High-speed cryptography,
part 2:

more elliptic-curve formulas;
fleld arithmetic

Daniel J. Bernstein
University of lllinois at Chicago &
Technische Universiteit Eindhoven

Speed-oriented Jacobian standards

2000 IEEE “Std 1363"

uses Welerstrass curves

in Jacobian coordinates

to “provide the fastest

arithmetic on elliptic curves.”

Also specifies a method of
choosing curves y2 = z3 — 3z + b.

2000 NIST “FIPS 186-2"
standardizes five such curves.

2005 NSA “Suite B”" recommends
two of the NIST curves as

the only public-key cryptosystems
for U.S. government use.



ed cryptography,

ptic-curve formulas;
hmetic

. Bernstein
ty of lllinois at Chicago &
he Universiteit Eindhoven

Speed-oriented Jacobian standards

Projecti

2000 IEEE “Std 1363"

uses Welerstrass curves

in Jacobian coordinates

to “provide the fastest

arithmetic on elliptic curves.”

Also specifies a method of
choosing curves y2 = z3 — 3z + b.

2000 NIST “FIPS 186-2"
standardizes five such curves.

2005 NSA “Suite B" recommends
two of the NIST curves as

the only public-key cryptosystems
for U.S. government use.

1986 Ch
Speed u
(X/Z2,"
M —+ 3!
12M +
12M +

Option |
DBL do
But AD
some ap
batch si



graphy,

- formulas:

0
is at Chicago &
siteit Eindhoven

Speed-oriented Jacobian standards

Projective for Wei

2000 IEEE “Std 1363"

uses Welerstrass curves

in Jacobian coordinates

to “provide the fastest

arithmetic on elliptic curves.”

Also specifies a method of
choosing curves y2 = z3 — 3z + b.

2000 NIST “FIPS 186-2"
standardizes five such curves.

2005 NSA “Suite B” recommends
two of the NIST curves as

the only public-key cryptosystems
for U.S. government use.

1986 Chudnovsky-
Speed up ADD by
(X/Z2,Y]Z3) to |
/M + 3S for DBL
12M + 2S for AD
12M + 2S for reA

Option has been r
DBL dominates in
But ADD dominat
some applications:
batch signature ve



g0 &
hoven

Speed-oriented Jacobian standards

Projective for Weierstrass

2000 IEEE “Std 1363"

uses Welerstrass curves

in Jacobian coordinates

to “provide the fastest

arithmetic on elliptic curves.”

Also specifies a method of
choosing curves y2 = z3 — 3z + b.

2000 NIST “FIPS 186-2"
standardizes five such curves.

2005 NSA “Suite B" recommends
two of the NIST curves as

the only public-key cryptosystems
for U.S. government use.

1986 Chudnovsky—Chudnovs
Speed up ADD by switching
(X/Z%,Y)Z3) to (X/Z,Y]Z
/M + 3S for DBL if a = —-
12M + 2S for ADD.

12M + 2S for reADD.

Option has been mostly ignc
DBL dominates in ECDH et
But ADD dominates In
some applications: e.g.,
batch signature verification.



Speed-oriented Jacobian standards

Projective for Weierstrass

2000 IEEE “Std 1363"

uses Welerstrass curves

in Jacobian coordinates

to “provide the fastest

arithmetic on elliptic curves.”

Also specifies a method of
choosing curves y2 = z3 — 3z + b.

2000 NIST “FIPS 186-2"
standardizes five such curves.

2005 NSA “Suite B” recommends
two of the NIST curves as

the only public-key cryptosystems
for U.S. government use.

1986 Chudnovsky—Chudnovsky:
Speed up ADD by switching from
(X/Z%,Y/Z3) to (X/Z,Y]2Z).
/M + 3S for DBL if a = —3.
12M + 2S for ADD.

12M + 2S for reADD.

Option has been mostly ignored:
DBL dominates in ECDH etc.
But ADD dominates In

some applications: e.g.,

batch signature verification.



riented Jacobian standards

Projective for Weierstrass

~E “Std 1363"

lerstrass curves

1an coordinates

ide the fastest

Ic on elliptic curves.”
cifies a method of

- curves y2 = g3 — 3z + b.

ST “FIPS 186-2"
izes five such curves.

A “Suite B" recommends
he NIST curves as
public-key cryptosystems
government use.

