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Integer-factorization bottleneck:

Given sequence of numbers,

find nonempty subsequence

with square product.

e.g. given 6; 7; 8; 10; 15,

discover 6 � 10 � 15 = 302.

Discrete-log bottleneck:

Given sequence of numbers,

find 1 as nontrivial

product of powers.

e.g. given 6; 7; 8; 10; 15,

discover 63708�210315�3 = 1.

More generally: find kth power.
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The fast Fourier transform

Use (c0; c1; : : : ; cn�1) 2 Cn

to represent f =
P

j cjx
j 2 C[x].

Summary of representation size:

“f has n coeffs”. Warning:

f does not determine n.

f = f0(x2) + xf1(x2) where

(c0; c2; : : :) 2 Cdn=2e,

(c1; c3; : : :) 2 Cbn=2c

represent f0; f1 respectively.

C[x]-morphism y 7! x2

from C[x][y] to C[x]

maps f0(y) + xf1(y) to f .
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for all � 2 C with �n = 1

if n is a power of 2.



Two very common

cryptographic bottlenecks:

Multiply large polynomials;

multiply large integers.

All of these computations

can be performed in

essentially linear time.

Do real applications

reach large enough sizes

to benefit from these techniques?

In cryptanalysis, definitely.

In cryptography, sometimes:

Gaudry–Schost Kummer surface;

McBits; many more examples.

The fast Fourier transform

Use (c0; c1; : : : ; cn�1) 2 Cn

to represent f =
P

j cjx
j 2 C[x].

Summary of representation size:

“f has n coeffs”. Warning:

f does not determine n.

f = f0(x2) + xf1(x2) where

(c0; c2; : : :) 2 Cdn=2e,

(c1; c3; : : :) 2 Cbn=2c

represent f0; f1 respectively.

C[x]-morphism y 7! x2

from C[x][y] to C[x]

maps f0(y) + xf1(y) to f .

Quickly evaluate f(�); f(��)

by evaluating f0(�2); f1(�2);

f(�) = f0(�2) + �f1(�2);

f(��) = f0(�2) � �f1(�2).

Evaluate f(�) for, e.g.,

all � 2 C with �1024 = 1

by evaluating f0(�), f1(�)

for all � 2 C with �512 = 1;

plus 1024 adds, 512 mults.

Apply this recursively )

n lgn adds, (n=2) lgn mults

to evaluate n-coeff f

for all � 2 C with �n = 1

if n is a power of 2.



Two very common

cryptographic bottlenecks:

Multiply large polynomials;

multiply large integers.

All of these computations

can be performed in

essentially linear time.

Do real applications

reach large enough sizes

to benefit from these techniques?

In cryptanalysis, definitely.

In cryptography, sometimes:

Gaudry–Schost Kummer surface;

McBits; many more examples.

The fast Fourier transform

Use (c0; c1; : : : ; cn�1) 2 Cn

to represent f =
P

j cjx
j 2 C[x].

Summary of representation size:

“f has n coeffs”. Warning:

f does not determine n.

f = f0(x2) + xf1(x2) where

(c0; c2; : : :) 2 Cdn=2e,

(c1; c3; : : :) 2 Cbn=2c

represent f0; f1 respectively.

C[x]-morphism y 7! x2

from C[x][y] to C[x]

maps f0(y) + xf1(y) to f .

Quickly evaluate f(�); f(��)

by evaluating f0(�2); f1(�2);

f(�) = f0(�2) + �f1(�2);

f(��) = f0(�2) � �f1(�2).

Evaluate f(�) for, e.g.,

all � 2 C with �1024 = 1

by evaluating f0(�), f1(�)

for all � 2 C with �512 = 1;

plus 1024 adds, 512 mults.

Apply this recursively )

n lgn adds, (n=2) lgn mults

to evaluate n-coeff f

for all � 2 C with �n = 1

if n is a power of 2.



