High-speed cryptography,
part 2:
more elliptic-curve formulas;
field arithmetic

Daniel J. Bernstein
University of Illinois at Chicago &
Technische Universiteit Eindhoven
Speed-oriented Jacobian standards

2000 IEEE “Std 1363” uses Weierstrass curves in Jacobian coordinates to “provide the fastest arithmetic on elliptic curves.” Also specifies a method of choosing curves $y^2 = x^3 - 3x + b$.

2000 NIST “FIPS 186–2” standardizes five such curves.

2005 NSA “Suite B” recommends two of the NIST curves as the only public-key cryptosystems for U.S. government use.
Projective for Weierstrass

1986 Chudnovsky–Chudnovsky: Speed up ADD by switching from $(X/Z^2, Y/Z^3)$ to $(X/Z, Y/Z)$.
$7M + 3S$ for DBL if $a = -3$.
$12M + 2S$ for ADD.
$12M + 2S$ for reADD.

Option has been mostly ignored: DBL dominates in ECDH etc. But ADD dominates in some applications: e.g., batch signature verification.
Montgomery curves

1987 Montgomery:

Use $by^2 = x^3 + ax^2 + x$.

Choose small $(a + 2)/4$.

$$2(\mathbf{x}_2, \mathbf{y}_2) = (\mathbf{x}_4, \mathbf{y}_4)$$

$$\Rightarrow \mathbf{x}_4 = \frac{(\mathbf{x}_2^2 - 1)^2}{4\mathbf{x}_2(\mathbf{x}_2^2 + a\mathbf{x}_2 + 1)}.$$

$$(\mathbf{x}_3, \mathbf{y}_3) - (\mathbf{x}_2, \mathbf{y}_2) = (\mathbf{x}_1, \mathbf{y}_1),$$
$$(\mathbf{x}_3, \mathbf{y}_3) + (\mathbf{x}_2, \mathbf{y}_2) = (\mathbf{x}_5, \mathbf{y}_5)$$

$$\Rightarrow \mathbf{x}_5 = \frac{(\mathbf{x}_2\mathbf{x}_3 - 1)^2}{\mathbf{x}_1(\mathbf{x}_2 - \mathbf{x}_3)^2}.$$
Represent \((x, y)\) as \((X:Z)\) satisfying \(x = X/Z\).

\[
B = (X_2 + Z_2)^2, \\
C = (X_2 - Z_2)^2, \\
D = B - C, \ X_4 = B \cdot C, \\
Z_4 = D \cdot (C + D(a + 2)/4) \Rightarrow \\
2(X_2:Z_2) = (X_4:Z_4).
\]

\[
(X_3:Z_3) - (X_2:Z_2) = (X_1:Z_1), \\
E = (X_3 - Z_3) \cdot (X_2 + Z_2), \\
F = (X_3 + Z_3) \cdot (X_2 - Z_2), \\
X_5 = Z_1 \cdot (E + F)^2, \\
Z_5 = X_1 \cdot (E - F)^2 \Rightarrow \\
(X_3:Z_3) + (X_2:Z_2) = (X_5:Z_5).
\]
This representation does not allow ADD but it allows DADD, “differential addition”: $Q, R, Q - R \mapsto Q + R$.

e.g. $2P, P, P \mapsto 3P$.
e.g. $3P, 2P, P \mapsto 5P$.
e.g. $6P, 5P, P \mapsto 11P$.

$2M + 2S + 1D$ for DBL.
$4M + 2S$ for DADD.
Save $1M$ if $Z_1 = 1$.

Easily compute $n(X_1 : Z_1)$ using $\approx \lg n$ DBL, $\approx \lg n$ DADD.
Almost as fast as Edwards nP.
Relatively slow for $mP + nQ$ etc.
Doubling-oriented curves

2006 Doche–Icart–Kohel:
Use $y^2 = x^3 + ax^2 + 16ax$. Choose small a.

Use $(X : Y : Z : Z^2)$ to represent $(X/Z, Y/Z^2)$.

$3M + 4S + 2D$ for DBL.

How? Factor DBL as $\hat{\phi}(\phi)$ where ϕ is a 2-isogeny.

2007 Bernstein–Lange:
$2M + 5S + 2D$ for DBL on the same curves.
12\textbf{M} + 5\textbf{S} + 1\textbf{D} for ADD. Slower ADD than other systems, typically outweighing benefit of the very fast DBL.

