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Integer-factorization bottleneck:
Given sequence of numbers,
find nonempty subsequence
with square product.

e.g. given 0, 7,3, 10, 15,
discover 6 - 10 - 15 = 302,

Discrete-log bottleneck:

Given sequence of numbers,
find 1 as nontrivial

product of powers.

e.g. given 6,7, 3, 10, 15,
discover 6°7987210°1573 = 1.

More generally: find kth power.
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Do real applications

reach large enough sizes

to benefit from these techniques?
In cryptanalysis, definitely.

In cryptography, sometimes:
Gaudry—Schost Kummer surface;
McBits; many more examples.
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The fast Fourier transform

Use (Co, Cl,.-.., C'n,—l) c Cn
to represent f =) , cj:cj c

Summary of representation
“f has n coeffs”. Warning:
f does not determine n.

f = fo(z?) + zf1(z?) wher
(co,c2,...) € CIm/2]
(c1,¢3,...) € Cln/2
represent fo, f1 respectively.

C[z]-morphism y > z?

from C|z||y] to Clz]
maps fo(y) + zf1(y) to f.
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by evaluating fo(a?): f1
fla) = fo(e?) + afi(c
f(—a) = fo(a?) — afi(a

Evaluate f(a) for, e.g.,

all & € C with al02* =1
by evaluating fo(B8), f1(5)
for all B € C with 8°12 = 1
plus 1024 adds, 512 mults.

No

Apply this recursively =
nlgn adds, (n/2)lgn mult
to evaluate n-coeff f

for all a € C with a™ =1
if n 1s a power of 2.
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Given f, g € Clz],
compute fg as T~
using T : Clz]/(z’
Compute 7 quickl

Given f, g € C|z],
compute fg from
its image in Clz]/



1 then

npute

Apply this recursively:

fmodz*—1

SN

fmodz?—1 fmodz?+1

AN

fmod fmod fmod f mod
r—1 z+4+1 z—1 x-+1

FA) F-1) @) f(—i)

(basic FFT idea: 1866 Gauss;
this view: 1972 Fiduccia)

1966 Sande, 1966 Stockhan
Can very quickly multiply

in Clz|/(z™ — 1) or C|z] or
by mapping Clz]/(z" — 1) 1

Given f,g € Clz]/(z™ — 1):
compute fg as T YT (f)T!
using T : Clz]|/(z" — 1) —»
Compute 7 quickly by the F

Given f,g € Clz], deg fg <
compute fg from
its image in Clz|/(z™ — 1).



Apply this recursively: 1966 Sande, 1966 Stockham:
Can very quickly multiply

f mod 2% —1 in C[z]/(z™ — 1) or C[z] or R[]
/ \ by mapping Clz]/(z"™ — 1) to C".
fmodz?—1  fmodz®+1 Given f,g € Clz]|/(z™ — 1):

compute fg as T HT(f)T(g))
using T : Clz]/(z™ — 1) < C".
Compute T quickly by the FFT.

fmod fmod fmod f mod |
z—1 z+1 -1 43 Given f, g € C[z], deg fg < n:

— compute fg from

71 f(-1) fz) f(—2) its image in Clz]/(z" — 1).

(basic FFT idea: 1866 Gauss;
this view: 1972 Fiduccia)




Apply this recursively: 1966 Sande, 1966 Stockham:

. Can very quickly multiply
Jmode”—1 in C[z]/(z™ — 1) or C[z] or R[]

/ \ by mapping Clz]/(z"™ — 1) to C".

2 2
fmodz®—1 fmodz®+1 Given f,g € Clz]|/(z™ — 1):

compute fg as T HT(f)T(g))
using T : Clz]/(z™ — 1) < C".
Compute T quickly by the FFT.

fmod fmod fmod f mod |
z—1 z+1 -1 43 Given f, g € C[z], deg fg < n:

— compute fg from

71 f(-1) fz) f(—2) its image in Clz]/(z" — 1).

(basic FFT idea: 1866 Gauss; Later authors: Replace C with,
this view: 1972 Fiduccia) eg., R=2/(3-2"1 +1);

23 has order 2% in R*.




1S recursively:

fmodz*—1

SN

z2—1 Ffmodz?+1

\

fmod fmod f mod
zr+1 xz—1 x-+1
f(=1)  f(z) f(—2)
FT idea: 1866 Gauss:
/: 1972 Fiduccia)

1966 Sande, 1966 Stockham:
Can very quickly multiply

in Clz]/(z™ — 1) or C|z] or R[z]
by mapping C[z]/(z" —

Given f,g € Clz]/(z™ — 1):

compute fg as T~ H(T(£)T(9))
using T : Clz]/(z™ — 1) < C".
Compute T quickly by the FFT.

Given f, g € Clz], deg fg < n:
compute fg from
its image in C|z]/(z"™ — 1).

Later authors: Replace C with,
eg., R=2Z/(3-2% +1);
23 has order 24! in R*.

Multiplic

1) to C™.

Given 7,
In time -

where b

(1971 P
1971 Ni
1971 Sc

Also tim

where b
Given 7,
compute

(reductic
1966 Co



f mod z° + 1

/\

f mod f mod
T—1 <T+1

F6)  F(=)
1866 Gauss;
duccia)

1966 Sande, 1966 Stockham:

Can very quickly multiply

in Clz]/(z™ — 1) or C|z] or R[z]
by mapping Clz|/(z" — 1) to C".

Given f,g € Clz]/(z™ — 1):

compute fg as T~ H(T(f)T(g))
using T : Clz]/(z™ — 1) — C".
Compute 7 quickly by the FFT.

Given f,g € Clz], deg fg < n:
compute fg from
its image in Clz]/(z" — 1).

Later authors: Replace C with,
eg, R=2Z/(3-2% +1);
23 has order 24! in R*.

Multiplication and

Given r,s € Z, ca
in time < b(Igb)!
where b Is number

(1971 Pollard; ind
1971 Nicholson: ir
1971 Schonhage S

Also time < b(Igb
where b Is number
Given r,s € Z wit

compute |r/s| an

(reduction to prod
1966 Cook)



1966 Sande, 1966 Stockham:

Can very quickly multiply

in Clz]/(z™ — 1) or C|z] or R[z]
by mapping Clz|/(z" — 1) to C".

Given f,g € Clz]/(z™ — 1):

compute fg as T~ H(T(f)T(g))
using T : Clz]/(z™ — 1) < C".
Compute T quickly by the FFT.

Given f,g € Clz], deg fg < n:
compute fg from
its image in Clz|/(z™ — 1).

Later authors: Replace C with,
eg., R=2Z/(3-2% +1);
23 has order 24! in R*.

Multiplication and division

Given r, s € Z, can compute
in time < b(Ig b)1to(l)
where b is number of input |

(1971 Pollard; independentl
1971 Nicholson; independen
1971 Schonhage Strassen)

Also time < b(Ig b)11o(1)
where b is number of input |
Given r,s € Z with s # 0,
compute |r/s| and 7 mod s

(reduction to product:
1966 Cook)



1966 Sande, 1966 Stockham:

Can very quickly multiply
in Clz]/(z™ — 1) or C|z] or R[z]

by mapping Clz|/(z" — 1) to C".

Given f,g € Clz]/(z™ — 1):

compute fg as T~ H(T(f)T(g))
using T : Clz]/(z™ — 1) < C".
Compute 7 quickly by the FFT.