The fast Fourier transform

Use (c0; c1; : : : ; cn�1) 2 Cn

to represent f =
P

j cjx
j 2 C[x].

Summary of representation size:

“f has n coeffs”. Warning:

f does not determine n.

f = f0(x2) + xf1(x2) where

(c0; c2; : : :) 2 Cdn=2e,

(c1; c3; : : :) 2 Cbn=2c

represent f0; f1 respectively.

C[x]-morphism y 7! x2

from C[x][y] to C[x]

maps f0(y) + xf1(y) to f .

Quickly evaluate f(�); f(��)

by evaluating f0(�2); f1(�2);

f(�) = f0(�2) + �f1(�2);

f(��) = f0(�2) � �f1(�2).

Evaluate f(�) for, e.g.,

all � 2 C with �1024 = 1

by evaluating f0(�), f1(�)

for all � 2 C with �512 = 1;

plus 1024 adds, 512 mults.

Apply this recursively )

n lgn adds, (n=2) lgn mults

to evaluate n-coeff f

for all � 2 C with �n = 1

if n is a power of 2.



The fast Fourier transform

Use (c0; c1; : : : ; cn�1) 2 Cn

to represent f =
P

j cjx
j 2 C[x].

Summary of representation size:

“f has n coeffs”. Warning:

f does not determine n.

f = f0(x2) + xf1(x2) where

(c0; c2; : : :) 2 Cdn=2e,

(c1; c3; : : :) 2 Cbn=2c

represent f0; f1 respectively.

C[x]-morphism y 7! x2

from C[x][y] to C[x]

maps f0(y) + xf1(y) to f .

Quickly evaluate f(�); f(��)

by evaluating f0(�2); f1(�2);

f(�) = f0(�2) + �f1(�2);

f(��) = f0(�2) � �f1(�2).

Evaluate f(�) for, e.g.,

all � 2 C with �1024 = 1

by evaluating f0(�), f1(�)

for all � 2 C with �512 = 1;

plus 1024 adds, 512 mults.

Apply this recursively )

n lgn adds, (n=2) lgn mults

to evaluate n-coeff f

for all � 2 C with �n = 1

if n is a power of 2.

Another view of the FFT

If f 2 C[x] and

f mod x4 � 1 =

c0 + c1x + c2x
2 + c3x

3 then

f mod x2 � 1 =

(c0 + c2) + (c1 + c3)x,
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(c0 � c2) + (c1 � c3)x.

C[x]-morphism C[x]=(x4 � 1) ,�
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(c0 � c2) + (c1 � c3)x).



The fast Fourier transform

Use (c0; c1; : : : ; cn�1) 2 Cn

to represent f =
P

j cjx
j 2 C[x].

Summary of representation size:

“f has n coeffs”. Warning:

f does not determine n.

f = f0(x2) + xf1(x2) where

(c0; c2; : : :) 2 Cdn=2e,

(c1; c3; : : :) 2 Cbn=2c

represent f0; f1 respectively.

C[x]-morphism y 7! x2

from C[x][y] to C[x]

maps f0(y) + xf1(y) to f .

Quickly evaluate f(�); f(��)

by evaluating f0(�2); f1(�2);

f(�) = f0(�2) + �f1(�2);

f(��) = f0(�2) � �f1(�2).

Evaluate f(�) for, e.g.,

all � 2 C with �1024 = 1

by evaluating f0(�), f1(�)

for all � 2 C with �512 = 1;

plus 1024 adds, 512 mults.

Apply this recursively )

n lgn adds, (n=2) lgn mults

to evaluate n-coeff f

for all � 2 C with �n = 1

if n is a power of 2.

Another view of the FFT

If f 2 C[x] and

f mod x4 � 1 =

c0 + c1x + c2x
2 + c3x

3 then

f mod x2 � 1 =

(c0 + c2) + (c1 + c3)x,

f mod x2 + 1 =

(c0 � c2) + (c1 � c3)x.

