein: 1997 Silverman: 1998
all irreducible divisors of g. Cohen Diaz y Diaz Olivier; 1998

(1993 Niederreiter, 1994 Gottfert) Storjohann; ...
cr.yp.to/coprimes.html

ly same algorithms
generality: e.g.,
ntegers with polynomials.

application:
quarefree g € (Z/2)]z].
e g's irreducible divisors?

wer: Find basis A1, Ao, ...

(Z/2)[a]: (9h) = h?)
tor space over Z/2.

,h1,ho, ... Into coprimes.
of coprimes contains
icible divisors of g.

iederreiter, 1994 Gottfert)

More examples, applications
of factoring into coprimes: see
1890 Stieltjes; 1974 Collins;
1985 Kaltofen; 1985 Della
Dora DiCrescenzo Duval; 1986
Bach Miller Shallit: 1986 von
zur Gathen; 1986 Luneburg;
1989 Pohst Zassenhaus; 1990
Teitelbaum; 1990 Smedley; 1993
Bach Driscoll Shallit: 1994 Ge:
1994 Buchmann Lenstra; 1996
Bernstein: 1997 Silverman: 1998
Cohen Diaz y Diaz Olivier; 1998
Storjohann; ...

cr.yp.to/coprimes.html

Exercise
how wol
shared a

2012 He
Wustrow
best-par
USENIX
2012 Le
Bos—Kle
indepenc
Whit Is
RSA key

use such
this doe:

gorithms

- e.g.,
th polynomials.

1.

g € (Z/2)[z].
ucible divisors?

basis h1, ho, ...
- (gh) = r?}
over Z/2.

. Into coprimes.

es contains
ors of g.

, 1994 Gottfert)

More examples, applications
of factoring into coprimes: see
1890 Stieltjes; 1974 Collins;
1985 Kaltofen; 1985 Della
Dora DiCrescenzo Duval; 1986
Bach Miller Shallit: 1986 von
zur Gathen; 1986 Luneburg;
1989 Pohst Zassenhaus; 1990
Teitelbaum; 1990 Smedley; 1993
Bach Driscoll Shallit: 1994 Ge:
1994 Buchmann Lenstra; 1996
Bernstein: 1997 Silverman: 1998

Cohen Diaz y Diaz Olivier; 1998
Storjohann; . ..

cr.yp.to/coprimes.html

Exercise: Given 2
how would you ch
shared among tho:

2012 Heninger—Dt
Wustrow—Haldermr

best-paper award .

USENIX Security
2012 Lenstra—Hug
Bos—Kleinjung—W:
iIndependent “Ron
Whit i1s right” pap

RSA keys on the |

use such bad rand
this does find fact

More examples, applications Exercise: Given 223 RSA ke
of factoring into coprimes: see how would you check for pri
mials. 1890 Stieltjes; 1974 Collins; shared among those keys?
1985 Kaltofen; 1985 Della
Dora DiCrescenzo Duval; 1986
Bach Miller Shallit: 1986 von

2012 Heninger—Durumeric—
Wustrow—Halderman,

Cathen: 1986 Liinebure: best-paper award at
zur Gathen, HAELLrs, USENIX Security Symposiur
ho, ... 1989 Pohst Zassenhaus; 1990 .
5 | 2012 Lenstra—Hughes—Augie
h} Teitelbaum: 1990 Smedley: 1993 -
| | Bos—Kleinjung—Wachter,
Bach Driscoll Shallit: 1994 Ge: .)
. independent “Ron was wron
rmes. 1994 Buchmann Lenstra; 1996 e
| | Whit is right” paper, Cryptc
S Bernstein: 1997 Silverman:; 1998
Cohen Diaz y Diaz Olivier; 1998 RSA keys on the Internet
ttfert) Storjohann; . .. use such bad randomness th

cr.yp.to/coprimes.html this does find factors!

More examples, applications
of factoring into coprimes: see
1890 Stieltjes; 1974 Collins;
1985 Kaltofen; 1985 Della
Dora DiCrescenzo Duval; 1986
Bach Miller Shallit: 1986 von
zur Gathen; 1986 Luneburg;
1989 Pohst Zassenhaus; 1990
Teitelbaum; 1990 Smedley; 1993
Bach Driscoll Shallit: 1994 Ge:
1994 Buchmann Lenstra; 1996
Bernstein: 1997 Silverman: 1998

Cohen Diaz y Diaz Olivier; 1998
Storjohann; . ..

cr.yp.to/coprimes.html

Exercise: Given 223 RSA keys,
how would you check for primes

shared among those keys?

2012 Heninger—Durumeric—
Wustrow—Halderman,
best-paper award at

USENIX Security Symposium:;
2012 Lenstra—Hughes—Augier—
Bos—Kleinjung—Wachter,
independent “Ron was wrong,
Whit is right” paper, Crypto:

RSA keys on the Internet
use such bad randomness that
this does find factors!