Given f,g € Clz], deg fg < n:
compute fg from
its image in Clz|/(z™ — 1).

Later authors: Replace C with,
eg., R=2Z/(3-2% +1);
23 has order 24! in R*.

Multiplication and division

Given r,s € Z, can compute s
in time < b(Igb)LTo)
where b is number of input bits.

(1971 Pollard; independently
1971 Nicholson; independently
1971 Schonhage Strassen)

Also time < b(Ig b)1Ho(1)
where b is number of input bits:
Given r,s € Z with s # 0,

compute |r/s| and r mod s.

(reduction to product:
1966 Cook)



nde, 1966 Stockham:

/ quickly multiply

(z™ — 1) or C|z] or R|z]
ing Clz|/(z™ — 1) to C".

g € Clz]/(z" —1):

fg as TH(T(H)T(9))
: Clz]/(z™ — 1) < C™.
e T quickly by the FFT.

g € Clz], deg fg < n:
 fg from
e in Clz]|/(z" — 1).

thors: Replace C with,
= Z/(3-2% 4+ 1);
rder 241 in R*.

Multiplication and division

Given r, s € Z, can compute rs
in time < b(Ig b)1to(l)

where b is number of input bits.

(1971 Pollard; independently
1971 Nicholson; independently
1971 Schonhage Strassen)

Also time < b(Ig b)11o(1)

Given r,s € Z with s # 0,
compute |r/s| and r mod s.

(reduction to product:
1966 Cook)

Product

where b is number of input bits:

Time <
where b
Given -
compute

Actually
product
Root Is
Has left
product
Also rigl
product



Stockham:
nultiply

or Clz] or R[z]
(z"™ — 1) to C™.

(" — 1)

HT()T(9))
'—1) — C".
y by the FFT.

deg fg < n:

(z"™ —1).

vlace C with,
H 1),
1 R*.

Multiplication and division

Given r,s € Z, can compute s
in time < b(Igb)LTo)

where b is number of input bits.

(1971 Pollard; independently
1971 Nicholson; independently
1971 Schonhage Strassen)

Also time < b(Ig b)1Ho(1)

Given r,s € Z with s # 0,
compute |r/s| and r mod s.

(reduction to product:
1966 Cook)

Product trees

where b is number of input bits:

Time < b(lg b)?+°
where 6 I1s number
Given z1,Zo, ..., :
compute 1z - - -

Actually compute
product tree of z
Root Is z1zo - - - .
Has left subtree if
product tree of x4
Also right subtree
product tree of Ty



9))
cn.
FT.

th,

Multiplication and division

Given r, s € Z, can compute rs
in time < b(Ig b)1to(l)

where b is number of input bits.

(1971 Pollard; independently
1971 Nicholson; independently
1971 Schonhage Strassen)

Also time < b(Ig b)11o(1)

Given r,s € Z with s # 0,
compute |r/s| and r mod s.

(reduction to product:
1966 Cook)

Product trees

where b is number of input bits:

Time < b(lg b)2+o(1)

where b is number of input |
Given z1,Zo, ..., T, € L,
compute 1o - - - Ty,.

Actually compute

product tree of z1, o, ...,
Root Is z1Zy - - - Ty

Has left subtree if n > 2:
product tree of zq, ..., Tln/
Also right subtree if n > 2:
product tree of Try, /0741,



Multiplication and division

Given r,s € Z, can compute rs
in time < b(Igb)LTo)

where b is number of input bits.

(1971 Pollard; independently
1971 Nicholson; independently
1971 Schonhage Strassen)

Also time < b(Ig b)1Ho(1)

Given r,s € Z with s # 0,
compute |r/s| and r mod s.

(reduction to product:
1966 Cook)

Product trees

where b is number of input bits:

Time < b(lg b)21+o(1)

where b is number of input bits:
Given z1,Zo, ..., Ty € L,
compute 1o - - - Ty,.

Actually compute

product tree of z1,zo, ..., Ty, .
Root Is z1zy - - - Ty

Has left subtree if n > 2:
product tree of z4, ..., Tln/2]-
Also right subtree it n > 2:
product tree of Try, /0741, -, T, .



“ation and division

s € Z, can compute rs
< b(lg b)+ oV

IS number of input bits.

ollard; independently
“holson; independently
honhage Strassen)

e < b(lgb)Lto(l)

IS number of input bits:

s € Z with s # 0,
 |r/s| and r mod s.

on to product:
ok)

Product trees

Time < b(lg b)2+o(1)

where b is number of input bits:
Given z1,Z>,...,Zn € Z,
compute 1o - - - Ty,.

Actually compute

product tree of z1, o, ..., Ty, .
Root Is z1Z9 - - - .

Has left subtree if n > 2:
product tree of z4, ..., Tln/2]-
Also right subtree if n > 2:

product tree of Try, /0741, Ty

e.g. tree

Tree has
Each lev

Obtain e
In time -

by multi



_division

N compute s
-o(1)

-of input bits.

ependently
idependently
trassen)

)1+0(1)

~of Input bits:

hs+#D0,
d  mod s.

uct:

Product trees

Time < b(lg b)2+o(1)

where b is number of input bits:
Given z1, 7, .. ., Ty € L,
compute 1o - - - Ty,.

Actually compute

product tree of z1,zo, ..., Ty, .
Root Is z1Zy - - Ty

Has left subtree if n > 2:
product tree of zq, ..., Tln/2]-
Also right subtree if n > 2:

product tree of Try, /0741, -, T, .

e.g. tree for 23, 29

92614

7
56028

7N
667 8

7\
23 29

4

Tree has < (Igb)t
Each level has < ¢

Obtain each level
in time < b(Igb)!"
by multiplying low



=TS

Oits.

tly

Dits:

Product trees

Time < b(lg b)2+o(1)

where b is number of input bits:

Given z1,Zo, ..., Tn € Z,
compute 1o - - - Ty,.

Actually compute

product tree of z1, o, ..., T, .

Root Is z1Z9 - - - .

Has left subtree if n > 2:
product tree of zq, ..., Tln/2]-
Also right subtree it n > 2:

product tree of Try, /0741, -, T,,.

e.g. tree for 23, 29, 84, 15, b¢

026142840
7T
56028 1
7N e
667 84 870
7\ 7\
23 29 15 58

Tree has < (Igb)11°() |evel
Each level has < b(lg )9+

Obtain each level
in time < b(Ig b)1to(l)

by multiplying lower-level pc



Product trees

Time < b(lg b)21+o(1)

where b is number of input bits:
Given z1, 2o, .. ., Ty € L,
compute 1o - - - Ty,.

Actually compute

product tree of z1,zo, ..., Ty, .
Root Is z1Z9 - - - Ty

Has left subtree if n > 2:
product tree of z1, ..., Tln/2]-
Also right subtree if n > 2:

product tree of Try, /0741, -, T, .

e.g. tree for 23, 29, 84, 15, 58, 19:

026142840
ST
56028 16530
7N N
667 84 870 19
7\ 7\
23 29 15 58

Tree has < (Igb)1T°() Jevels.
Each level has < b(Ig 6)0t°(1) pits.

