
High-speed cryptography,

part 4:

fast multiplication

and its applications

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Survey paper:

cr.yp.to/papers.html#multapps

Integer-factorization bottleneck:

Given sequence of numbers,

find nonempty subsequence

with square product.

e.g. given 6; 7; 8; 10; 15,

discover 6 � 10 � 15 = 302.

Discrete-log bottleneck:

Given sequence of numbers,

find 1 as nontrivial

product of powers.

e.g. given 6; 7; 8; 10; 15,

discover 63708�210315�3 = 1.

More generally: find kth power.

High-speed cryptography,

part 4:

fast multiplication

and its applications

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Survey paper:

cr.yp.to/papers.html#multapps

Integer-factorization bottleneck:

Given sequence of numbers,

find nonempty subsequence

with square product.

e.g. given 6; 7; 8; 10; 15,

discover 6 � 10 � 15 = 302.

Discrete-log bottleneck:

Given sequence of numbers,

find 1 as nontrivial

product of powers.

e.g. given 6; 7; 8; 10; 15,

discover 63708�210315�3 = 1.

More generally: find kth power.

Two very common

cryptographic bottlenecks:

Multiply large polynomials;

multiply large integers.

High-speed cryptography,

part 4:

fast multiplication

and its applications

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Survey paper:

cr.yp.to/papers.html#multapps

Integer-factorization bottleneck:

Given sequence of numbers,

find nonempty subsequence

with square product.

e.g. given 6; 7; 8; 10; 15,

discover 6 � 10 � 15 = 302.

Discrete-log bottleneck:

Given sequence of numbers,

find 1 as nontrivial

product of powers.

e.g. given 6; 7; 8; 10; 15,

discover 63708�210315�3 = 1.

More generally: find kth power.

Two very common

cryptographic bottlenecks:

Multiply large polynomials;

multiply large integers.

High-speed cryptography,

part 4:

fast multiplication

and its applications

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Survey paper:

cr.yp.to/papers.html#multapps

Integer-factorization bottleneck:

Given sequence of numbers,

find nonempty subsequence

with square product.

e.g. given 6; 7; 8; 10; 15,

discover 6 � 10 � 15 = 302.

Discrete-log bottleneck:

Given sequence of numbers,

find 1 as nontrivial

product of powers.

e.g. given 6; 7; 8; 10; 15,

discover 63708�210315�3 = 1.

More generally: find kth power.

Two very common

cryptographic bottlenecks:

Multiply large polynomials;

multiply large integers.

Integer-factorization bottleneck:

Given sequence of numbers,

find nonempty subsequence

with square product.

e.g. given 6; 7; 8; 10; 15,

discover 6 � 10 � 15 = 302.

Discrete-log bottleneck:

Given sequence of numbers,

find 1 as nontrivial

product of powers.

e.g. given 6; 7; 8; 10; 15,

discover 63708�210315�3 = 1.

More generally: find kth power.

Two very common

cryptographic bottlenecks:

Multiply large polynomials;

multiply large integers.

Integer-factorization bottleneck:

Given sequence of numbers,

find nonempty subsequence

with square product.

e.g. given 6; 7; 8; 10; 15,

discover 6 � 10 � 15 = 302.

Discrete-log bottleneck:

Given sequence of numbers,

find 1 as nontrivial

product of powers.

e.g. given 6; 7; 8; 10; 15,

discover 63708�210315�3 = 1.

More generally: find kth power.

Two very common

cryptographic bottlenecks:

Multiply large polynomials;

multiply large integers.

All of these computations

can be performed in

essentially linear time.

Integer-factorization bottleneck:

Given sequence of numbers,

find nonempty subsequence

with square product.

e.g. given 6; 7; 8; 10; 15,

discover 6 � 10 � 15 = 302.

Discrete-log bottleneck:

Given sequence of numbers,

find 1 as nontrivial

product of powers.

e.g. given 6; 7; 8; 10; 15,

discover 63708�210315�3 = 1.

More generally: find kth power.

Two very common

cryptographic bottlenecks:

Multiply large polynomials;

multiply large integers.

All of these computations

can be performed in

essentially linear time.

Do real applications

reach large enough sizes

to benefit from these techniques?

In cryptanalysis, definitely.

In cryptography, sometimes:

Gaudry–Schost Kummer surface;

McBits; many more examples.

Integer-factorization bottleneck:

Given sequence of numbers,

find nonempty subsequence

with square product.

e.g. given 6; 7; 8; 10; 15,

discover 6 � 10 � 15 = 302.

Discrete-log bottleneck:

Given sequence of numbers,

find 1 as nontrivial

product of powers.

e.g. given 6; 7; 8; 10; 15,

discover 63708�210315�3 = 1.

More generally: find kth power.

Two very common

cryptographic bottlenecks:

Multiply large polynomials;

multiply large integers.

All of these computations

can be performed in

essentially linear time.

Do real applications

reach large enough sizes

to benefit from these techniques?

In cryptanalysis, definitely.

In cryptography, sometimes:

Gaudry–Schost Kummer surface;

McBits; many more examples.

The fast Fourier transform

Use (c0; c1; : : : ; cn�1) 2 Cn

to represent f =
P

j cjx
j 2 C[x].

Summary of representation size:

“f has n coeffs”. Warning:

f does not determine n.

f = f0(x2) + xf1(x2) where

(c0; c2; : : :) 2 Cdn=2e,

(c1; c3; : : :) 2 Cbn=2c

represent f0; f1 respectively.

C[x]-morphism y 7! x2

from C[x][y] to C[x]

maps f0(y) + xf1(y) to f .

Integer-factorization bottleneck:

Given sequence of numbers,

find nonempty subsequence

with square product.

e.g. given 6; 7; 8; 10; 15,

discover 6 � 10 � 15 = 302.

Discrete-log bottleneck:

Given sequence of numbers,

find 1 as nontrivial

product of powers.

e.g. given 6; 7; 8; 10; 15,

discover 63708�210315�3 = 1.

More generally: find kth power.

Two very common

cryptographic bottlenecks:

Multiply large polynomials;

multiply large integers.

All of these computations

can be performed in

essentially linear time.

Do real applications

reach large enough sizes

to benefit from these techniques?

In cryptanalysis, definitely.

In cryptography, sometimes:

Gaudry–Schost Kummer surface;

McBits; many more examples.

The fast Fourier transform

Use (c0; c1; : : : ; cn�1) 2 Cn

to represent f =
P

j cjx
j 2 C[x].

Summary of representation size:

“f has n coeffs”. Warning:

f does not determine n.

f = f0(x2) + xf1(x2) where

(c0; c2; : : :) 2 Cdn=2e,

(c1; c3; : : :) 2 Cbn=2c

represent f0; f1 respectively.

C[x]-morphism y 7! x2

from C[x][y] to C[x]

maps f0(y) + xf1(y) to f .

Integer-factorization bottleneck:

Given sequence of numbers,

find nonempty subsequence

with square product.

e.g. given 6; 7; 8; 10; 15,

discover 6 � 10 � 15 = 302.

Discrete-log bottleneck:

Given sequence of numbers,

find 1 as nontrivial

product of powers.

e.g. given 6; 7; 8; 10; 15,

discover 63708�210315�3 = 1.

More generally: find kth power.

Two very common

cryptographic bottlenecks:

Multiply large polynomials;

multiply large integers.

All of these computations

can be performed in

essentially linear time.

Do real applications

reach large enough sizes

to benefit from these techniques?

In cryptanalysis, definitely.

In cryptography, sometimes:

Gaudry–Schost Kummer surface;

McBits; many more examples.

The fast Fourier transform

Use (c0; c1; : : : ; cn�1) 2 Cn

to represent f =
P

j cjx
j 2 C[x].

Summary of representation size:

“f has n coeffs”. Warning:

f does not determine n.

f = f0(x2) + xf1(x2) where

(c0; c2; : : :) 2 Cdn=2e,

(c1; c3; : : :) 2 Cbn=2c

represent f0; f1 respectively.

C[x]-morphism y 7! x2

from C[x][y] to C[x]

maps f0(y) + xf1(y) to f .

Two very common

cryptographic bottlenecks:

Multiply large polynomials;

multiply large integers.

All of these computations

can be performed in

essentially linear time.

Do real applications

reach large enough sizes

to benefit from these techniques?

In cryptanalysis, definitely.

In cryptography, sometimes:

Gaudry–Schost Kummer surface;

McBits; many more examples.

The fast Fourier transform

Use (c0; c1; : : : ; cn�1) 2 Cn

to represent f =
P

j cjx
j 2 C[x].

Summary of representation size:

“f has n coeffs”. Warning:

f does not determine n.

f = f0(x2) + xf1(x2) where

(c0; c2; : : :) 2 Cdn=2e,

(c1; c3; : : :) 2 Cbn=2c

represent f0; f1 respectively.

C[x]-morphism y 7! x2

from C[x][y] to C[x]

maps f0(y) + xf1(y) to f .

Two very common

cryptographic bottlenecks:

Multiply large polynomials;

multiply large integers.

All of these computations

can be performed in

essentially linear time.

Do real applications

reach large enough sizes

to benefit from these techniques?

In cryptanalysis, definitely.

In cryptography, sometimes:

Gaudry–Schost Kummer surface;

McBits; many more examples.

The fast Fourier transform

Use (c0; c1; : : : ; cn�1) 2 Cn

to represent f =
P

j cjx
j 2 C[x].

Summary of representation size:

“f has n coeffs”. Warning:

f does not determine n.

f = f0(x2) + xf1(x2) where

(c0; c2; : : :) 2 Cdn=2e,

(c1; c3; : : :) 2 Cbn=2c

represent f0; f1 respectively.

C[x]-morphism y 7! x2

from C[x][y] to C[x]

maps f0(y) + xf1(y) to f .

Quickly evaluate f(�); f(��)

by evaluating f0(�2); f1(�2);

f(�) = f0(�2) + �f1(�2);

f(��) = f0(�2) � �f1(�2).

Evaluate f(�) for, e.g.,

all � 2 C with �1024 = 1

by evaluating f0(�), f1(�)

for all � 2 C with �512 = 1;

plus 1024 adds, 512 mults.

Apply this recursively)

n lgn adds, (n=2) lgn mults

to evaluate n-coeff f

for all � 2 C with �n = 1

if n is a power of 2.

Two very common

cryptographic bottlenecks:

Multiply large polynomials;

multiply large integers.

All of these computations

can be performed in

essentially linear time.

Do real applications

reach large enough sizes

to benefit from these techniques?

In cryptanalysis, definitely.

In cryptography, sometimes:

Gaudry–Schost Kummer surface;

McBits; many more examples.

The fast Fourier transform

Use (c0; c1; : : : ; cn�1) 2 Cn

to represent f =
P

j cjx
j 2 C[x].

Summary of representation size:

“f has n coeffs”. Warning:

f does not determine n.

f = f0(x2) + xf1(x2) where

(c0; c2; : : :) 2 Cdn=2e,

(c1; c3; : : :) 2 Cbn=2c

represent f0; f1 respectively.

C[x]-morphism y 7! x2

from C[x][y] to C[x]

maps f0(y) + xf1(y) to f .

Quickly evaluate f(�); f(��)

by evaluating f0(�2); f1(�2);

f(�) = f0(�2) + �f1(�2);

f(��) = f0(�2) � �f1(�2).

Evaluate f(�) for, e.g.,

all � 2 C with �1024 = 1

by evaluating f0(�), f1(�)

for all � 2 C with �512 = 1;

plus 1024 adds, 512 mults.

Apply this recursively)

n lgn adds, (n=2) lgn mults

to evaluate n-coeff f

for all � 2 C with �n = 1

if n is a power of 2.

Two very common

cryptographic bottlenecks:

Multiply large polynomials;

multiply large integers.

All of these computations

can be performed in

essentially linear time.

Do real applications

reach large enough sizes

to benefit from these techniques?

In cryptanalysis, definitely.

In cryptography, sometimes:

Gaudry–Schost Kummer surface;

McBits; many more examples.

The fast Fourier transform

Use (c0; c1; : : : ; cn�1) 2 Cn

to represent f =
P

j cjx
j 2 C[x].

Summary of representation size:

“f has n coeffs”. Warning:

f does not determine n.

f = f0(x2) + xf1(x2) where

(c0; c2; : : :) 2 Cdn=2e,

(c1; c3; : : :) 2 Cbn=2c

represent f0; f1 respectively.

C[x]-morphism y 7! x2

from C[x][y] to C[x]

maps f0(y) + xf1(y) to f .

Quickly evaluate f(�); f(��)

by evaluating f0(�2); f1(�2);

f(�) = f0(�2) + �f1(�2);

f(��) = f0(�2) � �f1(�2).

Evaluate f(�) for, e.g.,

all � 2 C with �1024 = 1

by evaluating f0(�), f1(�)

for all � 2 C with �512 = 1;

plus 1024 adds, 512 mults.

Apply this recursively)

n lgn adds, (n=2) lgn mults

to evaluate n-coeff f

for all � 2 C with �n = 1

if n is a power of 2.

The fast Fourier transform

Use (c0; c1; : : : ; cn�1) 2 Cn

to represent f =
P

j cjx
j 2 C[x].

Summary of representation size:

“f has n coeffs”. Warning:

f does not determine n.

f = f0(x2) + xf1(x2) where

(c0; c2; : : :) 2 Cdn=2e,

(c1; c3; : : :) 2 Cbn=2c

represent f0; f1 respectively.

C[x]-morphism y 7! x2

from C[x][y] to C[x]

maps f0(y) + xf1(y) to f .

Quickly evaluate f(�); f(��)

by evaluating f0(�2); f1(�2);

f(�) = f0(�2) + �f1(�2);

f(��) = f0(�2) � �f1(�2).

Evaluate f(�) for, e.g.,

all � 2 C with �1024 = 1

by evaluating f0(�), f1(�)

for all � 2 C with �512 = 1;

plus 1024 adds, 512 mults.

Apply this recursively)

n lgn adds, (n=2) lgn mults

to evaluate n-coeff f

for all � 2 C with �n = 1

if n is a power of 2.

The fast Fourier transform

Use (c0; c1; : : : ; cn�1) 2 Cn

to represent f =
P

j cjx
j 2 C[x].

Summary of representation size:

“f has n coeffs”. Warning:

f does not determine n.

f = f0(x2) + xf1(x2) where

(c0; c2; : : :) 2 Cdn=2e,

(c1; c3; : : :) 2 Cbn=2c

represent f0; f1 respectively.

C[x]-morphism y 7! x2

from C[x][y] to C[x]

maps f0(y) + xf1(y) to f .

Quickly evaluate f(�); f(��)

by evaluating f0(�2); f1(�2);

f(�) = f0(�2) + �f1(�2);

f(��) = f0(�2) � �f1(�2).

Evaluate f(�) for, e.g.,

all � 2 C with �1024 = 1

by evaluating f0(�), f1(�)

for all � 2 C with �512 = 1;

plus 1024 adds, 512 mults.

Apply this recursively)

n lgn adds, (n=2) lgn mults

to evaluate n-coeff f

for all � 2 C with �n = 1

if n is a power of 2.

Another view of the FFT

If f 2 C[x] and

f mod x4 � 1 =

c0 + c1x + c2x
2 + c3x

3 then

f mod x2 � 1 =

(c0 + c2) + (c1 + c3)x,

f mod x2 + 1 =

(c0 � c2) + (c1 � c3)x.

C[x]-morphism C[x]=(x4 � 1) ,�
C[x]=(x2 � 1) � C[x]=(x2 + 1)

maps c0 + c1x + c2x
2 + c3x

3 to

((c0 + c2) + (c1 + c3)x,

(c0 � c2) + (c1 � c3)x).

The fast Fourier transform

Use (c0; c1; : : : ; cn�1) 2 Cn

to represent f =
P

j cjx
j 2 C[x].

Summary of representation size:

“f has n coeffs”. Warning:

f does not determine n.

f = f0(x2) + xf1(x2) where

(c0; c2; : : :) 2 Cdn=2e,

(c1; c3; : : :) 2 Cbn=2c

represent f0; f1 respectively.

C[x]-morphism y 7! x2

from C[x][y] to C[x]

maps f0(y) + xf1(y) to f .

Quickly evaluate f(�); f(��)

by evaluating f0(�2); f1(�2);

f(�) = f0(�2) + �f1(�2);

f(��) = f0(�2) � �f1(�2).

Evaluate f(�) for, e.g.,

all � 2 C with �1024 = 1

by evaluating f0(�), f1(�)

for all � 2 C with �512 = 1;

plus 1024 adds, 512 mults.

Apply this recursively)

n lgn adds, (n=2) lgn mults

to evaluate n-coeff f

for all � 2 C with �n = 1

if n is a power of 2.

Another view of the FFT

If f 2 C[x] and

f mod x4 � 1 =

c0 + c1x + c2x
2 + c3x

3 then

f mod x2 � 1 =

(c0 + c2) + (c1 + c3)x,

f mod x2 + 1 =

(c0 � c2) + (c1 � c3)x.

C[x]-morphism C[x]=(x4 � 1) ,�
C[x]=(x2 � 1) � C[x]=(x2 + 1)

maps c0 + c1x + c2x
2 + c3x

3 to

((c0 + c2) + (c1 + c3)x,

(c0 � c2) + (c1 � c3)x).

The fast Fourier transform

Use (c0; c1; : : : ; cn�1) 2 Cn

to represent f =
P

j cjx
j 2 C[x].

Summary of representation size:

“f has n coeffs”. Warning:

f does not determine n.

f = f0(x2) + xf1(x2) where

(c0; c2; : : :) 2 Cdn=2e,

(c1; c3; : : :) 2 Cbn=2c

represent f0; f1 respectively.

C[x]-morphism y 7! x2

from C[x][y] to C[x]

maps f0(y) + xf1(y) to f .

Quickly evaluate f(�); f(��)

by evaluating f0(�2); f1(�2);

f(�) = f0(�2) + �f1(�2);

f(��) = f0(�2) � �f1(�2).

Evaluate f(�) for, e.g.,

all � 2 C with �1024 = 1

by evaluating f0(�), f1(�)

for all � 2 C with �512 = 1;

plus 1024 adds, 512 mults.

Apply this recursively)

n lgn adds, (n=2) lgn mults

to evaluate n-coeff f

for all � 2 C with �n = 1

if n is a power of 2.

Another view of the FFT

If f 2 C[x] and

f mod x4 � 1 =

c0 + c1x + c2x
2 + c3x

3 then

f mod x2 � 1 =

(c0 + c2) + (c1 + c3)x,

f mod x2 + 1 =

(c0 � c2) + (c1 � c3)x.

C[x]-morphism C[x]=(x4 � 1) ,�
C[x]=(x2 � 1) � C[x]=(x2 + 1)

maps c0 + c1x + c2x
2 + c3x

3 to

((c0 + c2) + (c1 + c3)x,

(c0 � c2) + (c1 � c3)x).

Quickly evaluate f(�); f(��)

by evaluating f0(�2); f1(�2);

f(�) = f0(�2) + �f1(�2);

f(��) = f0(�2) � �f1(�2).

Evaluate f(�) for, e.g.,

all � 2 C with �1024 = 1

by evaluating f0(�), f1(�)

for all � 2 C with �512 = 1;

plus 1024 adds, 512 mults.

Apply this recursively)

n lgn adds, (n=2) lgn mults

to evaluate n-coeff f

for all � 2 C with �n = 1

if n is a power of 2.

Another view of the FFT

If f 2 C[x] and

f mod x4 � 1 =

c0 + c1x + c2x
2 + c3x

3 then

f mod x2 � 1 =

(c0 + c2) + (c1 + c3)x,

f mod x2 + 1 =

(c0 � c2) + (c1 � c3)x.

C[x]-morphism C[x]=(x4 � 1) ,�
C[x]=(x2 � 1) � C[x]=(x2 + 1)

maps c0 + c1x + c2x
2 + c3x

3 to

((c0 + c2) + (c1 + c3)x,

(c0 � c2) + (c1 � c3)x).