1986 Chudnovsky—Chudnovsky:
Speed up ADD by switching from
(X/Z%,Y/Z3) to (X/Z,Y]2Z).
/M + 3S for DBL if a = —3.
12M + 2S for ADD.

12M + 2S for reADD.

Option has been mostly ignored:
DBL dominates in ECDH etc.
But ADD dominates In

some applications: e.g.,

batch signature verification.

Montgoi

1987 Mc

Use by?
Choose

2(z2, Y2

= T4 —

(23, y3)
(23, y3)

= Ty —



cobian standards

Projective for Weierstrass

363"
urves
nates
stest

tic curves.’

ethod of

2 — 23 _ 3z +b.

186—2"
uch curves.

B" recommends
urves as

/ cryptosystems
nt use.

1986 Chudnovsky—Chudnovsky:
Speed up ADD by switching from
(X/Z%,Y/Z3) to (X/Z,Y]2Z).
/M + 3S for DBL if a = —3.
12M + 2S for ADD.

12M + 2S for reADD.

Option has been mostly ignored:
DBL dominates in ECDH etc.
But ADD dominates In

some applications: e.g.,

batch signature verification.

Montgomery curve

1987 Montgomery

Use by? = 23 + a:
Choose small (a +

e — (3321?3—
° z1(xr —



ndards

Projective for Weierstrass

3z + b.

mends

stems

1986 Chudnovsky—Chudnovsky:
Speed up ADD by switching from
(X/Z%,Y/Z3) to (X/Z,Y]2Z).
/M + 3S for DBL if a = —3.
12M + 2S for ADD.

12M + 2S for reADD.

Option has been mostly ignored:
DBL dominates in ECDH etc.
But ADD dominates In

some applications: e.g.,

batch signature verification.

Montgomery curves

1987 Montgomery:

Use by? = 23 + az® + z.
Choose small (a + 2)/4.

2(z2,y2) = (Z4, Ya)
(25 —1)7

Az)(z5 + azy + 1)

= T4 —

(23, 43) — (%2, 92) = (=1, y1
(23, y3) + (22, ¥2) = (25, s
(zoz3 — 1)2
T1(z2 — 333)2'

= Ty —



Projective for Weierstrass

1986 Chudnovsky—Chudnovsky:
Speed up ADD by switching from
(X/Z%,Y/Z3) to (X/Z,Y]2Z).
/M + 3S for DBL if a = —3.
12M + 2S for ADD.

12M + 2S for reADD.

Option has been mostly ignored:
DBL dominates in ECDH etc.
But ADD dominates In

some applications: e.g.,

batch signature verification.

Montgomery curves

1987 Montgomery:

Use by? = 23 + az® + z.
Choose small (a + 2)/4.

2(z2,y2) = (Z4, Ya)
(25 — 1)

4z)(z5 + azp + 1)

— T4 —

(z3,93) — (z2,¥2) = (21, 91),
(z3,93) + (22, 92) = (5, ys)
(zoz3 — 1)?

z1(zy — 23)%

= Ty —



/e for Weierstrass

udnovsky—Chudnovsky:

p ADD by switching from
v/Z3) to (X/Z,Y/2).

> for DBL if a = —3.

)S for ADD.

)S for reADD.

1as been mostly ignored:
minates in ECDH etc.

D dominates in
plications: e.g.,

ynature verification.

Montgomery curves

1987 Montgomery:

Use by? = 23 + az® + z.
Choose small (a + 2)/4.

2(z2,y2) = (24, y4)
(z5 —1)°

Az)(z5 + azp + 1)

= T4 —

(z3,93) — (2, ¥2) = (z1, Y1),

(z3,93) + (22, ¥2) = (z5, y5)
(zpz3 — 1)°
T1(T2 — 333)2'

= Ty —

Represel
as (X:Z



erstrass

-Chudnovsky:
switching from
X/Z,Y[/Z).

if a = —3.

D.

DD.

nostly Ignored:
ECDH etc.
es In

e.g.,
rification.

Montgomery curves

1987 Montgomery:

Use by? = 23 + az® + z.
Choose small (a + 2)/4.

