High-speed cryptography,
part 3:
more cryptosystems
Daniel J. Bernstein University of Illinois at Chicago \& Technische Universiteit Eindhoven

Cryptographers

Working systems

Cryptanalytic
algorithm designers

Unbroken systems

Cryptographic
algorithm designers
and implementors

Efficient systems

Cryptographic users

1. Working systems

Fundamental question for

cryptographers:
How can we encrypt, decrypt,
sign, verify, etc.?
Many answers:
DES, Triple DES, FEAL-4, AES,
RSA, McEliece encryption,
Merkle hash-tree signatures,
Merkle-Hellman knapsack encryption, Buchmann-Williams class-group encryption, ECDSA, HFE ${ }^{\vee-}$, NTRU, et al.

2. Unbroken systems

Fundamental question for

 pre-quantum cryptanalysts:What can an attacker do using $<2^{b}$ operations
on a classical computer?
Fundamental question for post-quantum cryptanalysts:
What can an attacker do
using $<2^{b}$ operations
on a quantum computer?
Goal: identify systems that are not breakable in $<2^{b}$ operations.

Examples of RSA cryptanalysis:

Schroeppel's "linear sieve", mentioned in 1978 RSA paper,
factors $p q$ into p, q using
$(2+o(1))^{(\lg p q)^{1 / 2}(\lg \lg p q)^{1 / 2}}$
simple operations (conjecturally).
To push this beyond 2^{b}, must choose $p q$ to have at least $(0.5+o(1)) b^{2} / \lg b$ bits.

Note 1: $\lg =\log _{2}$.
Note 2: $o(1)$ says nothing about, egg., $b=128$.
Today: focus on asymptotics.

1993 Buhler-Lenstra-Pomerance, generalizing 1988 Pollard "number-field sieve",
factors $p q$ into p, q using
$(3.79 \ldots+o(1))^{(\lg p q)^{1 / 3}(\lg \lg p q)^{2 / 3}}$
simple operations (conjecturally).
To push this beyond 2^{b}, must choose $p q$ to have at least $(0.015 \ldots+o(1)) b^{3} /(\lg b)^{2}$ bits.

Subsequent improvements:
$3.73 \ldots$; details of $o(1)$.
But can reasonably conjecture that $2^{(\lg p q)^{1 / 3+o(1)}}$ is optimal -for classical computers.

Cryptographic systems surviving pre-quantum cryptanalysis:

Triple DES (for $b \leq 112$),
AES-256 (for $b \leq 256$),
RSA with $b^{3+o(1)}$-bit modulus,
McEliece with code length $b^{1+o(1)}$, Merkle signatures
with "strong" $b^{1+o(1)}$-bit hash,
BW with "strong" $b^{2+o(1)}$ bit discriminant, ECDSA with "strong" $b^{1+o(1)-b i t ~ c u r v e, ~}$
$\mathrm{HFE}^{\mathrm{v}-}$ with $b^{1+o(1)}$ polynomials,
NTRU with $b^{1+o(1)}$ bits, et al.

Typical algorithmic tools for pre-quantum cryptanalysts:
NFS, ρ, ISD, LLL, F4, XL, et al.
Post-quantum cryptanalysts have all the same tools
plus quantum algorithms.
Spectacular example:
1994 Shor factors $p q$ into p, q using $(\lg p q)^{2+o(1)}$
simple quantum operations.
To push this beyond 2^{b},
must choose $p q$ to have at least $2^{(0.5+o(1)) b}$ bits. Yikes.

Cryptographic systems surviving post-quantum cryptanalysis:

AES-256 (for $b \leq 128$),
McEliece code-based encryption with code length $b^{1+o(1)}$,
Merkle hash-based signatures
with "strong" $b^{1+o(1)}$-bit hash, $H^{-1} E^{\vee-}$ MQ signatures with $b^{1+o(1)}$ polynomials, NTRU lattice-based encryption with $b^{1+o(1)}$ bits, et al.
3. Efficient systems

Fundamental question for designers and implementors of cryptographic algorithms: Exactly how efficient are the unbroken cryptosystems?

Many goals: minimize encryption time, size, decryption time, etc.

Pre-quantum example:
RSA encrypts and verifies in $b^{3+o(1)}$ simple operations.
Signature occupies $b^{3+o(1)}$ bits.

ECC (with strong curve $/ \mathbf{F}_{q}$, reasonable padding, etc.):

ECDL costs $2^{(1 / 2+o(1)) \lg q}$
by Pollard's rho method.
Conjecture: this is the optimal attack against ECC.

Can take $\lg q \in(2+o(1)) b$.
Encryption: Fast scalar mult costs $(\lg q)^{2+o(1)}=b^{2+o(1)}$.

Summary: ECC costs $b^{2+o(1)}$.
Asymptotically faster than RSA. Bonus: also $b^{2+o(1)}$ decryption.

Efficiency is important:

 users have cost constraints.Cryptographers, cryptanalysts, implementors, etc. tend to focus on RSA and ECC, citing these cost constraints. But Shor breaks RSA and ECC!

Efficiency is important:

 users have cost constraints.Cryptographers, cryptanalysts, implementors, etc. tend to focus on RSA and ECC, citing these cost constraints. But Shor breaks RSA and ECC!

We think that
the most efficient unbroken
post-quantum systems will be hash-based signatures, code-based encryption, lattice-based encryption, multivariate-quadratic sigs.

1978 McEliece system (with length- n classical Goppa codes, reasonable padding, etc.):

Conjecture: Fastest attacks cost $2^{(\beta+o(1)) n / \lg n}$.
Quantum attacks: smaller β.
Can take $n \in(1 / \beta+o(1)) b \lg b$.
Encryption: Matrix mult costs $n^{2+o(1)}=b^{2+o(1)}$.

Summary: McEliece costs $b^{2+o(1)}$.
Hmmm: is this faster than ECC? Need more detailed analysis.