Quickly evaluate f(�); f(��)

by evaluating f0(�2); f1(�2);

f(�) = f0(�2) + �f1(�2);

f(��) = f0(�2) � �f1(�2).

Evaluate f(�) for, e.g.,

all � 2 C with �1024 = 1

by evaluating f0(�), f1(�)

for all � 2 C with �512 = 1;

plus 1024 adds, 512 mults.

Apply this recursively)

n lgn adds, (n=2) lgn mults

to evaluate n-coeff f

for all � 2 C with �n = 1

if n is a power of 2.

Another view of the FFT

If f 2 C[x] and

f mod x4 � 1 =

c0 + c1x + c2x
2 + c3x

3 then

f mod x2 � 1 =

(c0 + c2) + (c1 + c3)x,

f mod x2 + 1 =

(c0 � c2) + (c1 � c3)x.

C[x]-morphism C[x]=(x4 � 1) ,�
C[x]=(x2 � 1) � C[x]=(x2 + 1)

maps c0 + c1x + c2x
2 + c3x

3 to

((c0 + c2) + (c1 + c3)x,

(c0 � c2) + (c1 � c3)x).

If f 2 C[x] and

f mod x2n � �2 =

c0 + c1x + � � � + c2n�1x
2n�1 then

f mod xn � � =

(c0 + �cn) + (c1 + �cn+1)x

+ (c2 + �cn+2)x2 + � � �,

f mod xn + � =

(c0 � �cn) + (c1 � �cn+1)x

+ (c2 � �cn+2)x2 + � � �.

Given c0; c1; : : : ; c2n�1 2 C,

use n mults, 2n adds to compute

c0 + �cn; c1 + �cn+1; : : : ;

c0 � �cn; c1 � �cn+1; : : : :

Quickly evaluate f(�); f(��)

by evaluating f0(�2); f1(�2);

f(�) = f0(�2) + �f1(�2);

f(��) = f0(�2) � �f1(�2).

Evaluate f(�) for, e.g.,

all � 2 C with �1024 = 1

by evaluating f0(�), f1(�)

for all � 2 C with �512 = 1;

plus 1024 adds, 512 mults.

Apply this recursively)

n lgn adds, (n=2) lgn mults

to evaluate n-coeff f

for all � 2 C with �n = 1

if n is a power of 2.

Another view of the FFT

If f 2 C[x] and

f mod x4 � 1 =

c0 + c1x + c2x
2 + c3x

3 then

f mod x2 � 1 =

(c0 + c2) + (c1 + c3)x,

f mod x2 + 1 =

(c0 � c2) + (c1 � c3)x.

C[x]-morphism C[x]=(x4 � 1) ,�
C[x]=(x2 � 1) � C[x]=(x2 + 1)

maps c0 + c1x + c2x
2 + c3x

3 to

((c0 + c2) + (c1 + c3)x,

(c0 � c2) + (c1 � c3)x).

If f 2 C[x] and

f mod x2n � �2 =

c0 + c1x + � � � + c2n�1x
2n�1 then

f mod xn � � =

(c0 + �cn) + (c1 + �cn+1)x

+ (c2 + �cn+2)x2 + � � �,

f mod xn + � =

(c0 � �cn) + (c1 � �cn+1)x

+ (c2 � �cn+2)x2 + � � �.

Given c0; c1; : : : ; c2n�1 2 C,

use n mults, 2n adds to compute

c0 + �cn; c1 + �cn+1; : : : ;

c0 � �cn; c1 � �cn+1; : : : :

Quickly evaluate f(�); f(��)

by evaluating f0(�2); f1(�2);

f(�) = f0(�2) + �f1(�2);

f(��) = f0(�2) � �f1(�2).

Evaluate f(�) for, e.g.,

all � 2 C with �1024 = 1

by evaluating f0(�), f1(�)

for all � 2 C with �512 = 1;

plus 1024 adds, 512 mults.

Apply this recursively)

n lgn adds, (n=2) lgn mults

to evaluate n-coeff f

for all � 2 C with �n = 1

if n is a power of 2.

Another view of the FFT

If f 2 C[x] and

f mod x4 � 1 =

c0 + c1x + c2x
2 + c3x

3 then

f mod x2 � 1 =

(c0 + c2) + (c1 + c3)x,

f mod x2 + 1 =

(c0 � c2) + (c1 � c3)x.

C[x]-morphism C[x]=(x4 � 1) ,�
C[x]=(x2 � 1) � C[x]=(x2 + 1)

maps c0 + c1x + c2x
2 + c3x

3 to

((c0 + c2) + (c1 + c3)x,

(c0 � c2) + (c1 � c3)x).

If f 2 C[x] and

f mod x2n � �2 =

c0 + c1x + � � � + c2n�1x
2n�1 then

f mod xn � � =

(c0 + �cn) + (c1 + �cn+1)x

+ (c2 + �cn+2)x2 + � � �,

f mod xn + � =

(c0 � �cn) + (c1 � �cn+1)x

+ (c2 � �cn+2)x2 + � � �.

Given c0; c1; : : : ; c2n�1 2 C,

use n mults, 2n adds to compute

c0 + �cn; c1 + �cn+1; : : : ;

c0 � �cn; c1 � �cn+1; : : : :

Another view of the FFT

If f 2 C[x] and

f mod x4 � 1 =

c0 + c1x + c2x
2 + c3x

3 then

f mod x2 � 1 =

(c0 + c2) + (c1 + c3)x,

f mod x2 + 1 =

(c0 � c2) + (c1 � c3)x.

C[x]-morphism C[x]=(x4 � 1) ,�
C[x]=(x2 � 1) � C[x]=(x2 + 1)

maps c0 + c1x + c2x
2 + c3x

3 to

((c0 + c2) + (c1 + c3)x,

(c0 � c2) + (c1 � c3)x).

If f 2 C[x] and

f mod x2n � �2 =

c0 + c1x + � � � + c2n�1x
2n�1 then

f mod xn � � =

(c0 + �cn) + (c1 + �cn+1)x

+ (c2 + �cn+2)x2 + � � �,

f mod xn + � =

(c0 � �cn) + (c1 � �cn+1)x

+ (c2 � �cn+2)x2 + � � �.

Given c0; c1; : : : ; c2n�1 2 C,

use n mults, 2n adds to compute

c0 + �cn; c1 + �cn+1; : : : ;

c0 � �cn; c1 � �cn+1; : : : :

Another view of the FFT

If f 2 C[x] and

f mod x4 � 1 =

c0 + c1x + c2x
2 + c3x

3 then

f mod x2 � 1 =

(c0 + c2) + (c1 + c3)x,

f mod x2 + 1 =

(c0 � c2) + (c1 � c3)x.

C[x]-morphism C[x]=(x4 � 1) ,�
C[x]=(x2 � 1) � C[x]=(x2 + 1)

maps c0 + c1x + c2x
2 + c3x

3 to

((c0 + c2) + (c1 + c3)x,

(c0 � c2) + (c1 � c3)x).

If f 2 C[x] and

f mod x2n � �2 =

c0 + c1x + � � � + c2n�1x
2n�1 then

f mod xn � � =

(c0 + �cn) + (c1 + �cn+1)x

+ (c2 + �cn+2)x2 + � � �,

f mod xn + � =

(c0 � �cn) + (c1 � �cn+1)x

+ (c2 � �cn+2)x2 + � � �.

Given c0; c1; : : : ; c2n�1 2 C,

use n mults, 2n adds to compute

c0 + �cn; c1 + �cn+1; : : : ;

c0 � �cn; c1 � �cn+1; : : : :

Apply this recursively:

f mod x4 � 1

��������

��??????

f mod x2 � 1

�����������

��'
'''''''' f mod x2 + 1

�����������

��'
''''''''

f mod
x� 1

=
f(1)

f mod
x + 1

=
f(�1)

f mod
x� i

=
f(i)

f mod
x + i

=
f(�i)

(basic FFT idea: 1866 Gauss;

this view: 1972 Fiduccia)

Another view of the FFT

If f 2 C[x] and

f mod x4 � 1 =

c0 + c1x + c2x
2 + c3x

3 then

f mod x2 � 1 =

(c0 + c2) + (c1 + c3)x,

f mod x2 + 1 =

(c0 � c2) + (c1 � c3)x.

C[x]-morphism C[x]=(x4 � 1) ,�
C[x]=(x2 � 1) � C[x]=(x2 + 1)

maps c0 + c1x + c2x
2 + c3x

3 to

((c0 + c2) + (c1 + c3)x,

(c0 � c2) + (c1 � c3)x).

If f 2 C[x] and

f mod x2n � �2 =

c0 + c1x + � � � + c2n�1x
2n�1 then

f mod xn � � =

(c0 + �cn) + (c1 + �cn+1)x

+ (c2 + �cn+2)x2 + � � �,

f mod xn + � =

(c0 � �cn) + (c1 � �cn+1)x

+ (c2 � �cn+2)x2 + � � �.

Given c0; c1; : : : ; c2n�1 2 C,

use n mults, 2n adds to compute

c0 + �cn; c1 + �cn+1; : : : ;

c0 � �cn; c1 � �cn+1; : : : :

Apply this recursively:

f mod x4 � 1

��������

��??????

f mod x2 � 1

�����������

��'
'''''''' f mod x2 + 1

�����������

��'
''''''''

f mod
x� 1

=
f(1)

f mod
x + 1

=
f(�1)

f mod
x� i

=
f(i)

f mod
x + i

=
f(�i)

(basic FFT idea: 1866 Gauss;

this view: 1972 Fiduccia)

Another view of the FFT

If f 2 C[x] and

f mod x4 � 1 =

c0 + c1x + c2x
2 + c3x

3 then

f mod x2 � 1 =

(c0 + c2) + (c1 + c3)x,

f mod x2 + 1 =

(c0 � c2) + (c1 � c3)x.

C[x]-morphism C[x]=(x4 � 1) ,�
C[x]=(x2 � 1) � C[x]=(x2 + 1)

maps c0 + c1x + c2x
2 + c3x

3 to

((c0 + c2) + (c1 + c3)x,

(c0 � c2) + (c1 � c3)x).

If f 2 C[x] and

f mod x2n � �2 =

c0 + c1x + � � � + c2n�1x
2n�1 then

f mod xn � � =

(c0 + �cn) + (c1 + �cn+1)x

+ (c2 + �cn+2)x2 + � � �,

f mod xn + � =

(c0 � �cn) + (c1 � �cn+1)x

+ (c2 � �cn+2)x2 + � � �.

Given c0; c1; : : : ; c2n�1 2 C,

use n mults, 2n adds to compute

c0 + �cn; c1 + �cn+1; : : : ;

c0 � �cn; c1 � �cn+1; : : : :

Apply this recursively:

f mod x4 � 1

��������

��??????

f mod x2 � 1

�����������

��'
'''''''' f mod x2 + 1

�����������

��'
''''''''

f mod
x� 1

=
f(1)

f mod
x + 1

=
f(�1)

f mod
x� i

=
f(i)

f mod
x + i

=
f(�i)

(basic FFT idea: 1866 Gauss;

this view: 1972 Fiduccia)

If f 2 C[x] and

f mod x2n � �2 =

c0 + c1x + � � � + c2n�1x
2n�1 then

f mod xn � � =

(c0 + �cn) + (c1 + �cn+1)x

+ (c2 + �cn+2)x2 + � � �,

f mod xn + � =

(c0 � �cn) + (c1 � �cn+1)x

+ (c2 � �cn+2)x2 + � � �.

Given c0; c1; : : : ; c2n�1 2 C,

use n mults, 2n adds to compute

c0 + �cn; c1 + �cn+1; : : : ;

c0 � �cn; c1 � �cn+1; : : : :

Apply this recursively:

f mod x4 � 1

��������

��??????

f mod x2 � 1

�����������

��'
'''''''' f mod x2 + 1

�����������

��'
''''''''

f mod
x� 1

=
f(1)

f mod
x + 1

=
f(�1)

f mod
x� i

=
f(i)

f mod
x + i

=
f(�i)

(basic FFT idea: 1866 Gauss;

this view: 1972 Fiduccia)

If f 2 C[x] and

f mod x2n � �2 =

c0 + c1x + � � � + c2n�1x
2n�1 then

f mod xn � � =

(c0 + �cn) + (c1 + �cn+1)x

+ (c2 + �cn+2)x2 + � � �,

f mod xn + � =

(c0 � �cn) + (c1 � �cn+1)x

+ (c2 � �cn+2)x2 + � � �.

Given c0; c1; : : : ; c2n�1 2 C,

use n mults, 2n adds to compute

c0 + �cn; c1 + �cn+1; : : : ;

c0 � �cn; c1 � �cn+1; : : : :

Apply this recursively:

f mod x4 � 1

��������

��??????

f mod x2 � 1

�����������

��'
'''''''' f mod x2 + 1

�����������

��'
''''''''

f mod
x� 1

=
f(1)

f mod
x + 1

=
f(�1)

f mod
x� i

=
f(i)

f mod
x + i

=
f(�i)

(basic FFT idea: 1866 Gauss;

this view: 1972 Fiduccia)

1966 Sande, 1966 Stockham:

Can very quickly multiply

in C[x]=(xn � 1) or C[x] or R[x]

by mapping C[x]=(xn � 1) to Cn.

Given f; g 2 C[x]=(xn � 1):

compute fg as T�1(T (f)T (g))

using T : C[x]=(xn � 1) ,� Cn.

Compute T quickly by the FFT.

Given f; g 2 C[x], deg fg < n:

compute fg from

its image in C[x]=(xn � 1).

If f 2 C[x] and

f mod x2n � �2 =

c0 + c1x + � � � + c2n�1x
2n�1 then

f mod xn � � =

(c0 + �cn) + (c1 + �cn+1)x

+ (c2 + �cn+2)x2 + � � �,

f mod xn + � =

(c0 � �cn) + (c1 � �cn+1)x

+ (c2 � �cn+2)x2 + � � �.

Given c0; c1; : : : ; c2n�1 2 C,

use n mults, 2n adds to compute

c0 + �cn; c1 + �cn+1; : : : ;

c0 � �cn; c1 � �cn+1; : : : :

Apply this recursively:

f mod x4 � 1

��������

��??????

f mod x2 � 1

�����������

��'
'''''''' f mod x2 + 1

�����������

��'
''''''''

f mod
x� 1

=
f(1)

f mod
x + 1

=
f(�1)

f mod
x� i

=
f(i)

f mod
x + i

=
f(�i)

(basic FFT idea: 1866 Gauss;

this view: 1972 Fiduccia)

1966 Sande, 1966 Stockham:

Can very quickly multiply

in C[x]=(xn � 1) or C[x] or R[x]

by mapping C[x]=(xn � 1) to Cn.

Given f; g 2 C[x]=(xn � 1):

compute fg as T�1(T (f)T (g))

using T : C[x]=(xn � 1) ,� Cn.

Compute T quickly by the FFT.

Given f; g 2 C[x], deg fg < n:

compute fg from

its image in C[x]=(xn � 1).

If f 2 C[x] and

f mod x2n � �2 =

c0 + c1x + � � � + c2n�1x
2n�1 then

f mod xn � � =

(c0 + �cn) + (c1 + �cn+1)x

+ (c2 + �cn+2)x2 + � � �,

f mod xn + � =

(c0 � �cn) + (c1 � �cn+1)x

+ (c2 � �cn+2)x2 + � � �.

Given c0; c1; : : : ; c2n�1 2 C,

use n mults, 2n adds to compute

c0 + �cn; c1 + �cn+1; : : : ;

c0 � �cn; c1 � �cn+1; : : : :

Apply this recursively:

f mod x4 � 1

��������

��??????

f mod x2 � 1

�����������

��'
'''''''' f mod x2 + 1

�����������

��'
''''''''

f mod
x� 1

=
f(1)

f mod
x + 1

=
f(�1)

f mod
x� i

=
f(i)

f mod
x + i

=
f(�i)

(basic FFT idea: 1866 Gauss;

this view: 1972 Fiduccia)

1966 Sande, 1966 Stockham:

Can very quickly multiply

in C[x]=(xn � 1) or C[x] or R[x]

by mapping C[x]=(xn � 1) to Cn.

Given f; g 2 C[x]=(xn � 1):

compute fg as T�1(T (f)T (g))

using T : C[x]=(xn � 1) ,� Cn.

Compute T quickly by the FFT.

Given f; g 2 C[x], deg fg < n:

compute fg from

its image in C[x]=(xn � 1).

Apply this recursively:

f mod x4 � 1

��������

��??????

f mod x2 � 1

�����������

��'
'''''''' f mod x2 + 1

�����������

��'
''''''''

f mod
x� 1

=
f(1)

f mod
x + 1

=
f(�1)

f mod
x� i

=
f(i)

f mod
x + i

=
f(�i)

(basic FFT idea: 1866 Gauss;

this view: 1972 Fiduccia)

1966 Sande, 1966 Stockham:

Can very quickly multiply

in C[x]=(xn � 1) or C[x] or R[x]

by mapping C[x]=(xn � 1) to Cn.

Given f; g 2 C[x]=(xn � 1):

compute fg as T�1(T (f)T (g))

using T : C[x]=(xn � 1) ,� Cn.

Compute T quickly by the FFT.

Given f; g 2 C[x], deg fg < n:

compute fg from

its image in C[x]=(xn � 1).

Apply this recursively:

f mod x4 � 1

��������

��??????

f mod x2 � 1

�����������

��'
'''''''' f mod x2 + 1

�����������

��'
''''''''

f mod
x� 1

=
f(1)

f mod
x + 1

=
f(�1)

f mod
x� i

=
f(i)

f mod
x + i

=
f(�i)

(basic FFT idea: 1866 Gauss;

this view: 1972 Fiduccia)

1966 Sande, 1966 Stockham:

Can very quickly multiply

in C[x]=(xn � 1) or C[x] or R[x]

by mapping C[x]=(xn � 1) to Cn.

Given f; g 2 C[x]=(xn � 1):

compute fg as T�1(T (f)T (g))

using T : C[x]=(xn � 1) ,� Cn.

Compute T quickly by the FFT.

Given f; g 2 C[x], deg fg < n:

compute fg from

its image in C[x]=(xn � 1).

Later authors: Replace C with,

e.g., R = Z=(3 � 241 + 1);

23 has order 241 in R�.

Apply this recursively:

f mod x4 � 1

��������

��??????

f mod x2 � 1

�����������

��'
'''''''' f mod x2 + 1

�����������

��'
''''''''

f mod
x� 1

=
f(1)

f mod
x + 1

=
f(�1)

f mod
x� i

=
f(i)

f mod
x + i

=
f(�i)

(basic FFT idea: 1866 Gauss;

this view: 1972 Fiduccia)

1966 Sande, 1966 Stockham:

Can very quickly multiply

in C[x]=(xn � 1) or C[x] or R[x]

by mapping C[x]=(xn � 1) to Cn.

Given f; g 2 C[x]=(xn � 1):

compute fg as T�1(T (f)T (g))

using T : C[x]=(xn � 1) ,� Cn.

Compute T quickly by the FFT.

Given f; g 2 C[x], deg fg < n:

compute fg from

its image in C[x]=(xn � 1).

Later authors: Replace C with,

e.g., R = Z=(3 � 241 + 1);

23 has order 241 in R�.

Multiplication and division

Given r; s 2 Z, can compute rs

in time � b(lg b)1+o(1)

where b is number of input bits.

(1971 Pollard; independently

1971 Nicholson; independently

1971 Schönhage Strassen)

Also time � b(lg b)1+o(1)

where b is number of input bits:

Given r; s 2 Z with s 6= 0,

compute br=sc and r mod s.

(reduction to product:

1966 Cook)

Apply this recursively:

f mod x4 � 1

��������

��??????

f mod x2 � 1

�����������

��'
'''''''' f mod x2 + 1

�����������

��'
''''''''

f mod
x� 1

=
f(1)

f mod
x + 1

=
f(�1)

f mod
x� i

=
f(i)

f mod
x + i

=
f(�i)

(basic FFT idea: 1866 Gauss;

this view: 1972 Fiduccia)

1966 Sande, 1966 Stockham:

Can very quickly multiply

in C[x]=(xn � 1) or C[x] or R[x]

by mapping C[x]=(xn � 1) to Cn.

