High-speed cryptography,
part 2:
more elliptic-curve formulas;
field arithmetic
Daniel J. Bernstein University of Illinois at Chicago \& Technische Universiteit Eindhoven

Speed-oriented Jacobian standards
2000 IEEE "Std 1363"
uses Weierstrass curves
in Jacobian coordinates
to "provide the fastest arithmetic on elliptic curves."
Also specifies a method of choosing curves $y^{2}=x^{3}-3 x+b$.

2000 NIST "FIPS 186-2" standardizes five such curves.

2005 NSA "Suite B" recommends two of the NIST curves as the only public-key cryptosystems for U.S. government use.

Projective for Weierstrass

1986 Chudnovsky-Chudnovsky:
Speed up ADD by switching from $\left(X / Z^{2}, Y / Z^{3}\right)$ to $(X / Z, Y / Z)$.
$7 \mathrm{M}+3 \mathrm{~S}$ for DBL if $a=-3$. $12 \mathrm{M}+2 \mathrm{~S}$ for ADD .
$12 M+2 S$ for reADD.
Option has been mostly ignored:
DBL dominates in ECDH etc.
But ADD dominates in some applications: e.g., batch signature verification.

Montgomery curves

1987 Montgomery:

Use $b y^{2}=x^{3}+a x^{2}+x$.
Choose small $(a+2) / 4$.
$2\left(x_{2}, y_{2}\right)=\left(x_{4}, y_{4}\right)$
$\Rightarrow x_{4}=\frac{\left(x_{2}^{2}-1\right)^{2}}{4 x_{2}\left(x_{2}^{2}+a x_{2}+1\right)}$.
$\left(x_{3}, y_{3}\right)-\left(x_{2}, y_{2}\right)=\left(x_{1}, y_{1}\right)$,
$\left(x_{3}, y_{3}\right)+\left(x_{2}, y_{2}\right)=\left(x_{5}, y_{5}\right)$
$\Rightarrow x_{5}=\frac{\left(x_{2} x_{3}-1\right)^{2}}{x_{1}\left(x_{2}-x_{3}\right)^{2}}$.

Represent (x, y)
as $(X: Z)$ satisfying $x=X / Z$.
$B=\left(X_{2}+Z_{2}\right)^{2}$,
$C=\left(X_{2}-Z_{2}\right)^{2}$,
$D=B-C, X_{4}=B \cdot C$,
$Z_{4}=D \cdot(C+D(a+2) / 4) \Rightarrow$
$2\left(X_{2}: Z_{2}\right)=\left(X_{4}: Z_{4}\right)$.
$\left(X_{3}: Z_{3}\right)-\left(X_{2}: Z_{2}\right)=\left(X_{1}: Z_{1}\right)$,
$E=\left(X_{3}-Z_{3}\right) \cdot\left(X_{2}+Z_{2}\right)$,
$F=\left(X_{3}+Z_{3}\right) \cdot\left(X_{2}-Z_{2}\right)$,
$X_{5}=Z_{1} \cdot(E+F)^{2}$,
$Z_{5}=X_{1} \cdot(E-F)^{2} \Rightarrow$
$\left(X_{3}: Z_{3}\right)+\left(X_{2}: Z_{2}\right)=\left(X_{5}: Z_{5}\right)$.

This representation
does not allow ADD but it allows
DADD, "differential addition":
$Q, R, Q-R \mapsto Q+R$.
e.g. $2 P, P, P \mapsto 3 P$.
e.g. $3 P, 2 P, P \mapsto 5 P$.
e.g. $6 P, 5 P, P \mapsto 11 P$.
$2 \mathbf{M}+2 \mathbf{S}+1 \mathbf{D}$ for DBL .
$4 \mathrm{M}+2 \mathrm{~S}$ for DADD.
Save 1 M if $Z_{1}=1$.
Easily compute $n\left(X_{1}: Z_{1}\right)$ using $\approx \lg n \mathrm{DBL}, \approx \lg n \mathrm{DADD}$.
Almost as fast as Edwards $n P$.
Relatively slow for $m P+n Q$ etc.