2(z2,y2) = (Z4, Ya)
(23— 1)°
4z)(z5 + azo + 1)

= T4 —

(z3,93) — (22, ¥2) = (z1, 91),

(z3,93) + (22, ¥2) = (=5, Y5)
(zpz3 — 1)°
z1(T2 — ~’B3)2'

= Ty —

Represent (z, y)
as (X:Z) satisfyin

B = (Xo+ Z5)?,
C =(Xo— Z5)?,
D=B-—C, X4 =

Zy =D -(C+ D(
2(X0:2Z2) = (X4:2



Ky:
from

A4 d B
| |

red:

Montgomery curves

1987 Montgomery:

Use by? = 23 + az® + z.
Choose small (a + 2)/4.

2(z2,¥2) = (T4, ya)
(23— 1)°
4z)(z5 + azp + 1)

= T4 —

(z3,93) — (2, ¥2) = (z1, Y1),

(z3,y3) + (22, ¥2) = (=5, y5)
(zpz3 — 1)°
T1(T2 — 333)2'

= Ty —

Represent (z, y)
as (X:Z) satisfying x = X/.

B = (Xo+ Z5)?,

C =(Xy — Z)?,
D=B-C, X4s=8B-C,
Zy=D-(C+ D(a+2)/4)
2(X2:Zz) — (X4ZZ4).

(X3:23) = (X2:22) = (X1:2
E=(X3—23) (X2+ 22),
F=(X3+23) (X2 — 22),
Xs =21 (E+F),

Zs =X1-(E—-F)* =
(X3:Zg) + (XQZZQ) — (X5:Z



Montgomery curves

1987 Montgomery:

Use by? = 23 + az® + z.
Choose small (a + 2)/4.

2(z2,y2) = (Z4, Ya)
(23— 1)°
4z)(z5 + azp + 1)

= T4 —

(z3,93) — (22, ¥2) = (Z1, 91),

(z3,93) + (22, ¥2) = (=5, Y5)
(zpz3 — 1)°
z1(T2 — ~’B3)2'

= Ty —

Represent (z, y)
as (X:Z) satisfying x = X/Z.

B = (Xo+ Z5)?,

= (X2 — 22)%,
D=B-C,X4=B-C,
Zy =D (C+D(a+2)/4) =
2(X2:ZQ) — (X4ZZ4).

(X3:23) — (X2:22) = (X1:21),
E = (X3—23) (X2 + 22),
F=(X3+ Z3)- (X2 — 22),
Xs =21 (E+F),

Zs = X1 - (E — F)?

(Xg:Zg) + (XQZZQ) — (X5:Z5).



nery curves

ontgomery:

— $3 —+ amz + .
small (a + 2)/4.

) = (T4, Ya)
(z5 — 1)°

4z)(z5 + azp + 1)

— (22, 92) = (21, v1),

(z2,y2) = (25, y5)
(zpz3 — 1)°
T1(T2 — 333)2'

Represent (z, y)
as (X:Z) satisfying x = X/Z.

B = (Xo+ Z5)?,

C = (X2 — Z2)?,

D=B-C, Xs=8B-C,
Zy=D - (C+D(a+2)/4) =
2(X2:Zz) — (X4ZZ4).

(X3:2Z3) — (X2:2Z>) = (X1:271),

E=(X3—23) (X2+ 2£2),
F=(X3+23) (X2— 22),
X5 =21 (E+F),

Zs =X1-(E—-F)* =

(X3:Zg) + (XQZZQ) — (X5:Z5).

This rep

does not
DADD,

W, R Q

e.g. 2P,
e.g. 3P,
e.g. OP,

2M + 2
4M + 2
Save 1MV

Easily cc
~ lgn L
Almost :
Relativel



Represent (z, y)
as (X:Z) satisfying x = X/Z.

B = (Xo+ Z5)?,

= (Xo — Z2)°,
D=B-C, Xs=8BC,
Zy =D (C+D(a+2)/4) =
2(X2:ZQ) — (X4ZZ4).

(X3:23) — (X2:2Zo) = (X1:271),

E = (X3—23) (X2 + 22),
F=(X3+23) (X2 — 27),
X5 =Z1-(E+F)?
75 = X1 (E — F)?
(Xg:Zg) —+ (XQZZQ) —

(X5:Z5).

This representatio

does not al

DADD, “dif

ow AL
ferenti

@, RI&-—R—{

eg. 2P,P,P—3
eg. 3P, 2P, P —!
eg. 6P, bP P —

2M + 2S + 1D fo
4M + 2S for DAD
Save 1M if Z1 =

Easily compute 7 (

~ lgmn DBL,

("\J|1
~ g

Almost as fast as

Relatively slow for



Represent (z, y)
as (X:Z) satisfying x = X/Z.