Obtain each level
in time < b(Igb)1 o)

by multiplying lower-level pairs.



trees

b('g b)2—|—0(1)
IS number of input bits:

 L1TD - " Tyy.

compute

tree of 21, 2o, . . ., Ty, .
T1L2 - Ty.

subtree if n > 2:

tree of T4, ..., Tln/2]-
1t subtree if n > 2:

tree of x(‘n/ﬂ—kl ..... Z,,.

e.g. tree for 23, 29, 84, 15, 58, 19:

026142840
7T
56028 16530
7N N
667 84 870 19
7\ 7\
23 29 15 58

Tree has < (Igb)1T°() Jevels.

Each level has < b(Ig 6)0+°(1) pits.

Obtain each level
in time < b(Ig b)1to(l)

by multiplying lower-level pairs.

Remainc

Remain
of r, z1,
one nod
in produ

e.g. rem
2230923

46
Y\



(1)

-of input bits:

e.g. tree for 23, 29, 84, 15, 58, 19:

026142840
ST
56028 16530
7N N
667 84 870 19
7\ 7\
23 29 15 58

Tree has < (Igb)1t°() Jevels.

Each level has < b(Ig 6)0+°(1) pits.

Obtain each level
in time < b(Igb)1To)
by multiplying lower-level pairs.

Remainder trees

Remainder tree

one node r mod ¢
in product tree of

e.g. remainder tre
2230923870, 23, 29,

223092

yd
45402

v\
46 4

/N
0 17

2



Oits:

e.g. tree for 23, 29, 84, 15, 58, 19:

026142840
7T
56028 16530
7N N
667 84 870 19
7\ 7\
23 29 15 58

Tree has < (Igb)1T°() Jevels.

Each level has < b(Ig 6)01°(1) pits.

Obtain each level
in time < b(Ig b)1to(l)

by multiplying lower-level pairs.

Remainder trees

Remainder tree

of r,x1,Zo, ..., T, has

one node r mod ¢t for each r
in product tree of z1, zo, . ..

e.g. remainder tree of
223092870, 23, 29, 84, 15, 58

2230923870
S~
45402 3
S\ /
46 42 510
/N /N

0 17 0 46



e.g. tree for 23, 29, 84, 15, 58, 19:

026142840
ST
56028 16530
7N N
667 84 870 19
7\ 7\
23 29 15 58

Tree has < (Igb)1T°() Jevels.

Each level has < b(Ig 6)0+°(1) pits.

Obtain each level
in time < b(Igb)1To)
by multiplying lower-level pairs.

Remainder trees

Remainder tree

of r,x1,Zo, ..., T, has

one node r mod t for each node ¢
in product tree of z1,zo, ..., Tr,.

e.g. remainder tree of
223092870, 23, 29, 84, 15, 58, 19:

223092870
S T~
45402 3990
S\ S\
46 42 510 0
AN /N

0 17 0 46



for 23,29, 84, 15, 58, 19:

026142840
7T
56028 16530
7 X\ N
84 870 19
7N\
9 15 58

< (Igb)11o(1) Jevels.

el has < b(Ig 6)0°) bits.

ach level
< b(Ig b)* otV
plying lower-level pairs.

Remainder trees

Remainder tree

of r,x1,Zo, ..., T, has

one node r mod t for each node ¢
in product tree of =1, zo, ..., T

e.g. remainder tree of
223092870, 23, 29, 84, 15, 58, 19:

223092870
TN
45402 3990
PR Z N
46 42 510 0
/ \ / \

0 17 0 46

Time <
Given r
nonzero
compute
of r, z1,

In partic
r mod I

(1972 MV
for “sing
whateve



, 84, 15,58, 19:

23840

~_
16530

7N
870 19

7\
15 58

+o(1) |evels.

(Ig 6)0+0(1) pits.

-o(1)

er-level pairs.

Remainder trees

Remainder tree

of r,x1,Zo, ..., T, has

one node r mod t for each node ¢
in product tree of 1, o, ..., Tr,.

e.g. remainder tree of
223092870, 23, 29, 84, 15, 58, 19:

223092870
S T~
45402 3990
S\ S\
46 42 510 0
AN /N

0 17 0 46

Time < b(lg b)?+°
Given r € Z and

nonzero i, ..., T,
compute remainde

In particular, see v
CB1 ..... :cn d|V|de 1

(1972 Moenck Bo
for “single precisic
whatever exactly t



3, 19:

6530

19

) bits.

1rS.

Remainder trees

Remainder tree

of r,x1,Zo, ..., T, has

one node r mod t for each node ¢
in product tree of =1, zo, ..., T

e.g. remainder tree of
223092870, 23, 29, 84, 15, 58, 19:

223092870
TN
45402 3990

v\
46 42

/ \ / \
0 17 0 46

Time < b(Ig b)2to1);
Given r € Z and
nonzero 1, ..., Ty € L,
compute remainder tree

In particular, compute
r mod z1, ..., r mod Z,,.

In particular, see which of
1, ..., T, divide 7.

(1972 Moenck Borodin,
for “single precision” z;'s,
whatever exactly that mean:



Remainder trees

Remainder tree

of r,x1,Zo, ..., T, has

one node r mod t for each node ¢
in product tree of 1, o, ..., Tr,.

e.g. remainder tree of
223092870, 23, 29, 84, 15, 58, 19:

223092870
TN
45402 3990

PR PR
46 42 510 0

/ \ Y\
0 17 0 46

Time < b(Ig b)2to(1);
Given r € Z and
nonzero 71, ..., Ty, € L,
compute remainder tree

In particular, compute
r mod z1, ..., r mod Z,,.

In particular, see which of
1, ..., T, divide 7.

(1972 Moenck Borodin,
for “single precision” z;'s,
whatever exactly that means)



ler trees

der tree

e r mod ¢t for each node ¢
ct tree of 21, 29, ..., Tr,.

ainder tree of
70,23,29, 84, 15,58, 19:

223092870
TN
15402 3990
R Z N\
42 510 0
/ \
7 0 46

Time < b(Ig b)2to(1);
Given r € Z and
nonzero 1, ..., Ty € L,
compute remainder tree

In particular, compute
r mod z1, ..., r mod Z,,.

In particular, see which of
1, ..., T, divide 7.

(1972 Moenck Borodin,
for “single precision” z;'s,
whatever exactly that means)

Small pr

Time <
Given
finite se

{peQ

In partic
see whe!
any of

Algorith
1. Use ¢
COME

2. Use ¢
whicl



, has
for each node ¢
$1,$2,...,£Bn.

> of
34 15,58, 19:

2870

Time < b(Ig b)2tol1);
Given r € Z and
nonzero 71, ..., Ty, € L,
compute remainder tree
of r,z1,...,Zy.

In particular, compute

r mod z1,...,r mod z,,.

In particular, see which of
1, ..., T, divide 7.

(1972 Moenck Borodin,
for “single precision” z;'s,
whatever exactly that means)

Small primes, u

nic

Time < b(lgb)?

Given z1, Z7, . ..

+o

¥ 4
y LV

finite set  C Z —

{PEQ::Bla:Q-

In particular, w

= = '
LY

Ner

see whether p ¢

VI

any of z1, o, ...,

Algorithm:

1. Use a product °

compute r =z

2. Use a remainde

which » € @

di



ode t

19:

990

Time < b(Ig b)2to1);
Given r € Z and
nonzero z1,...,%n € Z,
compute remainder tree
of r,z1,...,Zn.

In particular, compute
r mod z1,...,r mod z,,.

In particular, see which of
Z1,...,ZTn divide 7.