C[x]-morphism C[x]=(x4 � 1) ,�
C[x]=(x2 � 1) � C[x]=(x2 + 1)

maps c0 + c1x + c2x
2 + c3x

3 to

((c0 + c2) + (c1 + c3)x,

(c0 � c2) + (c1 � c3)x).



The fast Fourier transform

Use (c0; c1; : : : ; cn�1) 2 Cn

to represent f =
P

j cjx
j 2 C[x].

Summary of representation size:

“f has n coeffs”. Warning:

f does not determine n.

f = f0(x2) + xf1(x2) where

(c0; c2; : : :) 2 Cdn=2e,

(c1; c3; : : :) 2 Cbn=2c

represent f0; f1 respectively.

C[x]-morphism y 7! x2

from C[x][y] to C[x]

maps f0(y) + xf1(y) to f .

Quickly evaluate f(�); f(��)

by evaluating f0(�2); f1(�2);

f(�) = f0(�2) + �f1(�2);

f(��) = f0(�2) � �f1(�2).

Evaluate f(�) for, e.g.,

all � 2 C with �1024 = 1

by evaluating f0(�), f1(�)

for all � 2 C with �512 = 1;

plus 1024 adds, 512 mults.

Apply this recursively )

n lgn adds, (n=2) lgn mults

to evaluate n-coeff f

for all � 2 C with �n = 1

if n is a power of 2.

Another view of the FFT

If f 2 C[x] and

f mod x4 � 1 =

c0 + c1x + c2x
2 + c3x

3 then

f mod x2 � 1 =

(c0 + c2) + (c1 + c3)x,

f mod x2 + 1 =

(c0 � c2) + (c1 � c3)x.

C[x]-morphism C[x]=(x4 � 1) ,�
C[x]=(x2 � 1) � C[x]=(x2 + 1)

maps c0 + c1x + c2x
2 + c3x

3 to

((c0 + c2) + (c1 + c3)x,

(c0 � c2) + (c1 � c3)x).



Quickly evaluate f(�); f(��)

by evaluating f0(�2); f1(�2);

f(�) = f0(�2) + �f1(�2);

f(��) = f0(�2) � �f1(�2).

Evaluate f(�) for, e.g.,

all � 2 C with �1024 = 1

by evaluating f0(�), f1(�)

for all � 2 C with �512 = 1;

plus 1024 adds, 512 mults.

Apply this recursively )

n lgn adds, (n=2) lgn mults

to evaluate n-coeff f

for all � 2 C with �n = 1

if n is a power of 2.

Another view of the FFT

If f 2 C[x] and

f mod x4 � 1 =

c0 + c1x + c2x
2 + c3x

3 then

f mod x2 � 1 =

(c0 + c2) + (c1 + c3)x,

f mod x2 + 1 =

(c0 � c2) + (c1 � c3)x.

C[x]-morphism C[x]=(x4 � 1) ,�
C[x]=(x2 � 1) � C[x]=(x2 + 1)

maps c0 + c1x + c2x
2 + c3x

3 to

((c0 + c2) + (c1 + c3)x,

(c0 � c2) + (c1 � c3)x).



Quickly evaluate f(�); f(��)

by evaluating f0(�2); f1(�2);

f(�) = f0(�2) + �f1(�2);

f(��) = f0(�2) � �f1(�2).

Evaluate f(�) for, e.g.,

all � 2 C with �1024 = 1

by evaluating f0(�), f1(�)

for all � 2 C with �512 = 1;

plus 1024 adds, 512 mults.

Apply this recursively )

n lgn adds, (n=2) lgn mults

to evaluate n-coeff f

for all � 2 C with �n = 1

if n is a power of 2.

Another view of the FFT

If f 2 C[x] and

f mod x4 � 1 =

c0 + c1x + c2x
2 + c3x

3 then

f mod x2 � 1 =

(c0 + c2) + (c1 + c3)x,

f mod x2 + 1 =

(c0 � c2) + (c1 � c3)x.