B = (Xo+ Z5)?,

C =(Xy — Z5)?,

D=B-C, X4s=8B-C,
Zy=D - (C+D(a+2)/4) =
2(X2:Zz) — (X4ZZ4).

(X3:2Z3) — (X2:2Z>) = (X1:271),

E=(X3—23) (X2+ 2£2),
F=(X3+23) (X2 — 22),
Xs =21 (E+F),

Zs =X1-(E—-F)* =

(X3:Zg) + (XQZZQ) — (X5:Z5).

This representation
does not allow ADD but it :
DADD, “differential additior

QR Q—R—Q+R.

eg. 2P, P,P— 3P.
e.g. 3P,2P,P — 5P.
e.g. 6P, bP, P — 11P.

2M + 2S + 1D for DBL.
4M + 2S for DADD.
Save IM if Z1 = 1.

Easily compute n(X7 : Z1) 1
~ lgn DBL, ~ Ign DADD.
Almost as fast as Edwards 7

Relatively slow for m P + n(



Represent (z, y)
as (X:Z) satisfying x = X/Z.

B = (Xo+ Z5)?,

= (X2 — 22)%,
D=B-C,X4=B-C,
Zy =D (C+D(a+2)/4) =
2(X2:ZQ) — (X4ZZ4).

(X3:23) — (X2:2Z>) = (X1:271),

E=(X3—23) (X2+ 22),
F=(Xs+23) (X2 — 22),
Xs =21 (E+F),
Zs = X1 - (E — F)?

(Xg:Zg) + (XQZZQ) — (X5:Z5).

This representation

does not allow ADD but it allows
DADD, “differential addition” :

Q. RQ-—R—Q+R.

eg. 2P, P,P— 3P.
e.g. 3P,2P, P — b5P.
e.g. 6P, bP P — 11P.

2M + 2S + 1D for DBL.
4M + 2S for DADD.
Save IM if Z1 = 1.

Easily compute n(X7 : Z1) using
~ lgn DBL, ~ Ign DADD.
Almost as fast as Edwards nP.

Relatively slow for mP + nQ etc.



1t (2, y)
) satisfying £ = X/Z.

)+ Z3)?,

— 75)?,

- C, Xa=8B-C,
(C+D(a+2)/4) =
): (X4ZZ4).

— (Xo:2Zo) = (X1:271),

 — Z3) - (X2 + 22),
1+ Z3) - (X2 — 2£7),
- (E+F)%
L-(E—F)2=>

+ (XQZZQ) — (X5:Z5).

This representation

does not allow ADD but it allows
DADD, “differential addition”:

QR Q—R—Q+R.

eg. 2P, P,P— 3P.
e.g. 3P,2P,P — 5P.
e.g. 6P, bP, P — 11P.

2M + 2S + 1D for DBL.
4M + 2S for DADD.
Save IM if Z1 = 1.

Easily compute n(X7 : Z1) using
~ lgn DBL, ~ Ign DADD.
Almost as fast as Edwards nP.

Relatively slow for mP

nQ etc.

Doublin;

2006 Dc

Use y?2 -
Choose

Use (X
to repre:s

3M + 4
How? F

where ¢

2007 Be
2M -+ 5
on the s



gz =X/Z.

This representation

does not allow ADD but it allows
DADD, “differential addition” :

Q. RQ-—R—Q+R.

eg. 2P, P,P— 3P.
e.g. 3P,2P, P — b5P.
e.g. 6P, bP P — 11P.

2M + 2S + 1D for DBL.
4M + 2S for DADD.
Save IM if Z1 = 1.

Easily compute n(X7 : Z1) using
~ lgn DBL, ~ Ign DADD.
Almost as fast as Edwards nP.

Relatively slow for mP

n@) etc.

Doubling-oriented

2006 Doche—lcart-

Use y? = 23 + ax
Choose small a.

Use (X :Y :Z: 2
to represent (X/Z

3M +4S + 2D fo
How? Factor DBL

where ¢ Is a 2-1s0

2007 Bernstein—Lz:

2M + 58S + 2D fo
on the same curve



This representation

does not allow ADD but it allows
DADD, “differential addition”:

QR Q—R—Q+R.

eg. 2P, P,P— 3P.
e.g. 3P,2P,P — 5P.
e.g. 6P, bP, P — 11P.