Doubling-oriented curves

2006 Doche-Icart-Kohel:
Use $y^{2}=x^{3}+a x^{2}+16 a x$.
Choose small a.
Use $\left(X: Y: Z: Z^{2}\right)$
to represent $\left(X / Z, Y / Z^{2}\right)$.
$3 \mathbf{M}+4 \mathbf{S}+2 \mathrm{D}$ for DBL.
How? Factor DBL as $\hat{\varphi}(\varphi)$
where φ is a 2-isogeny.
2007 Bernstein-Lange:
$2 \mathbf{M}+5 \mathbf{S}+2 \mathbf{D}$ for DBL
on the same curves.

$12 \mathbf{M}+5 \mathbf{S}+1 \mathbf{D}$ for ADD .

Slower ADD than other systems,
typically outweighing benefit of the very fast DBL.

But isogenies are useful.
Example, 2005 Gaudry:
fast DBL+DADD on Jacobians of genus-2 hyperelliptic curves, using similar factorization.

Tricky but potentially helpful: tripling-oriented curves
(see 2006 Doche-Icart-Kohel), double-base chains, ...

Hessian curves

Credited to Sylvester
by 1986 Chudnovsky-Chudnovsky:
$(X: Y: Z)$ represent $(X / Z, Y / Z)$
on $x^{3}+y^{3}+1=3 d x y$.
12M for ADD:
$X_{3}=Y_{1} X_{2} \cdot Y_{1} Z_{2}-Z_{1} Y_{2} \cdot X_{1} Y_{2}$,
$Y_{3}=X_{1} Z_{2} \cdot X_{1} Y_{2}-Y_{1} X_{2} \cdot Z_{1} X_{2}$,
$Z_{3}=Z_{1} Y_{2} \cdot Z_{1} X_{2}-X_{1} Z_{2} \cdot Y_{1} Z_{2}$.
$6 \mathrm{M}+3 \mathrm{~S}$ for DBL .

2001 Joye-Quisquater:
$2\left(X_{1}: Y_{1}: Z_{1}\right)=$
$\left(Z_{1}: X_{1}: Y_{1}\right)+\left(Y_{1}: Z_{1}: X_{1}\right)$
so can use ADD to double.
"Unified addition formulas,"
helpful against side channels.
But need to permute inputs.
2009 Bernstein-Kohel-Lange:
Easily avoid permutation!
2008 Hisil-Wong-Carter-Dawson:
$\left(X: Y: Z: X^{2}: Y^{2}: Z^{2}\right.$
$: 2 X Y: 2 X Z: 2 Y Z)$.
$6 \mathbf{M}+6 \mathbf{S}$ for $A D D$.
$3 M+6 S$ for $D B L$.

The Hessian-ray: uniform

Jacobi intersections

1986 Chudnovsky-Chudnovsky:
$(S: C: D: Z)$ represent
$(S / Z, C / Z, D / Z)$ on
$s^{2}+c^{2}=1, a s^{2}+d^{2}=1$.
$14 M+2 S+1 D$ for ADD.
"Tremendous advantage"
of being strongly unified.
$5 \mathrm{M}+3 \mathrm{~S}$ for DBL.
"Perhaps (?) ... the most efficient duplication formulas which do not depend on the coefficients of an elliptic curve."

2001 Liardet-Smart:

$13 \mathbf{M}+2 \mathbf{S}+1 \mathbf{D}$ for ADD.

$4 \mathrm{M}+3 \mathrm{~S}$ for DBL .
2007 Bernstein-Lange:
$3 \mathrm{M}+4 \mathrm{~S}$ for DBL.
2008 Hisil-Wong-Carter-Dawson: $13 \mathbf{M}+1 \mathbf{S}+2 \mathbf{D}$ for ADD.
$2 \mathbf{M}+5 \mathbf{S}+1 \mathbf{D}$ for DBL.
Also $(S: C: D: Z: S C: D Z)$:
$11 \mathbf{M}+1 \mathbf{S}+2 \mathbf{D}$ for ADD.
$2 \mathbf{M}+5 \mathbf{S}+1 \mathbf{D}$ for DBL .