Given f; g 2 C[x]=(xn � 1):

compute fg as T�1(T (f)T (g))

using T : C[x]=(xn � 1) ,� Cn.

Compute T quickly by the FFT.

Given f; g 2 C[x], deg fg < n:

compute fg from

its image in C[x]=(xn � 1).

Later authors: Replace C with,

e.g., R = Z=(3 � 241 + 1);

23 has order 241 in R�.

Multiplication and division

Given r; s 2 Z, can compute rs

in time � b(lg b)1+o(1)

where b is number of input bits.

(1971 Pollard; independently

1971 Nicholson; independently

1971 Schönhage Strassen)

Also time � b(lg b)1+o(1)

where b is number of input bits:

Given r; s 2 Z with s 6= 0,

compute br=sc and r mod s.

(reduction to product:

1966 Cook)

Apply this recursively:

f mod x4 � 1

��������

��??????

f mod x2 � 1

�����������

��'
'''''''' f mod x2 + 1

�����������

��'
''''''''

f mod
x� 1

=
f(1)

f mod
x + 1

=
f(�1)

f mod
x� i

=
f(i)

f mod
x + i

=
f(�i)

(basic FFT idea: 1866 Gauss;

this view: 1972 Fiduccia)

1966 Sande, 1966 Stockham:

Can very quickly multiply

in C[x]=(xn � 1) or C[x] or R[x]

by mapping C[x]=(xn � 1) to Cn.

Given f; g 2 C[x]=(xn � 1):

compute fg as T�1(T (f)T (g))

using T : C[x]=(xn � 1) ,� Cn.

Compute T quickly by the FFT.

Given f; g 2 C[x], deg fg < n:

compute fg from

its image in C[x]=(xn � 1).

Later authors: Replace C with,

e.g., R = Z=(3 � 241 + 1);

23 has order 241 in R�.

Multiplication and division

Given r; s 2 Z, can compute rs

in time � b(lg b)1+o(1)

where b is number of input bits.

(1971 Pollard; independently

1971 Nicholson; independently

1971 Schönhage Strassen)

Also time � b(lg b)1+o(1)

where b is number of input bits:

Given r; s 2 Z with s 6= 0,

compute br=sc and r mod s.

(reduction to product:

1966 Cook)

1966 Sande, 1966 Stockham:

Can very quickly multiply

in C[x]=(xn � 1) or C[x] or R[x]

by mapping C[x]=(xn � 1) to Cn.

Given f; g 2 C[x]=(xn � 1):

compute fg as T�1(T (f)T (g))

using T : C[x]=(xn � 1) ,� Cn.

Compute T quickly by the FFT.

Given f; g 2 C[x], deg fg < n:

compute fg from

its image in C[x]=(xn � 1).

Later authors: Replace C with,

e.g., R = Z=(3 � 241 + 1);

23 has order 241 in R�.

Multiplication and division

Given r; s 2 Z, can compute rs

in time � b(lg b)1+o(1)

where b is number of input bits.

(1971 Pollard; independently

1971 Nicholson; independently

1971 Schönhage Strassen)

Also time � b(lg b)1+o(1)

where b is number of input bits:

Given r; s 2 Z with s 6= 0,

compute br=sc and r mod s.

(reduction to product:

1966 Cook)

1966 Sande, 1966 Stockham:

Can very quickly multiply

in C[x]=(xn � 1) or C[x] or R[x]

by mapping C[x]=(xn � 1) to Cn.

Given f; g 2 C[x]=(xn � 1):

compute fg as T�1(T (f)T (g))

using T : C[x]=(xn � 1) ,� Cn.

Compute T quickly by the FFT.

Given f; g 2 C[x], deg fg < n:

compute fg from

its image in C[x]=(xn � 1).

Later authors: Replace C with,

e.g., R = Z=(3 � 241 + 1);

23 has order 241 in R�.

Multiplication and division

Given r; s 2 Z, can compute rs

in time � b(lg b)1+o(1)

where b is number of input bits.

(1971 Pollard; independently

1971 Nicholson; independently

1971 Schönhage Strassen)

Also time � b(lg b)1+o(1)

where b is number of input bits:

Given r; s 2 Z with s 6= 0,

compute br=sc and r mod s.

(reduction to product:

1966 Cook)

Product trees

Time � b(lg b)2+o(1)

where b is number of input bits:

Given x1; x2; : : : ; xn 2 Z,

compute x1x2 � � �xn.

Actually compute

product tree of x1; x2; : : : ; xn.

Root is x1x2 � � �xn.

Has left subtree if n � 2:

product tree of x1; : : : ; xdn=2e.

Also right subtree if n � 2:

product tree of xdn=2e+1; : : : ; xn.

1966 Sande, 1966 Stockham:

Can very quickly multiply

in C[x]=(xn � 1) or C[x] or R[x]

by mapping C[x]=(xn � 1) to Cn.

Given f; g 2 C[x]=(xn � 1):

compute fg as T�1(T (f)T (g))

using T : C[x]=(xn � 1) ,� Cn.

Compute T quickly by the FFT.

Given f; g 2 C[x], deg fg < n:

compute fg from

its image in C[x]=(xn � 1).

Later authors: Replace C with,

e.g., R = Z=(3 � 241 + 1);

23 has order 241 in R�.

Multiplication and division

Given r; s 2 Z, can compute rs

in time � b(lg b)1+o(1)

where b is number of input bits.

(1971 Pollard; independently

1971 Nicholson; independently

1971 Schönhage Strassen)

Also time � b(lg b)1+o(1)

where b is number of input bits:

Given r; s 2 Z with s 6= 0,

compute br=sc and r mod s.

(reduction to product:

1966 Cook)

Product trees

Time � b(lg b)2+o(1)

where b is number of input bits:

Given x1; x2; : : : ; xn 2 Z,

compute x1x2 � � �xn.

Actually compute

product tree of x1; x2; : : : ; xn.

Root is x1x2 � � �xn.

Has left subtree if n � 2:

product tree of x1; : : : ; xdn=2e.

Also right subtree if n � 2:

product tree of xdn=2e+1; : : : ; xn.

1966 Sande, 1966 Stockham:

Can very quickly multiply

in C[x]=(xn � 1) or C[x] or R[x]

by mapping C[x]=(xn � 1) to Cn.

Given f; g 2 C[x]=(xn � 1):

compute fg as T�1(T (f)T (g))

using T : C[x]=(xn � 1) ,� Cn.

Compute T quickly by the FFT.

Given f; g 2 C[x], deg fg < n:

compute fg from

its image in C[x]=(xn � 1).

Later authors: Replace C with,

e.g., R = Z=(3 � 241 + 1);

23 has order 241 in R�.

Multiplication and division

Given r; s 2 Z, can compute rs

in time � b(lg b)1+o(1)

where b is number of input bits.

(1971 Pollard; independently

1971 Nicholson; independently

1971 Schönhage Strassen)

Also time � b(lg b)1+o(1)

where b is number of input bits:

Given r; s 2 Z with s 6= 0,

compute br=sc and r mod s.

(reduction to product:

1966 Cook)

Product trees

Time � b(lg b)2+o(1)

where b is number of input bits:

Given x1; x2; : : : ; xn 2 Z,

compute x1x2 � � �xn.

Actually compute

product tree of x1; x2; : : : ; xn.

Root is x1x2 � � �xn.

Has left subtree if n � 2:

product tree of x1; : : : ; xdn=2e.

Also right subtree if n � 2:

product tree of xdn=2e+1; : : : ; xn.

Multiplication and division

Given r; s 2 Z, can compute rs

in time � b(lg b)1+o(1)

where b is number of input bits.

(1971 Pollard; independently

1971 Nicholson; independently

1971 Schönhage Strassen)

Also time � b(lg b)1+o(1)

where b is number of input bits:

Given r; s 2 Z with s 6= 0,

compute br=sc and r mod s.

(reduction to product:

1966 Cook)

Product trees

Time � b(lg b)2+o(1)

where b is number of input bits:

Given x1; x2; : : : ; xn 2 Z,

compute x1x2 � � �xn.

Actually compute

product tree of x1; x2; : : : ; xn.

Root is x1x2 � � �xn.

Has left subtree if n � 2:

product tree of x1; : : : ; xdn=2e.

Also right subtree if n � 2:

product tree of xdn=2e+1; : : : ; xn.

Multiplication and division

Given r; s 2 Z, can compute rs

in time � b(lg b)1+o(1)

where b is number of input bits.

(1971 Pollard; independently

1971 Nicholson; independently

1971 Schönhage Strassen)

Also time � b(lg b)1+o(1)

where b is number of input bits:

Given r; s 2 Z with s 6= 0,

compute br=sc and r mod s.

(reduction to product:

1966 Cook)

Product trees

Time � b(lg b)2+o(1)

where b is number of input bits:

Given x1; x2; : : : ; xn 2 Z,

compute x1x2 � � �xn.

Actually compute

product tree of x1; x2; : : : ; xn.

Root is x1x2 � � �xn.

Has left subtree if n � 2:

product tree of x1; : : : ; xdn=2e.

Also right subtree if n � 2:

product tree of xdn=2e+1; : : : ; xn.

e.g. tree for 23; 29; 84; 15; 58; 19:

926142840

56028

<<zzz
16530

hhRRRRRR

667

<<zzz
84

YY222

870

<<zzz
19

YY222

23

EE���
29

YY222

15

EE���
58

YY222

Tree has � (lg b)1+o(1) levels.

Each level has � b(lg b)0+o(1) bits.

Obtain each level

in time � b(lg b)1+o(1)

by multiplying lower-level pairs.

Multiplication and division

Given r; s 2 Z, can compute rs

in time � b(lg b)1+o(1)

where b is number of input bits.

(1971 Pollard; independently

1971 Nicholson; independently

1971 Schönhage Strassen)

Also time � b(lg b)1+o(1)

where b is number of input bits:

Given r; s 2 Z with s 6= 0,

compute br=sc and r mod s.

(reduction to product:

1966 Cook)

Product trees

Time � b(lg b)2+o(1)

where b is number of input bits:

Given x1; x2; : : : ; xn 2 Z,

compute x1x2 � � �xn.

Actually compute

product tree of x1; x2; : : : ; xn.

Root is x1x2 � � �xn.

Has left subtree if n � 2:

product tree of x1; : : : ; xdn=2e.

Also right subtree if n � 2:

product tree of xdn=2e+1; : : : ; xn.

e.g. tree for 23; 29; 84; 15; 58; 19:

926142840

56028

<<zzz
16530

hhRRRRRR

667

<<zzz
84

YY222

870

<<zzz
19

YY222

23

EE���
29

YY222

15

EE���
58

YY222

Tree has � (lg b)1+o(1) levels.

Each level has � b(lg b)0+o(1) bits.

Obtain each level

in time � b(lg b)1+o(1)

by multiplying lower-level pairs.

Multiplication and division

Given r; s 2 Z, can compute rs

in time � b(lg b)1+o(1)

where b is number of input bits.

(1971 Pollard; independently

1971 Nicholson; independently

1971 Schönhage Strassen)

Also time � b(lg b)1+o(1)

where b is number of input bits:

Given r; s 2 Z with s 6= 0,

compute br=sc and r mod s.

(reduction to product:

1966 Cook)

Product trees

Time � b(lg b)2+o(1)

where b is number of input bits:

Given x1; x2; : : : ; xn 2 Z,

compute x1x2 � � �xn.

Actually compute

product tree of x1; x2; : : : ; xn.

Root is x1x2 � � �xn.

Has left subtree if n � 2:

product tree of x1; : : : ; xdn=2e.

Also right subtree if n � 2:

product tree of xdn=2e+1; : : : ; xn.

e.g. tree for 23; 29; 84; 15; 58; 19:

926142840

56028

<<zzz
16530

hhRRRRRR

667

<<zzz
84

YY222

870

<<zzz
19

YY222

23

EE���
29

YY222

15

EE���
58

YY222

Tree has � (lg b)1+o(1) levels.

Each level has � b(lg b)0+o(1) bits.

Obtain each level

in time � b(lg b)1+o(1)

by multiplying lower-level pairs.

Product trees

Time � b(lg b)2+o(1)

where b is number of input bits:

Given x1; x2; : : : ; xn 2 Z,

compute x1x2 � � �xn.

Actually compute

product tree of x1; x2; : : : ; xn.

Root is x1x2 � � �xn.

Has left subtree if n � 2:

product tree of x1; : : : ; xdn=2e.

Also right subtree if n � 2:

product tree of xdn=2e+1; : : : ; xn.

e.g. tree for 23; 29; 84; 15; 58; 19:

926142840

56028

<<zzz
16530

hhRRRRRR

667

<<zzz
84

YY222

870

<<zzz
19

YY222

23

EE���
29

YY222

15

EE���
58

YY222

Tree has � (lg b)1+o(1) levels.

Each level has � b(lg b)0+o(1) bits.

Obtain each level

in time � b(lg b)1+o(1)

by multiplying lower-level pairs.

Product trees

Time � b(lg b)2+o(1)

where b is number of input bits:

Given x1; x2; : : : ; xn 2 Z,

compute x1x2 � � �xn.

Actually compute

product tree of x1; x2; : : : ; xn.

Root is x1x2 � � �xn.

Has left subtree if n � 2:

product tree of x1; : : : ; xdn=2e.

Also right subtree if n � 2:

product tree of xdn=2e+1; : : : ; xn.

e.g. tree for 23; 29; 84; 15; 58; 19:

926142840

56028

<<zzz
16530

hhRRRRRR

667

<<zzz
84

YY222

870

<<zzz
19

YY222

23

EE���
29

YY222

15

EE���
58

YY222

Tree has � (lg b)1+o(1) levels.

Each level has � b(lg b)0+o(1) bits.

Obtain each level

in time � b(lg b)1+o(1)

by multiplying lower-level pairs.

Remainder trees

Remainder tree

of r; x1; x2; : : : ; xn has

one node r mod t for each node t

in product tree of x1; x2; : : : ; xn.

e.g. remainder tree of

223092870; 23; 29; 84; 15; 58; 19:

223092870
||zzz

((RRRRRR

45402
||zzz

��2
22 3990

||zzz
��2

22

46
����� ��2

22 42 510
����� ��2

22 0

0 17 0 46

Product trees

Time � b(lg b)2+o(1)

where b is number of input bits:

Given x1; x2; : : : ; xn 2 Z,

compute x1x2 � � �xn.

Actually compute

product tree of x1; x2; : : : ; xn.

Root is x1x2 � � �xn.

Has left subtree if n � 2:

product tree of x1; : : : ; xdn=2e.

Also right subtree if n � 2:

product tree of xdn=2e+1; : : : ; xn.

e.g. tree for 23; 29; 84; 15; 58; 19:

926142840

56028

<<zzz
16530

hhRRRRRR

667

<<zzz
84

YY222

870

<<zzz
19

YY222

23

EE���
29

YY222

15

EE���
58

YY222

Tree has � (lg b)1+o(1) levels.

Each level has � b(lg b)0+o(1) bits.

Obtain each level

in time � b(lg b)1+o(1)

by multiplying lower-level pairs.

Remainder trees

Remainder tree

of r; x1; x2; : : : ; xn has

one node r mod t for each node t

in product tree of x1; x2; : : : ; xn.

e.g. remainder tree of

223092870; 23; 29; 84; 15; 58; 19:

223092870
||zzz

((RRRRRR

45402
||zzz

��2
22 3990

||zzz
��2

22

46
����� ��2

22 42 510
����� ��2

22 0

0 17 0 46

Product trees

Time � b(lg b)2+o(1)

where b is number of input bits:

Given x1; x2; : : : ; xn 2 Z,

compute x1x2 � � �xn.

Actually compute

product tree of x1; x2; : : : ; xn.

Root is x1x2 � � �xn.

Has left subtree if n � 2:

product tree of x1; : : : ; xdn=2e.

Also right subtree if n � 2:

product tree of xdn=2e+1; : : : ; xn.

e.g. tree for 23; 29; 84; 15; 58; 19:

926142840

56028

<<zzz
16530

hhRRRRRR

667

<<zzz
84

YY222

870

<<zzz
19

YY222

23

EE���
29

YY222

15

EE���
58

YY222

Tree has � (lg b)1+o(1) levels.

Each level has � b(lg b)0+o(1) bits.

Obtain each level

in time � b(lg b)1+o(1)

by multiplying lower-level pairs.

Remainder trees

Remainder tree

of r; x1; x2; : : : ; xn has

one node r mod t for each node t

in product tree of x1; x2; : : : ; xn.

e.g. remainder tree of

223092870; 23; 29; 84; 15; 58; 19:

223092870
||zzz

((RRRRRR

45402
||zzz

��2
22 3990

||zzz
��2

22

46
����� ��2

22 42 510
����� ��2

22 0

0 17 0 46

e.g. tree for 23; 29; 84; 15; 58; 19:

926142840

56028

<<zzz
16530

hhRRRRRR

667

<<zzz
84

YY222

870

<<zzz
19

YY222

23

EE���
29

YY222

15

EE���
58

YY222

Tree has � (lg b)1+o(1) levels.

Each level has � b(lg b)0+o(1) bits.

Obtain each level

in time � b(lg b)1+o(1)

by multiplying lower-level pairs.

Remainder trees

Remainder tree

of r; x1; x2; : : : ; xn has

one node r mod t for each node t

in product tree of x1; x2; : : : ; xn.

e.g. remainder tree of

223092870; 23; 29; 84; 15; 58; 19:

223092870
||zzz

((RRRRRR

45402
||zzz

��2
22 3990

||zzz
��2

22

46
����� ��2

22 42 510
����� ��2

22 0

0 17 0 46

e.g. tree for 23; 29; 84; 15; 58; 19:

926142840

56028

<<zzz
16530

hhRRRRRR

667

<<zzz
84

YY222

870

<<zzz
19

YY222

23

EE���
29

YY222

15

EE���
58

YY222

Tree has � (lg b)1+o(1) levels.

Each level has � b(lg b)0+o(1) bits.

Obtain each level

in time � b(lg b)1+o(1)

by multiplying lower-level pairs.

Remainder trees

Remainder tree

of r; x1; x2; : : : ; xn has

one node r mod t for each node t

in product tree of x1; x2; : : : ; xn.

e.g. remainder tree of

223092870; 23; 29; 84; 15; 58; 19:

223092870
||zzz

((RRRRRR

45402
||zzz

��2
22 3990

||zzz
��2

22

46
����� ��2

22 42 510
����� ��2

22 0

0 17 0 46

Time � b(lg b)2+o(1):

Given r 2 Z and

nonzero x1; : : : ; xn 2 Z,

compute remainder tree

of r; x1; : : : ; xn.

In particular, compute

r mod x1; : : : ; r mod xn.

In particular, see which of

x1; : : : ; xn divide r.

(1972 Moenck Borodin,

for “single precision” xi’s,

whatever exactly that means)

e.g. tree for 23; 29; 84; 15; 58; 19:

926142840

56028

<<zzz
16530

hhRRRRRR

667

<<zzz
84

YY222

870

<<zzz
19

YY222

23

EE���
29

YY222

15

EE���
58

YY222

Tree has � (lg b)1+o(1) levels.

Each level has � b(lg b)0+o(1) bits.

Obtain each level

in time � b(lg b)1+o(1)

by multiplying lower-level pairs.

Remainder trees

Remainder tree

of r; x1; x2; : : : ; xn has

one node r mod t for each node t

in product tree of x1; x2; : : : ; xn.

e.g. remainder tree of

223092870; 23; 29; 84; 15; 58; 19:

223092870
||zzz

((RRRRRR

45402
||zzz

��2
22 3990

||zzz
��2

22

46
����� ��2

22 42 510
����� ��2

22 0

0 17 0 46

Time � b(lg b)2+o(1):

Given r 2 Z and

nonzero x1; : : : ; xn 2 Z,

compute remainder tree

of r; x1; : : : ; xn.