2M + 2S + 1D for DBL.
4M + 2S for DADD.
Save IM if Z1 = 1.

Easily compute n(X7 : Z1) using
~ lgn DBL, ~ Ign DADD.
Almost as fast as Edwards nP.

Relatively slow for mP + n@ etc.

Doubling-oriented curves

20006 Doche—Ilcart—Kohel:

Use y2 = 23 + az? + 16az.
Choose small a.

Use (X :Y :Z:2Z%)

to represent (X/Z,Y/Z?).

3M + 4S + 2D for DBL.
How? Factor DBL as @()
where ¢ is a 2-isogeny.

2007 Bernstein—Lange:
2M + 58 + 2D for DBL

on the same curves.



This representation

does not allow ADD but it allows
DADD, “differential addition” :

Q. RQ-—R—Q+R.

eg. 2P, P,P— 3P.
e.g. 3P,2P, P — bP.
e.g. OP,bP, P — 11P.

2M + 2S + 1D for DBL.
4M + 2S for DADD.
Save IM if Z1 = 1.

Easily compute n(X7 : Z1) using
~ lgn DBL, ~ Ign DADD.
Almost as fast as Edwards nP.

Relatively slow for mP + nQ etc.

Doubling-oriented curves

2006 Doche—Ilcart—Kohel:

Use y2 = z3 + az? + 16az.
Choose small a.

Use (X :Y :Z:Z%)

to represent (X/Z,Y/Z?).

3M + 4S + 2D for DBL.
How? Factor DBL as @()
where @ Is a 2-isogeny.

2007 Bernstein—Lange:
2M + 58 + 2D for DBL

on the same curves.



resentation

- allow ADD but i1t allows
“differential addition’ :

—R— @+ R.

P P— 3P.
2P P — 5P,
5P, P — 11P.

> + 1D for DBL.

5 for DADD.
it Z1 = 1.

ympute n(X1 : Z1) using
)BL, ~ lgn DADD.
s fast as Edwards nP.

y slow for mP

nQ etc.

Doubling-oriented curves

20006 Doche—Ilcart—Kohel:

Use y2 = 23 + az? + 16az.

Choose small a.

Use (X :Y :Z:Z%)
to represent (X/Z,Y/Z?).

3M + 4S + 2D for DBL.
How? Factor DBL as @()
where ¢ Is a 2-isogeny.

2007 Bernstein—Lange:
2M + 58 + 2D for DBL

on the same curves.

12M + !
Slower /

typically
of the v

But Isog
Example
fast DB
genus-2
using sir

Tricky b
tripling-
(see 200
double-k



N
D but 1t allows
al addition’ :

+ R.

P.
HP.
11P.

- DBL.
D.
L.

X1 : Z1) using
n DADD.
Edwards nP.

mP + nQ etc.

Doubling-oriented curves

2006 Doche—Ilcart—Kohel:

Use y2 = z3 + az? + 16az.

Choose small a.

Use (X :Y :Z:Z%)
to represent (X/Z,Y/Z?).

3M + 4S + 2D for DBL.
How? Factor DBL as @()
where @ Is a 2-1sogeny.

2007 Bernstein—Lange:
2M + 58S + 2D for DBL

on the same curves.

12M +5S + 1D f
Slower ADD than
typically outweigh
of the very fast DI

But i1sogenies are |
Example, 2005 Ga
fast DBL+DADD
genus-2 hyperellip
using similar facto

Tricky but potenti
tripling-oriented ci
(see 2006 Doche—
double-base chain:



[lows

1

1sing

P

) etc.

Doubling-oriented curves

20006 Doche—Ilcart—Kohel:

Use y2 = 23 + az? + 16az.

Choose small a.

Use (X :Y :Z:Z%)
to represent (X/Z,Y/Z?).

3M + 4S + 2D for DBL.
How? Factor DBL as @()
where ¢ is a 2-isogeny.

2007 Bernstein—Lange:

2M + 58S + 2D for DBL
on the same curves.

12M + 55 + 1D for ADD.
Slower ADD than other syst
typically outweighing benefi
of the very fast DBL.

But isogenies are useful.
Example, 2005 Gaudry:

fast DBL+DADD on Jacobi
genus-2 hyperelliptic curves,
using similar factorization.

Tricky but potentially helpfL
tripling-oriented curves
(see 2006 Doche—lcart—Koh

double-base chains, ...