(1972 Moenck Borodin,
for “single precision” z;'s,
whatever exactly that means)

Small primes, u

nion

Time < b(lgb)?
Given z1, Zo, ..

+o(1).

., Tn € Z an

finite set @ C Z — {0}, com

peQ:z1zo-

In particular, w

-+ Ly, mod p

nen p IS prim

see whether p ¢

any of 1,9, . ..

Algorithm:

Ivides
Ty

1. Use a product tree to

compute r =1y - - - Ty,

2. Use a remainder tree to ¢

which p € @

divide 7.



Time < b(Ig b)2to(1);
Given r € Z and
nonzero z1,...,Zn € Z,
compute remainder tree
of r,z1,...,Zy.

In particular, compute
r mod z1,...,r mod z,,.

In particular, see which of
z1,...,%Tn divide 7.

(1972 Moenck Borodin,
for “single precision” x;'s,
whatever exactly that means)

Small primes, union

Time < b(Ig b)2to(1);

Given z1,%Z>,...,Zn € Z and
finite set @ C Z — {0}, compute
{peEQ:z120 - TH mod p = 0}.

In particular, when » Is prime,

see whether p divides
any of £1,xo,..., 2Ty,

Algorithm:

1. Use a product tree to
compute r =1y - - - Ty,.

2. Use a remainder tree to see
which p € @ divide r.



b(lg b)> o).

€ Z and
z1,...,Tn € L,
' remainder tree

ular, compute

1,...,7 mod z,,.

ular, see which of
L, divide 7.

loenck Borodin,
le precision” z;'s,
r exactly that means)

Small primes, union

Time < b(Ig b)2to1);

Given z1,Z>,...,Zn € Z and
finite set @ C Z — {0}, compute
{p€eEQ:z120 - TH mod p = 0}.

In particular, when » iIs prime,

see whether p divides
any of £1,%9,...,2Zy.

Algorithm:

1. Use a product tree to
compute r =1y - - - Ty,.

2. Use a remainder tree to see
which p € @ divide r.

Small pr

Time <
Given
finite se
compute

., {p
(2000 B

Algorith
1. Repl:

{p €
2. It n -

3. Recu

4. Recu



g E Zv
r tree

ute
od T,,.

vhich of
r.

rodin,
’nn mirs,
hat means)

Small primes, union

Time < b(Ig b)2to(1);

Given z1,Z>,...,Zn € Z and
finite set @ C Z — {0}, compute
{p€eEQ:z122 - TH mod p = 0}.

In particular, when » Is prime,

see whether p divides
any of £1,xo,..., 2Ty,

Algorithm:

1. Use a product tree to
compute r =1y - - - Ty,.

2. Use a remainder tree to see
which p € @ divide r.

Small primes, seps

Time < b(lg b)3+°
Given 1,22, ...,

finite set Q of prir
compute {p € Q :

o fpEeEQ Ty
(2000 Bernstein)

Algorit
1. Rep

nm for n >

ace () with

{pre@ z1---

2. It n

= 1, print

3. Recurse on zq,

. Recurse on zr,



Small primes, union

Time < b(Ig b)2to1);

Given z1,Z>,...,Zn € Z and
finite set @ C Z — {0}, compute
{p€eEQ:z120 - TH mod p = 0}.

In particular, when p iIs prime,

see whether p divides
any of 1,9, ..., T, .

Algorithm:

1. Use a product tree to
compute r =12 - - - Ty,.

2. Use a remainder tree to see
which p € @ divide r.

Small primes, separately

Time < b(Ig b)3+°(1);

Given z1,Z>,...,Zn € Z an
finite set @ of primes,
compute {p € Q : £1 mod p
., ir€eER :zymodp=0
(2000 Bernstein)

Algorithm for n > 1:

1. Replace @ with
{peEQ :z1 Ty modp

2. If n =1, print @ and sto

3. Recurseon zy,..., T/

4. Recurse on /5141, - -



Small primes, union

Time < b(Ig b)2to(1);

Given z1,%Z>,...,Zn € Z and
finite set @ C Z — {0}, compute
{peEQ:z120 - TH mod p = 0}.

In particular, when » Is prime,

see whether p divides
any of 1,9, ..., L.

Algorithm:

1. Use a product tree to
compute r =1y - - - Ty,.

2. Use a remainder tree to see
which p € @ divide r.

Small primes, separately

Time < b(Ig b)3+°(1);

Given z1,%Z>,...,Zn € Z and

finite set ) of primes,
compute {p € Q : £1 mod p

o,

.., {P €Q : z, mod p = 0}.

(2000 Bernstein)

Algorithm for n > 1:

1. Replace @ with
{peEQ :z1 - xyn modp

2. If n =1, print @ and sto

3. Recurse on zy, ..., Ty >
4. Recurse on /o741,

~ 0.

D.

Q.



imes, union Small primes, separately Factor

over
b(Ig b)2 L) Time < b(Ig b)3+°(1);
LT, ..., T, € Z and Given z1,Zo, ..., T, € Z and
- CZ— {0}, compute finite set @ of primes,
ZT1Zo - Tp, mod p = 0}. compute {p € Q : 1 mod p = 0}, 2543,
| B OV¢
ular, when p is prime, - AP €W zn modp =0}, 2,3, 7

her p divides

(2000 Bernstein) /

1, L2, .., T Algorithm for n > 1.
- 1. Replace @ with 2543

| ) - — over
' product tree to {p €Q: 3:1_ T mod p O}' 2 17

2. If n =1, print @ and stop. '

ute 7 = 12 - - - Tyy. 3 R 0
' remainder tree to see 4' Recurse on I,y Ln/2]: & Each lev
' p € Q divide 7. . Recurse on zpy, 5741, - - -, T, Q.




n

(1).

t, € Z and
{0}, compute
tn, mod p = 0}.

1 D IS prime,
des
Ty, .

[ree to

1$2 - mn.
r tree to see
vide 7.

Small primes, separately

Time < b(Ig b)3+o(1);

Given z1, o, ..., zn € Z and
finite set ) of primes,

compute {p € Q : 1 mod p = 0},
.., {P €Q : z, mod p = 0}.
(2000 Bernstein)

Algorithm for n > 1:
1. Replace @ with

{peEQ :z1- - Tn, modp =0}
2. If n =1, print Q and stop.
3. Recurse on z4,..., Zrp/2]: Q.

4. Recurse on Zry, /2141, - -, T, , Q.

Factor 2543, 676
over {2,3,5,7,

/

2543,6766
over
2,3,7,17

/ \

2543 6766
over over
2,17 2,17

Each level has < ¢



EC

Small primes, separately

Time < b(Ig b)3+o(1):

Given z1,Zo, ..., T, € Z and
finite set  of primes,

compute {p € § : 1 mod p = 0},
.., {p € Q :zn, mod p = 0}.
(2000 Bernstein)

Algorithm for n > 1:

1. Replace @ with
{peEQ:z1- - Tn, modp =0}

2. If n =1, print @ and stop.

3. Recurse on z4, ..., Zrn/2]: Q.

4. Recurse on /0141, - - -, T,, Q.

Factor 2543, 6766, 8967, 7°
over {2,3,5,7,11,13,17

/ 0\

2543,6766 8967, 75
over over
2,3,7,17 2,3,7,1

AT

2543  6/66 8967 7
over  over  over O
2,1r 2,17 2,3,7 2

Each level has < b(lg )9+



Small primes, separately

Time < b(Ig b)3+o(1);
Given z1,Zo, ..., zn € Z and
finite set ) of primes,

compute {p € Q : 1 mod p = 0},

.., {p€Q :zy mod p =0}
(2000 Bernstein)

Algorithm for n > 1:
1. Replace @ with

{peEQ :z1- - Tn, modp =0}

2. If n =1, print Q and stop.
3. Recurse on z4, ..., Zrp/2]: Q.

4. Recurse on Zry, /2141, - -, T, , Q.

Factor 2543, 6766, 8967, 7598
over {2,3,5,7,11,13,17}

/ 0\

2543,6766 8967, 71598
over over
2,3,7,17 2,3,7,17

AYra

25043  6/66 38967 7593
over over over over
2,17 2,17 2,3,7 2,3,7

Each level has < b(lg 6)%t°(1) bits.