ECC encryption:
$\Theta(\lg q)$ operations in \mathbf{F}_{q}.
Each operation in \mathbf{F}_{q} costs
$\Theta(\lg q \lg \lg q \lg \lg \lg q)$.
Total $\Theta\left(b^{2} \lg b \lg \lg b\right)$.

ECC encryption:
$\Theta(\lg q)$ operations in \mathbf{F}_{q}.
Each operation in \mathbf{F}_{q} costs
$\Theta(\lg q \lg \lg q \lg \lg \lg q)$.
Total $\Theta\left(b^{2} \lg b \lg \lg b\right)$.
McEliece encryption,
with 1986 Niederreiter speedup:
$\Theta(n / \lg n)$ additions in \mathbf{F}_{2}^{n}, each costing $\Theta(n)$.
Total $\Theta\left(b^{2} \lg b\right)$.

ECC encryption:
$\Theta(\lg q)$ operations in \mathbf{F}_{q}.
Each operation in F_{q} costs
$\Theta(\lg q \lg \lg q \lg \lg \lg q)$.
Total $\Theta\left(b^{2} \lg b \lg \lg b\right)$.
McEliece encryption,
with 1986 Niederreiter speedup:
$\Theta(n / \lg n)$ additions in \mathbf{F}_{2}^{n}, each costing $\Theta(n)$.
Total $\Theta\left(b^{2} \lg b\right)$.
McEliece is asymptotically faster.
Bonus: Even faster decryption.
Another bonus: Post-quantum.

Algorithmic advances can change the competition. Examples:

1. Speed up ECC: can reduce $\lg \lg b$ using 2007 Fürer; maybe someday eliminate $\lg \lg b$?

Algorithmic advances can change the competition. Examples:

1. Speed up ECC: can reduce $\lg \lg b$ using 2007 Fürer; maybe someday eliminate $\lg \lg b$?
2. Faster attacks on McEliece:

2010 Bernstein-Lange-Peters,
2011 May-Meurer-Thomae,
2012 Becker-Joux-May-Meurer. but still $\Theta\left(b^{2} \lg b\right)$.

Algorithmic advances can change the competition. Examples:

1. Speed up ECC: can reduce $\lg \lg b$ using 2007 Fürer; maybe someday eliminate $\lg \lg b$?
2. Faster attacks on McEliece: 2010 Bernstein-Lange-Peters,

2011 May-Meurer-Thomae,
2012 Becker-Joux-May-Meurer. but still $\Theta\left(b^{2} \lg b\right)$.
3. We're optimizing "subfield AG" variant of McEliece.

Conjecture: Fastest attacks cost $2^{(\alpha+o(1)) n}$; encryption $\Theta\left(b^{2}\right)$.

Code-based encryption

Modern version of McEliece:
Receiver's public key is "random"
$t \lg n \times n$ matrix K over \mathbf{F}_{2}.
Specifies linear $\mathbf{F}_{2}^{n} \rightarrow \mathbf{F}_{2}^{t \lg n}$.
Typically $t \lg n \approx 0.2 n$;
e.g., $n=2048, t=40$.

Messages suitable for encryption:
$\left\{m \in \mathbf{F}_{2}^{n}: \#\left\{i: m_{i}=1\right\}=t\right\}$.
Encryption of m is $K m \in \mathbf{F}_{2}^{t \lg n}$.
Use hash of m as secret AES-
GCM key to encrypt more data.

Attacker, by linear algebra, easily works backwards
from $K m$ to some $v \in \mathbf{F}_{2}^{n}$ such that $K v=K m$.
i.e. Attacker finds some element $v \in m+$ Kier K. Note that $\# \operatorname{Ker} K \geq 2^{n-t \lg n}$.

Attacker wants to decode v : to find element of KerK at distance only t from v. Presumably unique, revealing m. But decoding isn't easy!

Receiver builds K with secret Goppa structure for fast decoding.

Goppa codes

Fix $q \in\{8,16,32, \ldots\}$;
$t \in\{2,3, \ldots,\lfloor(q-1) / \lg q\rfloor\}$;
$n \in\{t \lg q+1, t \lg q+2, \ldots, q\}$.
e.g. $q=1024, t=50, n=1024$.
or $q=4096, t=150, n=3600$.
Receiver builds a matrix H as the parity-check matrix
for the classical (genus-0)
irreducible length- n degree- t binary Goppa code defined by a monic degree- t irreducible polynomial $g \in \mathbf{F}_{q}[x]$ and distinct $a_{1}, a_{2}, \ldots, a_{n} \in \mathbf{F}_{q}$.
... which means: $H=$

$$
\left(\begin{array}{ccc}
\frac{1}{g\left(a_{1}\right)} & \cdots & \frac{1}{g\left(a_{n}\right)} \\
\frac{a_{1}}{g\left(a_{1}\right)} & \cdots & \frac{a_{n}}{g\left(a_{n}\right)} \\
\vdots & \ddots & \vdots \\
\frac{a_{1}^{t-1}}{g\left(a_{1}\right)} & \cdots & \frac{a_{n}^{t-1}}{g\left(a_{n}\right)}
\end{array}\right)
$$

View each element of \mathbf{F}_{q} here as a column in $\mathbf{F}_{2}^{\lg q}$.
Then $H: \mathbf{F}_{2}^{n} \rightarrow \mathbf{F}_{2}^{t \lg q}$.

More useful view: Consider
the map $m \mapsto \sum_{i} m_{i} /\left(x-a_{i}\right)$ from \mathbf{F}_{2}^{n} to $\mathbf{F}_{q}[x] / g$.
H is the matrix for this map where \mathbf{F}_{2}^{n} has standard basis and $\mathbf{F}_{q}[x] / g$ has basis
$\lfloor g / x\rfloor,\left\lfloor g / x^{2}\right\rfloor, \ldots,\left\lfloor g / x^{t}\right\rfloor$.
One-line proof: In $\mathbf{F}_{q}[x]$ have $\frac{g-g\left(a_{i}\right)}{x-a_{i}}=\sum_{j \geq 0} a_{i}^{j}\left\lfloor g / x^{j+1}\right\rfloor$.