But isogenies are useful. Example, 2005 Gaudry: fast DBL+DADD on Jacobians of genus-2 hyperelliptic curves, using similar factorization.

Tricky but potentially helpful: tripling-oriented curves (see 2006 Doche–Icart–Kohel), double-base chains, . . .
Hessian curves

Credited to Sylvester by 1986 Chudnovsky–Chudnovsky:

\((X : Y : Z)\) represent \((X/Z, Y/Z)\) on \(x^3 + y^3 + 1 = 3dxy\).

\[12M\] for ADD:
\[X_3 = Y_1X_2 \cdot Y_1Z_2 - Z_1Y_2 \cdot X_1Y_2,\]
\[Y_3 = X_1Z_2 \cdot X_1Y_2 - Y_1X_2 \cdot Z_1X_2,\]
\[Z_3 = Z_1Y_2 \cdot Z_1X_2 - X_1Z_2 \cdot Y_1Z_2.\]

\[6M + 3S\] for DBL.
2001 Joye–Quisquater:
\[2(\mathbf{X}_1 : \mathbf{Y}_1 : \mathbf{Z}_1) =
(\mathbf{Z}_1 : \mathbf{X}_1 : \mathbf{Y}_1) + (\mathbf{Y}_1 : \mathbf{Z}_1 : \mathbf{X}_1)\]
so can use ADD to double.

“Unified addition formulas,”
helpful against side channels.
But need to permute inputs.
2009 Bernstein–Kohel–Lange:
Easily avoid permutation!

2008 Hisil–Wong–Carter–Dawson:
\[(\mathbf{X} : \mathbf{Y} : \mathbf{Z} : \mathbf{X}^2 : \mathbf{Y}^2 : \mathbf{Z}^2
: 2\mathbf{X}\mathbf{Y} : 2\mathbf{X}\mathbf{Z} : 2\mathbf{Y}\mathbf{Z}).\]
6\text{M} + 6\text{S} for ADD.
3\text{M} + 6\text{S} for DBL.
\[x^3 - y^3 + 1 = 0.3xy \]
The Hessian-ray: uniform but not strongly so
Jacobi intersections

1986 Chudnovsky–Chudnovsky: (\(S : C : D : Z\)) represent
(\(S/Z, C/Z, D/Z\)) on
\[s^2 + c^2 = 1, \quad a s^2 + d^2 = 1. \]

14\(M + 2S + 1D\) for ADD.
“Tremendous advantage” of being strongly unified.

5\(M + 3S\) for DBL.
“Perhaps (?) . . . the most efficient duplication formulas which do not depend on the coefficients of an elliptic curve.”
2001 Liardet–Smart:
13M + 2S + 1D for ADD.
4M + 3S for DBL.

2007 Bernstein–Lange:
3M + 4S for DBL.

2008 Hisil–Wong–Carter–Dawson:
13M + 1S + 2D for ADD.
2M + 5S + 1D for DBL.

Also (S : C : D : Z : SC : DZ):
11M + 1S + 2D for ADD.
2M + 5S + 1D for DBL.
Jacobi quartics

\((X:Y:Z)\) represent \((X/Z, Y/Z^2)\) on \(y^2 = x^4 + 2ax^2 + 1\).

1986 Chudnovsky–Chudnovsky:
\(3M + 6S + 2D\) for DBL.
Slow ADD.

2002 Billet–Joye:
New choice of neutral element.
\(10M + 3S + 1D\) for ADD,
strongly unified.

2007 Bernstein–Lange:
\(1M + 9S + 1D\) for DBL.
2007 Hisil–Carter–Dawson:
\[2M + 6S + 2D \] for DBL.

2007 Feng–Wu:
\[2M + 6S + 1D \] for DBL.
\[1M + 7S + 3D \] for DBL
on curves chosen with \(a^2 + c^2 = 1 \).

use \((X : Y : Z : X^2 : Z^2) \)
or \((X : Y : Z : X^2 : Z^2 : 2XZ) \).
Can combine with Feng–Wu.
Competitive with Edwards!
$x^2 = y^4 - 1.9y^2 + 1$
The Jacobi-quartic squid: can be extended to XXYZZR giant squid.
Feb
Mar
More addition formulas

Explicit-Formulas Database: hyperelliptic.org/EFD

EFD has 583 computer-verified formulas and operation counts for ADD, DBL, etc. in 51 representations on 13 shapes of elliptic curves.