C[x]-morphism C[x]=(x4 � 1) ,�
C[x]=(x2 � 1) � C[x]=(x2 + 1)

maps c0 + c1x + c2x
2 + c3x

3 to

((c0 + c2) + (c1 + c3)x,

(c0 � c2) + (c1 � c3)x).

If f 2 C[x] and

f mod x2n � �2 =

c0 + c1x + � � � + c2n�1x
2n�1 then

f mod xn � � =

(c0 + �cn) + (c1 + �cn+1)x

+ (c2 + �cn+2)x2 + � � �,

f mod xn + � =

(c0 � �cn) + (c1 � �cn+1)x

+ (c2 � �cn+2)x2 + � � �.

Given c0; c1; : : : ; c2n�1 2 C,

use n mults, 2n adds to compute

c0 + �cn; c1 + �cn+1; : : : ;

c0 � �cn; c1 � �cn+1; : : : :



Quickly evaluate f(�); f(��)

by evaluating f0(�2); f1(�2);

f(�) = f0(�2) + �f1(�2);

f(��) = f0(�2) � �f1(�2).

Evaluate f(�) for, e.g.,

all � 2 C with �1024 = 1

by evaluating f0(�), f1(�)

for all � 2 C with �512 = 1;

plus 1024 adds, 512 mults.

Apply this recursively )

n lgn adds, (n=2) lgn mults

to evaluate n-coeff f

for all � 2 C with �n = 1

if n is a power of 2.

Another view of the FFT

If f 2 C[x] and

f mod x4 � 1 =

c0 + c1x + c2x
2 + c3x

3 then

f mod x2 � 1 =

(c0 + c2) + (c1 + c3)x,

f mod x2 + 1 =

(c0 � c2) + (c1 � c3)x.

C[x]-morphism C[x]=(x4 � 1) ,�
C[x]=(x2 � 1) � C[x]=(x2 + 1)

maps c0 + c1x + c2x
2 + c3x

3 to

((c0 + c2) + (c1 + c3)x,

(c0 � c2) + (c1 � c3)x).

If f 2 C[x] and

f mod x2n � �2 =

c0 + c1x + � � � + c2n�1x
2n�1 then

f mod xn � � =

(c0 + �cn) + (c1 + �cn+1)x

+ (c2 + �cn+2)x2 + � � �,

f mod xn + � =

(c0 � �cn) + (c1 � �cn+1)x

+ (c2 � �cn+2)x2 + � � �.

Given c0; c1; : : : ; c2n�1 2 C,

use n mults, 2n adds to compute

c0 + �cn; c1 + �cn+1; : : : ;

c0 � �cn; c1 � �cn+1; : : : :



Quickly evaluate f(�); f(��)

by evaluating f0(�2); f1(�2);

f(�) = f0(�2) + �f1(�2);

f(��) = f0(�2) � �f1(�2).

Evaluate f(�) for, e.g.,

all � 2 C with �1024 = 1

by evaluating f0(�), f1(�)

for all � 2 C with �512 = 1;

plus 1024 adds, 512 mults.

Apply this recursively )

n lgn adds, (n=2) lgn mults

to evaluate n-coeff f

for all � 2 C with �n = 1

if n is a power of 2.

Another view of the FFT

If f 2 C[x] and

f mod x4 � 1 =

c0 + c1x + c2x
2 + c3x

3 then

f mod x2 � 1 =

(c0 + c2) + (c1 + c3)x,

f mod x2 + 1 =

(c0 � c2) + (c1 � c3)x.

C[x]-morphism C[x]=(x4 � 1) ,�
C[x]=(x2 � 1) � C[x]=(x2 + 1)

maps c0 + c1x + c2x
2 + c3x

3 to

((c0 + c2) + (c1 + c3)x,

(c0 � c2) + (c1 � c3)x).