Receiver generates key K as row reduction of H, revealing only KerH .

Lattice-based encryption

1998 Hoffstein-Pipher-Silverman NTRU (textbook version, without required padding):

Receiver's public key is "random"
$h \in\left((\mathbf{Z} / q)[x] /\left(x^{p}-1\right)\right)^{*}$.
Ciphertext: $m+r h$ given
$m, r \in(\mathbf{Z} / q)[x] /\left(x^{p}-1\right)$;
all coefficients in $\{-1,0,1\}$;
$\#\left\{i: r_{i}=-1\right\}=\#\left\{i: r_{i}=1\right\}=t$.
p : prime; e.g., $p=613$.
q : power of 2 around $8 p$, with order $\geq(p-1) / 2$ in $(\mathbf{Z} / p)^{*}$. t : roughly $0.1 p$.

Receiver built $h=3 g /(1+3 f)$
where $f, g \in(\mathbf{Z} / q)[x] /\left(x^{p}-1\right)$, all coeffs in $\{-1,0,1\}$,
$\#\left\{i: f_{i}=-1\right\}=\#\left\{i: f_{i}=1\right\}=t$,
$\#\left\{i: g_{i}=-1\right\} \approx \#\left\{i: g_{i}=1\right\} \approx \frac{p}{3}$, both $1+3 f$ and g invertible.

Given ciphertext $c=m+r h$, receiver computes
$(1+3 f) c=(1+3 f) m+3 r g$
in $(\mathbf{Z} / q)[x] /\left(x^{p}-1\right)$,
lifts to $\mathbf{Z}[x] /\left(x^{p}-1\right)$ with coeffs in $\{-q / 2, \ldots, q / 2-1\}$, reduces modulo 3
to obtain m.

Basic attack tool:
Lift pairs $(u, u h)$ to $\mathbf{Z}^{2 p}$ to obtain a lattice.

Attacking key h :
$(1+3 f, 3 g)$ is a short vector in this lattice.

Attacking ciphertext c :
$(0, c)$ is close to
lattice vector $(r, r h)$.
Standard lattice algorithms
(SVP, CVP) cost $2^{\Theta(p)}$.
Nothing subexponential known, even post-quantum.

Take $p \in \Theta(b)$ for security 2^{b} against all known attacks.
$\Theta(b \lg b)$ bits in key.
Time $b(\lg b)^{2+o(1)}$
to multiply in
$(\mathbf{Z} / q)[x] /\left(x^{p}-1\right)$.
Time $b(\lg b)^{2+o(1)}$
for encryption, decryption.
Excellent overall performance.

Take $p \in \Theta(b)$ for security 2^{b} against all known attacks.
$\Theta(b \lg b)$ bits in key.
Time $b(\lg b)^{2+o(1)}$
to multiply in
$(\mathbf{Z} / q)[x] /\left(x^{p}-1\right)$.
Time $b(\lg b)^{2+o(1)}$
for encryption, decryption.
Excellent overall performance.
The McEliece cryptosystem
inspires more confidence but has much larger keys.

Something completely different

1985 H. Lange-Ruppert:
$A(\bar{k})$ has a complete system
of addition laws, degree $\leq(3,3)$.
Symmetry \Rightarrow degree $\leq(2,2)$.
"The proof is nonconstructive...
To determine explicitly a complete system of addition laws requires tedious computations already in the easiest case of an elliptic curve in Weierstrass normal form."

1985 Lange-Ruppert:
Explicit complete system
of 3 addition laws
for short Weierstrass curves.
Reduce formulas to 53 monomials by introducing extra variables
$x_{i} y_{j}+x_{j} y_{i}, x_{i} y_{j}-x_{j} y_{i}$.
1987 Lange-Ruppert:
Explicit complete system
of 3 addition laws
for long Weierstrass curves.