In particular, compute

r mod x1; : : : ; r mod xn.

In particular, see which of

x1; : : : ; xn divide r.

(1972 Moenck Borodin,

for “single precision” xi’s,

whatever exactly that means)

e.g. tree for 23; 29; 84; 15; 58; 19:

926142840

56028

<<zzz
16530

hhRRRRRR

667

<<zzz
84

YY222

870

<<zzz
19

YY222

23

EE���
29

YY222

15

EE���
58

YY222

Tree has � (lg b)1+o(1) levels.

Each level has � b(lg b)0+o(1) bits.

Obtain each level

in time � b(lg b)1+o(1)

by multiplying lower-level pairs.

Remainder trees

Remainder tree

of r; x1; x2; : : : ; xn has

one node r mod t for each node t

in product tree of x1; x2; : : : ; xn.

e.g. remainder tree of

223092870; 23; 29; 84; 15; 58; 19:

223092870
||zzz

((RRRRRR

45402
||zzz

��2
22 3990

||zzz
��2

22

46
����� ��2

22 42 510
����� ��2

22 0

0 17 0 46

Time � b(lg b)2+o(1):

Given r 2 Z and

nonzero x1; : : : ; xn 2 Z,

compute remainder tree

of r; x1; : : : ; xn.

In particular, compute

r mod x1; : : : ; r mod xn.

In particular, see which of

x1; : : : ; xn divide r.

(1972 Moenck Borodin,

for “single precision” xi’s,

whatever exactly that means)

Remainder trees

Remainder tree

of r; x1; x2; : : : ; xn has

one node r mod t for each node t

in product tree of x1; x2; : : : ; xn.

e.g. remainder tree of

223092870; 23; 29; 84; 15; 58; 19:

223092870
||zzz

((RRRRRR

45402
||zzz

��2
22 3990

||zzz
��2

22

46
����� ��2

22 42 510
����� ��2

22 0

0 17 0 46

Time � b(lg b)2+o(1):

Given r 2 Z and

nonzero x1; : : : ; xn 2 Z,

compute remainder tree

of r; x1; : : : ; xn.

In particular, compute

r mod x1; : : : ; r mod xn.

In particular, see which of

x1; : : : ; xn divide r.

(1972 Moenck Borodin,

for “single precision” xi’s,

whatever exactly that means)

Remainder trees

Remainder tree

of r; x1; x2; : : : ; xn has

one node r mod t for each node t

in product tree of x1; x2; : : : ; xn.

e.g. remainder tree of

223092870; 23; 29; 84; 15; 58; 19:

223092870
||zzz

((RRRRRR

45402
||zzz

��2
22 3990

||zzz
��2

22

46
����� ��2

22 42 510
����� ��2

22 0

0 17 0 46

Time � b(lg b)2+o(1):

Given r 2 Z and

nonzero x1; : : : ; xn 2 Z,

compute remainder tree

of r; x1; : : : ; xn.

In particular, compute

r mod x1; : : : ; r mod xn.

In particular, see which of

x1; : : : ; xn divide r.

(1972 Moenck Borodin,

for “single precision” xi’s,

whatever exactly that means)

Small primes, union

Time � b(lg b)2+o(1):

Given x1; x2; : : : ; xn 2 Z and

finite set Q � Z� f0g, compute

fp 2 Q : x1x2 � � �xn mod p = 0g.

In particular, when p is prime,

see whether p divides

any of x1; x2; : : : ; xn.

Algorithm:

1. Use a product tree to

compute r = x1x2 � � �xn.

2. Use a remainder tree to see

which p 2 Q divide r.

Remainder trees

Remainder tree

of r; x1; x2; : : : ; xn has

one node r mod t for each node t

in product tree of x1; x2; : : : ; xn.

e.g. remainder tree of

223092870; 23; 29; 84; 15; 58; 19:

223092870
||zzz

((RRRRRR

45402
||zzz

��2
22 3990

||zzz
��2

22

46
����� ��2

22 42 510
����� ��2

22 0

0 17 0 46

Time � b(lg b)2+o(1):

Given r 2 Z and

nonzero x1; : : : ; xn 2 Z,

compute remainder tree

of r; x1; : : : ; xn.

In particular, compute

r mod x1; : : : ; r mod xn.

In particular, see which of

x1; : : : ; xn divide r.

(1972 Moenck Borodin,

for “single precision” xi’s,

whatever exactly that means)

Small primes, union

Time � b(lg b)2+o(1):

Given x1; x2; : : : ; xn 2 Z and

finite set Q � Z� f0g, compute

fp 2 Q : x1x2 � � �xn mod p = 0g.

In particular, when p is prime,

see whether p divides

any of x1; x2; : : : ; xn.

Algorithm:

1. Use a product tree to

compute r = x1x2 � � �xn.

2. Use a remainder tree to see

which p 2 Q divide r.

Remainder trees

Remainder tree

of r; x1; x2; : : : ; xn has

one node r mod t for each node t

in product tree of x1; x2; : : : ; xn.

e.g. remainder tree of

223092870; 23; 29; 84; 15; 58; 19:

223092870
||zzz

((RRRRRR

45402
||zzz

��2
22 3990

||zzz
��2

22

46
����� ��2

22 42 510
����� ��2

22 0

0 17 0 46

Time � b(lg b)2+o(1):

Given r 2 Z and

nonzero x1; : : : ; xn 2 Z,

compute remainder tree

of r; x1; : : : ; xn.

In particular, compute

r mod x1; : : : ; r mod xn.

In particular, see which of

x1; : : : ; xn divide r.

(1972 Moenck Borodin,

for “single precision” xi’s,

whatever exactly that means)

Small primes, union

Time � b(lg b)2+o(1):

Given x1; x2; : : : ; xn 2 Z and

finite set Q � Z� f0g, compute

fp 2 Q : x1x2 � � �xn mod p = 0g.

In particular, when p is prime,

see whether p divides

any of x1; x2; : : : ; xn.

Algorithm:

1. Use a product tree to

compute r = x1x2 � � �xn.

2. Use a remainder tree to see

which p 2 Q divide r.

Time � b(lg b)2+o(1):

Given r 2 Z and

nonzero x1; : : : ; xn 2 Z,

compute remainder tree

of r; x1; : : : ; xn.

In particular, compute

r mod x1; : : : ; r mod xn.

In particular, see which of

x1; : : : ; xn divide r.

(1972 Moenck Borodin,

for “single precision” xi’s,

whatever exactly that means)

Small primes, union

Time � b(lg b)2+o(1):

Given x1; x2; : : : ; xn 2 Z and

finite set Q � Z� f0g, compute

fp 2 Q : x1x2 � � �xn mod p = 0g.

In particular, when p is prime,

see whether p divides

any of x1; x2; : : : ; xn.

Algorithm:

1. Use a product tree to

compute r = x1x2 � � �xn.

2. Use a remainder tree to see

which p 2 Q divide r.

Time � b(lg b)2+o(1):

Given r 2 Z and

nonzero x1; : : : ; xn 2 Z,

compute remainder tree

of r; x1; : : : ; xn.

In particular, compute

r mod x1; : : : ; r mod xn.

In particular, see which of

x1; : : : ; xn divide r.

(1972 Moenck Borodin,

for “single precision” xi’s,

whatever exactly that means)

Small primes, union

Time � b(lg b)2+o(1):

Given x1; x2; : : : ; xn 2 Z and

finite set Q � Z� f0g, compute

fp 2 Q : x1x2 � � �xn mod p = 0g.

In particular, when p is prime,

see whether p divides

any of x1; x2; : : : ; xn.

Algorithm:

1. Use a product tree to

compute r = x1x2 � � �xn.

2. Use a remainder tree to see

which p 2 Q divide r.

Small primes, separately

Time � b(lg b)3+o(1):

Given x1; x2; : : : ; xn 2 Z and

finite set Q of primes,

compute fp 2 Q : x1 mod p = 0g,

: : : , fp 2 Q : xn mod p = 0g.

(2000 Bernstein)

Algorithm for n � 1:

1. Replace Q with

fp 2 Q : x1 � � �xn mod p = 0g.

2. If n = 1, print Q and stop.

3. Recurse on x1; : : : ; xdn=2e; Q.

4. Recurse on xdn=2e+1; : : : ; xn; Q.

Time � b(lg b)2+o(1):

Given r 2 Z and

nonzero x1; : : : ; xn 2 Z,

compute remainder tree

of r; x1; : : : ; xn.

In particular, compute

r mod x1; : : : ; r mod xn.

In particular, see which of

x1; : : : ; xn divide r.

(1972 Moenck Borodin,

for “single precision” xi’s,

whatever exactly that means)

Small primes, union

Time � b(lg b)2+o(1):

Given x1; x2; : : : ; xn 2 Z and

finite set Q � Z� f0g, compute

fp 2 Q : x1x2 � � �xn mod p = 0g.

In particular, when p is prime,

see whether p divides

any of x1; x2; : : : ; xn.

Algorithm:

1. Use a product tree to

compute r = x1x2 � � �xn.

2. Use a remainder tree to see

which p 2 Q divide r.

Small primes, separately

Time � b(lg b)3+o(1):

Given x1; x2; : : : ; xn 2 Z and

finite set Q of primes,

compute fp 2 Q : x1 mod p = 0g,

: : : , fp 2 Q : xn mod p = 0g.

(2000 Bernstein)

Algorithm for n � 1:

1. Replace Q with

fp 2 Q : x1 � � �xn mod p = 0g.

2. If n = 1, print Q and stop.

3. Recurse on x1; : : : ; xdn=2e; Q.

4. Recurse on xdn=2e+1; : : : ; xn; Q.

Time � b(lg b)2+o(1):

Given r 2 Z and

nonzero x1; : : : ; xn 2 Z,

compute remainder tree

of r; x1; : : : ; xn.

In particular, compute

r mod x1; : : : ; r mod xn.

In particular, see which of

x1; : : : ; xn divide r.

(1972 Moenck Borodin,

for “single precision” xi’s,

whatever exactly that means)

Small primes, union

Time � b(lg b)2+o(1):

Given x1; x2; : : : ; xn 2 Z and

finite set Q � Z� f0g, compute

fp 2 Q : x1x2 � � �xn mod p = 0g.

In particular, when p is prime,

see whether p divides

any of x1; x2; : : : ; xn.

Algorithm:

1. Use a product tree to

compute r = x1x2 � � �xn.

2. Use a remainder tree to see

which p 2 Q divide r.

Small primes, separately

Time � b(lg b)3+o(1):

Given x1; x2; : : : ; xn 2 Z and

finite set Q of primes,

compute fp 2 Q : x1 mod p = 0g,

: : : , fp 2 Q : xn mod p = 0g.

(2000 Bernstein)

Algorithm for n � 1:

1. Replace Q with

fp 2 Q : x1 � � �xn mod p = 0g.

2. If n = 1, print Q and stop.

3. Recurse on x1; : : : ; xdn=2e; Q.

4. Recurse on xdn=2e+1; : : : ; xn; Q.

Small primes, union

Time � b(lg b)2+o(1):

Given x1; x2; : : : ; xn 2 Z and

finite set Q � Z� f0g, compute

fp 2 Q : x1x2 � � �xn mod p = 0g.

In particular, when p is prime,

see whether p divides

any of x1; x2; : : : ; xn.

Algorithm:

1. Use a product tree to

compute r = x1x2 � � �xn.

2. Use a remainder tree to see

which p 2 Q divide r.

Small primes, separately

Time � b(lg b)3+o(1):

Given x1; x2; : : : ; xn 2 Z and

finite set Q of primes,

compute fp 2 Q : x1 mod p = 0g,

: : : , fp 2 Q : xn mod p = 0g.

(2000 Bernstein)

Algorithm for n � 1:

1. Replace Q with

fp 2 Q : x1 � � �xn mod p = 0g.

2. If n = 1, print Q and stop.

3. Recurse on x1; : : : ; xdn=2e; Q.

4. Recurse on xdn=2e+1; : : : ; xn; Q.

Small primes, union

Time � b(lg b)2+o(1):

Given x1; x2; : : : ; xn 2 Z and

finite set Q � Z� f0g, compute

fp 2 Q : x1x2 � � �xn mod p = 0g.

In particular, when p is prime,

see whether p divides

any of x1; x2; : : : ; xn.

Algorithm:

1. Use a product tree to

compute r = x1x2 � � �xn.

2. Use a remainder tree to see

which p 2 Q divide r.

Small primes, separately

Time � b(lg b)3+o(1):

Given x1; x2; : : : ; xn 2 Z and

finite set Q of primes,

compute fp 2 Q : x1 mod p = 0g,

: : : , fp 2 Q : xn mod p = 0g.

(2000 Bernstein)

Algorithm for n � 1:

1. Replace Q with

fp 2 Q : x1 � � �xn mod p = 0g.

2. If n = 1, print Q and stop.

3. Recurse on x1; : : : ; xdn=2e; Q.

4. Recurse on xdn=2e+1; : : : ; xn; Q.

Factor 2543; 6766; 8967; 7598
over f2; 3; 5; 7; 11; 13; 17g

��

��1
1111111

2543; 6766
over

2; 3; 7; 17

��������

��(
(((((

8967; 7598
over

2; 3; 7; 17

��������

��(
(((((

2543
over
2; 17

6766
over
2; 17

8967
over

2; 3; 7

7598
over

2; 3; 7

Each level has � b(lg b)0+o(1) bits.

Small primes, union

Time � b(lg b)2+o(1):

Given x1; x2; : : : ; xn 2 Z and

finite set Q � Z� f0g, compute

fp 2 Q : x1x2 � � �xn mod p = 0g.

In particular, when p is prime,

see whether p divides

any of x1; x2; : : : ; xn.

Algorithm:

1. Use a product tree to

compute r = x1x2 � � �xn.

2. Use a remainder tree to see

which p 2 Q divide r.

Small primes, separately

Time � b(lg b)3+o(1):

Given x1; x2; : : : ; xn 2 Z and

finite set Q of primes,

compute fp 2 Q : x1 mod p = 0g,

: : : , fp 2 Q : xn mod p = 0g.

(2000 Bernstein)

Algorithm for n � 1:

1. Replace Q with

fp 2 Q : x1 � � �xn mod p = 0g.

2. If n = 1, print Q and stop.

3. Recurse on x1; : : : ; xdn=2e; Q.

4. Recurse on xdn=2e+1; : : : ; xn; Q.

Factor 2543; 6766; 8967; 7598
over f2; 3; 5; 7; 11; 13; 17g

��

��1
1111111

2543; 6766
over

2; 3; 7; 17

��������

��(
(((((

8967; 7598
over

2; 3; 7; 17

��������

��(
(((((

2543
over
2; 17

6766
over
2; 17

8967
over

2; 3; 7

7598
over

2; 3; 7

Each level has � b(lg b)0+o(1) bits.

Small primes, union

Time � b(lg b)2+o(1):

Given x1; x2; : : : ; xn 2 Z and

finite set Q � Z� f0g, compute

fp 2 Q : x1x2 � � �xn mod p = 0g.

In particular, when p is prime,

see whether p divides

any of x1; x2; : : : ; xn.

Algorithm:

1. Use a product tree to

compute r = x1x2 � � �xn.

2. Use a remainder tree to see

which p 2 Q divide r.

Small primes, separately

Time � b(lg b)3+o(1):

Given x1; x2; : : : ; xn 2 Z and

finite set Q of primes,

compute fp 2 Q : x1 mod p = 0g,

: : : , fp 2 Q : xn mod p = 0g.

(2000 Bernstein)

Algorithm for n � 1:

1. Replace Q with

fp 2 Q : x1 � � �xn mod p = 0g.

2. If n = 1, print Q and stop.

3. Recurse on x1; : : : ; xdn=2e; Q.

4. Recurse on xdn=2e+1; : : : ; xn; Q.

Factor 2543; 6766; 8967; 7598
over f2; 3; 5; 7; 11; 13; 17g

��

��1
1111111

2543; 6766
over

2; 3; 7; 17

��������

��(
(((((

8967; 7598
over

2; 3; 7; 17

��������

��(
(((((

2543
over
2; 17

6766
over
2; 17

8967
over

2; 3; 7

7598
over

2; 3; 7

Each level has � b(lg b)0+o(1) bits.

Small primes, separately

Time � b(lg b)3+o(1):

Given x1; x2; : : : ; xn 2 Z and

finite set Q of primes,

compute fp 2 Q : x1 mod p = 0g,

: : : , fp 2 Q : xn mod p = 0g.

(2000 Bernstein)

Algorithm for n � 1:

1. Replace Q with

fp 2 Q : x1 � � �xn mod p = 0g.

2. If n = 1, print Q and stop.

3. Recurse on x1; : : : ; xdn=2e; Q.

4. Recurse on xdn=2e+1; : : : ; xn; Q.

Factor 2543; 6766; 8967; 7598
over f2; 3; 5; 7; 11; 13; 17g

��

��1
1111111

2543; 6766
over

2; 3; 7; 17

��������

��(
(((((

8967; 7598
over

2; 3; 7; 17

��������

��(
(((((

2543
over
2; 17

6766
over
2; 17

8967
over

2; 3; 7

7598
over

2; 3; 7

Each level has � b(lg b)0+o(1) bits.

Small primes, separately

Time � b(lg b)3+o(1):

Given x1; x2; : : : ; xn 2 Z and

finite set Q of primes,

compute fp 2 Q : x1 mod p = 0g,

: : : , fp 2 Q : xn mod p = 0g.

(2000 Bernstein)

Algorithm for n � 1:

1. Replace Q with

fp 2 Q : x1 � � �xn mod p = 0g.

2. If n = 1, print Q and stop.

3. Recurse on x1; : : : ; xdn=2e; Q.

4. Recurse on xdn=2e+1; : : : ; xn; Q.

Factor 2543; 6766; 8967; 7598
over f2; 3; 5; 7; 11; 13; 17g

��

��1
1111111

2543; 6766
over

2; 3; 7; 17

��������

��(
(((((

8967; 7598
over

2; 3; 7; 17

��������

��(
(((((

2543
over
2; 17

6766
over
2; 17

8967
over

2; 3; 7

7598
over

2; 3; 7

Each level has � b(lg b)0+o(1) bits.

Exponents of a small prime

Time � b(lg b)2+o(1):

Given nonzero p; x 2 Z,

find e; pe; x=pe with maximal e.

Algorithm:

1. If x mod p 6= 0:

Print 0; 1; x and stop.

2. Find f; (p2)f ; r = (x=p)=(p2)f

with maximal f .

3. If r mod p = 0: Print

2f + 2; (p2)fp2; r=p and stop.

4. Print 2f + 1; (p2)fp; r.

Small primes, separately

Time � b(lg b)3+o(1):

Given x1; x2; : : : ; xn 2 Z and

finite set Q of primes,

compute fp 2 Q : x1 mod p = 0g,

: : : , fp 2 Q : xn mod p = 0g.

(2000 Bernstein)

Algorithm for n � 1:

1. Replace Q with

fp 2 Q : x1 � � �xn mod p = 0g.

2. If n = 1, print Q and stop.

3. Recurse on x1; : : : ; xdn=2e; Q.

4. Recurse on xdn=2e+1; : : : ; xn; Q.

Factor 2543; 6766; 8967; 7598
over f2; 3; 5; 7; 11; 13; 17g

��

��1
1111111

2543; 6766
over

2; 3; 7; 17

��������

��(
(((((

8967; 7598
over

2; 3; 7; 17

��������

��(
(((((

2543
over
2; 17

6766
over
2; 17

8967
over

2; 3; 7

7598
over

2; 3; 7

Each level has � b(lg b)0+o(1) bits.

Exponents of a small prime

Time � b(lg b)2+o(1):

Given nonzero p; x 2 Z,

find e; pe; x=pe with maximal e.

Algorithm:

1. If x mod p 6= 0:

Print 0; 1; x and stop.