Imes, separately

b(lg b)3—|—0(1):

= () of primes,

 {p € Q :z1 mod p =0},
= 1z, mod p =0},

ernstein)

m for n > 1.
ice () with

Q:z1---Tn, modp =0}
=1, print ) and sto

D.

_'Q-

Factor 2543, 6766, 8967, 7598
over {2,3,5,7,11,13,17}

/ 0\

2543, 6766 8967, 7598
over over
2,3,7,17 2,3, 7,17

AYa

2543  6/66 38967 7593
over over over over
2,17 2,17 2,3,7 2,3,7

Each level has < b(lg 6)%t°(1) bits.

Exponer

Time <
Given nc
find e, »

Algorith
1. Ifzr
Print
2. Find
with
3. If rn
2f +
4. Print



rately

(1),
t, € Z and
nes,

1 mod p = 0},
nod p = 0}.

Factor 2543, 6766, 8967, 7598
over {2,3,5,7,11,13,17}

/ 0\

2543,6766 8967, 71598
over over
2,3,7,17 2,3,7,17

AYra

25043 6766 38967 7593
over over over over
2,17 2,17 2,3,7 2,3,7

Each level has < b(lg 6)91t°(1) bits.

Exponents of a si

Time < b(lg b)?+°
Given nonzero p, 2
find e, p®, z/p° wi

Algorithm:

1. If z modp#O
Print 0,1,z an

2. Find f, (pz)f,'r
with maximal ;

3. frmodp=0

2f +2,(p%)
4. Print 2f + 1, (;



Factor 2543, 6766, 8967, 7598
over {2,3,5,7,11,13,17}

/ 0\

2543, 6766 8967, 71598
over over
2,3,7,17 2,3, 7,17

AYa

2543 6766 38967 7593
over over over over
2,17 2,17 2,3,7 2,3,7

Each level has < b(lg 6)9t°(1) bits.

Exponents of a small prime

Time < b(Ig b)2to1);
Given nonzero »,x € Z,
find e, p®, ¢ /p® with maxim:

Algorithm:
1. If z mod p # 0:
Print 0, 1, z and stop.
2. Find £, (p°)7 .7 = (z/p),
with maximal f.
3. If r mod p=0: Print
2f +2,(p°)/p*, 7/p and
4. Print 2f + 1, (p°) », 7.



Factor 2543, 6766, 8967, 7598
over {2,3,5,7,11,13,17}

/ 0\

2543,6766 8967, 71598
over over
2,3,7,17 2,3,7,17

AYa

25043  6/66 38967 7593
over over over over
2,17 2,17 2,3,7 2,3,7

Each level has < b(lg 6)%t°(1) bits.

Exponents of a small prime

Time < b(Ig b)2to(1);
Given nonzero v,z € Z,
find e, p®, /p® with maximal e.

Algorithm:
1. If z mod p # O:
Print 0, 1, z and stop.
2. Find £, (p%)] . r = (z/p)/(0*)
with maximal f.
3. If r mod p=0: Print
2f + 2, (p?)! p?, r/p and stop.
4. Print 2f + 1, (p?)/ p, 7.



2543, 6766, 8967, 7598
{2,3,5,7,11,13,17}

/ 0\

0766 8967, 7593
over
2,3, 7,17

i

6/66 8967 7598
over over over
2,17 2,3,7 2,3,7

el has < b(lg 6)0t°(1) bits.

Exponents of a small prime

Time < b(Ig b)2to1);
Given nonzero »,x € Z,
find e, p®, /p® with maximal e.

Algorithm:
1. If z mod p # 0:
Print 0, 1, z and stop.
2. Find f,(p*)7. 7 = (z/p)/(p*)!
with maximal f.
3. If r mod p=20: Print
2Ff + 2, (p?)! p?, r /v and stop.
4. Print 2f + 1, (p?) », 7.

Exponer

Time <
Given fir
and non

€, HpEQ

Algorith
1. Replc




65,8967, 7598
11,13, 17}

\

8967, 7593
over
2,3,7,17

/ \

3967 7596
over over
.3, 7 2,3, 7

(Ig 6)+°() bits.

Exponents of a small prime

Time < b(Ig b)2to(1);
Given nonzero v,z € Z,
find e, p®, /p® with maximal e.

Algorithm:
1. If z mod p # O:
Print 0, 1, z and stop.
2. Find £, (p%)] . r = (z/p)/(0*)
with maximal f.
3. If r mod p=0: Print
2f + 2, (p?)! p?, r/p and stop.
4. Print 2f + 1, (p?) p, 7.

Exponents of sma

Time < b(lg b)3+°
Given finite set @
and nonzero € 4

€, HpEQ pe(p), iB/ [

Algorithm:
1. Replace @ witt
{p € Q : £ moc
2. Find maximal ;
2
3. Find T={p e
4. Output e, s| |,
where e(p) = 2




93

)OS

593
ver

3,7

) bits.

Exponents of a small prime

Time < b(Ig b)2to1);
Given nonzero »,x € Z,
find e, p®, /p® with maximal e.

Algorithm:
1. If z mod p # 0:
Print 0, 1, z and stop.
2. Find f,(p*)7. 7 = (z/p)/(p*)!
with maximal f.
3. If r mod p=0: Print
2Ff + 2, (p?)! p?, r /v and stop.
4. Print 2f + 1, (p?) », 7.

Exponents of small primes

Time < b(Ig b)3+°(1);
Given finite set () of primes
and nonzero z € Z, find ma

e, [peo pe(P) g/ [Mpeo pe(P

Algorithm:
1. Replace @ with
{pe @ :zmodp=0}
2. Find maximal f, s, r with
2
s=[1(*)""), r=(z/|
3. Find T ={p € Q : » mod
4. Output e, s| |,er o7/ |
where e(p) = 2f(p°) + [1




Exponents of a small prime

Time < b(Ig b)2to(1);
Given nonzero v,z € Z,
find e, p®, /p® with maximal e.

Algorithm:
1. If z mod p # O:

Print 0, 1, z and stop.
2. Find £, (p%)] . r = (z/p)/(0*)
with maximal f.
3. If r mod p=0: Print
2f + 2, (p?)! p?, r/p and stop.
4. Print 2f + 1, (p?) p, 7.

Exponents of small primes

Time < b(Ig b)3+°(1);
Given finite set () of primes

and nonzero z € Z, find maximal

e [peq PP 2/ [peq v°)

Algorit

1M

1. Rep

ace () with

{pe @ :zmodp=0}%
2. Find maximal f, s, r with

g —

M) ), 7= (2/[1p)/s.