$$
\begin{aligned}
& Y_{3}^{(2)}=Y_{1}^{2} Y_{2}^{2}+a_{1} X_{2} Y_{1}^{2} Y_{2}+\left(a_{1} a_{2}-3 a_{3}\right) X_{1} X_{2}^{2} Y_{1} \\
& +a_{3} Y_{1}^{2} Y_{2} Z_{2}-\left(a_{2}^{2}-3 a_{4}\right) X_{1}^{2} X_{2}^{2} \\
& +\left(a_{1} a_{4}-a_{2} a_{3}\right)\left(2 X_{1} Z_{2}+X_{2} Z_{1}\right) X_{2} Y_{1} \\
& +\left(a_{1}^{2} a_{4}-2 a_{1} a_{2} a_{3}+3 a_{3}^{2}\right) X_{1}^{2} X_{2} Z_{2} \\
& -\left(a_{2} a_{4}-9 a_{6}\right) X_{1} X_{2}\left(X_{1} Z_{2}+X_{2} Z_{1}\right) \\
& +\left(3 a_{1} a_{6}-a_{3} a_{4}\right)\left(X_{1} Z_{2}+2 X_{2} Z_{1}\right) Y_{1} Z_{2} \\
& +\left(3 a_{1}^{2} a_{6}-2 a_{1} a_{3} a_{4}+a_{2} a_{3}^{2}+3 a_{2} a_{6}-a_{4}^{2}\right) X_{1} Z_{2}\left(X_{1} Z_{2}+2 X_{2} Z_{1}\right) \\
& -\left(3 a_{2} a_{6}-a_{4}^{2}\right)\left(X_{1} Z_{2}+X_{2} Z_{1}\right)\left(X_{1} Z_{2}-X_{2} Z_{1}\right) \\
& +\left(a_{1}^{3} a_{6}-a_{1}^{2} a_{3} a_{4}+a_{1} a_{2} a_{3}^{2}-a_{1} a_{4}^{2}+4 a_{1} a_{2} a_{6}-a_{3}^{3}-3 a_{3} a_{6}\right) Y_{1} Z_{1} Z_{2}^{2} \\
& +\left(a_{1}^{4} a_{6}-a_{1}^{3} a_{3} a_{4}+5 a_{1}^{2} a_{2} a_{6}+a_{1}^{2} a_{2} a_{3}^{2}-a_{1} a_{2} a_{3} a_{4}-a_{1} a_{3}^{3}-3 a_{1} a_{3} a_{6}\right. \\
& \left.-a_{1}^{2} a_{4}^{2}+a_{2}^{2} a_{3}^{2}-a_{2} a_{4}^{2}+4 a_{2}^{2} a_{6}-a_{3}^{2} a_{4}-3 a_{4} a_{6}\right) X_{1} Z_{1} Z_{2}^{2} \\
& +\left(a_{1}^{2} a_{2} a_{6}-a_{1} a_{2} a_{3} a_{4}+3 a_{1} a_{3} a_{6}+a_{2}^{2} a_{3}^{2}-a_{2} a_{4}^{2}\right. \\
& \left.+4 a_{2}^{2} a_{6}-2 a_{3}^{2} a_{4}-3 a_{4} a_{6}\right) X_{2} Z_{1}^{2} Z_{2} \\
& +\left(a_{1}^{3} a_{3} a_{6}-a_{1}^{2} a_{3}^{2} a_{4}+a_{1}^{2} a_{4} a_{6}+a_{1} a_{2} a_{3}^{3}\right. \\
& +4 a_{1} a_{2} a_{3} a_{6}-2 a_{1} a_{3} a_{4}^{2}+a_{2} a_{3}^{2} a_{4} \\
& \left.+4 a_{2} a_{4} a_{6}-a_{3}^{4}-6 a_{3}^{2} a_{6}-a_{4}^{3}-9 a_{6}^{2}\right) Z_{1}^{2} Z_{2}^{2}, \\
& Z_{3}^{(2)}=3 X_{1} X_{2}\left(X_{1} Y_{2}+X_{2} Y_{1}\right)+Y_{1} Y_{2}\left(Y_{1} Z_{2}+Y_{2} Z_{1}\right)+3 a_{1} X_{1}^{2} X_{2}^{2} \\
& +a_{1}\left(2 X_{1} Y_{2}+Y_{1} X_{2}\right) Y_{1} Z_{2}+a_{1}^{2} X_{1} Z_{2}\left(2 X_{2} Y_{1}+X_{1} Y_{2}\right) \\
& +a_{2} X_{1} X_{2}\left(Y_{1} Z_{2}+Y_{2} Z_{1}\right) \\
& +a_{2}\left(X_{1} Y_{2}+X_{2} Y_{1}\right)\left(X_{1} Z_{2}+X_{2} Z_{1}\right) \\
& +a_{1}^{3} X_{1}^{2} X_{2} Z_{2}+a_{1} a_{2} X_{1} X_{2}\left(2 X_{1} Z_{2}+X_{2} Z_{1}\right) \\
& +3 a_{3} X_{1} X_{2}^{2} Z_{1}+a_{3} Y_{1} Z_{2}\left(Y_{1} Z_{2}+2 Y_{2} Z_{1}\right) \\
& +2 a_{1} a_{3} X_{1} Z_{2}\left(Y_{1} Z_{2}+Y_{2} Z_{1}\right) \\
& +2 a_{1} a_{3} X_{2} Y_{1} Z_{1} Z_{2}+a_{4}\left(X_{1} Y_{2}+X_{2} Y_{1}\right) Z_{1} Z_{2} \\
& +a_{4}\left(X_{1} Z_{2}+X_{2} Z_{1}\right)\left(Y_{1} Z_{2}+Y_{2} Z_{1}\right) \\
& +\left(a_{1}^{2} a_{3}+a_{1} a_{4}\right) X_{1} Z_{2}\left(X_{1} Z_{2}+2 X_{2} Z_{1}\right)+a_{2} a_{3} X_{2} Z_{1}\left(2 X_{1} Z_{2}+X_{2} Z_{1}\right) \\
& +a_{3}^{2} Y_{1} Z_{1} Z_{2}^{2}+\left(a_{3}^{2}+3 a_{6}\right)\left(Y_{1} Z_{2}+Y_{2} Z_{1}\right) Z_{1} Z_{2} \\
& +a_{1} a_{3}^{2}\left(2 X_{1} Z_{2}+X_{2} Z_{1}\right) Z_{1} Z_{2}+3 a_{1} a_{6} X_{1} Z_{1} Z_{2}^{2} \\
& +a_{3} a_{4}\left(X_{1} Z_{2}+2 X_{2} Z_{1}\right) Z_{1} Z_{2}+\left(a_{3}^{3}+3 a_{3} a_{6}\right) Z_{1}^{2} Z_{2}^{2} .
\end{aligned}
$$

1995 Bosma-Lenstra:
Explicit complete system of 2 addition laws
for long Weierstrass curves:
$X_{3}, Y_{3}, Z_{3}, X_{3}^{\prime}, Y_{3}^{\prime}, Z_{3}^{\prime}$
$\in \mathbf{Z}\left[a_{1}, a_{2}, a_{3}, a_{4}, a_{6}\right.$,
$\left.X_{1}, Y_{1}, Z_{1}, X_{2}, Y_{2}, Z_{2}\right]$.

1995 Bosma-Lenstra:
Explicit complete system
of 2 addition laws
for long Weierstrass curves:
$X_{3}, Y_{3}, Z_{3}, X_{3}^{\prime}, Y_{3}^{\prime}, Z_{3}^{\prime}$
$\in \mathbf{Z}\left[a_{1}, a_{2}, a_{3}, a_{4}, a_{6}\right.$,
$\left.X_{1}, Y_{1}, Z_{1}, X_{2}, Y_{2}, Z_{2}\right]$.
My previous slide in this talk:
Bosma-Lenstra $Y_{3}^{\prime}, Z_{3}^{\prime}$.