Not yet handled by computer: generality of curve shapes (e.g., Hessian order $\notin 3\mathbb{Z}$); complete addition algorithms (e.g., checking for ∞).
How to multiply big integers

Standard idea: Use polynomial with coefficients in \(\{0, 1, \ldots, 9\} \) to represent integer in radix 10.

Example of representation:
\[
839 = 8 \cdot 10^2 + 3 \cdot 10^1 + 9 \cdot 10^0 = \text{value (at } t = 10) \text{ of polynomial } 8t^2 + 3t^1 + 9t^0.
\]

Convenient to express polynomial inside computer as array \(9, 3, 8 \) (or \(9, 3, 8, 0 \) or \(9, 3, 8, 0, 0 \) or \ldots):
“\(p[0] = 9; \ p[1] = 3; \ p[2] = 8 \)”
Multiply two integers by multiplying polynomials that represent the integers.

Polynomial multiplication involves *small* integer coefficients. Have split one big multiplication into many small operations.

Example, squaring 839:

\[
(8t^2 + 3t^1 + 9t^0)^2 = 64t^4 + 48t^3 + 153t^2 + 54t^1 + 81t^0.
\]
Oops, product polynomial usually has coefficients > 9. So “carry” extra digits:

$$ct^j \rightarrow \lfloor c/10 \rfloor t^{j+1} + (c \mod 10)t^j.$$

Example, squaring 839:

$$64t^4 + 48t^3 + 153t^2 + 54t + 81t^0;$$
$$64t^4 + 48t^3 + 153t^2 + 62t + 1t^0;$$
$$64t^4 + 48t^3 + 159t^2 + 2t + 1t^0;$$
$$64t^4 + 63t^3 + 9t^2 + 2t + 1t^0;$$
$$70t^4 + 3t^3 + 9t^2 + 2t + 1t^0;$$
$$7t^5 + 0t^4 + 3t^3 + 9t^2 + 2t + 1t^0.$$

In other words, $839^2 = 703921$.
What operations were used here?
The scaled variation

\[839 = 800 + 30 + 9 = \]

value (at \(t = 1 \)) of polynomial \(800t^2 + 30t^1 + 9t^0 \).

Squaring: \((800t^2 + 30t^1 + 9t^0)^2 = 640000t^4 + 48000t^3 + 15300t^2 + 540t^1 + 81t^0 \).

Carrying:
\[
640000t^4 + 48000t^3 + 15300t^2 + 540t^1 + 81t^0; \\
640000t^4 + 48000t^3 + 15300t^2 + 620t^1 + 1t^0; \ldots \\
700000t^5 + 0t^4 + 3000t^3 + 900t^2 + 20t^1 + 1t^0.
\]
What operations were used here?

800 → 30 → 9

7200 → 900 → 7200

15300 → 600 → 15900

15000 subtract

900 mod 1000

15900 add

...
Speedup: double inside squaring

\((\cdots + f_2 t^2 + f_1 t^1 + f_0 t^0)^2\)

has coefficients such as

\(f_4 f_0 + f_3 f_1 + f_2 f_2 + f_1 f_3 + f_0 f_4\).

5 mults, 4 adds.
Speedup: double inside squaring

\((\cdots + f_2 t^2 + f_1 t^1 + f_0 t^0)^2\)

has coefficients such as

\(f_4 f_0 + f_3 f_1 + f_2 f_2 + f_1 f_3 + f_0 f_4\).

5 mults, 4 adds.

Compute more efficiently as

\(2 f_4 f_0 + 2 f_3 f_1 + f_2 f_2\).

3 mults, 2 adds, 2 doublings.

Save \(\approx 1/2\) of the mults
if there are many coefficients.
Faster alternative:

\[2(f_4 f_0 + f_3 f_1) + f_2 f_2. \]

3 mults, 2 adds, 1 doubling.

Save \(\approx 1/2 \) of the adds if there are many coefficients.
Faster alternative:

$$2(f_4 f_0 + f_3 f_1) + f_2 f_2.$$

3 mults, 2 adds, 1 doubling.

Save $\approx 1/2$ of the adds if there are many coefficients.

Even faster alternative:

$$(2f_0) f_4 + (2f_1) f_3 + f_2 f_2,$$

after precomputing $2f_0, 2f_1, \ldots$.

3 mults, 2 adds, 0 doublings.

Precomputation ≈ 0.5 doublings.
Speedup: allow negative coeffs

Recall 159 \mapsto 15, 9.
Scaled: 15900 \mapsto 15000, 900.