If f 2 C[x] and

f mod x2n � �2 =

c0 + c1x + � � � + c2n�1x
2n�1 then

f mod xn � � =

(c0 + �cn) + (c1 + �cn+1)x

+ (c2 + �cn+2)x2 + � � �,

f mod xn + � =

(c0 � �cn) + (c1 � �cn+1)x

+ (c2 � �cn+2)x2 + � � �.

Given c0; c1; : : : ; c2n�1 2 C,

use n mults, 2n adds to compute

c0 + �cn; c1 + �cn+1; : : : ;

c0 � �cn; c1 � �cn+1; : : : :



Another view of the FFT

If f 2 C[x] and

f mod x4 � 1 =

c0 + c1x + c2x
2 + c3x

3 then

f mod x2 � 1 =

(c0 + c2) + (c1 + c3)x,

f mod x2 + 1 =

(c0 � c2) + (c1 � c3)x.

C[x]-morphism C[x]=(x4 � 1) ,�
C[x]=(x2 � 1) � C[x]=(x2 + 1)

maps c0 + c1x + c2x
2 + c3x

3 to

((c0 + c2) + (c1 + c3)x,

(c0 � c2) + (c1 � c3)x).

If f 2 C[x] and

f mod x2n � �2 =

c0 + c1x + � � � + c2n�1x
2n�1 then

f mod xn � � =

(c0 + �cn) + (c1 + �cn+1)x

+ (c2 + �cn+2)x2 + � � �,

f mod xn + � =

(c0 � �cn) + (c1 � �cn+1)x

+ (c2 � �cn+2)x2 + � � �.

Given c0; c1; : : : ; c2n�1 2 C,

use n mults, 2n adds to compute

c0 + �cn; c1 + �cn+1; : : : ;

c0 � �cn; c1 � �cn+1; : : : :



Another view of the FFT

If f 2 C[x] and

f mod x4 � 1 =

c0 + c1x + c2x
2 + c3x

3 then

f mod x2 � 1 =

(c0 + c2) + (c1 + c3)x,

f mod x2 + 1 =

(c0 � c2) + (c1 � c3)x.

C[x]-morphism C[x]=(x4 � 1) ,�
C[x]=(x2 � 1) � C[x]=(x2 + 1)

maps c0 + c1x + c2x
2 + c3x

3 to

((c0 + c2) + (c1 + c3)x,

(c0 � c2) + (c1 � c3)x).

If f 2 C[x] and

f mod x2n � �2 =

c0 + c1x + � � � + c2n�1x
2n�1 then

f mod xn � � =

(c0 + �cn) + (c1 + �cn+1)x

+ (c2 + �cn+2)x2 + � � �,

f mod xn + � =

(c0 � �cn) + (c1 � �cn+1)x

+ (c2 � �cn+2)x2 + � � �.

Given c0; c1; : : : ; c2n�1 2 C,

use n mults, 2n adds to compute

c0 + �cn; c1 + �cn+1; : : : ;

c0 � �cn; c1 � �cn+1; : : : :

Apply this recursively:

f mod x4 � 1

��������

��??????

f mod x2 � 1

�����������

��'
'''''''' f mod x2 + 1

�����������

��'
''''''''

f mod
x� 1

=
f(1)

f mod
x + 1

=
f(�1)

f mod
x� i

=
f(i)

f mod
x + i

=
f(�i)

(basic FFT idea: 1866 Gauss;

this view: 1972 Fiduccia)



Another view of the FFT

If f 2 C[x] and

f mod x4 � 1 =

c0 + c1x + c2x
2 + c3x

3 then

f mod x2 � 1 =

(c0 + c2) + (c1 + c3)x,

f mod x2 + 1 =

(c0 � c2) + (c1 � c3)x.

C[x]-morphism C[x]=(x4 � 1) ,�
C[x]=(x2 � 1) � C[x]=(x2 + 1)

maps c0 + c1x + c2x
2 + c3x

3 to

((c0 + c2) + (c1 + c3)x,

(c0 � c2) + (c1 � c3)x).