1995 Bosma-Lenstra:
Explicit complete system
of 2 addition laws
for long Weierstrass curves:
$X_{3}, Y_{3}, Z_{3}, X_{3}^{\prime}, Y_{3}^{\prime}, Z_{3}^{\prime}$
$\in \mathbf{Z}\left[a_{1}, a_{2}, a_{3}, a_{4}, a_{6}\right.$,
$\left.X_{1}, Y_{1}, Z_{1}, X_{2}, Y_{2}, Z_{2}\right]$.
My previous slide in this talk:
Bosma-Lenstra $Y_{3}^{\prime}, Z_{3}^{\prime}$.
Actually, slide shows
Publish $\left(Y_{3}^{\prime}\right)$, Publish $\left(Z_{3}^{\prime}\right)$,
where Publish introduces typos.

What this means:
For all fields k,
all \mathbf{P}^{2} Weierstrass curves
$E / k: Y^{2} Z+a_{1} X Y Z+a_{3} Y Z^{2}=$
$X^{3}+a_{2} X^{2} Z+a_{4} X Z^{2}+a_{6} Z^{3}$,
all $P_{1}=\left(X_{1}: Y_{1}: Z_{1}\right) \in E(k)$,
all $P_{2}=\left(X_{2}: Y_{2}: Z_{2}\right) \in E(k)$:
$\left(X_{3}: Y_{3}: Z_{3}\right)$
is $P_{1}+P_{2}$ or (0:0:0);
$\left(X_{3}^{\prime}: Y_{3}^{\prime}: Z_{3}^{\prime}\right)$
is $P_{1}+P_{2}$ or (0:0:0);
at most one of these is $(0: 0: 0)$.

2009 Bernstein-T. Lange:
For all fields k with $2 \neq 0$, all $\mathbf{P}^{1} \times \mathbf{P}^{1}$ Edwards curves E / k : $X^{2} T^{2}+Y^{2} Z^{2}=Z^{2} T^{2}+d X^{2} Y^{2}$, all $P_{1}, P_{2} \in E(k)$,
$P_{1}=\left(\left(X_{1}: Z_{1}\right),\left(Y_{1}: T_{1}\right)\right)$,
$P_{2}=\left(\left(X_{2}: Z_{2}\right),\left(Y_{2}: T_{2}\right)\right):$
$\left(X_{3}: Z_{3}\right)$ is $x\left(P_{1}+P_{2}\right)$ or $(0: 0)$; $\left(X_{3}^{\prime}: Z_{3}^{\prime}\right)$ is $x\left(P_{1}+P_{2}\right)$ or $(0: 0)$; $\left(Y_{3}: T_{3}\right)$ is $y\left(P_{1}+P_{2}\right)$ or $(0: 0)$; $\left(Y_{3}^{\prime}: T_{3}^{\prime}\right)$ is $y\left(P_{1}+P_{2}\right)$ or $(0: 0)$; at most one of these is $(0: 0)$.

$$
\begin{aligned}
& X_{3}=X_{1} Y_{2} Z_{2} T_{1}+X_{2} Y_{1} Z_{1} T_{2} \\
& Z_{3}=Z_{1} Z_{2} T_{1} T_{2}+d X_{1} X_{2} Y_{1} Y_{2} \\
& Y_{3}=Y_{1} Y_{2} Z_{1} Z_{2}-X_{1} X_{2} T_{1} T_{2} \\
& T_{3}=Z_{1} Z_{2} T_{1} T_{2}-d X_{1} X_{2} Y_{1} Y_{2} \\
& X_{3}^{\prime}=X_{1} Y_{1} Z_{2} T_{2}+X_{2} Y_{2} Z_{1} T_{1} \\
& Z_{3}^{\prime}=X_{1} X_{2} T_{1} T_{2}+Y_{1} Y_{2} Z_{1} Z_{2} \\
& Y_{3}^{\prime}=X_{1} Y_{1} Z_{2} T_{2}-X_{2} Y_{2} Z_{1} T_{1} \\
& T_{3}^{\prime}=X_{1} Y_{2} Z_{2} T_{1}-X_{2} Y_{1} Z_{1} T_{2}
\end{aligned}
$$

Much, much, much simpler than Lange-Ruppert, Bosma-Lenstra.
Also much easier to prove.

5. Explicit Formulae

From [5, Chapter III, 2.3] it follows that $f=m^{*}(X / Z)$ and $g=m^{*}(Y / Z)$ are given by

$$
f=\lambda^{2}+a_{1} \lambda-\frac{X_{1} Z_{2}+X_{2} Z_{1}}{Z_{1} Z_{2}}-a_{2}, \quad g=-\left(\lambda+a_{1}\right) f-v-a_{3},
$$

where

$$
\lambda=\frac{Y_{1} Z_{2}-Y_{2} Z_{1}}{X_{1} Z_{2}-X_{2} Z_{1}} \quad \text { and } \quad v=-\frac{Y_{1} X_{2}-Y_{2} X_{1}}{X_{1} Z_{2}-X_{2} Z_{1}}
$$

Applying the automorphism of $E \times E$ mapping $\left(P_{1}, P_{2}\right)$ to $\left(P_{1},-P_{2}\right)$ we find that

$$
s^{*}(X / Z)=\kappa^{2}+a_{1} \kappa-\frac{X_{1} Z_{2}+X_{2} Z_{1}}{Z_{1} Z_{2}}-a_{2}
$$

and

$$
s^{*}(Y / Z)=-\left(\kappa+a_{1}\right) s^{*}(X / Z)-\mu-a_{3},
$$

where

$$
\kappa=\frac{Y_{1} Z_{2}+Y_{2} Z_{1}+a_{1} X_{2} Z_{1}+a_{3} Z_{1} Z_{2}}{X_{1} Z_{2}-X_{2} Z_{1}}
$$

and

$$
\mu=-\frac{Y_{1} X_{2}+Y_{2} X_{1}+a_{1} X_{1} X_{2}+a_{3} X_{1} Z_{2}}{X_{1} Z_{2}-X_{2} Z_{1}}
$$