Doubling-oriented curves

2006 Doche—Ilcart—Kohel:

Use y2 = z3 + az? + 16az.

Choose small a.

Use (X :Y :Z:Z%)
to represent (X/Z,Y/Z?).

3M + 4S + 2D for DBL.
How? Factor DBL as @()
where @ Is a 2-isogeny.

2007 Bernstein—Lange:

2M + 58S + 2D for DBL
on the same curves.

12M + 58 + 1D for ADD.
Slower ADD than other systems,
typically outweighing benefit

of the very fast DBL.

But isogenies are useful.

Example, 2005 Gaudry:

fast DBL+DADD on Jacobians of
genus-2 hyperelliptic curves,

using similar factorization.

Tricky but potentially helpful:
tripling-oriented curves
(see 2006 Doche—Icart—Kohel),

double-base chains, ...



y-oriented curves

che—lcart—Kohel:

- 23 1+ az? + 16az.

small a.

Y Z: 7%
sent (X/Z,Y/Z?).
5 + 2D for DBL.

actor DBL as ¢(¢p)
IS a 2-1sogeny.

rnstein—Lange:
5> + 2D for DBL

dMeE CUrves.

12M + 5S + 1D for ADD.
Slower ADD than other systems,
typically outweighing benefit

of the very fast DBL.

But isogenies are useful.

Example, 2005 Gaudry:

fast DBL+DADD on Jacobians of
genus-2 hyperelliptic curves,

using similar factorization.

Tricky but potentially helpful:
tripling-oriented curves
(see 2006 Doche—Icart—Kohel),

double-base chains, ...

Hessian

Credited
by 1986

(X :Y:
on :1;3 -
12M for
X3 ="

Y3 = X1
L3 = £

6M + 3!



curves

-Kohel:

2 1 16az.

2)
Y/Z?).
- DBL.
_as ()
geny.

Inge:
- DBL
S.

12M + 58 + 1D for ADD.
Slower ADD than other systems,
typically outweighing benefit

of the very fast DBL.

But isogenies are useful.

Example, 2005 Gaudry:

fast DBL+DADD on Jacobians of
genus-2 hyperelliptic curves,

using similar factorization.

Tricky but potentially helpful:
tripling-oriented curves
(see 2006 Doche—Icart—Kohel),

double-base chains, ...

Hessian curves

Credited to Sylves
by 1986 Chudnovs

(X :Y : Z) repres
on z3 + y3 + 1 =
12M for ADD:

X3=Y1X2-Y1Z>
Y3 = X112y - X1Y5
L3 = Z£1Y2 - £1X2

6M + 3S for DBL



12M + 5S + 1D for ADD.
Slower ADD than other systems,
typically outweighing benefit

of the very fast DBL.

But isogenies are useful.

Example, 2005 Gaudry:

fast DBL+DADD on Jacobians of
genus-2 hyperelliptic curves,

using similar factorization.

Tricky but potentially helpful:
tripling-oriented curves
(see 2006 Doche—Icart—Kohel),

double-base chains, ...

Hessian curves

Credited to Sylvester
by 1986 Chudnovsky—Chudn

(X :Y : Z) represent (X/Z,
on z3 + y3 + 1 = 3dzy.
12M for ADD:

X3 =Y1Xo-Y1Z> — Z1Y5 -.
Y3 = X1Zy - X1Yo — Y1 X -
L3 = 2L1Y2 - L1Xo — X142

6M + 3S for DBL.



12M + 58 + 1D for ADD.
Slower ADD than other systems,
typically outweighing benefit

of the very fast DBL.

But isogenies are useful.

Example, 2005 Gaudry:

fast DBL+DADD on Jacobians of
genus-2 hyperelliptic curves,

using similar factorization.

Tricky but potentially helpful:
tripling-oriented curves
(see 2006 Doche—Icart—Kohel),

double-base chains, ...

Hessian curves

Credited to Sylvester
by 1986 Chudnovsky—Chudnovsky:

(X :Y :Z) represent (X/Z,Y/Z)
on z3 + y3 + 1 = 3dzy.

12M for ADD:

X3 =Y1Xo Y140 — £1Yo - X177,
Y3 = X142 X1Yo — Y1 X0 - £1 X2,
L3 =212 - L1 Xo — X124 - Y1Z4o.

6M —+ 3S for DBL.