2. Find f; (p2)f ; r = (x=p)=(p2)f

with maximal f .

3. If r mod p = 0: Print

2f + 2; (p2)fp2; r=p and stop.

4. Print 2f + 1; (p2)fp; r.

Small primes, separately

Time � b(lg b)3+o(1):

Given x1; x2; : : : ; xn 2 Z and

finite set Q of primes,

compute fp 2 Q : x1 mod p = 0g,

: : : , fp 2 Q : xn mod p = 0g.

(2000 Bernstein)

Algorithm for n � 1:

1. Replace Q with

fp 2 Q : x1 � � �xn mod p = 0g.

2. If n = 1, print Q and stop.

3. Recurse on x1; : : : ; xdn=2e; Q.

4. Recurse on xdn=2e+1; : : : ; xn; Q.

Factor 2543; 6766; 8967; 7598
over f2; 3; 5; 7; 11; 13; 17g

��

��1
1111111

2543; 6766
over

2; 3; 7; 17

��������

��(
(((((

8967; 7598
over

2; 3; 7; 17

��������

��(
(((((

2543
over
2; 17

6766
over
2; 17

8967
over

2; 3; 7

7598
over

2; 3; 7

Each level has � b(lg b)0+o(1) bits.

Exponents of a small prime

Time � b(lg b)2+o(1):

Given nonzero p; x 2 Z,

find e; pe; x=pe with maximal e.

Algorithm:

1. If x mod p 6= 0:

Print 0; 1; x and stop.

2. Find f; (p2)f ; r = (x=p)=(p2)f

with maximal f .

3. If r mod p = 0: Print

2f + 2; (p2)fp2; r=p and stop.

4. Print 2f + 1; (p2)fp; r.

Factor 2543; 6766; 8967; 7598
over f2; 3; 5; 7; 11; 13; 17g

��

��1
1111111

2543; 6766
over

2; 3; 7; 17

��������

��(
(((((

8967; 7598
over

2; 3; 7; 17

��������

��(
(((((

2543
over
2; 17

6766
over
2; 17

8967
over

2; 3; 7

7598
over

2; 3; 7

Each level has � b(lg b)0+o(1) bits.

Exponents of a small prime

Time � b(lg b)2+o(1):

Given nonzero p; x 2 Z,

find e; pe; x=pe with maximal e.

Algorithm:

1. If x mod p 6= 0:

Print 0; 1; x and stop.

2. Find f; (p2)f ; r = (x=p)=(p2)f

with maximal f .

3. If r mod p = 0: Print

2f + 2; (p2)fp2; r=p and stop.

4. Print 2f + 1; (p2)fp; r.

Factor 2543; 6766; 8967; 7598
over f2; 3; 5; 7; 11; 13; 17g

��

��1
1111111

2543; 6766
over

2; 3; 7; 17

��������

��(
(((((

8967; 7598
over

2; 3; 7; 17

��������

��(
(((((

2543
over
2; 17

6766
over
2; 17

8967
over

2; 3; 7

7598
over

2; 3; 7

Each level has � b(lg b)0+o(1) bits.

Exponents of a small prime

Time � b(lg b)2+o(1):

Given nonzero p; x 2 Z,

find e; pe; x=pe with maximal e.

Algorithm:

1. If x mod p 6= 0:

Print 0; 1; x and stop.

2. Find f; (p2)f ; r = (x=p)=(p2)f

with maximal f .

3. If r mod p = 0: Print

2f + 2; (p2)fp2; r=p and stop.

4. Print 2f + 1; (p2)fp; r.

Exponents of small primes

Time � b(lg b)3+o(1):

Given finite set Q of primes

and nonzero x 2 Z, find maximal

e;
Q

p2Q pe(p); x=
Q

p2Q pe(p).

Algorithm:

1. Replace Q with

fp 2 Q : x mod p = 0g.

2. Find maximal f; s; r with

s=
Q

(p2)f(p2), r = (x=
Q

p)=s.

3. Find T = fp 2 Q : r mod p= 0g.

4. Output e; s
Q

p2T p; r=
Q

p2T p

where e(p) = 2f(p2) + [p 2 T].

Factor 2543; 6766; 8967; 7598
over f2; 3; 5; 7; 11; 13; 17g

��

��1
1111111

2543; 6766
over

2; 3; 7; 17

��������

��(
(((((

8967; 7598
over

2; 3; 7; 17

��������

��(
(((((

2543
over
2; 17

6766
over
2; 17

8967
over

2; 3; 7

7598
over

2; 3; 7

Each level has � b(lg b)0+o(1) bits.

Exponents of a small prime

Time � b(lg b)2+o(1):

Given nonzero p; x 2 Z,

find e; pe; x=pe with maximal e.

Algorithm:

1. If x mod p 6= 0:

Print 0; 1; x and stop.

2. Find f; (p2)f ; r = (x=p)=(p2)f

with maximal f .

3. If r mod p = 0: Print

2f + 2; (p2)fp2; r=p and stop.

4. Print 2f + 1; (p2)fp; r.

Exponents of small primes

Time � b(lg b)3+o(1):

Given finite set Q of primes

and nonzero x 2 Z, find maximal

e;
Q

p2Q pe(p); x=
Q

p2Q pe(p).

Algorithm:

1. Replace Q with

fp 2 Q : x mod p = 0g.

2. Find maximal f; s; r with

s=
Q

(p2)f(p2), r = (x=
Q

p)=s.

3. Find T = fp 2 Q : r mod p= 0g.

4. Output e; s
Q

p2T p; r=
Q

p2T p

where e(p) = 2f(p2) + [p 2 T].

Factor 2543; 6766; 8967; 7598
over f2; 3; 5; 7; 11; 13; 17g

��

��1
1111111

2543; 6766
over

2; 3; 7; 17

��������

��(
(((((

8967; 7598
over

2; 3; 7; 17

��������

��(
(((((

2543
over
2; 17

6766
over
2; 17

8967
over

2; 3; 7

7598
over

2; 3; 7

Each level has � b(lg b)0+o(1) bits.

Exponents of a small prime

Time � b(lg b)2+o(1):

Given nonzero p; x 2 Z,

find e; pe; x=pe with maximal e.

Algorithm:

1. If x mod p 6= 0:

Print 0; 1; x and stop.

2. Find f; (p2)f ; r = (x=p)=(p2)f

with maximal f .

3. If r mod p = 0: Print

2f + 2; (p2)fp2; r=p and stop.

4. Print 2f + 1; (p2)fp; r.

Exponents of small primes

Time � b(lg b)3+o(1):

Given finite set Q of primes

and nonzero x 2 Z, find maximal

e;
Q

p2Q pe(p); x=
Q

p2Q pe(p).

Algorithm:

1. Replace Q with

fp 2 Q : x mod p = 0g.

2. Find maximal f; s; r with

s=
Q

(p2)f(p2), r = (x=
Q

p)=s.

3. Find T = fp 2 Q : r mod p= 0g.

4. Output e; s
Q

p2T p; r=
Q

p2T p

where e(p) = 2f(p2) + [p 2 T].

Exponents of a small prime

Time � b(lg b)2+o(1):

Given nonzero p; x 2 Z,

find e; pe; x=pe with maximal e.

Algorithm:

1. If x mod p 6= 0:

Print 0; 1; x and stop.

2. Find f; (p2)f ; r = (x=p)=(p2)f

with maximal f .

3. If r mod p = 0: Print

2f + 2; (p2)fp2; r=p and stop.

4. Print 2f + 1; (p2)fp; r.

Exponents of small primes

Time � b(lg b)3+o(1):

Given finite set Q of primes

and nonzero x 2 Z, find maximal

e;
Q

p2Q pe(p); x=
Q

p2Q pe(p).

Algorithm:

1. Replace Q with

fp 2 Q : x mod p = 0g.

2. Find maximal f; s; r with

s=
Q

(p2)f(p2), r = (x=
Q

p)=s.

3. Find T = fp 2 Q : r mod p= 0g.

4. Output e; s
Q

p2T p; r=
Q

p2T p

where e(p) = 2f(p2) + [p 2 T].

Exponents of a small prime

Time � b(lg b)2+o(1):

Given nonzero p; x 2 Z,

find e; pe; x=pe with maximal e.

Algorithm:

1. If x mod p 6= 0:

Print 0; 1; x and stop.

2. Find f; (p2)f ; r = (x=p)=(p2)f

with maximal f .

3. If r mod p = 0: Print

2f + 2; (p2)fp2; r=p and stop.

4. Print 2f + 1; (p2)fp; r.

Exponents of small primes

Time � b(lg b)3+o(1):

Given finite set Q of primes

and nonzero x 2 Z, find maximal

e;
Q

p2Q pe(p); x=
Q

p2Q pe(p).

Algorithm:

1. Replace Q with

fp 2 Q : x mod p = 0g.

2. Find maximal f; s; r with

s=
Q

(p2)f(p2), r = (x=
Q

p)=s.

3. Find T = fp 2 Q : r mod p= 0g.

4. Output e; s
Q

p2T p; r=
Q

p2T p

where e(p) = 2f(p2) + [p 2 T].

Smooth parts, old approach

Time � b(lg b)3+o(1):

Given nonzero x1; x2; : : : ; xn 2 Z

and finite set Q of primes,

compute Q-smooth part of x1,

Q-smooth part of x2, : : : ,

Q-smooth part of xn.

Q-smooth means product

of powers of elements of Q.

Q-smooth part means

largest Q-smooth divisor.

In particular, see which of

x1; x2; : : : ; xn are smooth.

Exponents of a small prime

Time � b(lg b)2+o(1):

Given nonzero p; x 2 Z,

find e; pe; x=pe with maximal e.

Algorithm:

1. If x mod p 6= 0:

Print 0; 1; x and stop.

2. Find f; (p2)f ; r = (x=p)=(p2)f

with maximal f .

3. If r mod p = 0: Print

2f + 2; (p2)fp2; r=p and stop.

4. Print 2f + 1; (p2)fp; r.

Exponents of small primes

Time � b(lg b)3+o(1):

Given finite set Q of primes

and nonzero x 2 Z, find maximal

e;
Q

p2Q pe(p); x=
Q

p2Q pe(p).

Algorithm:

1. Replace Q with

fp 2 Q : x mod p = 0g.

2. Find maximal f; s; r with

s=
Q

(p2)f(p2), r = (x=
Q

p)=s.

3. Find T = fp 2 Q : r mod p= 0g.

4. Output e; s
Q

p2T p; r=
Q

p2T p

where e(p) = 2f(p2) + [p 2 T].

Smooth parts, old approach

Time � b(lg b)3+o(1):

Given nonzero x1; x2; : : : ; xn 2 Z

and finite set Q of primes,

compute Q-smooth part of x1,

Q-smooth part of x2, : : : ,

Q-smooth part of xn.

Q-smooth means product

of powers of elements of Q.

Q-smooth part means

largest Q-smooth divisor.

In particular, see which of

x1; x2; : : : ; xn are smooth.

Exponents of a small prime

Time � b(lg b)2+o(1):

Given nonzero p; x 2 Z,

find e; pe; x=pe with maximal e.

Algorithm:

1. If x mod p 6= 0:

Print 0; 1; x and stop.

2. Find f; (p2)f ; r = (x=p)=(p2)f

with maximal f .

3. If r mod p = 0: Print

2f + 2; (p2)fp2; r=p and stop.

4. Print 2f + 1; (p2)fp; r.

Exponents of small primes

Time � b(lg b)3+o(1):

Given finite set Q of primes

and nonzero x 2 Z, find maximal

e;
Q

p2Q pe(p); x=
Q

p2Q pe(p).

Algorithm:

1. Replace Q with

fp 2 Q : x mod p = 0g.

2. Find maximal f; s; r with

s=
Q

(p2)f(p2), r = (x=
Q

p)=s.

3. Find T = fp 2 Q : r mod p= 0g.

4. Output e; s
Q

p2T p; r=
Q

p2T p

where e(p) = 2f(p2) + [p 2 T].

Smooth parts, old approach

Time � b(lg b)3+o(1):

Given nonzero x1; x2; : : : ; xn 2 Z

and finite set Q of primes,

compute Q-smooth part of x1,

Q-smooth part of x2, : : : ,

Q-smooth part of xn.

Q-smooth means product

of powers of elements of Q.

Q-smooth part means

largest Q-smooth divisor.

In particular, see which of

x1; x2; : : : ; xn are smooth.

Exponents of small primes

Time � b(lg b)3+o(1):

Given finite set Q of primes

and nonzero x 2 Z, find maximal

e;
Q

p2Q pe(p); x=
Q

p2Q pe(p).

Algorithm:

1. Replace Q with

fp 2 Q : x mod p = 0g.

2. Find maximal f; s; r with

s=
Q

(p2)f(p2), r = (x=
Q

p)=s.

3. Find T = fp 2 Q : r mod p= 0g.

4. Output e; s
Q

p2T p; r=
Q

p2T p

where e(p) = 2f(p2) + [p 2 T].

Smooth parts, old approach

Time � b(lg b)3+o(1):

Given nonzero x1; x2; : : : ; xn 2 Z

and finite set Q of primes,

compute Q-smooth part of x1,

Q-smooth part of x2, : : : ,

Q-smooth part of xn.

Q-smooth means product

of powers of elements of Q.

Q-smooth part means

largest Q-smooth divisor.

In particular, see which of

x1; x2; : : : ; xn are smooth.

Exponents of small primes

Time � b(lg b)3+o(1):

Given finite set Q of primes

and nonzero x 2 Z, find maximal

e;
Q

p2Q pe(p); x=
Q

p2Q pe(p).

Algorithm:

1. Replace Q with

fp 2 Q : x mod p = 0g.

2. Find maximal f; s; r with

s=
Q

(p2)f(p2), r = (x=
Q

p)=s.

3. Find T = fp 2 Q : r mod p= 0g.

4. Output e; s
Q

p2T p; r=
Q

p2T p

where e(p) = 2f(p2) + [p 2 T].

Smooth parts, old approach

Time � b(lg b)3+o(1):

Given nonzero x1; x2; : : : ; xn 2 Z

and finite set Q of primes,

compute Q-smooth part of x1,

Q-smooth part of x2, : : : ,

Q-smooth part of xn.

Q-smooth means product

of powers of elements of Q.

Q-smooth part means

largest Q-smooth divisor.

In particular, see which of

x1; x2; : : : ; xn are smooth.

Algorithm:

1. Find Q1 = fp : x1 mod p = 0g,

: : : , Qn = fp : xn mod p = 0g.

2. For each i separately:

Find maximal e; s; r with

s =
Q

p2Qi
pe(p), r = xi=s.

Print s.

e.g. factor 2543; 6766; 8967; 7598

over f2; 3; 5; 7; 11; 13; 17g:

2543 over fg, smooth part 1;

6766 over f2; 17g, smooth part 34;

8967 over f3; 7g, smooth part 147;

7598 over f2g, smooth part 2.

Exponents of small primes

Time � b(lg b)3+o(1):

Given finite set Q of primes

and nonzero x 2 Z, find maximal

e;
Q

p2Q pe(p); x=
Q

p2Q pe(p).

Algorithm:

1. Replace Q with

fp 2 Q : x mod p = 0g.

2. Find maximal f; s; r with

s=
Q

(p2)f(p2), r = (x=
Q

p)=s.

3. Find T = fp 2 Q : r mod p= 0g.

4. Output e; s
Q

p2T p; r=
Q

p2T p

where e(p) = 2f(p2) + [p 2 T].

Smooth parts, old approach

Time � b(lg b)3+o(1):

Given nonzero x1; x2; : : : ; xn 2 Z

and finite set Q of primes,

compute Q-smooth part of x1,

Q-smooth part of x2, : : : ,

Q-smooth part of xn.

Q-smooth means product

of powers of elements of Q.

Q-smooth part means

largest Q-smooth divisor.

In particular, see which of

x1; x2; : : : ; xn are smooth.

Algorithm:

1. Find Q1 = fp : x1 mod p = 0g,

: : : , Qn = fp : xn mod p = 0g.

2. For each i separately:

Find maximal e; s; r with

s =
Q

p2Qi
pe(p), r = xi=s.

Print s.

e.g. factor 2543; 6766; 8967; 7598

over f2; 3; 5; 7; 11; 13; 17g:

2543 over fg, smooth part 1;

6766 over f2; 17g, smooth part 34;

8967 over f3; 7g, smooth part 147;

7598 over f2g, smooth part 2.

Exponents of small primes

Time � b(lg b)3+o(1):

Given finite set Q of primes

and nonzero x 2 Z, find maximal

e;
Q

p2Q pe(p); x=
Q

p2Q pe(p).

Algorithm:

1. Replace Q with

fp 2 Q : x mod p = 0g.

2. Find maximal f; s; r with

s=
Q

(p2)f(p2), r = (x=
Q

p)=s.

3. Find T = fp 2 Q : r mod p= 0g.

4. Output e; s
Q

p2T p; r=
Q

p2T p

where e(p) = 2f(p2) + [p 2 T].

Smooth parts, old approach

Time � b(lg b)3+o(1):

Given nonzero x1; x2; : : : ; xn 2 Z

and finite set Q of primes,

compute Q-smooth part of x1,

Q-smooth part of x2, : : : ,

Q-smooth part of xn.

Q-smooth means product

of powers of elements of Q.

Q-smooth part means

largest Q-smooth divisor.

In particular, see which of

x1; x2; : : : ; xn are smooth.

Algorithm:

1. Find Q1 = fp : x1 mod p = 0g,

: : : , Qn = fp : xn mod p = 0g.

2. For each i separately:

Find maximal e; s; r with

s =
Q

p2Qi
pe(p), r = xi=s.

Print s.

e.g. factor 2543; 6766; 8967; 7598

over f2; 3; 5; 7; 11; 13; 17g:

2543 over fg, smooth part 1;

6766 over f2; 17g, smooth part 34;

8967 over f3; 7g, smooth part 147;

7598 over f2g, smooth part 2.

Smooth parts, old approach

Time � b(lg b)3+o(1):

Given nonzero x1; x2; : : : ; xn 2 Z

and finite set Q of primes,

compute Q-smooth part of x1,

Q-smooth part of x2, : : : ,

Q-smooth part of xn.

Q-smooth means product

of powers of elements of Q.

Q-smooth part means

largest Q-smooth divisor.

In particular, see which of

x1; x2; : : : ; xn are smooth.

Algorithm:

1. Find Q1 = fp : x1 mod p = 0g,

: : : , Qn = fp : xn mod p = 0g.

2. For each i separately:

Find maximal e; s; r with

s =
Q

p2Qi
pe(p), r = xi=s.

Print s.

e.g. factor 2543; 6766; 8967; 7598

over f2; 3; 5; 7; 11; 13; 17g:

2543 over fg, smooth part 1;

6766 over f2; 17g, smooth part 34;

8967 over f3; 7g, smooth part 147;

7598 over f2g, smooth part 2.

Smooth parts, old approach

Time � b(lg b)3+o(1):

Given nonzero x1; x2; : : : ; xn 2 Z

and finite set Q of primes,

compute Q-smooth part of x1,

Q-smooth part of x2, : : : ,

Q-smooth part of xn.

Q-smooth means product

of powers of elements of Q.

Q-smooth part means

largest Q-smooth divisor.

In particular, see which of

x1; x2; : : : ; xn are smooth.

Algorithm:

1. Find Q1 = fp : x1 mod p = 0g,

: : : , Qn = fp : xn mod p = 0g.

2. For each i separately:

Find maximal e; s; r with

s =
Q

p2Qi
pe(p), r = xi=s.

Print s.

e.g. factor 2543; 6766; 8967; 7598

over f2; 3; 5; 7; 11; 13; 17g:

2543 over fg, smooth part 1;

6766 over f2; 17g, smooth part 34;

8967 over f3; 7g, smooth part 147;

7598 over f2g, smooth part 2.

Smooth multiplicative dependencies

Recall cryptanalytic bottleneck:

find kth power nontrivially as

product of powers of

x1; x2; : : : ; xn.

Choose y; imagine y = 240.