The bijection of Theorem 2 maps $(0: 0: 1)$ to the addition law given by $X_{3}^{(1)}=f Z_{0}, Y_{3}^{(1)}=g Z_{0}, Z_{3}^{(1)}=Z_{0}$, which in explicit terms is found to be given by

$$
\begin{aligned}
X_{3}^{(1)}= & \left(X_{1} Y_{2}-X_{2} Y_{1}\right)\left(Y_{1} Z_{2}+Y_{2} Z_{1}\right)+\left(X_{1} Z_{2}-X_{2} Z_{1}\right) Y_{1} Y_{2} \\
& +a_{1} X_{1} X_{2}\left(Y_{1} Z_{2}-Y_{2} Z_{1}\right)+a_{1}\left(X_{1} Y_{2}-X_{2} Y_{1}\right)\left(X_{1} Z_{2}+X_{2} Z_{1}\right) \\
& -a_{2} X_{1} X_{2}\left(X_{1} Z_{2}-X_{2} Z_{1}\right)+a_{3}\left(X_{1} Y_{2}-X_{2} Y_{1}\right) Z_{1} Z_{2} \\
& +a_{3}\left(X_{1} Z_{2}-X_{2} Z_{1}\right)\left(Y_{1} Z_{2}+Y_{2} Z_{1}\right) \\
& -a_{4}\left(X_{1} Z_{2}+X_{2} Z_{1}\right)\left(X_{1} Z_{2}-X_{2} Z_{1}\right) \\
& -3 a_{6}\left(X_{1} Z_{2}-X_{2} Z_{1}\right) Z_{1} Z_{2}
\end{aligned}
$$

$$
\begin{aligned}
Y_{3}^{(1)}= & -3 X_{1} X_{2}\left(X_{1} Y_{2}-X_{2} Y_{1}\right) \\
& -Y_{1} Y_{2}\left(Y_{1} Z_{2}-Y_{2} Z_{1}\right)-2 a_{1}\left(X_{1} Z_{2}-X_{2} Z_{1}\right) Y_{1} Y_{2} \\
& +\left(a_{1}^{2}+3 a_{2}\right) X_{1} X_{2}\left(Y_{1} Z_{2}-Y_{2} Z_{1}\right) \\
& -\left(a_{1}^{2}+a_{2}\right)\left(X_{1} Y_{2}+X_{2} Y_{1}\right)\left(X_{1} Z_{2}-X_{2} Z_{1}\right) \\
& +\left(a_{1} a_{2}-3 a_{3}\right) X_{1} X_{2}\left(X_{1} Z_{2}-X_{2} Z_{1}\right) \\
& -\left(2 a_{1} a_{3}+a_{4}\right)\left(X_{1} Y_{2}-X_{2} Y_{1}\right) Z_{1} Z_{2} \\
& +a_{4}\left(X_{1} Z_{2}+X_{2} Z_{1}\right)\left(Y_{1} Z_{2}-Y_{2} Z_{1}\right) \\
& +\left(a_{1} a_{4}-a_{2} a_{3}\right)\left(X_{1} Z_{2}+X_{2} Z_{1}\right)\left(X_{1} Z_{2}-X_{2} Z_{1}\right) \\
& +\left(a_{3}^{2}+3 a_{6}\right)\left(Y_{1} Z_{2}-Y_{2} Z_{1}\right) Z_{1} Z_{2} \\
& +\left(3 a_{1} a_{6}-a_{3} a_{4}\right)\left(X_{1} Z_{2}-X_{2} Z_{1}\right) Z_{1} Z_{2} \\
Z_{3}^{(1)}= & 3 X_{1} X_{2}\left(X_{1} Z_{2}-X_{2} Z_{1}\right)-\left(Y_{1} Z_{2}+Y_{2} Z_{1}\right)\left(Y_{1} Z_{2}-Y_{2} Z_{1}\right) \\
& +a_{1}\left(X_{1} Y_{2}-X_{2} Y_{1}\right) Z_{1} Z_{2}-a_{1}\left(X_{1} Z_{2}-X_{2} Z_{1}\right)\left(Y_{1} Z_{2}+Y_{2} Z_{1}\right) \\
& +a_{2}\left(X_{1} Z_{2}+X_{2} Z_{1}\right)\left(X_{1} Z_{2}-X_{2} Z_{1}\right)-a_{3}\left(Y_{1} Z_{2}-Y_{2} Z_{1}\right) Z_{1} Z_{2} \\
& +a_{4}\left(X_{1} Z_{2}-X_{2} Z_{1}\right) Z_{1} Z_{2}
\end{aligned}
$$

The corresponding exceptional divisor is $3 \cdot \Delta$, so a pair of points P_{1}, P_{2} on E is exceptional for this addition law if and only if $P_{1}=P_{2}$.