Jacobi quartics

$(X: Y: Z)$ represent $\left(X / Z, Y / Z^{2}\right)$ on $y^{2}=x^{4}+2 a x^{2}+1$.

1986 Chudnovsky-Chudnovsky: $3 M+6 S+2 D$ for $D B L$.

Slow ADD.
2002 Billet-Joye:
New choice of neutral element. $10 M+3 S+1 D$ for $A D D$, strongly unified.

2007 Bernstein-Lange:
$1 \mathbf{M}+9 \mathbf{S}+1 \mathbf{D}$ for DBL .

2007 Hisil-Carter-Dawson:
$2 \mathbf{M}+6 \mathbf{S}+2 \mathbf{D}$ for DBL .
2007 Feng-Wu:
$2 \mathbf{M}+6 \mathbf{S}+1 \mathbf{D}$ for DBL .
$1 M+7 S+3 D$ for $D B L$
on curves chosen with $a^{2}+c^{2}=1$.
More speedups: 2007 Duquesne,
2007 Hisil-Carter-Dawson,
2008 Hisil-Wong-Carter-Dawson:
use $\left(X: Y: Z: X^{2}: Z^{2}\right)$
or $\left(X: Y: Z: X^{2}: Z^{2}: 2 X Z\right)$.
Can combine with Feng-Wu.
Competitive with Edwards!

$x^{2}=y^{4}-1.9 y^{2}+1$

The Jacobi-quartic squid: can be extended to
XXYZZR
giant squid.

More addition formulas

Explicit-Formulas Database:
hyperelliptic.org/EFD
EFD has 583 computer-verified formulas and operation counts
for ADD, DBL, etc. in 51 representations on 13 shapes of elliptic curves.

Not yet handled by computer: generality of curve shapes (e.g., Hessian order $\in 3 Z$); complete addition algorithms (e.g., checking for ∞).

How to multiply big integers

Standard idea: Use polynomial with coefficients in $\{0,1, \ldots, 9\}$ to represent integer in radix 10 .

Example of representation:
$839=8 \cdot 10^{2}+3 \cdot 10^{1}+9 \cdot 10^{0}=$
value (at $t=10$) of polynomial $8 t^{2}+3 t^{1}+9 t^{0}$.

Convenient to express polynomial inside computer as array 9,3,8 (or $9,3,8,0$ or $9,3,8,0,0$ or . .) : "p [0] $=9 ; p[1]=3 ; p[2]=8 "$

Multiply two integers
by multiplying polynomials
that represent the integers.
Polynomial multiplication
involves small integer coefficients.
Have split one big multiplication into many small operations.

Example, squaring 839:
$\left(8 t^{2}+3 t^{1}+9 t^{0}\right)^{2}=$
$64 t^{4}+48 t^{3}+153 t^{2}+54 t^{1}+81 t^{0}$.

Oops, product polynomial usually has coefficients >9.
So "carry" extra digits:
$c t^{j} \rightarrow\lfloor c / 10\rfloor t^{j+1}+(c \bmod 10) t^{j}$.
Example, squaring 839:
$64 t^{4}+48 t^{3}+153 t^{2}+54 t^{1}+81 t^{0} ;$
$64 t^{4}+48 t^{3}+153 t^{2}+62 t^{1}+1 t^{0} ;$ $64 t^{4}+48 t^{3}+159 t^{2}+2 t^{1}+1 t^{0} ;$ $64 t^{4}+63 t^{3}+9 t^{2}+2 t^{1}+1 t^{0} ;$ $70 t^{4}+3 t^{3}+9 t^{2}+2 t^{1}+1 t^{0} ;$ $7 t^{5}+0 t^{4}+3 t^{3}+9 t^{2}+2 t^{1}+1 t^{0}$.

In other words, $839^{2}=703921$.