Alternative: 159 \mapsto 16, -1.
Scaled: 15900 \mapsto 16000, -100.

Use digits $\{-5, -4, \ldots, 4, 5\}$ instead of $\{0, 1, \ldots, 9\}$.

Small disadvantage: need $-\cdot$.
Several small advantages:
easily handle negative integers;
easily handle subtraction;
reduce products a bit.
Speedup: delay carries

Computing (e.g.) big $ab + c^2$: multiply a, b polynomials, carry, square c poly, carry, add, carry.

e.g. $a = 314, b = 271, c = 839$:
$$(3t^2 + 1t^1 + 4t^0)(2t^2 + 7t^1 + 1t^0) = 6t^4 + 23t^3 + 18t^2 + 29t^1 + 4t^0;$$
carry: $8t^4 + 5t^3 + 0t^2 + 9t^1 + 4t^0$.

As before $(8t^2 + 3t^1 + 9t^0)^2 =$$64t^4 + 48t^3 + 153t^2 + 54t^1 + 81t^0;$$7t^5 + 0t^4 + 3t^3 + 9t^2 + 2t^1 + 1t^0.$

$+: 7t^5 + 8t^4 + 8t^3 + 9t^2 + 11t^1 + 5t^0;$$7t^5 + 8t^4 + 9t^3 + 0t^2 + 1t^1 + 5t^0.$
Faster: multiply a, b polynomials, square c polynomial, add, carry.

$$(6t^4 + 23t^3 + 18t^2 + 29t^1 + 4t^0) + (64t^4 + 48t^3 + 153t^2 + 54t^1 + 81t^0) = 70t^4 + 71t^3 + 171t^2 + 83t^1 + 85t^0;$$

$$7t^5 + 8t^4 + 9t^3 + 0t^2 + 1t^1 + 5t^0.$$

Eliminate intermediate carries. Outweighs cost of handling slightly larger coefficients.

Important to carry between multiplications (and squarings) to reduce coefficient size; but carries are usually a bad idea before additions, subtractions, etc.
Speedup: polynomial Karatsuba

How much work to multiply polys
\[f = f_0 + f_1 t + \cdots + f_{19} t^{19}, \]
\[g = g_0 + g_1 t + \cdots + g_{19} t^{19}? \]

Using the obvious method:
400 coeff mults, 361 coeff adds.

Faster: Write \(f \) as \(F_0 + F_1 t^{10}; \)
\[F_0 = f_0 + f_1 t + \cdots + f_9 t^9; \]
\[F_1 = f_{10} + f_{11} t + \cdots + f_{19} t^9. \]

Similarly write \(g \) as \(G_0 + G_1 t^{10}. \)

Then \(fg = (F_0 + F_1)(G_0 + G_1)t^{10} \]
\[+ (F_0 G_0 - F_1 G_1 t^{10})(1 - t^{10}). \]
20 adds for $F_0 + F_1, G_0 + G_1$.
300 mults for three products $F_0G_0, F_1G_1, (F_0 + F_1)(G_0 + G_1)$.
243 adds for those products.
9 adds for $F_0G_0 - F_1G_1 t^{10}$ with subs counted as adds and with delayed negations.
19 adds for $\cdots (1 - t^{10})$.
19 adds to finish.

Total 300 mults, 310 adds.
Larger coefficients, slight expense; still saves time.

Can apply idea recursively as poly degree grows.
Many other algebraic speedups in polynomial multiplication: “Toom,” “FFT,” etc.

Increasingly important as polynomial degree grows. $O(n \lg n \lg \lg n)$ coeff operations to compute n-coeff product.

Useful for sizes of n that occur in cryptography? In some cases, yes!

But Karatsuba is the limit for prime-field ECC/ECDLP on most current CPUs.
Modular reduction

How to compute $f \mod p$?

Can use definition:
\[f \mod p = f - p \lfloor f/p \rfloor. \]

Can multiply f by a precomputed $1/p$ approximation; easily adjust to obtain $\lfloor f/p \rfloor$.

Slight speedup: “2-adic inverse”; “Montgomery reduction.”
e.g. $314159265358 \mod 271828$:

Precompute

$\left[\frac{1000000000000}{271828}\right] = 3678796$.

Compute

$314159 \cdot 3678796$

$= 1155726872564$.

Compute

$314159265358 - 1155726 \cdot 271828$

$= 578230$.

Oops, too big:

$578230 - 271828 = 306402$.

$306402 - 271828 = 34574$.
We can do better: normally p is chosen with a special form to make $f \mod p$ much faster.