Multiplying the addition law just given by $s^{*}(Y / Z)$ we obtain the addition law corresponding to $(0: 1: 0)$. It reads as follows:

$$
\begin{aligned}
X_{3}^{(2)}= & Y_{1} Y_{2}\left(X_{1} Y_{2}+X_{2} Y_{1}\right)+a_{1}\left(2 X_{1} Y_{2}+X_{2} Y_{1}\right) X_{2} Y_{1}+a_{1}^{2} X_{1} X_{2}^{2} Y_{1} \\
& -a_{2} X_{1} X_{2}\left(X_{1} Y_{2}+X_{2} Y_{1}\right)-a_{1} a_{2} X_{1}^{2} X_{2}^{2}+a_{3} X_{2} Y_{1}\left(Y_{1} Z_{2}+2 Y_{2} Z_{1}\right) \\
& +a_{1} a_{3} X_{1} X_{2}\left(Y_{1} Z_{2}-Y_{2} Z_{1}\right)-a_{1} a_{3}\left(X_{1} Y_{2}+X_{2} Y_{1}\right)\left(X_{1} Z_{2}-X_{2} Z_{1}\right) \\
& -a_{4} X_{1} X_{2}\left(Y_{1} Z_{2}+Y_{2} Z_{1}\right)-a_{4}\left(X_{1} Y_{2}+X_{2} Y_{1}\right)\left(X_{1} Z_{2}+X_{2} Z_{1}\right) \\
& -a_{1}^{2} a_{3} X_{1}^{2} X_{2} Z_{2}-a_{1} a_{4} X_{1} X_{2}\left(2 X_{1} Z_{2}+X_{2} Z_{1}\right) \\
& -a_{2} a_{3} X_{1} X_{2}^{2} Z_{1}-a_{3}^{2} X_{1} Z_{2}\left(2 Y_{2} Z_{1}+Y_{1} Z_{2}\right) \\
& -3 a_{6}\left(X_{1} Y_{2}+X_{2} Y_{1}\right) Z_{1} Z_{2} \\
& -3 a_{6}\left(X_{1} Z_{2}+X_{2} Z_{1}\right)\left(Y_{1} Z_{2}+Y_{2} Z_{1}\right)-a_{1} a_{3}^{2} X_{1} Z_{2}\left(X_{1} Z_{2}+2 X_{2} Z_{1}\right) \\
& -3 a_{1} a_{6} X_{1} Z_{2}\left(X_{1} Z_{2}+2 X_{2} Z_{1}\right)+a_{3} a_{4}\left(X_{1} Z_{2}-2 X_{2} Z_{1}\right) X_{2} Z_{1} \\
& -\left(a_{1}^{2} a_{6}-a_{1} a_{3} a_{4}+a_{2} a_{3}^{2}+4 a_{2} a_{6}-a_{4}^{2}\right)\left(Y_{1} Z_{2}+Y_{2} Z_{1}\right) Z_{1} Z_{2} \\
& -\left(a_{1}^{3} a_{6}-a_{1}^{2} a_{3} a_{4}+a_{1} a_{2} a_{3}^{2}+4 a_{1} a_{2} a_{6}-a_{1} a_{4}^{2}\right) X_{1} Z_{1} Z_{2}^{2} \\
& -a_{3}^{3}\left(X_{1} Z_{2}+X_{2} Z_{1}\right) Z_{1} Z_{2}-3 a_{3} a_{6}\left(X_{1} Z_{2}+2 X_{2} Z_{1}\right) Z_{1} Z_{2} \\
& -\left(a_{1}^{2} a_{3} a_{6}-a_{1} a_{3}^{2} a_{4}+a_{2} a_{3}^{3}+4 a_{2} a_{3} a_{6}-a_{3} a_{4}^{2}\right) Z_{1}^{2} Z_{2}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& Y_{3}^{(2)}=Y_{1}^{2} Y_{2}^{2}+a_{1} X_{2} Y_{1}^{2} Y_{2}+\left(a_{1} a_{2}-3 a_{3}\right) X_{1} X_{2}^{2} Y_{1} \\
& +a_{3} Y_{1}^{2} Y_{2} Z_{2}-\left(a_{2}^{2}-3 a_{4}\right) X_{1}^{2} X_{2}^{2} \\
& +\left(a_{1} a_{4}-a_{2} a_{3}\right)\left(2 X_{1} Z_{2}+X_{2} Z_{1}\right) X_{2} Y_{1} \\
& +\left(a_{1}^{2} a_{4}-2 a_{1} a_{2} a_{3}+3 a_{3}^{2}\right) X_{1}^{2} X_{2} Z_{2} \\
& -\left(a_{2} a_{4}-9 a_{6}\right) X_{1} X_{2}\left(X_{1} Z_{2}+X_{2} Z_{1}\right) \\
& +\left(3 a_{1} a_{6}-a_{3} a_{4}\right)\left(X_{1} Z_{2}+2 X_{2} Z_{1}\right) Y_{1} Z_{2} \\
& +\left(3 a_{1}^{2} a_{6}-2 a_{1} a_{3} a_{4}+a_{2} a_{3}^{2}+3 a_{2} a_{6}-a_{4}^{2}\right) X_{1} Z_{2}\left(X_{1} Z_{2}+2 X_{2} Z_{1}\right) \\
& -\left(3 a_{2} a_{6}-a_{4}^{2}\right)\left(X_{1} Z_{2}+X_{2} Z_{1}\right)\left(X_{1} Z_{2}-X_{2} Z_{1}\right) \\
& +\left(a_{1}^{3} a_{6}-a_{1}^{2} a_{3} a_{4}+a_{1} a_{2} a_{3}^{2}-a_{1} a_{4}^{2}+4 a_{1} a_{2} a_{6}-a_{3}^{3}-3 a_{3} a_{6}\right) Y_{1} Z_{1} Z_{2}^{2} \\
& +\left(a_{1}^{4} a_{6}-a_{1}^{3} a_{3} a_{4}+5 a_{1}^{2} a_{2} a_{6}+a_{1}^{2} a_{2} a_{3}^{2}-a_{1} a_{2} a_{3} a_{4}-a_{1} a_{3}^{3}-3 a_{1} a_{3} a_{6}\right. \\
& \left.-a_{1}^{2} a_{4}^{2}+a_{2}^{2} a_{3}^{2}-a_{2} a_{4}^{2}+4 a_{2}^{2} a_{6}-a_{3}^{2} a_{4}-3 a_{4} a_{6}\right) X_{1} Z_{1} Z_{2}^{2} \\
& +\left(a_{1}^{2} a_{2} a_{6}-a_{1} a_{2} a_{3} a_{4}+3 a_{1} a_{3} a_{6}+a_{2}^{2} a_{3}^{2}-a_{2} a_{4}^{2}\right. \\
& \left.+4 a_{2}^{2} a_{6}-2 a_{3}^{2} a_{4}-3 a_{4} a_{6}\right) X_{2} Z_{1}^{2} Z_{2} \\
& +\left(a_{1}^{3} a_{3} a_{6}-a_{1}^{2} a_{3}^{2} a_{4}+a_{1}^{2} a_{4} a_{6}+a_{1} a_{2} a_{3}^{3}\right. \\
& +4 a_{1} a_{2} a_{3} a_{6}-2 a_{1} a_{3} a_{4}^{2}+a_{2} a_{3}^{2} a_{4} \\
& \left.+4 a_{2} a_{4} a_{6}-a_{3}^{4}-6 a_{3}^{2} a_{6}-a_{4}^{3}-9 a_{6}^{2}\right) Z_{1}^{2} Z_{2}^{2}, \\
& Z_{3}^{(2)}=3 X_{1} X_{2}\left(X_{1} Y_{2}+X_{2} Y_{1}\right)+Y_{1} Y_{2}\left(Y_{1} Z_{2}+Y_{2} Z_{1}\right)+3 a_{1} X_{1}^{2} X_{2}^{2} \\
& +a_{1}\left(2 X_{1} Y_{2}+Y_{1} X_{2}\right) Y_{1} Z_{2}+a_{1}^{2} X_{1} Z_{2}\left(2 X_{2} Y_{1}+X_{1} Y_{2}\right) \\
& +a_{2} X_{1} X_{2}\left(Y_{1} Z_{2}+Y_{2} Z_{1}\right) \\
& +a_{2}\left(X_{1} Y_{2}+X_{2} Y_{1}\right)\left(X_{1} Z_{2}+X_{2} Z_{1}\right) \\
& +a_{1}^{3} X_{1}^{2} X_{2} Z_{2}+a_{1} a_{2} X_{1} X_{2}\left(2 X_{1} Z_{2}+X_{2} Z_{1}\right) \\
& +3 a_{3} X_{1} X_{2}^{2} Z_{1}+a_{3} Y_{1} Z_{2}\left(Y_{1} Z_{2}+2 Y_{2} Z_{1}\right) \\
& +2 a_{1} a_{3} X_{1} Z_{2}\left(Y_{1} Z_{2}+Y_{2} Z_{1}\right) \\
& +2 a_{1} a_{3} X_{2} Y_{1} Z_{1} Z_{2}+a_{4}\left(X_{1} Y_{2}+X_{2} Y_{1}\right) Z_{1} Z_{2} \\
& +a_{4}\left(X_{1} Z_{2}+X_{2} Z_{1}\right)\left(Y_{1} Z_{2}+Y_{2} Z_{1}\right) \\
& +\left(a_{1}^{2} a_{3}+a_{1} a_{4}\right) X_{1} Z_{2}\left(X_{1} Z_{2}+2 X_{2} Z_{1}\right)+a_{2} a_{3} X_{2} Z_{1}\left(2 X_{1} Z_{2}+X_{2} Z_{1}\right) \\
& +a_{3}^{2} Y_{1} Z_{1} Z_{2}^{2}+\left(a_{3}^{2}+3 a_{6}\right)\left(Y_{1} Z_{2}+Y_{2} Z_{1}\right) Z_{1} Z_{2} \\
& +a_{1} a_{3}^{2}\left(2 X_{1} Z_{2}+X_{2} Z_{1}\right) Z_{1} Z_{2}+3 a_{1} a_{6} X_{1} Z_{1} Z_{2}^{2} \\
& +a_{3} a_{4}\left(X_{1} Z_{2}+2 X_{2} Z_{1}\right) Z_{1} Z_{2}+\left(a_{3}^{3}+3 a_{3} a_{6}\right) Z_{1}^{2} Z_{2}^{2} .
\end{aligned}
$$