What operations were used here?

divide by 10

The scaled variation

$839=800+30+9=$
value (at $t=1$) of polynomial
$800 t^{2}+30 t^{1}+9 t^{0}$.
Squaring: $\left(800 t^{2}+30 t^{1}+9 t^{0}\right)^{2}=$ $640000 t^{4}+48000 t^{3}+15300 t^{2}+$ $540 t^{1}+81 t^{0}$.
Carrying:
$640000 t^{4}+48000 t^{3}+15300 t^{2}+$ $540 t^{1}+81 t^{0} ;$
$640000 t^{4}+48000 t^{3}+15300 t^{2}+$ $620 t^{1}+1 t^{0}$;
$700000 t^{5}+0 t^{4}+3000 t^{3}+900 t^{2}+$ $20 t^{1}+1 t^{0}$.

What operations were used here?

Speedup: double inside squaring
$\left(\cdots+f_{2} t^{2}+f_{1} t^{1}+f_{0} t^{0}\right)^{2}$
has coefficients such as
$f_{4} f_{0}+f_{3} f_{1}+f_{2} f_{2}+f_{1} f_{3}+f_{0} f_{4}$.
5 muts, 4 adds.

Speedup: double inside squaring
$\left(\cdots+f_{2} t^{2}+f_{1} t^{1}+f_{0} t^{0}\right)^{2}$ has coefficients such as
$f_{4} f_{0}+f_{3} f_{1}+f_{2} f_{2}+f_{1} f_{3}+f_{0} f_{4}$. 5 muts, 4 adds.

Compute more efficiently as
$2 f_{4} f_{0}+2 f_{3} f_{1}+f_{2} f_{2}$.
3 muts, 2 adds, 2 doublings.
Save $\approx 1 / 2$ of the molts
if there are many coefficients.

Faster alternative:
$2\left(f_{4} f_{0}+f_{3} f_{1}\right)+f_{2} f_{2}$.
3 mults, 2 adds, 1 doubling.
Save $\approx 1 / 2$ of the adds
if there are many coefficients.

Faster alternative:
$2\left(f_{4} f_{0}+f_{3} f_{1}\right)+f_{2} f_{2}$.
3 mults, 2 adds, 1 doubling.
Save $\approx 1 / 2$ of the adds
if there are many coefficients.
Even faster alternative:
$\left(2 f_{0}\right) f_{4}+\left(2 f_{1}\right) f_{3}+f_{2} f_{2}$,
after precomputing $2 f_{0}, 2 f_{1}, \ldots$
3 mults, 2 adds, 0 doublings.
Precomputation ≈ 0.5 doublings.

Speedup: allow negative coeffs

Recall $159 \mapsto 15,9$.
Scaled: $15900 \mapsto 15000,900$.
Alternative: $159 \mapsto 16,-1$. Scaled: $15900 \mapsto 16000,-100$.

Use digits $\{-5,-4, \ldots, 4,5\}$ instead of $\{0,1, \ldots, 9\}$.
Small disadvantage: need -. Several small advantages: easily handle negative integers; easily handle subtraction; reduce products a bit.

Speedup: delay carries

Computing (e.g.) big $a b+c^{2}$: multiply a, b polynomials, carry, square c poly, carry, add, carry.
e.g. $a=314, b=271, c=839$: $\left(3 t^{2}+1 t^{1}+4 t^{0}\right)\left(2 t^{2}+7 t^{1}+1 t^{0}\right)=$ $6 t^{4}+23 t^{3}+18 t^{2}+29 t^{1}+4 t^{0} ;$ carry: $8 t^{4}+5 t^{3}+0 t^{2}+9 t^{1}+4 t^{0}$.

As before $\left(8 t^{2}+3 t^{1}+9 t^{0}\right)^{2}=$ $64 t^{4}+48 t^{3}+153 t^{2}+54 t^{1}+81 t^{0} ;$ $7 t^{5}+0 t^{4}+3 t^{3}+9 t^{2}+2 t^{1}+1 t^{0}$.
$+: 7 t^{5}+8 t^{4}+8 t^{3}+9 t^{2}+11 t^{1}+5 t^{0} ;$ $7 t^{5}+8 t^{4}+9 t^{3}+0 t^{2}+1 t^{1}+5 t^{0}$.