3. Find T={p € Q:7 modp=0}.

4. Out

put e, s[Ter 2.7/ [Tyer P

where e(p) = 2f(p2) +|p € T].



ts of a small prime

b('g b)2—|—0(1):
nzero p, T € Z,

°, x/p® with maximal e.

m:
nod p # O:

0,1, z and stop.
f.(0°) . r = (z/p)/(p°)!
maximal f.

1od p = 0: Print

2, (p2)fp2,'r/p and stop.
2f + 1, (p2)fp, r.

Exponents of small primes

Time < b(Ig b)3+°(1);
Given finite set ) of primes
and nonzero z € Z, find maximal

e, [peq PP 2/ [peq v°%)

Algorithm:
1. Replace @ with

{pe @ :zmodp=0}
2. Find maximal f, s, r with

s=[1?)*7), r=(z/[p)/s.
3. Find T={p € Q :  mod p=0}.

4. Qutput e, s HpET o, T/ HpET D
where e(p) = 2f(p*) + [p € T].

Smooth

Time <
Given nc
and finit
compute
()-smoo
(J-smoo

()-smoo
of powel

(J-smoo!
largest (
In partic
T1,I9,.



1all prime

(1).
> € Z,
th maximal e.

d stop.

= (z/p)/(0*)!

F.

~ Print

.7 /p and stop.
) p, 7.

Exponents of small primes

Time < b(Ig b)3+o(1);
Given finite set ) of primes
and nonzero z € Z, find maximal

e [peq PP 2/ [peq v°)

Algorithm:
1. Replace @ with

{pe @ :zmodp=0}%
2. Find maximal f, s, r with

s= 1?7, r=(z/[p)/s.
3. Find T={p € Q : 7 mod p=0}.

4. Output e, s [,er 2.7/ |peT P
where e(p) = 2f(p°) +[p € T].

Smooth parts, old

Time < b(lg b)3+°
Given nonzero 1,
and finite set () of
compute (J-smoot
(Q-smooth part of

()-smooth part of

(J-smooth means
of powers of eleme

(J-smooth part me
largest ()-smooth
In particular, see v



) e.

stop.

Exponents of small primes

Time < b(Ig b)3+o(1):
Given finite set () of primes

and nonzero z € Z, find maximal
e, [peq PP 2/ [peq v°%)

Algorit

1.

Rep

1M

ace () with

{pe @ :zmodp=0}

S —

. Find maximal f, s, r with
y

[1(p?) ), r=(z/[]p)/s.

. Find T={p € Q:r modp=0}.

. Out

put e, s[Tyer 2.7/ [Tyer P

where e(p) = 2f(p2) +|p € T].

Smooth parts, old approach

Time < b(Ig b)3+°(1);

Given nonzero z1,Z>,...,T;
and finite set () of primes,
compute ()-smooth part of :
(Q-smooth part of z», ...,

()-smooth part of z,,.

(J-smooth means product
of powers of elements of Q.

(J-smooth part means
largest (-smooth divisor.
In particular, see which of

T1,Z>,...,Tn are smooth.



Exponents of small primes

Time < b(Ig b)3+o(1);
Given finite set () of primes

and nonzero z € Z, find maximal

e [peq PP 2/ [peq v°)

Algorithm:
1. Replace  with

{pe @ :zmodp=0}%
2. Find maximal f,s,r with

2

s= 1)), r=(/[1p)/s
3. Find T={p € @ :r mod p=0}.
4. Qutput e, s HpET D, T/ HpGT D

where e(p) = 2f(p2) +|p € T].

Smooth parts, old approach

Time < b(Ig b)3+°(1);

Given nonzero 1, Zo, .. ., Ty € L
and finite set () of primes,
compute J-smooth part of z1,
(Q-smooth part of z», ...,

()-smooth part of z,,.

(?-smooth means product
of powers of elements of Q.

(J-smooth part means
largest ()-smooth divisor.
In particular, see which of
T1,To,..., T, are smooth.



ts of small primes

b(lg b)3—|—0(1):
ite set () of primes

zero £ € Z, find maximal
pe(P) g/ [Mpeo pe(P).

m:
ice ¢ with

Q : z mod p = 0}.
maximal f, s, r with

1)), r=(z/[p)/s
I'={pe@:rmodp=0}.

ut e, s HpET P, T/ HpET p
= e(p) = 2f(p°)+[p € T]

Smooth parts, old approach

Time < b(Ig b)3+°(1);

Given nonzero 1, Zo, .. ., Ty € L
and finite set () of primes,
compute J-smooth part of z1,
(Q-smooth part of z», ...,

()-smooth part of z,,.

(J-smooth means product
of powers of elements of Q.

(J-smooth part means
largest (-smooth divisor.
In particular, see which of
T1,To,..., T, are smooth.

Algorit

N

1. Finc

2. For

oy

€

Find

S p—
Prin

f

t

e.g. fac

over {2,
2543 ovi
6766 ov
8967 ovi
7598 ov



| primes

(1).

of primes

7 find maximal
lpeq pelP).

| p = 0}.
F s, r with

r=(z/[1p)/s.
@ : v mod p=0}.

cT P 'r/ HpGT P
f(*)+peT]

Smooth parts, old approach

Time < b(Ig b)3+o(1);

Given nonzero 1, Zo, .. ., Ty € L
and finite set () of primes,
compute J-smooth part of z1,
(Q-smooth part of z», ...,

()-smooth part of z,,.

(?-smooth means product
of powers of elements of Q.

(J-smooth part means
largest ()-smooth divisor.
In particular, see which of
T1,To,..., Z,, are smooth.

Algorithm:
1. Find Q1 ={p:

2. For each 1 seps
Find maximal e

Print s.

e.g. factor 2543, €
over {2,3,5,7,11,
2543 over {}, smc
6766 over {2,17},
8967 over {3,7},
7598 over {2}, sm



ximal

Smooth parts, old approach

Time < b(lg b)31+o(1)
Given nonzero z1, Zo, .. ., Ty € L

and finite set () of primes,

compute -smooth part of z1,

()-smoot
()-smoot

N

N

part of zo, ...,

nart of z,,.

(J-smooth means product

of powers of elements of Q.

(J-smooth part means

largest (-smooth divisor.

In particular, see which of

T, are smooth.

Algorit

1M

1. Finc

2. For

@1 ={p:z1 moc

., @n={p:zn, modp

each 1 separately:

P

Find maximal e, s, r with
S = HpeQi pe(p)’ T = Zq

Prin

f s.

e.g. factor 2543, 6766, 8967

over {2,3,5,7,11,13, 17}

2543 over {}, smooth part ]
6766 over {2,17}, smooth
8967 over {3, 7}, smooth pz
7598 over {2}, smooth part



Smooth parts, old approach

Time < b(Ig b)3+o(1);

Given nonzero z1,Zo, .. ., T, € L
and finite set () of primes,
compute J-smooth part of z1,
)-smooth part of z», ...,

()-smooth part of z,.

(?-smooth means product
of powers of elements of Q.