1987 Lenstra: Use Lange-Ruppert complete system of addition laws to computationally define group $E(R)$ for more general rings R rings with trivial class group.

Define $\mathbf{P}^{2}(R)=\{(X: Y: Z)$:
$X, Y, Z \in R ; X R+Y R+Z R=R\}$
where $(X: Y: Z)$ is the module $\{(\lambda X, \lambda Y, \lambda Z): \lambda \in R\}$.

Define $E(R)=$
$\left\{(X: Y: Z) \in \mathbf{P}^{2}(R):\right.$
$\left.Y^{2} Z=X^{3}+a_{4} X Z^{2}+a_{6} Z^{3}\right\}$.

To define (and compute) sum
$\left(X_{1}: Y_{1}: Z_{1}\right)+\left(X_{2}: Y_{2}: Z_{2}\right):$
Consider (and compute)
Lange-Ruppert $\left(X_{3}: Y_{3}: Z_{3}\right)$,
$\left(X_{3}^{\prime}: Y_{3}^{\prime}: Z_{3}^{\prime}\right),\left(X_{3}^{\prime \prime}: Y_{3}^{\prime \prime}: Z_{3}^{\prime \prime}\right)$.
Add these R-modules:
$\left\{\quad\left(\lambda X_{3}, \lambda Y_{3}, \lambda Z_{3}\right)\right.$
$+\left(\lambda^{\prime} X_{3}^{\prime}, \lambda^{\prime} Y_{3}^{\prime}, \lambda^{\prime} Z_{3}^{\prime}\right)$
$+\left(\lambda^{\prime \prime} X_{3}^{\prime \prime}, \lambda^{\prime \prime} Y_{3}^{\prime \prime}, \lambda^{\prime \prime} Z_{3}^{\prime \prime}\right):$

$$
\left.\lambda, \lambda^{\prime}, \lambda^{\prime \prime} \in R\right\}
$$

Express as $(X: Y: Z)$,
using trivial class group of R.