Faster: multiply a, b polynomials, square c polynomial, add, carry.
$\left(6 t^{4}+23 t^{3}+18 t^{2}+29 t^{1}+4 t^{0}\right)+$ $\left(64 t^{4}+48 t^{3}+153 t^{2}+54 t^{1}+81 t^{0}\right)$ $=70 t^{4}+71 t^{3}+171 t^{2}+83 t^{1}+85 t^{0}$; $7 t^{5}+8 t^{4}+9 t^{3}+0 t^{2}+1 t^{1}+5 t^{0}$.

Eliminate intermediate carries.
Outweighs cost of handling slightly larger coefficients.

Important to carry between multiplications (and squarings) to reduce coefficient size; but carries are usually a bad idea before additions, subtractions, etc.

Speedup: polynomial Karatsuba
How much work to multiply polys
$f=f_{0}+f_{1} t+\cdots+f_{19} t^{19}$,
$g=g_{0}+g_{1} t+\cdots+g_{19} t^{19}$?
Using the obvious method:
400 coeff milts, 361 coeff adds.
Faster: Write f as $F_{0}+F_{1} t^{10}$;
$F_{0}=f_{0}+f_{1} t+\cdots+f_{9} t^{9}$;
$F_{1}=f_{10}+f_{11} t+\cdots+f_{19} t^{9}$.
Similarly write g as $G_{0}+G_{1} t^{10}$.
Then $f g=\left(F_{0}+F_{1}\right)\left(G_{0}+G_{1}\right) t^{10}$ $+\left(F_{0} G_{0}-F_{1} G_{1} t^{10}\right)\left(1-t^{10}\right)$.

20 adds for $F_{0}+F_{1}, G_{0}+G_{1}$. 300 molts for three products
$F_{0} G_{0}, F_{1} G_{1},\left(F_{0}+F_{1}\right)\left(G_{0}+G_{1}\right)$.
243 adds for those products.
9 adds for $F_{0} G_{0}-F_{1} G_{1} t^{10}$
with subs counted as adds
and with delayed negations.
19 adds for $\cdots\left(1-t^{10}\right)$.
19 adds to finish.
Total 300 mults, 310 adds.
Larger coefficients, slight expense; still saves time.

Can apply idea recursively as poly degree grows.

Many other algebraic speedups in polynomial multiplication: "Toom," "FFT," etc.

Increasingly important as polynomial degree grows.
$O(n \lg n \lg \lg n)$ coeff operations to compute n-coeff product.

Useful for sizes of n
that occur in cryptography?
In some cases, yes!
But Karatsuba is the limit for prime-field ECC/ECDLP on most current CPUs.

Modular reduction

How to compute $f \bmod p$?

Can use definition:
$f \bmod p=f-p\lfloor f / p\rfloor$.
Can multiply f by a
precomputed $1 / p$ approximation; easily adjust to obtain $\lfloor f / p\rfloor$.

Slight speedup: "2-adic inverse"; "Montgomery reduction."
e.g. $314159265358 \bmod 271828$:

Precompute
〔10000000000000/271828」
$=3678796$.
Compute
314159 - 3678796
$=1155726872564$.
Compute
314159265358 - $1155726 \cdot 271828$
$=578230$.
Oops, too big:
$578230-271828=306402$.
$306402-271828=34574$.

We can do better: normally
p is chosen with a special form to make $f \bmod p$ much faster.

Special primes hurt security
for \mathbf{F}_{p}^{*}, $\operatorname{Clock}\left(\mathbf{F}_{p}\right)$, etc.,
but not for elliptic curves!
gls1271: $p=2^{127}-1$,
with degree-2 extension.
Curve25519: $p=2^{255}-19$.
NIST P-224: $p=2^{224}-2^{96}+1$.
secp112r1: $p=\left(2^{128}-3\right) / 76439$.
Divides special form.

Small example: $p=1000003$. Then $1000000 a+b \equiv b-3 a$. e.g. $314159265358=$
$314159 \cdot 1000000+265358 \equiv$
$314159(-3)+265358=$
$-942477+265358=$
-677119.
Easily adjust $b-3 a$
to the range $\{0,1, \ldots, p-1\}$
by adding/subtracting a few p 's: e.g. $-677119 \equiv 322884$.