Define Q as set of primes � y.

See which of x1; x2; : : : ; xn

are y-smooth, i.e., Q-smooth.

Know their factorizations.

Do linear algebra over Z=k

on the exponent vectors.

Smooth parts, old approach

Time � b(lg b)3+o(1):

Given nonzero x1; x2; : : : ; xn 2 Z

and finite set Q of primes,

compute Q-smooth part of x1,

Q-smooth part of x2, : : : ,

Q-smooth part of xn.

Q-smooth means product

of powers of elements of Q.

Q-smooth part means

largest Q-smooth divisor.

In particular, see which of

x1; x2; : : : ; xn are smooth.

Algorithm:

1. Find Q1 = fp : x1 mod p = 0g,

: : : , Qn = fp : xn mod p = 0g.

2. For each i separately:

Find maximal e; s; r with

s =
Q

p2Qi
pe(p), r = xi=s.

Print s.

e.g. factor 2543; 6766; 8967; 7598

over f2; 3; 5; 7; 11; 13; 17g:

2543 over fg, smooth part 1;

6766 over f2; 17g, smooth part 34;

8967 over f3; 7g, smooth part 147;

7598 over f2g, smooth part 2.

Smooth multiplicative dependencies

Recall cryptanalytic bottleneck:

find kth power nontrivially as

product of powers of

x1; x2; : : : ; xn.

Choose y; imagine y = 240.

Define Q as set of primes � y.

See which of x1; x2; : : : ; xn

are y-smooth, i.e., Q-smooth.

Know their factorizations.

Do linear algebra over Z=k

on the exponent vectors.

Smooth parts, old approach

Time � b(lg b)3+o(1):

Given nonzero x1; x2; : : : ; xn 2 Z

and finite set Q of primes,

compute Q-smooth part of x1,

Q-smooth part of x2, : : : ,

Q-smooth part of xn.

Q-smooth means product

of powers of elements of Q.

Q-smooth part means

largest Q-smooth divisor.

In particular, see which of

x1; x2; : : : ; xn are smooth.

Algorithm:

1. Find Q1 = fp : x1 mod p = 0g,

: : : , Qn = fp : xn mod p = 0g.

2. For each i separately:

Find maximal e; s; r with

s =
Q

p2Qi
pe(p), r = xi=s.

Print s.

e.g. factor 2543; 6766; 8967; 7598

over f2; 3; 5; 7; 11; 13; 17g:

2543 over fg, smooth part 1;

6766 over f2; 17g, smooth part 34;

8967 over f3; 7g, smooth part 147;

7598 over f2g, smooth part 2.

Smooth multiplicative dependencies

Recall cryptanalytic bottleneck:

find kth power nontrivially as

product of powers of

x1; x2; : : : ; xn.

Choose y; imagine y = 240.

Define Q as set of primes � y.

See which of x1; x2; : : : ; xn

are y-smooth, i.e., Q-smooth.

Know their factorizations.

Do linear algebra over Z=k

on the exponent vectors.

Algorithm:

1. Find Q1 = fp : x1 mod p = 0g,

: : : , Qn = fp : xn mod p = 0g.

2. For each i separately:

Find maximal e; s; r with

s =
Q

p2Qi
pe(p), r = xi=s.

Print s.

e.g. factor 2543; 6766; 8967; 7598

over f2; 3; 5; 7; 11; 13; 17g:

2543 over fg, smooth part 1;

6766 over f2; 17g, smooth part 34;

8967 over f3; 7g, smooth part 147;

7598 over f2g, smooth part 2.

Smooth multiplicative dependencies

Recall cryptanalytic bottleneck:

find kth power nontrivially as

product of powers of

x1; x2; : : : ; xn.

Choose y; imagine y = 240.

Define Q as set of primes � y.

See which of x1; x2; : : : ; xn

are y-smooth, i.e., Q-smooth.

Know their factorizations.

Do linear algebra over Z=k

on the exponent vectors.

Algorithm:

1. Find Q1 = fp : x1 mod p = 0g,

: : : , Qn = fp : xn mod p = 0g.

2. For each i separately:

Find maximal e; s; r with

s =
Q

p2Qi
pe(p), r = xi=s.

Print s.

e.g. factor 2543; 6766; 8967; 7598

over f2; 3; 5; 7; 11; 13; 17g:

2543 over fg, smooth part 1;

6766 over f2; 17g, smooth part 34;

8967 over f3; 7g, smooth part 147;

7598 over f2g, smooth part 2.

Smooth multiplicative dependencies

Recall cryptanalytic bottleneck:

find kth power nontrivially as

product of powers of

x1; x2; : : : ; xn.

Choose y; imagine y = 240.

Define Q as set of primes � y.

See which of x1; x2; : : : ; xn

are y-smooth, i.e., Q-smooth.

Know their factorizations.

Do linear algebra over Z=k

on the exponent vectors.

Smooth parts, new approach

Given nonzero x1; x2; : : : ; xn 2 Z

and finite set Q of primes:

Time typically � b(lg b)2+o(1)

to obtain smooth parts of x’s.

(2004 Franke Kleinjung

Morain Wirth, in ECPP context)

Algorithm:

Compute r =
Q

p2Q p.

Compute r mod x1; : : : ; r mod xn.

For each i separately:

Replace xi by

xi=gcdfxi; r mod xig

repeatedly until gcd is 1.

Algorithm:

1. Find Q1 = fp : x1 mod p = 0g,

: : : , Qn = fp : xn mod p = 0g.

2. For each i separately:

Find maximal e; s; r with

s =
Q

p2Qi
pe(p), r = xi=s.

Print s.

e.g. factor 2543; 6766; 8967; 7598

over f2; 3; 5; 7; 11; 13; 17g:

2543 over fg, smooth part 1;

6766 over f2; 17g, smooth part 34;

8967 over f3; 7g, smooth part 147;

7598 over f2g, smooth part 2.

Smooth multiplicative dependencies

Recall cryptanalytic bottleneck:

find kth power nontrivially as

product of powers of

x1; x2; : : : ; xn.

Choose y; imagine y = 240.

Define Q as set of primes � y.

See which of x1; x2; : : : ; xn

are y-smooth, i.e., Q-smooth.

Know their factorizations.

Do linear algebra over Z=k

on the exponent vectors.

Smooth parts, new approach

Given nonzero x1; x2; : : : ; xn 2 Z

and finite set Q of primes:

Time typically � b(lg b)2+o(1)

to obtain smooth parts of x’s.

(2004 Franke Kleinjung

Morain Wirth, in ECPP context)

Algorithm:

Compute r =
Q

p2Q p.

Compute r mod x1; : : : ; r mod xn.

For each i separately:

Replace xi by

xi=gcdfxi; r mod xig

repeatedly until gcd is 1.

Algorithm:

1. Find Q1 = fp : x1 mod p = 0g,

: : : , Qn = fp : xn mod p = 0g.

2. For each i separately:

Find maximal e; s; r with

s =
Q

p2Qi
pe(p), r = xi=s.

Print s.

e.g. factor 2543; 6766; 8967; 7598

over f2; 3; 5; 7; 11; 13; 17g:

2543 over fg, smooth part 1;

6766 over f2; 17g, smooth part 34;

8967 over f3; 7g, smooth part 147;

7598 over f2g, smooth part 2.

Smooth multiplicative dependencies

Recall cryptanalytic bottleneck:

find kth power nontrivially as

product of powers of

x1; x2; : : : ; xn.

Choose y; imagine y = 240.

Define Q as set of primes � y.

See which of x1; x2; : : : ; xn

are y-smooth, i.e., Q-smooth.

Know their factorizations.

Do linear algebra over Z=k

on the exponent vectors.

Smooth parts, new approach

Given nonzero x1; x2; : : : ; xn 2 Z

and finite set Q of primes:

Time typically � b(lg b)2+o(1)

to obtain smooth parts of x’s.

(2004 Franke Kleinjung

Morain Wirth, in ECPP context)

Algorithm:

Compute r =
Q

p2Q p.

Compute r mod x1; : : : ; r mod xn.

For each i separately:

Replace xi by

xi=gcdfxi; r mod xig

repeatedly until gcd is 1.

Smooth multiplicative dependencies

Recall cryptanalytic bottleneck:

find kth power nontrivially as

product of powers of

x1; x2; : : : ; xn.

Choose y; imagine y = 240.

Define Q as set of primes � y.

See which of x1; x2; : : : ; xn

are y-smooth, i.e., Q-smooth.

Know their factorizations.

Do linear algebra over Z=k

on the exponent vectors.

Smooth parts, new approach

Given nonzero x1; x2; : : : ; xn 2 Z

and finite set Q of primes:

Time typically � b(lg b)2+o(1)

to obtain smooth parts of x’s.

(2004 Franke Kleinjung

Morain Wirth, in ECPP context)

Algorithm:

Compute r =
Q

p2Q p.

Compute r mod x1; : : : ; r mod xn.

For each i separately:

Replace xi by

xi=gcdfxi; r mod xig

repeatedly until gcd is 1.

Smooth multiplicative dependencies

Recall cryptanalytic bottleneck:

find kth power nontrivially as

product of powers of

x1; x2; : : : ; xn.

Choose y; imagine y = 240.

Define Q as set of primes � y.

See which of x1; x2; : : : ; xn

are y-smooth, i.e., Q-smooth.

Know their factorizations.

Do linear algebra over Z=k

on the exponent vectors.

Smooth parts, new approach

Given nonzero x1; x2; : : : ; xn 2 Z

and finite set Q of primes:

Time typically � b(lg b)2+o(1)

to obtain smooth parts of x’s.

(2004 Franke Kleinjung

Morain Wirth, in ECPP context)

Algorithm:

Compute r =
Q

p2Q p.

Compute r mod x1; : : : ; r mod xn.

For each i separately:

Replace xi by

xi=gcdfxi; r mod xig

repeatedly until gcd is 1.

Slight variant (2004 Bernstein):

Time always � b(lg b)2+o(1).

Compute smooth part of xi as

gcd
�
xi; (r mod xi)

2k mod xi
	

where k = dlg lg xie.

Subroutine: Computing gcd

takes time � b(lg b)2+o(1).

(1971 Schönhage;

core idea: 1938 Lehmer;

b(lg b)5+o(1): 1971 Knuth)

Or, to see if xi is smooth,

see if (r mod xi)
2k mod xi = 0.

Smooth multiplicative dependencies

Recall cryptanalytic bottleneck:

find kth power nontrivially as

product of powers of

x1; x2; : : : ; xn.

Choose y; imagine y = 240.

Define Q as set of primes � y.

See which of x1; x2; : : : ; xn

are y-smooth, i.e., Q-smooth.

Know their factorizations.

Do linear algebra over Z=k

on the exponent vectors.

Smooth parts, new approach

Given nonzero x1; x2; : : : ; xn 2 Z

and finite set Q of primes:

Time typically � b(lg b)2+o(1)

to obtain smooth parts of x’s.

(2004 Franke Kleinjung

Morain Wirth, in ECPP context)

Algorithm:

Compute r =
Q

p2Q p.

Compute r mod x1; : : : ; r mod xn.

For each i separately:

Replace xi by

xi=gcdfxi; r mod xig

repeatedly until gcd is 1.

Slight variant (2004 Bernstein):

Time always � b(lg b)2+o(1).

Compute smooth part of xi as

gcd
�
xi; (r mod xi)

2k mod xi
	

where k = dlg lg xie.

Subroutine: Computing gcd

takes time � b(lg b)2+o(1).

(1971 Schönhage;

core idea: 1938 Lehmer;

b(lg b)5+o(1): 1971 Knuth)

Or, to see if xi is smooth,

see if (r mod xi)
2k mod xi = 0.

Smooth multiplicative dependencies

Recall cryptanalytic bottleneck:

find kth power nontrivially as

product of powers of

x1; x2; : : : ; xn.

Choose y; imagine y = 240.

Define Q as set of primes � y.

See which of x1; x2; : : : ; xn

are y-smooth, i.e., Q-smooth.

Know their factorizations.

Do linear algebra over Z=k

on the exponent vectors.

Smooth parts, new approach

Given nonzero x1; x2; : : : ; xn 2 Z

and finite set Q of primes:

Time typically � b(lg b)2+o(1)

to obtain smooth parts of x’s.

(2004 Franke Kleinjung

Morain Wirth, in ECPP context)

Algorithm:

Compute r =
Q

p2Q p.

Compute r mod x1; : : : ; r mod xn.

For each i separately:

Replace xi by

xi=gcdfxi; r mod xig

repeatedly until gcd is 1.

Slight variant (2004 Bernstein):

Time always � b(lg b)2+o(1).

Compute smooth part of xi as

gcd
�
xi; (r mod xi)

2k mod xi
	

where k = dlg lg xie.

Subroutine: Computing gcd

takes time � b(lg b)2+o(1).

(1971 Schönhage;

core idea: 1938 Lehmer;

b(lg b)5+o(1): 1971 Knuth)

Or, to see if xi is smooth,

see if (r mod xi)
2k mod xi = 0.

Smooth parts, new approach

Given nonzero x1; x2; : : : ; xn 2 Z

and finite set Q of primes:

Time typically � b(lg b)2+o(1)

to obtain smooth parts of x’s.

(2004 Franke Kleinjung

Morain Wirth, in ECPP context)

Algorithm:

Compute r =
Q

p2Q p.

Compute r mod x1; : : : ; r mod xn.

For each i separately:

Replace xi by

xi=gcdfxi; r mod xig

repeatedly until gcd is 1.

Slight variant (2004 Bernstein):

Time always � b(lg b)2+o(1).

Compute smooth part of xi as

gcd
�
xi; (r mod xi)

2k mod xi
	

where k = dlg lg xie.

Subroutine: Computing gcd

takes time � b(lg b)2+o(1).

(1971 Schönhage;

core idea: 1938 Lehmer;

b(lg b)5+o(1): 1971 Knuth)

Or, to see if xi is smooth,

see if (r mod xi)
2k mod xi = 0.

Smooth parts, new approach

Given nonzero x1; x2; : : : ; xn 2 Z

and finite set Q of primes:

Time typically � b(lg b)2+o(1)

to obtain smooth parts of x’s.

(2004 Franke Kleinjung

Morain Wirth, in ECPP context)

Algorithm:

Compute r =
Q

p2Q p.

Compute r mod x1; : : : ; r mod xn.

For each i separately:

Replace xi by

xi=gcdfxi; r mod xig

repeatedly until gcd is 1.

Slight variant (2004 Bernstein):

Time always � b(lg b)2+o(1).

Compute smooth part of xi as

gcd
�
xi; (r mod xi)

2k mod xi
	

where k = dlg lg xie.

Subroutine: Computing gcd

takes time � b(lg b)2+o(1).

(1971 Schönhage;

core idea: 1938 Lehmer;

b(lg b)5+o(1): 1971 Knuth)

Or, to see if xi is smooth,

see if (r mod xi)
2k mod xi = 0.

Minor problem: New algorithm

finds the smooth numbers

but doesn’t factor them.

Smooth parts, new approach

Given nonzero x1; x2; : : : ; xn 2 Z

and finite set Q of primes:

Time typically � b(lg b)2+o(1)

to obtain smooth parts of x’s.

(2004 Franke Kleinjung

Morain Wirth, in ECPP context)

Algorithm:

Compute r =
Q

p2Q p.

Compute r mod x1; : : : ; r mod xn.

For each i separately:

Replace xi by

xi=gcdfxi; r mod xig

repeatedly until gcd is 1.

Slight variant (2004 Bernstein):

Time always � b(lg b)2+o(1).

Compute smooth part of xi as

gcd
�
xi; (r mod xi)

2k mod xi
	

where k = dlg lg xie.

Subroutine: Computing gcd

takes time � b(lg b)2+o(1).

(1971 Schönhage;

core idea: 1938 Lehmer;

b(lg b)5+o(1): 1971 Knuth)

Or, to see if xi is smooth,

see if (r mod xi)
2k mod xi = 0.

Minor problem: New algorithm

finds the smooth numbers

but doesn’t factor them.

Smooth parts, new approach

Given nonzero x1; x2; : : : ; xn 2 Z

and finite set Q of primes:

Time typically � b(lg b)2+o(1)

to obtain smooth parts of x’s.

(2004 Franke Kleinjung

Morain Wirth, in ECPP context)

Algorithm:

Compute r =
Q

p2Q p.

Compute r mod x1; : : : ; r mod xn.

For each i separately:

Replace xi by

xi=gcdfxi; r mod xig

repeatedly until gcd is 1.

Slight variant (2004 Bernstein):

Time always � b(lg b)2+o(1).

Compute smooth part of xi as

gcd
�
xi; (r mod xi)

2k mod xi
	

where k = dlg lg xie.

Subroutine: Computing gcd

takes time � b(lg b)2+o(1).

(1971 Schönhage;

core idea: 1938 Lehmer;

b(lg b)5+o(1): 1971 Knuth)

Or, to see if xi is smooth,

see if (r mod xi)
2k mod xi = 0.

Minor problem: New algorithm

finds the smooth numbers

but doesn’t factor them.

Slight variant (2004 Bernstein):

Time always � b(lg b)2+o(1).

Compute smooth part of xi as

gcd
�
xi; (r mod xi)

2k mod xi
	

where k = dlg lg xie.

Subroutine: Computing gcd

takes time � b(lg b)2+o(1).

(1971 Schönhage;

core idea: 1938 Lehmer;

b(lg b)5+o(1): 1971 Knuth)

Or, to see if xi is smooth,

see if (r mod xi)
2k mod xi = 0.

Minor problem: New algorithm

finds the smooth numbers

but doesn’t factor them.

Slight variant (2004 Bernstein):

Time always � b(lg b)2+o(1).

Compute smooth part of xi as

gcd
�
xi; (r mod xi)

2k mod xi
	

where k = dlg lg xie.

Subroutine: Computing gcd

takes time � b(lg b)2+o(1).

(1971 Schönhage;

core idea: 1938 Lehmer;

b(lg b)5+o(1): 1971 Knuth)

Or, to see if xi is smooth,

see if (r mod xi)
2k mod xi = 0.

Minor problem: New algorithm

finds the smooth numbers

but doesn’t factor them.

Solution:

Feed the smooth numbers

to the old algorithm.

Very few smooth numbers,

so this is very fast.

Bottom line for cryptanalysis:

time per input number to

find and factor smooth numbers

has dropped by (lg b)1+o(1).

Slight variant (2004 Bernstein):

Time always � b(lg b)2+o(1).

Compute smooth part of xi as

gcd
�
xi; (r mod xi)

2k mod xi
	

where k = dlg lg xie.

Subroutine: Computing gcd

takes time � b(lg b)2+o(1).

(1971 Schönhage;

core idea: 1938 Lehmer;

b(lg b)5+o(1): 1971 Knuth)

Or, to see if xi is smooth,

see if (r mod xi)
2k mod xi = 0.

Minor problem: New algorithm

finds the smooth numbers

but doesn’t factor them.

Solution:

Feed the smooth numbers

to the old algorithm.

Very few smooth numbers,

so this is very fast.

Bottom line for cryptanalysis:

time per input number to

find and factor smooth numbers

has dropped by (lg b)1+o(1).

Is smooth the right question?

After finding smooth numbers,

do first step of linear algebra:

Throw away primes that appear

only once; throw away

numbers with those primes;

repeat until stable.

Don’t want all smooth numbers.

Want smooth numbers only if

they are built from primes that

divide the other numbers.

Slight variant (2004 Bernstein):

Time always � b(lg b)2+o(1).

Compute smooth part of xi as

gcd
�
xi; (r mod xi)

2k mod xi
	

where k = dlg lg xie.

Subroutine: Computing gcd

takes time � b(lg b)2+o(1).

(1971 Schönhage;

core idea: 1938 Lehmer;

b(lg b)5+o(1): 1971 Knuth)

Or, to see if xi is smooth,

see if (r mod xi)
2k mod xi = 0.

Minor problem: New algorithm

finds the smooth numbers

but doesn’t factor them.

Solution:

Feed the smooth numbers

to the old algorithm.