If f 2 C[x] and

f mod x2n � �2 =

c0 + c1x + � � � + c2n�1x
2n�1 then

f mod xn � � =

(c0 + �cn) + (c1 + �cn+1)x

+ (c2 + �cn+2)x2 + � � �,

f mod xn + � =

(c0 � �cn) + (c1 � �cn+1)x

+ (c2 � �cn+2)x2 + � � �.

Given c0; c1; : : : ; c2n�1 2 C,

use n mults, 2n adds to compute

c0 + �cn; c1 + �cn+1; : : : ;

c0 � �cn; c1 � �cn+1; : : : :

Apply this recursively:

f mod x4 � 1

��������

��??????

f mod x2 � 1

�����������

��'
'''''''' f mod x2 + 1

�����������

��'
''''''''

f mod
x� 1

=
f(1)

f mod
x + 1

=
f(�1)

f mod
x� i

=
f(i)

f mod
x + i

=
f(�i)

(basic FFT idea: 1866 Gauss;

this view: 1972 Fiduccia)



Another view of the FFT

If f 2 C[x] and

f mod x4 � 1 =

c0 + c1x + c2x
2 + c3x

3 then

f mod x2 � 1 =

(c0 + c2) + (c1 + c3)x,

f mod x2 + 1 =

(c0 � c2) + (c1 � c3)x.

C[x]-morphism C[x]=(x4 � 1) ,�
C[x]=(x2 � 1) � C[x]=(x2 + 1)

maps c0 + c1x + c2x
2 + c3x

3 to

((c0 + c2) + (c1 + c3)x,

(c0 � c2) + (c1 � c3)x).

If f 2 C[x] and

f mod x2n � �2 =

c0 + c1x + � � � + c2n�1x
2n�1 then

f mod xn � � =

(c0 + �cn) + (c1 + �cn+1)x

+ (c2 + �cn+2)x2 + � � �,

f mod xn + � =

(c0 � �cn) + (c1 � �cn+1)x

+ (c2 � �cn+2)x2 + � � �.

Given c0; c1; : : : ; c2n�1 2 C,

use n mults, 2n adds to compute

c0 + �cn; c1 + �cn+1; : : : ;

c0 � �cn; c1 � �cn+1; : : : :

Apply this recursively:

f mod x4 � 1

��������

��??????

f mod x2 � 1

�����������

��'
'''''''' f mod x2 + 1

�����������

��'
''''''''

f mod
x� 1

=
f(1)

f mod
x + 1

=
f(�1)

f mod
x� i

=
f(i)

f mod
x + i

=
f(�i)

(basic FFT idea: 1866 Gauss;

this view: 1972 Fiduccia)



If f 2 C[x] and

f mod x2n � �2 =

c0 + c1x + � � � + c2n�1x
2n�1 then

f mod xn � � =

(c0 + �cn) + (c1 + �cn+1)x

+ (c2 + �cn+2)x2 + � � �,

f mod xn + � =

(c0 � �cn) + (c1 � �cn+1)x

+ (c2 � �cn+2)x2 + � � �.

Given c0; c1; : : : ; c2n�1 2 C,

use n mults, 2n adds to compute

c0 + �cn; c1 + �cn+1; : : : ;

c0 � �cn; c1 � �cn+1; : : : :

Apply this recursively:

f mod x4 � 1

��������

��??????

f mod x2 � 1

�����������

��'
'''''''' f mod x2 + 1

�����������

��'
''''''''

f mod
x� 1

=
f(1)

f mod
x + 1

=
f(�1)

f mod
x� i

=
f(i)

f mod
x + i

=
f(�i)

(basic FFT idea: 1866 Gauss;

this view: 1972 Fiduccia)



If f 2 C[x] and

f mod x2n � �2 =

c0 + c1x + � � � + c2n�1x
2n�1 then

f mod xn � � =

(c0 + �cn) + (c1 + �cn+1)x

+ (c2 + �cn+2)x2 + � � �,

f mod xn + � =

(c0 � �cn) + (c1 � �cn+1)x

+ (c2 � �cn+2)x2 + � � �.