Hmmm, is adjustment so easy?
Conditional branches are slow.
(Also dangerous for defenders:
branch timing leaks secrets.)
Can eliminate the branches, but adjustment isn't free.

Speedup: Skip the adjustment for intermediate results. "Lazy reduction."
Adjust only for output.
$b-3 a$ is small enough to continue computations.

Can delay carries until after multiplication by 3 .
e.g. To square 314159
in $\mathbf{Z} / 1000003$: Square poly
$3 t^{5}+1 t^{4}+4 t^{3}+1 t^{2}+5 t^{1}+9 t^{0}$,
obtaining $9 t^{10}+6 t^{9}+25 t^{8}+$
$14 t^{7}+48 t^{6}+72 t^{5}+59 t^{4}+$
$82 t^{3}+43 t^{2}+90 t^{1}+81 t^{0}$.
Reduce: replace $\left(c_{i}\right) t^{6+i}$ by $\left(-3 c_{i}\right) t^{i}$, obtaining $72 t^{5}+32 t^{4}+$ $64 t^{3}-32 t^{2}+48 t^{1}-63 t^{0}$.

Carry: $8 t^{6}-4 t^{5}-2 t^{4}+$ $1 t^{3}+2 t^{2}+2 t^{1}-3 t^{0}$.

To minimize poly degree,

 mix reduction and carrying, carrying the top sooner.e.g. Start from square $9 t^{10}+6 t^{9}+$ $25 t^{8}+14 t^{7}+48 t^{6}+72 t^{5}+59 t^{4}+$ $82 t^{3}+43 t^{2}+90 t^{1}+81 t^{0}$.

Reduce $t^{10} \rightarrow t^{4}$ and carry $t^{4} \rightarrow$ $t^{5} \rightarrow t^{6}: 6 t^{9}+25 t^{8}+14 t^{7}+56 t^{6}-$ $5 t^{5}+2 t^{4}+82 t^{3}+43 t^{2}+90 t^{1}+81 t^{0}$.

Finish reduction: $-5 t^{5}+2 t^{4}+$ $64 t^{3}-32 t^{2}+48 t^{1}-87 t^{0}$. Carry $t^{0} \rightarrow t^{1} \rightarrow t^{2} \rightarrow t^{3} \rightarrow t^{4} \rightarrow t^{5}:$ $-4 t^{5}-2 t^{4}+1 t^{3}+2 t^{2}-1 t^{1}+3 t^{0}$.

Speedup: non-integer radix
$p=2^{61}-1$.
Five coeffs in radix 2^{13} ?
$f_{4} t^{4}+f_{3} t^{3}+f_{2} t^{2}+f_{1} t^{1}+f_{0} t^{0}$. Most coeffs could be 2^{12}.

Square $\cdots+2\left(f_{4} f_{1}+f_{3} f_{2}\right) t^{5}+\cdots$. Coeff of t^{5} could be $>2^{25}$.

Reduce: $2^{65}=2^{4}$ in $\mathbf{Z} /\left(2^{61}-1\right)$; $\cdots+\left(2^{5}\left(f_{4} f_{1}+f_{3} f_{2}\right)+f_{0}^{2}\right) t^{0}$. Coeff could be $>2^{29}$.

Very little room for
additions, delayed carries, etc. on 32-bit platforms.

Scaled: Evaluate at $t=1$.
f_{4} is multiple of 2^{52};
f_{3} is multiple of 2^{39}; f_{2} is multiple of 2^{26};
f_{1} is multiple of 2^{13};
f_{0} is multiple of 2^{0}. Reduce:
$\cdots+\left(2^{-60}\left(f_{4} f_{1}+f_{3} f_{2}\right)+f_{0}^{2}\right) t^{0}$.
Better: Non-integer radix $2^{12.2}$. f_{4} is multiple of 2^{49}; f_{3} is multiple of 2^{37}; f_{2} is multiple of 2^{25}; f_{1} is multiple of 2^{13}; f_{0} is multiple of 2^{0}.
Saves a few bits in coeffs.