(J-smooth part means

Algorithm:
1. Find @1 = {p: 1 mod p = 0},

oo, Qn=Ap:zn mod p =0}
2. For each 1 separately:

Find maximal e, s, r with

S = HpEQi pe(p), T =T;/s.
Print s.

e.g. factor 2543,6766,8967, 7598
over {2,3,5,7,11,13,17}:
2543 over {}, smooth part 1,

6766 over {2,17}, smooth part 34;
8967 over {3, 7}, smooth part 147,
7598 over {2}, smooth part 2.

largest ()-smooth divisor.
In particular, see which of
T1,To,..., T, are smooth.




parts, old approach

b(Ig b)3*+o(L);

)nzero 1, Ty, . . ., T, € L
e set () of primes,

» (0-smooth part of z1,

th part of zo, ...,

'h part of z,,.

th means product
s of elements of Q.

th part means
)-smooth divisor.
ular, see which of
.., Tyn are smooth.

Algorithm:

1. Find @1 = {p: 1 mod p = 0},
oty Q@ =Ap:zp mod p =0}

2. For each 7 separately:

Find maximal e, s, r with

S = HpeQi pe(p)’ T =T;/s.
Print s.

e.g. factor 2543,6766,8967, 7598
over {2,3,5,7,11,13,17}:

2543 over {}, smooth part 1;

6766 over {2,17}, smooth part 34;
8967 over {3, 7}, smooth part 147;
7598 over {2}, smooth part 2.

Smooth

Recall ci
find kth
product
T1, T, .

Choose
Define G
See whic
are y-sn
Know tf
Do linea
on the €



‘approach

- primes,
h part of z1,

product
nts of (.

ans
divisor.
vhich of

smooth.

Algorithm:

1. Find @1 = {p: 1 mod p = 0},
oo, Qn=Ap:zn mod p =0}

2. For each 1 separately:

Find maximal e, s, r with

S = HpEQi pe(p), T =T;/s.
Print s.

e.g. factor 2543,6766,8967, 7598
over {2,3,5,7,11,13,17}:

2543 over {}, smooth part 1,

6766 over {2,17}, smooth part 34;
8967 over {3, 7}, smooth part 147;
7598 over {2}, smooth part 2.

Smooth mul

tiplica

Recall cryptanalyt

find kth power no

product of powers

Choose ¥; imagine

Define @) as
See which o

set of
T, X

are Y-smoot

N, 1.e.

Know their factori

Do linear algebra «

on the exponent v



€L

Algorit

1M

1. Find Q1 = {p : £1 moc

2. For

Qn =4p: zy Moc
each 1 separately:

p =0},
p =0}

Find maximal e, s, r with
S = HpeQi pe(p)’ r=2zi/s.

Prin

f s.

e.g. factor 2543,6766, 8967, 7598

over {2,3,5,7,11,13, 17}

2543 over {}, smooth part 1;

6766 over {2,17}, smooth part 34;
8967 over {3, 7}, smooth part 147

7598 over {2}, smooth part 2.

Smooth multiplicative deper

Recall cryptanalytic bottlene
find £th power nontrivially ¢
product of powers of

Choose y; imagine y = 249
Define ) as set of primes <
See which of z1, 2>, .. ., T,

are y-smooth, i.e., -smoot

Know their factorizations.
Do linear algebra over Z/k
on the exponent vectors.



Algorit

M-

1. Find Q1 = {p : £1 moc

2. For

Qrn =4p: Ty Moc
each 1 separately:

p =0},
p =0}

Find maximal e, s, r with

S = HpEQi pe(p), T =T;/s.
Print s.

e.g. factor 2543,6766,8967, 7598

over {2,3,5,7,11,13,17}:

2543 over {}, smooth part 1,

6766 over {2,17}, smooth part 34;
8967 over {3, 7}, smooth part 147,

7598 over {2}, smooth part 2.

Smooth multiplicative dependencies

Recall cryptanalytic bottleneck:
find £th power nontrivially as
product of powers of

Choose y; imagine y = 29,
Define  as set of primes < y.

See which of z1, z»o, ..., T,

are y-smooth, i.e., J-smooth.
Know their factorizations.

Do linear algebra over Z/k
on the exponent vectors.



m:
Q1 ={p:z1 mod p = 0},
2n = {p : zn, mod p = 0}.
ach 1 separately:

maximal e, s, r with

—‘pEQZ- pe(p)’ r=2zi/s.
S.

or 2543, 6766, 8967, 7598
3,5,7,11,13,17}:

er {}, smooth part 1;

er {2, 17}, smooth part 34;
er {3, 7}, smooth part 147;
er {2}, smooth part 2.

Smooth multiplicative dependencies

Recall cryptanalytic bottleneck:
find £th power nontrivially as
product of powers of
T1,Z2,...,Tn.

Choose y; imagine y = 249
Define ) as set of primes < y.
See which of z1, 2>, .. ., T
are y-smooth, i.e., -smooth.

Know their factorizations.
Do linear algebra over Z/k
on the exponent vectors.

Smooth

Given nc
and finit
Time ty)
to obtail

(2004 Fi
Morain \

Algorith
Comput:
Comput
For eact
Replace
z;/ged{
repeatec



1 mod p = 0},

T, mod p = 0}.
rately:

S, T with

) = T;/s.

766, 8967, 7598
13,17}:

oth part 1;
smooth part 34;
smooth part 147;
ooth part 2.

Smooth multiplicative dependencies

Recall cryptanalytic bottleneck:
find £th power nontrivially as
product of powers of
T1,Z2,...,Tn.

Choose y; imagine y = 29,
Define  as set of primes < y.
See which of z1, 2>, ..., 25

are y-smooth, i.e., J-smooth.
Know their factorizations.

Do linear algebra over Z/k
on the exponent vectors.

Smooth parts, nev

Given nonzero z1,
and finite set () of
Time typically <'¢
to obtain smooth

(2004 Franke Klei
Morain Wirth, in |

Algorithm:
Compute 7 = |,
Compute r mod =
For each 2 separat
Replace z; by
z;/gcd{z;, r mod
repeatedly until gc



art 34;
rt 147;
2.

Smooth multiplicative dependencies

Recall cryptanalytic bottleneck:
find £th power nontrivially as
product of powers of

$1,$2,...,$n.

Choose y; imagine y = 249
Define ) as set of primes < .
See which of z1,z>,...,2n
are y-smooth, i.e., -smooth.

Know their factorizations.
Do linear algebra over Z/k
on the exponent vectors.

Smooth parts, new approact

Given nonzero z1,Z2, ..., T;
and finite set () of primes:
Time typically < b(lg b)2to(
to obtain smooth parts of z
(2004 Franke Kleinjung
Morain Wirth, in ECPP con

Algorithm:
Compute 7 = |,co P-
Compute r mod z1,...,r m
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Smooth parts, new approach

Given nonzero 1, Zo, ..., Ty € L
and finite set ) of primes:

Time typically < b(Ig b)2+o(1)

to obtain smooth parts of z's.
(2004 Franke Kleinjung

Morain Wirth, in ECPP context)

Algorithm:
Compute 7 = | |,co P-

Compute r mod z1, ..., r mod T,

For each 1 separately:
Replace z; by
z;/gcd{z;, r mod z;}
repeatedly until gcd is 1.

Slight variant (2004 Bernstein):
Time always < b(lgb)21+o(1).

Compute smooth part of z; as
gcd{z;, (r mod :r;z-)QIC mod z; }
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Subroutine: Computing gcd
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Slight variant (2004 Bernstein):

Time always < b(lg b)21+o(1).

Compute smooth part of z; as
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Subroutine: Computing gcd
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Slight variant (2004 Bernstein):

Time always < b(lgb)21+o(1).