Given c0; c1; : : : ; c2n�1 2 C,

use n mults, 2n adds to compute

c0 + �cn; c1 + �cn+1; : : : ;

c0 � �cn; c1 � �cn+1; : : : :

Apply this recursively:

f mod x4 � 1

��������

��??????

f mod x2 � 1

�����������

��'
'''''''' f mod x2 + 1

�����������

��'
''''''''

f mod
x� 1

=
f(1)

f mod
x + 1

=
f(�1)

f mod
x� i

=
f(i)

f mod
x + i

=
f(�i)

(basic FFT idea: 1866 Gauss;

this view: 1972 Fiduccia)

1966 Sande, 1966 Stockham:

Can very quickly multiply

in C[x]=(xn � 1) or C[x] or R[x]

by mapping C[x]=(xn � 1) to Cn.

Given f; g 2 C[x]=(xn � 1):

compute fg as T�1(T (f)T (g))

using T : C[x]=(xn � 1) ,� Cn.

Compute T quickly by the FFT.

Given f; g 2 C[x], deg fg < n:

compute fg from

its image in C[x]=(xn � 1).
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Later authors: Replace C with,

e.g., R = Z=(3 � 241 + 1);

23 has order 241 in R�.
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Multiplication and division

Given r; s 2 Z, can compute rs

in time � b(lg b)1+o(1)

where b is number of input bits.

(1971 Pollard; independently

1971 Nicholson; independently

1971 Schönhage Strassen)

Also time � b(lg b)1+o(1)

where b is number of input bits:

Given r; s 2 Z with s 6= 0,

compute br=sc and r mod s.

(reduction to product:

1966 Cook)
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which p 2 Q divide r.
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Compute r mod x1; : : : ; r mod xn.

For each i separately:
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repeatedly until gcd is 1.
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Slight variant (2004 Bernstein):

Time always � b(lg b)2+o(1).

Compute smooth part of xi as

gcd
�
xi; (r mod xi)

2k mod xi
	

where k = dlg lg xie.

Subroutine: Computing gcd

takes time � b(lg b)2+o(1).

(1971 Schönhage;

core idea: 1938 Lehmer;

b(lg b)5+o(1): 1971 Knuth)

Or, to see if xi is smooth,

see if (r mod xi)
2k mod xi = 0.
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independent “Ron was wrong,
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RSA keys on the Internet

use such bad randomness that

this does find factors!
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More examples, applications

of factoring into coprimes: see

1890 Stieltjes; 1974 Collins;

1985 Kaltofen; 1985 Della

Dora DiCrescenzo Duval; 1986

Bach Miller Shallit; 1986 von

zur Gathen; 1986 Lüneburg;
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More examples, applications

of factoring into coprimes: see

1890 Stieltjes; 1974 Collins;

1985 Kaltofen; 1985 Della

Dora DiCrescenzo Duval; 1986

Bach Miller Shallit; 1986 von

zur Gathen; 1986 Lüneburg;

1989 Pohst Zassenhaus; 1990

Teitelbaum; 1990 Smedley; 1993

Bach Driscoll Shallit; 1994 Ge;

1994 Buchmann Lenstra; 1996

Bernstein; 1997 Silverman; 1998

Cohen Diaz y Diaz Olivier; 1998

Storjohann; : : :

cr.yp.to/coprimes.html

Exercise: Given 223 RSA keys,

how would you check for primes

shared among those keys?

2012 Heninger–Durumeric–

Wustrow–Halderman,

best-paper award at

USENIX Security Symposium;

2012 Lenstra–Hughes–Augier–

Bos–Kleinjung–Wachter,

independent “Ron was wrong,

Whit is right” paper, Crypto:

RSA keys on the Internet

use such bad randomness that

this does find factors!
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