Very few smooth numbers,

so this is very fast.

Bottom line for cryptanalysis:

time per input number to

find and factor smooth numbers

has dropped by (lg b)1+o(1).

Is smooth the right question?

After finding smooth numbers,

do first step of linear algebra:

Throw away primes that appear

only once; throw away

numbers with those primes;

repeat until stable.

Don’t want all smooth numbers.

Want smooth numbers only if

they are built from primes that

divide the other numbers.

Slight variant (2004 Bernstein):

Time always � b(lg b)2+o(1).

Compute smooth part of xi as

gcd
�
xi; (r mod xi)

2k mod xi
	

where k = dlg lg xie.

Subroutine: Computing gcd

takes time � b(lg b)2+o(1).

(1971 Schönhage;

core idea: 1938 Lehmer;

b(lg b)5+o(1): 1971 Knuth)

Or, to see if xi is smooth,

see if (r mod xi)
2k mod xi = 0.

Minor problem: New algorithm

finds the smooth numbers

but doesn’t factor them.

Solution:

Feed the smooth numbers

to the old algorithm.

Very few smooth numbers,

so this is very fast.

Bottom line for cryptanalysis:

time per input number to

find and factor smooth numbers

has dropped by (lg b)1+o(1).

Is smooth the right question?

After finding smooth numbers,

do first step of linear algebra:

Throw away primes that appear

only once; throw away

numbers with those primes;

repeat until stable.

Don’t want all smooth numbers.

Want smooth numbers only if

they are built from primes that

divide the other numbers.

Minor problem: New algorithm

finds the smooth numbers

but doesn’t factor them.

Solution:

Feed the smooth numbers

to the old algorithm.

Very few smooth numbers,

so this is very fast.

Bottom line for cryptanalysis:

time per input number to

find and factor smooth numbers

has dropped by (lg b)1+o(1).

Is smooth the right question?

After finding smooth numbers,

do first step of linear algebra:

Throw away primes that appear

only once; throw away

numbers with those primes;

repeat until stable.

Don’t want all smooth numbers.

Want smooth numbers only if

they are built from primes that

divide the other numbers.

Minor problem: New algorithm

finds the smooth numbers

but doesn’t factor them.

Solution:

Feed the smooth numbers

to the old algorithm.

Very few smooth numbers,

so this is very fast.

Bottom line for cryptanalysis:

time per input number to

find and factor smooth numbers

has dropped by (lg b)1+o(1).

Is smooth the right question?

After finding smooth numbers,

do first step of linear algebra:

Throw away primes that appear

only once; throw away

numbers with those primes;

repeat until stable.

Don’t want all smooth numbers.

Want smooth numbers only if

they are built from primes that

divide the other numbers.

An alternate approach

Given nonzero x1; x2; : : : ; xn 2 Z:

Compute r = x1x2 � � �xn.

Compute (r=x1) mod x1, : : : ,

(r=xn) mod xn.

For each i separately: see if

((r=xi) mod xi)
2k mod xi = 0

where k = dlg lg xie.

Finds xi iff all primes in xi
are divisors of other x’s.

Time � b(lg b)2+o(1).

(2004 Bernstein)

Minor problem: New algorithm

finds the smooth numbers

but doesn’t factor them.

Solution:

Feed the smooth numbers

to the old algorithm.

Very few smooth numbers,

so this is very fast.

Bottom line for cryptanalysis:

time per input number to

find and factor smooth numbers

has dropped by (lg b)1+o(1).

Is smooth the right question?

After finding smooth numbers,

do first step of linear algebra:

Throw away primes that appear

only once; throw away

numbers with those primes;

repeat until stable.

Don’t want all smooth numbers.

Want smooth numbers only if

they are built from primes that

divide the other numbers.

An alternate approach

Given nonzero x1; x2; : : : ; xn 2 Z:

Compute r = x1x2 � � �xn.

Compute (r=x1) mod x1, : : : ,

(r=xn) mod xn.

For each i separately: see if

((r=xi) mod xi)
2k mod xi = 0

where k = dlg lg xie.

Finds xi iff all primes in xi
are divisors of other x’s.

Time � b(lg b)2+o(1).

(2004 Bernstein)

Minor problem: New algorithm

finds the smooth numbers

but doesn’t factor them.

Solution:

Feed the smooth numbers

to the old algorithm.

Very few smooth numbers,

so this is very fast.

Bottom line for cryptanalysis:

time per input number to

find and factor smooth numbers

has dropped by (lg b)1+o(1).

Is smooth the right question?

After finding smooth numbers,

do first step of linear algebra:

Throw away primes that appear

only once; throw away

numbers with those primes;

repeat until stable.

Don’t want all smooth numbers.

Want smooth numbers only if

they are built from primes that

divide the other numbers.

An alternate approach

Given nonzero x1; x2; : : : ; xn 2 Z:

Compute r = x1x2 � � �xn.

Compute (r=x1) mod x1, : : : ,

(r=xn) mod xn.

For each i separately: see if

((r=xi) mod xi)
2k mod xi = 0

where k = dlg lg xie.

Finds xi iff all primes in xi
are divisors of other x’s.

Time � b(lg b)2+o(1).

(2004 Bernstein)

Is smooth the right question?

After finding smooth numbers,

do first step of linear algebra:

Throw away primes that appear

only once; throw away

numbers with those primes;

repeat until stable.

Don’t want all smooth numbers.

Want smooth numbers only if

they are built from primes that

divide the other numbers.

An alternate approach

Given nonzero x1; x2; : : : ; xn 2 Z:

Compute r = x1x2 � � �xn.

Compute (r=x1) mod x1, : : : ,

(r=xn) mod xn.

For each i separately: see if

((r=xi) mod xi)
2k mod xi = 0

where k = dlg lg xie.

Finds xi iff all primes in xi
are divisors of other x’s.

Time � b(lg b)2+o(1).

(2004 Bernstein)

Is smooth the right question?

After finding smooth numbers,

do first step of linear algebra:

Throw away primes that appear

only once; throw away

numbers with those primes;

repeat until stable.

Don’t want all smooth numbers.

Want smooth numbers only if

they are built from primes that

divide the other numbers.

An alternate approach

Given nonzero x1; x2; : : : ; xn 2 Z:

Compute r = x1x2 � � �xn.

Compute (r=x1) mod x1, : : : ,

(r=xn) mod xn.

For each i separately: see if

((r=xi) mod xi)
2k mod xi = 0

where k = dlg lg xie.

Finds xi iff all primes in xi
are divisors of other x’s.

Time � b(lg b)2+o(1).

(2004 Bernstein)

Compute (r=x1) mod x1, : : : ,

(r=xn) mod xn by computing

r mod x2
1; : : : ; r mod x2

n.

(1972 Moenck Borodin)

Is smooth the right question?

After finding smooth numbers,

do first step of linear algebra:

Throw away primes that appear

only once; throw away

numbers with those primes;

repeat until stable.

Don’t want all smooth numbers.

Want smooth numbers only if

they are built from primes that

divide the other numbers.

An alternate approach

Given nonzero x1; x2; : : : ; xn 2 Z:

Compute r = x1x2 � � �xn.

Compute (r=x1) mod x1, : : : ,

(r=xn) mod xn.

For each i separately: see if

((r=xi) mod xi)
2k mod xi = 0

where k = dlg lg xie.

Finds xi iff all primes in xi
are divisors of other x’s.

Time � b(lg b)2+o(1).

(2004 Bernstein)

Compute (r=x1) mod x1, : : : ,

(r=xn) mod xn by computing

r mod x2
1; : : : ; r mod x2

n.

(1972 Moenck Borodin)

Is smooth the right question?

After finding smooth numbers,

do first step of linear algebra:

Throw away primes that appear

only once; throw away

numbers with those primes;

repeat until stable.

Don’t want all smooth numbers.

Want smooth numbers only if

they are built from primes that

divide the other numbers.

An alternate approach

Given nonzero x1; x2; : : : ; xn 2 Z:

Compute r = x1x2 � � �xn.

Compute (r=x1) mod x1, : : : ,

(r=xn) mod xn.

For each i separately: see if

((r=xi) mod xi)
2k mod xi = 0

where k = dlg lg xie.

Finds xi iff all primes in xi
are divisors of other x’s.

Time � b(lg b)2+o(1).

(2004 Bernstein)

Compute (r=x1) mod x1, : : : ,

(r=xn) mod xn by computing

r mod x2
1; : : : ; r mod x2

n.

(1972 Moenck Borodin)

An alternate approach

Given nonzero x1; x2; : : : ; xn 2 Z:

Compute r = x1x2 � � �xn.

Compute (r=x1) mod x1, : : : ,

(r=xn) mod xn.

For each i separately: see if

((r=xi) mod xi)
2k mod xi = 0

where k = dlg lg xie.

Finds xi iff all primes in xi
are divisors of other x’s.

Time � b(lg b)2+o(1).

(2004 Bernstein)

Compute (r=x1) mod x1, : : : ,

(r=xn) mod xn by computing

r mod x2
1; : : : ; r mod x2

n.

(1972 Moenck Borodin)

An alternate approach

Given nonzero x1; x2; : : : ; xn 2 Z:

Compute r = x1x2 � � �xn.

Compute (r=x1) mod x1, : : : ,

(r=xn) mod xn.

For each i separately: see if

((r=xi) mod xi)
2k mod xi = 0

where k = dlg lg xie.

Finds xi iff all primes in xi
are divisors of other x’s.

Time � b(lg b)2+o(1).

(2004 Bernstein)

Compute (r=x1) mod x1, : : : ,

(r=xn) mod xn by computing

r mod x2
1; : : : ; r mod x2

n.

(1972 Moenck Borodin)

Problem: Recognizing the

interesting x’s is not enough;

also need their factorizations.

An alternate approach

Given nonzero x1; x2; : : : ; xn 2 Z:

Compute r = x1x2 � � �xn.

Compute (r=x1) mod x1, : : : ,

(r=xn) mod xn.

For each i separately: see if

((r=xi) mod xi)
2k mod xi = 0

where k = dlg lg xie.

Finds xi iff all primes in xi
are divisors of other x’s.

Time � b(lg b)2+o(1).

(2004 Bernstein)

Compute (r=x1) mod x1, : : : ,

(r=xn) mod xn by computing

r mod x2
1; : : : ; r mod x2

n.

(1972 Moenck Borodin)

Problem: Recognizing the

interesting x’s is not enough;

also need their factorizations.

Solution:

Again, very few of them.

Have ample time to

use rho method (1974 Pollard)

or use ECM (1987 Lenstra)

or factor into coprimes.

An alternate approach

Given nonzero x1; x2; : : : ; xn 2 Z:

Compute r = x1x2 � � �xn.

Compute (r=x1) mod x1, : : : ,

(r=xn) mod xn.

For each i separately: see if

((r=xi) mod xi)
2k mod xi = 0

where k = dlg lg xie.

Finds xi iff all primes in xi
are divisors of other x’s.

Time � b(lg b)2+o(1).

(2004 Bernstein)

Compute (r=x1) mod x1, : : : ,

(r=xn) mod xn by computing

r mod x2
1; : : : ; r mod x2

n.

(1972 Moenck Borodin)

Problem: Recognizing the

interesting x’s is not enough;

also need their factorizations.

Solution:

Again, very few of them.

Have ample time to

use rho method (1974 Pollard)

or use ECM (1987 Lenstra)

or factor into coprimes.

Factoring into coprimes

Time � b(lg b)O(1):

Given positive x1; x2; : : : ; xn,

find coprime set Q

and complete factorization

of each xi over Q.

(announced 1995 Bernstein;

journal version: 2005)

Immediately gives b(lg b)O(1)

for the other factoring problems.

Subsequent research: lg speedups,

constant-factor speedups, etc.

An alternate approach

Given nonzero x1; x2; : : : ; xn 2 Z:

Compute r = x1x2 � � �xn.

Compute (r=x1) mod x1, : : : ,

(r=xn) mod xn.

For each i separately: see if

((r=xi) mod xi)
2k mod xi = 0

where k = dlg lg xie.

Finds xi iff all primes in xi
are divisors of other x’s.

Time � b(lg b)2+o(1).

(2004 Bernstein)

Compute (r=x1) mod x1, : : : ,

(r=xn) mod xn by computing

r mod x2
1; : : : ; r mod x2

n.

(1972 Moenck Borodin)

Problem: Recognizing the

interesting x’s is not enough;

also need their factorizations.

Solution:

Again, very few of them.

Have ample time to

use rho method (1974 Pollard)

or use ECM (1987 Lenstra)

or factor into coprimes.

Factoring into coprimes

Time � b(lg b)O(1):

Given positive x1; x2; : : : ; xn,

find coprime set Q

and complete factorization

of each xi over Q.

(announced 1995 Bernstein;

journal version: 2005)

Immediately gives b(lg b)O(1)

for the other factoring problems.

Subsequent research: lg speedups,

constant-factor speedups, etc.

An alternate approach

Given nonzero x1; x2; : : : ; xn 2 Z:

Compute r = x1x2 � � �xn.

Compute (r=x1) mod x1, : : : ,

(r=xn) mod xn.

For each i separately: see if

((r=xi) mod xi)
2k mod xi = 0

where k = dlg lg xie.

Finds xi iff all primes in xi
are divisors of other x’s.

Time � b(lg b)2+o(1).

(2004 Bernstein)

Compute (r=x1) mod x1, : : : ,

(r=xn) mod xn by computing

r mod x2
1; : : : ; r mod x2

n.

(1972 Moenck Borodin)

Problem: Recognizing the

interesting x’s is not enough;

also need their factorizations.

Solution:

Again, very few of them.

Have ample time to

use rho method (1974 Pollard)

or use ECM (1987 Lenstra)

or factor into coprimes.

Factoring into coprimes

Time � b(lg b)O(1):

Given positive x1; x2; : : : ; xn,

find coprime set Q

and complete factorization

of each xi over Q.

(announced 1995 Bernstein;

journal version: 2005)

Immediately gives b(lg b)O(1)

for the other factoring problems.

Subsequent research: lg speedups,

constant-factor speedups, etc.

Compute (r=x1) mod x1, : : : ,

(r=xn) mod xn by computing

r mod x2
1; : : : ; r mod x2

n.

(1972 Moenck Borodin)

Problem: Recognizing the

interesting x’s is not enough;

also need their factorizations.

Solution:

Again, very few of them.

Have ample time to

use rho method (1974 Pollard)

or use ECM (1987 Lenstra)

or factor into coprimes.

Factoring into coprimes

Time � b(lg b)O(1):

Given positive x1; x2; : : : ; xn,

find coprime set Q

and complete factorization

of each xi over Q.

(announced 1995 Bernstein;

journal version: 2005)

Immediately gives b(lg b)O(1)

for the other factoring problems.

Subsequent research: lg speedups,

constant-factor speedups, etc.

Compute (r=x1) mod x1, : : : ,

(r=xn) mod xn by computing

r mod x2
1; : : : ; r mod x2

n.

(1972 Moenck Borodin)

Problem: Recognizing the

interesting x’s is not enough;

also need their factorizations.

Solution:

Again, very few of them.

Have ample time to

use rho method (1974 Pollard)

or use ECM (1987 Lenstra)

or factor into coprimes.

Factoring into coprimes

Time � b(lg b)O(1):

Given positive x1; x2; : : : ; xn,

find coprime set Q

and complete factorization

of each xi over Q.

(announced 1995 Bernstein;

journal version: 2005)

Immediately gives b(lg b)O(1)

for the other factoring problems.

Subsequent research: lg speedups,

constant-factor speedups, etc.

Typical application:

detecting multiplicative relations.

Does 9119526811191513335221634643

equal 154717086326898073439346?

Each side has logarithm

� 19466590:674872.

Compute (r=x1) mod x1, : : : ,

(r=xn) mod xn by computing

r mod x2
1; : : : ; r mod x2

n.

(1972 Moenck Borodin)

Problem: Recognizing the

interesting x’s is not enough;

also need their factorizations.

Solution:

Again, very few of them.

Have ample time to

use rho method (1974 Pollard)

or use ECM (1987 Lenstra)

or factor into coprimes.

Factoring into coprimes

Time � b(lg b)O(1):

Given positive x1; x2; : : : ; xn,

find coprime set Q

and complete factorization

of each xi over Q.

(announced 1995 Bernstein;

journal version: 2005)

Immediately gives b(lg b)O(1)

for the other factoring problems.

Subsequent research: lg speedups,

constant-factor speedups, etc.

Typical application:

detecting multiplicative relations.

Does 9119526811191513335221634643

equal 154717086326898073439346?

Each side has logarithm

� 19466590:674872.

Compute (r=x1) mod x1, : : : ,

(r=xn) mod xn by computing

r mod x2
1; : : : ; r mod x2

n.

(1972 Moenck Borodin)

Problem: Recognizing the

interesting x’s is not enough;

also need their factorizations.

Solution:

Again, very few of them.

Have ample time to

use rho method (1974 Pollard)

or use ECM (1987 Lenstra)

or factor into coprimes.

Factoring into coprimes

Time � b(lg b)O(1):

Given positive x1; x2; : : : ; xn,

find coprime set Q

and complete factorization

of each xi over Q.

(announced 1995 Bernstein;

journal version: 2005)

Immediately gives b(lg b)O(1)

for the other factoring problems.

Subsequent research: lg speedups,

constant-factor speedups, etc.

Typical application:

detecting multiplicative relations.

Does 9119526811191513335221634643

equal 154717086326898073439346?

Each side has logarithm

� 19466590:674872.

Factoring into coprimes

Time � b(lg b)O(1):

Given positive x1; x2; : : : ; xn,

find coprime set Q

and complete factorization

of each xi over Q.

(announced 1995 Bernstein;

journal version: 2005)

Immediately gives b(lg b)O(1)

for the other factoring problems.

Subsequent research: lg speedups,

constant-factor speedups, etc.

Typical application:

detecting multiplicative relations.

Does 9119526811191513335221634643

equal 154717086326898073439346?

Each side has logarithm

� 19466590:674872.

Factoring into coprimes

Time � b(lg b)O(1):

Given positive x1; x2; : : : ; xn,

find coprime set Q

and complete factorization

of each xi over Q.

(announced 1995 Bernstein;

journal version: 2005)

Immediately gives b(lg b)O(1)

for the other factoring problems.

Subsequent research: lg speedups,

constant-factor speedups, etc.

Typical application:

detecting multiplicative relations.

Does 9119526811191513335221634643

equal 154717086326898073439346?

Each side has logarithm

� 19466590:674872.

More generally:

What is kernel of (a; b; c; d; e) 7!

91a119b221c1547�d6898073�e?

Kernel lets us find relations,

not just verify relations.

Factoring into coprimes

Time � b(lg b)O(1):

Given positive x1; x2; : : : ; xn,

find coprime set Q

and complete factorization

of each xi over Q.

(announced 1995 Bernstein;

journal version: 2005)

Immediately gives b(lg b)O(1)

for the other factoring problems.

Subsequent research: lg speedups,

constant-factor speedups, etc.

Typical application:

detecting multiplicative relations.

Does 9119526811191513335221634643

equal 154717086326898073439346?

Each side has logarithm

� 19466590:674872.

More generally:

What is kernel of (a; b; c; d; e) 7!

91a119b221c1547�d6898073�e?

Kernel lets us find relations,

not just verify relations.

Factor into coprimes:

91 = 7 � 13; 119 = 7 � 17;

221 = 13 � 17; 1547 = 7 � 13 � 17;

6898073 = 74 � 132 � 17.

(a; b; c; d; e) 7!

91a119b221c1547�d6898073�e =

7a+b�d�4e13a+c�d�2e17b+c�d�e.

Kernel is generated by

(1; 1; 1; 2; 0) and (3; 2; 0; 1; 1).

Factoring into coprimes

Time � b(lg b)O(1):

Given positive x1; x2; : : : ; xn,

find coprime set Q

and complete factorization

of each xi over Q.

(announced 1995 Bernstein;

journal version: 2005)

Immediately gives b(lg b)O(1)

for the other factoring problems.