Compute smooth part of z; as
gcd{z;, (r mod :r;z-)QIC mod z; }
where k£ = [lIglgz;].

Subroutine: Computing gcd
takes time < b(lg b)2to(1),
(1971 Schonhage;

core idea: 1938 Lehmer;
b(Ig b)°+°(1): 1971 Knuth)

Or, to see if z; is smooth,

see if (r mod a;z-)zk

mod z; = 0.

Minor problem: New algorithm
finds the smooth numbers
but doesn’'t factor them.

Solution:

Feed the smooth numbers
to the old algorithm.

Very few smooth numbers,
so this is very fast.

Bottom line for cryptanalysis:
time per input number to

find and factor smooth numbers
has dropped by (Igb)1o(1).
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Minor problem: New algorithm
finds the smooth numbers
but doesn’'t factor them.

Solution:

Feed the smooth numbers
to the old algorithm.

Very few smooth numbers,
so this is very fast.

Bottom line for cryptanalysis:
time per input number to

find and factor smooth numbers
has dropped by (Igb)1o(1).

|s smooth the right question?

After finding smooth numbers,
do first step of linear algebra:
Throw away primes that appear
only once; throw away

numbers with those primes;

repeat until stable.

Don't want all smooth numbers.
Want smooth numbers only if
they are built from primes that
divide the other numbers.
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|s smooth the right question?

After finding smooth numbers,
do first step of linear algebra:
Throw away primes that appear
only once; throw away

numbers with those primes;

repeat until stable.

Don't want all smooth numbers.

Want smooth numbers only if
they are built from primes that
divide the other numbers.

An alternate apprc¢

Given nonzero 1,
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Is smooth the right question?

After finding smooth numbers,
do first step of linear algebra:
Throw away primes that appear
only once; throw away

numbers with those primes;

repeat until stable.

Don't want all smooth numbers.

Want smooth numbers only if
they are built from primes that
divide the other numbers.

An alternate approach

Given nonzero z1,Z2, ..., T;
Compute r = 212> - - To,;.

Compute (r/z1) mod z1, ..
(r/zy) mod zy,.

For each 1 separately: see if
((r/z;) mod iB?;)zk mod z; =
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Finds x; iff all primes in z;
are divisors of other z's.
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(2004 Bernstein)



|s smooth the right question?

After finding smooth numbers,
do first step of linear algebra:
Throw away primes that appear
only once; throw away

numbers with those primes;

repeat until stable.

Don't want all smooth numbers.

Want smooth numbers only if
they are built from primes that
divide the other numbers.

An alternate approach

Given nonzero z1,Z>, ..., %y € Z:

Compute r = 12> - - To,.

Compute (r/z1) mod z1, ...,
(r/zy) mod zy.

For each 1 separately: see if
((r/x;) mod :I;Z')zlg mod z; = 0
where k£ = [lIglgz;].

Finds z; iff all primes in z;
are divisors of other z's.
Time < b(Ig b)2tol1),

(2004 Bernstein)
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An alternate approach

Given nonzero 1, Zo, ..., Tn € Z:

Compute r = 2129 -- - T;.
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An alternate approach

Given nonzero 1, o, .. ., T, € Z:

Compute r = 212> - - - T,.

Compute (r/z1) mod z1, ...,
(r/zy) mod zy.

For each 1 separately: see if
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An alternate approach

Given nonzero 1, Zo, ..., Tn € Z:

Compute r = 2120 -- - Tp;.

Compute (r/z1) mod z1, ...,
(r/zy) mod zy.

For each 1 separately: see if
((r/x;) mod :I;Z')zlg mod z; = 0
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Finds z; iff all primes in z;
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An alternate approach

Given nonzero 1, Zo, ..., Tn € Z:

Compute r = 2120 -- - Tp;.

Compute (r/z1) mod z1, ...,
(r/zy) mod zy.

For each 1 separately: see if
((r/x;) mod :I;Z')zlg mod z; = 0
where k£ = [lIglgz;].

Finds z; iff all primes in z;
are divisors of other z's.
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Compute (r/z1) mod zq, ...,
(r/xy) mod z,, by computing
7 mod :1:% ..... r mod T2,
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Problem: Recognizing the
Interesting z's Is not enough;
also need their factorizations.
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Given nonzero T1,Z2,...,Tn € Z: (r/2n) mod zp, by computing
7 mod :1:% ..... r mod z2.

Compute r = 12> ---T+,.
ol ; (1972 Moenck Borodin)

Compute (r/z1) mod z1, ...,

(1/zy) mod zy,. Problem: Recognizing the

For each 1 separately: see if Interesting z's Is not enough;
((r/z;) mod :I;Z')zlg mod z; = 0 also need their factorizations.
where k£ = [lIglgz;]. Solution:

Finds z; iff all primes in z; Again, very few of them.

are divisors of other z's. Have ample time to

Time < b(Ig b)2tol1), use rho method (1974 Pollard)

or use ECM (1987 Lenstra)

(2004 Bernstein) | |
or factor into coprimes.
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Compute (r/z1) mod zq, ...,
(r/zy) mod z, by computing
7 mod :c% ..... r mod z2.
(1972 Moenck Borodin)

Problem: Recognizing the
Interesting z's Is not enough;
also need their factorizations.

Solution:
Again, very few of them.
Have ample time to

use rho method (1974 Pollard)

or use ECM (1987 Lenstra)
or factor into coprimes.

Factoring into coprimes

Time < b(lg 6)°):
Given positive 1, Z2, ..., T,
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and complete factorization
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Factoring into coprimes

Time < b(lg 6)°):
Given positive 1, Z2,..., Ty,
find coprime set

and complete factorization
of each z; over Q.

(announced 1995 Bernstein;
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Immediately gives b(lg 6)°(1)

for the other factoring problems.
Subsequent research: |g speedups,
constant-factor speedups, etc.

Typical applicatior
detecting multiplic

Does 9119920817 1¢
equal 15471708632

Each side has logz
~ 19466590.6748



18

V)

rd)

Factoring into coprimes

Time < b(lg 6)°):
Given positive 1,2, ..., Tn,
find coprime set @

and complete factorization
of each z; over .

(announced 1995 Bernstein;
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Immediately gives b(lg 6)°(1)
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Factoring into coprimes Typical application:
detecting multiplicative relations.

Time < b(lg 6)°):
Given positive 1, Z2,..., Ty,
find coprime set @ equal 154717080326898(0734393407

and complete factorization

Does 911952681 1 191513335 221634643

N Each side has logarithm
of each z; over (. ~ 19466590.674872.

(announced 1995 Bernstein;
More generally:
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Immediately gives b(lg 6)°(1) 012119%221¢1547-46898073 7

for the other factoring problems. . .
&P Kernel lets us find relations,

Subsequent research: lg speedups, . . .
a & 5P P not just verify relations.

constant-factor speedups, etc.




g Into coprimes

b(Ig 6)°L):

sitive 1, o, . . ., T,

rime set ()
plete factorization
T, over (.

ced 1995 Bernstein:
/ersion: 2005)

tely gives b(lg 6)°(1)
ther factoring problems.

ent research: Ig speedups,

-factor speedups, etc.

Typical application:
detecting multiplicative relations.

Does 91 1952681 1 191513335 29 1634643
equal 1547170803268080734393407

Each side has logarithm
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More generally:
What is kernel of (a, b,¢,d, e) —
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