Special primes hurt security for F^*_p, $\text{Clock}(F_p)$, etc., but not for elliptic curves!

gls1271: $p = 2^{127} - 1$, with degree-2 extension.

Curve25519: $p = 2^{255} - 19$.

NIST P-224: $p = 2^{224} - 2^{96} + 1$.

secp112r1: $p = (2^{128} - 3)/76439$. *Divides* special form.
Small example: \(p = 1000003 \). Then \(1000000a + b \equiv b - 3a \).

e.g. \(314159265358 = 314159 \cdot 1000000 + 265358 \equiv 314159(-3) + 265358 = -942477 + 265358 = -677119 \).

Easily adjust \(b - 3a \) to the range \(\{0, 1, \ldots, p - 1\} \) by adding/subtracting a few \(p \)'s: e.g. \(-677119 \equiv 322884 \).
Hmmm, is adjustment so easy?

Conditional branches are slow. (Also dangerous for defenders: branch timing leaks secrets.) Can eliminate the branches, but adjustment isn’t free.

Speedup: Skip the adjustment for intermediate results. “Lazy reduction.” Adjust only for output.

\[b - 3a \] is small enough to continue computations.
Can delay carries until after multiplication by 3.

e.g. To square 314159 in \(\mathbb{Z}/1000003 \): Square poly \(3t^5 + 1t^4 + 4t^3 + 1t^2 + 5t^1 + 9t^0 \), obtaining \(9t^{10} + 6t^9 + 25t^8 + 14t^7 + 48t^6 + 72t^5 + 59t^4 + 82t^3 + 43t^2 + 90t^1 + 81t^0 \).

Reduce: replace \((c_i)t^{6+i}\) by \((-3c_i)t^i\), obtaining \(72t^5 + 32t^4 + 64t^3 - 32t^2 + 48t^1 - 63t^0 \).

Carry: \(8t^6 - 4t^5 - 2t^4 + 1t^3 + 2t^2 + 2t^1 - 3t^0 \).
To minimize poly degree, mix reduction and carrying, carrying the top sooner.

e.g. Start from square $9t^{10} + 6t^9 + 25t^8 + 14t^7 + 48t^6 + 72t^5 + 59t^4 + 82t^3 + 43t^2 + 90t^1 + 81t^0$.

Reduce $t^{10} \rightarrow t^4$ and carry $t^4 \rightarrow t^5 \rightarrow t^6$: $6t^9 + 25t^8 + 14t^7 + 56t^6 - 5t^5 + 2t^4 + 82t^3 + 43t^2 + 90t^1 + 81t^0$.

Finish reduction: $-5t^5 + 2t^4 + 64t^3 - 32t^2 + 48t^1 - 87t^0$. Carry $t^0 \rightarrow t^1 \rightarrow t^2 \rightarrow t^3 \rightarrow t^4 \rightarrow t^5$: $-4t^5 - 2t^4 + t^3 + 2t^2 - t^1 + 3t^0$.
Speedup: non-integer radix

\[p = 2^{61} - 1. \]

Five coeffs in radix \(2^{13}\)?

\[f_4 t^4 + f_3 t^3 + f_2 t^2 + f_1 t^1 + f_0 t^0. \]

Most coeffs could be \(2^{12}\).

Square \(\cdots + 2(f_4 f_1 + f_3 f_2)t^5 + \cdots\).

Coeff of \(t^5\) could be \(> 2^{25}\).

Reduce: \(2^{65} = 2^4\) in \(\mathbb{Z}/(2^{61} - 1)\);

\(\cdots + (2^5(f_4 f_1 + f_3 f_2) + f_0^2)t^0.\)

Coeff could be \(> 2^{29}\).

Very little room for additions, delayed carries, etc. on 32-bit platforms.
Scaled: Evaluate at $t = 1$.

f_4 is multiple of 2^{52};
f_3 is multiple of 2^{39};
f_2 is multiple of 2^{26};
f_1 is multiple of 2^{13};
f_0 is multiple of 2^0. Reduce:

$$\cdots + (2^{-60}(f_4 f_1 + f_3 f_2) + f_0^2)t^0.$$

Better: Non-integer radix $2^{12.2}$.

f_4 is multiple of 2^{49};
f_3 is multiple of 2^{37};
f_2 is multiple of 2^{25};
f_1 is multiple of 2^{13};
f_0 is multiple of 2^0.

Saves a few bits in coeffs.