Subsequent research: lg speedups,

constant-factor speedups, etc.

Typical application:

detecting multiplicative relations.

Does 9119526811191513335221634643

equal 154717086326898073439346?

Each side has logarithm

� 19466590:674872.

More generally:

What is kernel of (a; b; c; d; e) 7!

91a119b221c1547�d6898073�e?

Kernel lets us find relations,

not just verify relations.

Factor into coprimes:

91 = 7 � 13; 119 = 7 � 17;

221 = 13 � 17; 1547 = 7 � 13 � 17;

6898073 = 74 � 132 � 17.

(a; b; c; d; e) 7!

91a119b221c1547�d6898073�e =

7a+b�d�4e13a+c�d�2e17b+c�d�e.

Kernel is generated by

(1; 1; 1; 2; 0) and (3; 2; 0; 1; 1).

Factoring into coprimes

Time � b(lg b)O(1):

Given positive x1; x2; : : : ; xn,

find coprime set Q

and complete factorization

of each xi over Q.

(announced 1995 Bernstein;

journal version: 2005)

Immediately gives b(lg b)O(1)

for the other factoring problems.

Subsequent research: lg speedups,

constant-factor speedups, etc.

Typical application:

detecting multiplicative relations.

Does 9119526811191513335221634643

equal 154717086326898073439346?

Each side has logarithm

� 19466590:674872.

More generally:

What is kernel of (a; b; c; d; e) 7!

91a119b221c1547�d6898073�e?

Kernel lets us find relations,

not just verify relations.

Factor into coprimes:

91 = 7 � 13; 119 = 7 � 17;

221 = 13 � 17; 1547 = 7 � 13 � 17;

6898073 = 74 � 132 � 17.

(a; b; c; d; e) 7!

91a119b221c1547�d6898073�e =

7a+b�d�4e13a+c�d�2e17b+c�d�e.

Kernel is generated by

(1; 1; 1; 2; 0) and (3; 2; 0; 1; 1).

Typical application:

detecting multiplicative relations.

Does 9119526811191513335221634643

equal 154717086326898073439346?

Each side has logarithm

� 19466590:674872.

More generally:

What is kernel of (a; b; c; d; e) 7!

91a119b221c1547�d6898073�e?

Kernel lets us find relations,

not just verify relations.

Factor into coprimes:

91 = 7 � 13; 119 = 7 � 17;

221 = 13 � 17; 1547 = 7 � 13 � 17;

6898073 = 74 � 132 � 17.

(a; b; c; d; e) 7!

91a119b221c1547�d6898073�e =

7a+b�d�4e13a+c�d�2e17b+c�d�e.

Kernel is generated by

(1; 1; 1; 2; 0) and (3; 2; 0; 1; 1).

Typical application:

detecting multiplicative relations.

Does 9119526811191513335221634643

equal 154717086326898073439346?

Each side has logarithm

� 19466590:674872.

More generally:

What is kernel of (a; b; c; d; e) 7!

91a119b221c1547�d6898073�e?

Kernel lets us find relations,

not just verify relations.

Factor into coprimes:

91 = 7 � 13; 119 = 7 � 17;

221 = 13 � 17; 1547 = 7 � 13 � 17;

6898073 = 74 � 132 � 17.

(a; b; c; d; e) 7!

91a119b221c1547�d6898073�e =

7a+b�d�4e13a+c�d�2e17b+c�d�e.

Kernel is generated by

(1; 1; 1; 2; 0) and (3; 2; 0; 1; 1).

Factoring into coprimes

remains fast for larger numbers.

Factoring into primes does not.

Typical application:

detecting multiplicative relations.

Does 9119526811191513335221634643

equal 154717086326898073439346?

Each side has logarithm

� 19466590:674872.

More generally:

What is kernel of (a; b; c; d; e) 7!

91a119b221c1547�d6898073�e?

Kernel lets us find relations,

not just verify relations.

Factor into coprimes:

91 = 7 � 13; 119 = 7 � 17;

221 = 13 � 17; 1547 = 7 � 13 � 17;

6898073 = 74 � 132 � 17.

(a; b; c; d; e) 7!

91a119b221c1547�d6898073�e =

7a+b�d�4e13a+c�d�2e17b+c�d�e.

Kernel is generated by

(1; 1; 1; 2; 0) and (3; 2; 0; 1; 1).

Factoring into coprimes

remains fast for larger numbers.

Factoring into primes does not.

Can apply same algorithms

in more generality: e.g.,

replace integers with polynomials.

Typical application:

Take a squarefree g 2 (Z=2)[x].

What are g’s irreducible divisors?

One answer: Find basis h1; h2; : : :

for
�
h 2 (Z=2)[x] : (gh)0 = h2

	

as a vector space over Z=2.

Factor g; h1; h2; : : : into coprimes.

This list of coprimes contains

all irreducible divisors of g.

(1993 Niederreiter, 1994 Göttfert)

Typical application:

detecting multiplicative relations.

Does 9119526811191513335221634643

equal 154717086326898073439346?

Each side has logarithm

� 19466590:674872.

More generally:

What is kernel of (a; b; c; d; e) 7!

91a119b221c1547�d6898073�e?

Kernel lets us find relations,

not just verify relations.

Factor into coprimes:

91 = 7 � 13; 119 = 7 � 17;

221 = 13 � 17; 1547 = 7 � 13 � 17;

6898073 = 74 � 132 � 17.

(a; b; c; d; e) 7!

91a119b221c1547�d6898073�e =

7a+b�d�4e13a+c�d�2e17b+c�d�e.

Kernel is generated by

(1; 1; 1; 2; 0) and (3; 2; 0; 1; 1).

Factoring into coprimes

remains fast for larger numbers.

Factoring into primes does not.

Can apply same algorithms

in more generality: e.g.,

replace integers with polynomials.

Typical application:

Take a squarefree g 2 (Z=2)[x].

What are g’s irreducible divisors?

One answer: Find basis h1; h2; : : :

for
�
h 2 (Z=2)[x] : (gh)0 = h2

	

as a vector space over Z=2.

Factor g; h1; h2; : : : into coprimes.

This list of coprimes contains

all irreducible divisors of g.

(1993 Niederreiter, 1994 Göttfert)

Typical application:

detecting multiplicative relations.

Does 9119526811191513335221634643

equal 154717086326898073439346?

Each side has logarithm

� 19466590:674872.

More generally:

What is kernel of (a; b; c; d; e) 7!

91a119b221c1547�d6898073�e?

Kernel lets us find relations,

not just verify relations.

Factor into coprimes:

91 = 7 � 13; 119 = 7 � 17;

221 = 13 � 17; 1547 = 7 � 13 � 17;

6898073 = 74 � 132 � 17.

(a; b; c; d; e) 7!

91a119b221c1547�d6898073�e =

7a+b�d�4e13a+c�d�2e17b+c�d�e.

Kernel is generated by

(1; 1; 1; 2; 0) and (3; 2; 0; 1; 1).

Factoring into coprimes

remains fast for larger numbers.

Factoring into primes does not.

Can apply same algorithms

in more generality: e.g.,

replace integers with polynomials.

Typical application:

Take a squarefree g 2 (Z=2)[x].

What are g’s irreducible divisors?

One answer: Find basis h1; h2; : : :

for
�
h 2 (Z=2)[x] : (gh)0 = h2

	

as a vector space over Z=2.

Factor g; h1; h2; : : : into coprimes.

This list of coprimes contains

all irreducible divisors of g.

(1993 Niederreiter, 1994 Göttfert)

Factor into coprimes:

91 = 7 � 13; 119 = 7 � 17;

221 = 13 � 17; 1547 = 7 � 13 � 17;

6898073 = 74 � 132 � 17.

(a; b; c; d; e) 7!

91a119b221c1547�d6898073�e =

7a+b�d�4e13a+c�d�2e17b+c�d�e.

Kernel is generated by

(1; 1; 1; 2; 0) and (3; 2; 0; 1; 1).

Factoring into coprimes

remains fast for larger numbers.

Factoring into primes does not.

Can apply same algorithms

in more generality: e.g.,

replace integers with polynomials.

Typical application:

Take a squarefree g 2 (Z=2)[x].

What are g’s irreducible divisors?

One answer: Find basis h1; h2; : : :

for
�
h 2 (Z=2)[x] : (gh)0 = h2

	

as a vector space over Z=2.

Factor g; h1; h2; : : : into coprimes.

This list of coprimes contains

all irreducible divisors of g.

(1993 Niederreiter, 1994 Göttfert)

Factor into coprimes:

91 = 7 � 13; 119 = 7 � 17;

221 = 13 � 17; 1547 = 7 � 13 � 17;

6898073 = 74 � 132 � 17.

(a; b; c; d; e) 7!

91a119b221c1547�d6898073�e =

7a+b�d�4e13a+c�d�2e17b+c�d�e.

Kernel is generated by

(1; 1; 1; 2; 0) and (3; 2; 0; 1; 1).

Factoring into coprimes

remains fast for larger numbers.

Factoring into primes does not.

Can apply same algorithms

in more generality: e.g.,

replace integers with polynomials.

Typical application:

Take a squarefree g 2 (Z=2)[x].

What are g’s irreducible divisors?

One answer: Find basis h1; h2; : : :

for
�
h 2 (Z=2)[x] : (gh)0 = h2

	

as a vector space over Z=2.

Factor g; h1; h2; : : : into coprimes.

This list of coprimes contains

all irreducible divisors of g.

(1993 Niederreiter, 1994 Göttfert)

More examples, applications

of factoring into coprimes: see

1890 Stieltjes; 1974 Collins;

1985 Kaltofen; 1985 Della

Dora DiCrescenzo Duval; 1986

Bach Miller Shallit; 1986 von

zur Gathen; 1986 Lüneburg;

1989 Pohst Zassenhaus; 1990

Teitelbaum; 1990 Smedley; 1993

Bach Driscoll Shallit; 1994 Ge;

1994 Buchmann Lenstra; 1996

Bernstein; 1997 Silverman; 1998

Cohen Diaz y Diaz Olivier; 1998

Storjohann; : : :

cr.yp.to/coprimes.html

Factor into coprimes:

91 = 7 � 13; 119 = 7 � 17;

221 = 13 � 17; 1547 = 7 � 13 � 17;

6898073 = 74 � 132 � 17.

(a; b; c; d; e) 7!

91a119b221c1547�d6898073�e =

7a+b�d�4e13a+c�d�2e17b+c�d�e.

Kernel is generated by

(1; 1; 1; 2; 0) and (3; 2; 0; 1; 1).

Factoring into coprimes

remains fast for larger numbers.

Factoring into primes does not.

Can apply same algorithms

in more generality: e.g.,

replace integers with polynomials.

Typical application:

Take a squarefree g 2 (Z=2)[x].

What are g’s irreducible divisors?

One answer: Find basis h1; h2; : : :

for
�
h 2 (Z=2)[x] : (gh)0 = h2

	

as a vector space over Z=2.

Factor g; h1; h2; : : : into coprimes.

This list of coprimes contains

all irreducible divisors of g.

(1993 Niederreiter, 1994 Göttfert)

More examples, applications

of factoring into coprimes: see

1890 Stieltjes; 1974 Collins;

1985 Kaltofen; 1985 Della

Dora DiCrescenzo Duval; 1986

Bach Miller Shallit; 1986 von

zur Gathen; 1986 Lüneburg;

1989 Pohst Zassenhaus; 1990

Teitelbaum; 1990 Smedley; 1993

Bach Driscoll Shallit; 1994 Ge;

1994 Buchmann Lenstra; 1996

Bernstein; 1997 Silverman; 1998

Cohen Diaz y Diaz Olivier; 1998

Storjohann; : : :

cr.yp.to/coprimes.html

Factor into coprimes:

91 = 7 � 13; 119 = 7 � 17;

221 = 13 � 17; 1547 = 7 � 13 � 17;

6898073 = 74 � 132 � 17.

(a; b; c; d; e) 7!

91a119b221c1547�d6898073�e =

7a+b�d�4e13a+c�d�2e17b+c�d�e.

Kernel is generated by

(1; 1; 1; 2; 0) and (3; 2; 0; 1; 1).

Factoring into coprimes

remains fast for larger numbers.

Factoring into primes does not.

Can apply same algorithms

in more generality: e.g.,

replace integers with polynomials.

Typical application:

Take a squarefree g 2 (Z=2)[x].

What are g’s irreducible divisors?

One answer: Find basis h1; h2; : : :

for
�
h 2 (Z=2)[x] : (gh)0 = h2

	

as a vector space over Z=2.

Factor g; h1; h2; : : : into coprimes.

This list of coprimes contains

all irreducible divisors of g.

(1993 Niederreiter, 1994 Göttfert)

More examples, applications

of factoring into coprimes: see

1890 Stieltjes; 1974 Collins;

1985 Kaltofen; 1985 Della

Dora DiCrescenzo Duval; 1986

Bach Miller Shallit; 1986 von

zur Gathen; 1986 Lüneburg;

1989 Pohst Zassenhaus; 1990

Teitelbaum; 1990 Smedley; 1993

Bach Driscoll Shallit; 1994 Ge;

1994 Buchmann Lenstra; 1996

Bernstein; 1997 Silverman; 1998

Cohen Diaz y Diaz Olivier; 1998

Storjohann; : : :

cr.yp.to/coprimes.html

Can apply same algorithms

in more generality: e.g.,

replace integers with polynomials.

Typical application:

Take a squarefree g 2 (Z=2)[x].

What are g’s irreducible divisors?

One answer: Find basis h1; h2; : : :

for
�
h 2 (Z=2)[x] : (gh)0 = h2

	

as a vector space over Z=2.

Factor g; h1; h2; : : : into coprimes.

This list of coprimes contains

all irreducible divisors of g.

(1993 Niederreiter, 1994 Göttfert)

More examples, applications

of factoring into coprimes: see

1890 Stieltjes; 1974 Collins;

1985 Kaltofen; 1985 Della

Dora DiCrescenzo Duval; 1986

Bach Miller Shallit; 1986 von

zur Gathen; 1986 Lüneburg;

1989 Pohst Zassenhaus; 1990

Teitelbaum; 1990 Smedley; 1993

Bach Driscoll Shallit; 1994 Ge;

1994 Buchmann Lenstra; 1996

Bernstein; 1997 Silverman; 1998

Cohen Diaz y Diaz Olivier; 1998

Storjohann; : : :

cr.yp.to/coprimes.html

Can apply same algorithms

in more generality: e.g.,

replace integers with polynomials.

Typical application:

Take a squarefree g 2 (Z=2)[x].

What are g’s irreducible divisors?

One answer: Find basis h1; h2; : : :

for
�
h 2 (Z=2)[x] : (gh)0 = h2

	

as a vector space over Z=2.

Factor g; h1; h2; : : : into coprimes.

This list of coprimes contains

all irreducible divisors of g.

(1993 Niederreiter, 1994 Göttfert)

More examples, applications

of factoring into coprimes: see

1890 Stieltjes; 1974 Collins;

1985 Kaltofen; 1985 Della

Dora DiCrescenzo Duval; 1986

Bach Miller Shallit; 1986 von

zur Gathen; 1986 Lüneburg;

1989 Pohst Zassenhaus; 1990

Teitelbaum; 1990 Smedley; 1993

Bach Driscoll Shallit; 1994 Ge;

1994 Buchmann Lenstra; 1996

Bernstein; 1997 Silverman; 1998

Cohen Diaz y Diaz Olivier; 1998

Storjohann; : : :

cr.yp.to/coprimes.html

Exercise: Given 223 RSA keys,

how would you check for primes

shared among those keys?

2012 Heninger–Durumeric–

Wustrow–Halderman,

best-paper award at

USENIX Security Symposium;

2012 Lenstra–Hughes–Augier–

Bos–Kleinjung–Wachter,

independent “Ron was wrong,

Whit is right” paper, Crypto:

RSA keys on the Internet

use such bad randomness that

this does find factors!

Can apply same algorithms

in more generality: e.g.,

replace integers with polynomials.

Typical application:

Take a squarefree g 2 (Z=2)[x].

What are g’s irreducible divisors?

One answer: Find basis h1; h2; : : :

for
�
h 2 (Z=2)[x] : (gh)0 = h2

	

as a vector space over Z=2.

Factor g; h1; h2; : : : into coprimes.

This list of coprimes contains

all irreducible divisors of g.

(1993 Niederreiter, 1994 Göttfert)

More examples, applications

of factoring into coprimes: see

1890 Stieltjes; 1974 Collins;

1985 Kaltofen; 1985 Della

Dora DiCrescenzo Duval; 1986

Bach Miller Shallit; 1986 von

zur Gathen; 1986 Lüneburg;

1989 Pohst Zassenhaus; 1990

Teitelbaum; 1990 Smedley; 1993

Bach Driscoll Shallit; 1994 Ge;

1994 Buchmann Lenstra; 1996

Bernstein; 1997 Silverman; 1998

Cohen Diaz y Diaz Olivier; 1998

Storjohann; : : :

cr.yp.to/coprimes.html

Exercise: Given 223 RSA keys,

how would you check for primes

shared among those keys?

2012 Heninger–Durumeric–

Wustrow–Halderman,

best-paper award at

USENIX Security Symposium;

2012 Lenstra–Hughes–Augier–

Bos–Kleinjung–Wachter,

independent “Ron was wrong,

Whit is right” paper, Crypto:

RSA keys on the Internet

use such bad randomness that

this does find factors!

Can apply same algorithms

in more generality: e.g.,

replace integers with polynomials.

Typical application:

Take a squarefree g 2 (Z=2)[x].

What are g’s irreducible divisors?

One answer: Find basis h1; h2; : : :

for
�
h 2 (Z=2)[x] : (gh)0 = h2

	

as a vector space over Z=2.

Factor g; h1; h2; : : : into coprimes.

This list of coprimes contains

all irreducible divisors of g.

(1993 Niederreiter, 1994 Göttfert)

More examples, applications

of factoring into coprimes: see

1890 Stieltjes; 1974 Collins;

1985 Kaltofen; 1985 Della

Dora DiCrescenzo Duval; 1986

Bach Miller Shallit; 1986 von

zur Gathen; 1986 Lüneburg;

1989 Pohst Zassenhaus; 1990

Teitelbaum; 1990 Smedley; 1993

Bach Driscoll Shallit; 1994 Ge;

1994 Buchmann Lenstra; 1996

Bernstein; 1997 Silverman; 1998

Cohen Diaz y Diaz Olivier; 1998

Storjohann; : : :

cr.yp.to/coprimes.html

Exercise: Given 223 RSA keys,

how would you check for primes

shared among those keys?

2012 Heninger–Durumeric–

Wustrow–Halderman,

best-paper award at

USENIX Security Symposium;

2012 Lenstra–Hughes–Augier–

Bos–Kleinjung–Wachter,

independent “Ron was wrong,

Whit is right” paper, Crypto:

RSA keys on the Internet

use such bad randomness that

this does find factors!

More examples, applications

of factoring into coprimes: see

1890 Stieltjes; 1974 Collins;

1985 Kaltofen; 1985 Della

Dora DiCrescenzo Duval; 1986

Bach Miller Shallit; 1986 von

zur Gathen; 1986 Lüneburg;

1989 Pohst Zassenhaus; 1990

Teitelbaum; 1990 Smedley; 1993

Bach Driscoll Shallit; 1994 Ge;

1994 Buchmann Lenstra; 1996

Bernstein; 1997 Silverman; 1998

Cohen Diaz y Diaz Olivier; 1998

Storjohann; : : :

cr.yp.to/coprimes.html

Exercise: Given 223 RSA keys,

how would you check for primes

shared among those keys?

2012 Heninger–Durumeric–

Wustrow–Halderman,

best-paper award at

USENIX Security Symposium;

2012 Lenstra–Hughes–Augier–

Bos–Kleinjung–Wachter,

independent “Ron was wrong,

Whit is right” paper, Crypto:

RSA keys on the Internet

use such bad randomness that

this does find factors!