S + 1D for ADD.
\DD than other systems,

outweighing benefit
ry fast DBL.

enies are useful.

, 2005 Gaudry:

_+DADD on Jacobians of
hyperelliptic curves,

nilar factorization.

ut potentially helpful:
oriented curves

6 Doche—Icart—Kohel),
ase chains, ...

Hessian curves

Credited to Sylvester

by 1986 Chudnovsky—Chudnovsky:

(X :Y : Z) represent (X/Z,Y/Z)
on z3 + y3 + 1 = 3dzy.
12M for ADD:

X3 =Y1X0 Y14 — Z1Yo - X1Y2,
Y3 = X127 - X1Yo — Y1 X0 - Z1 X2,

L3 = 2L1Yo - L1 Xo — X142 - Y1 4>,

6M + 3S for DBL.

2001 Jo
2(X71:Y
(Z1 : X1
SO can u

“Unified
helpful ¢

But nee
2009 Be
Easily a\

2008 His
(X :Y:

27
oM + 6!
3M + 6!




or ADD.

other systems,
ng benefit
S,

useful.

udry:

on Jacobians of
tiC curves,
rization.

ally helpful:
Irves
|cart—Kohel),

5, [ ] [ ] n

Hessian curves

Credited to Sylvester

by 1986 Chudnovsky—Chudnovsky:

(X :Y :Z) represent (X/Z,Y/Z)
on z3 + y3 + 1 = 3dzy.
12M for ADD:

X3 =Y1X0 Y14 — Z1Yo - X1Y2,
Y3 = X142 - X1Yo — Y1 X0 - Z1 X2,

L3 = 2L1Yy - L1 Xo — X142 - Y145,

6M —+ 3S for DBL.

2001
2( X1
(Z7 :
SO Ca

Joye—Quisqu
Y1 :Z1) =
X1:71)+(
n use ADD t

“Unified addition

helpf

ul against sid

But need to perm

2009 Bernstein—K
Easily avoid permi
2008 Hisil-Wong—t
(X:Y:Z:X%:)

:2XY 2XZ
oM + 6S for ADC
3M + 6S for DBL




ems,

ans of

Hessian curves

Credited to Sylvester

by 1986 Chudnovsky—Chudnovsky:

(X :Y : Z) represent (X/Z,Y/Z)
on z3 + y3 + 1 = 3dzy.
12M for ADD:

X3 =Y1X0 Y14 — Z1Yo - X1Y2,
Y3 = X127 - X1Yo — Y1 X2 - Z1 X2,

L3 = 2L1Yo - L1 Xo — X142 - Y1 4>,

6M + 3S for DBL.

2001 Joye—Quisquater:
2(X1:Y1: Z1) =

(Zl :Xl:Yl)—I—(Yl:Zl . X
so can use ADD to double.

“Unified addition formulas,”

helpful against side channels
But need to permute inputs

2009 Bernstein—Kohel-Lang
Easily avoid permutation!

2008 Hisil-Wong—Carter—Da

(X:Y:Z:X?:Y?%: 27
2XY 1 2XZ :2Y Z).

6M 4 6S for ADD.

3M + 6S for DBL.




Hessian curves

Credited to Sylvester

by 1986 Chudnovsky—Chudnovsky:

(X :Y :Z) represent (X/Z,Y/Z)
on z3 + y3 + 1 = 3dzy.

12M for ADD:

X3 =Y1X0 Y14 — Z1Yo - X1Y2,
Y3 = X122 - X1Yo — Y1 X0 - Z1 X2,

L3 = 2L1Yy - L1 Xo — X142 - Y145,

6M —+ 3S for DBL.

2001
2( X1
(Z7 :
SO CAa

Joye—Quisquater:

Y1 :Z1) =

X1 : Yl) -+ (Yl AR Xl)
n use ADD to double.

“Unified addition formulas,”

helpf

ul against side channels.

But need to permute inputs.

2009

Bernstein—Kohel-Lange:

Easily avoid permutation!

2008
(X :

oM -

Hisil-Wong—Carter—Dawson:
Y Z:X%2:Y%:27°
2XY :2XZ :2Y Z).
- 6S for ADD.

3M -

- 6S for DBL.



curves

to Sylvester

Chudnovsky—Chudnovsky:

Z) represent (X/Z,Y/Z)
y3 + 1 = 3dzy.

ADD:
Xo Y14y — £1Yo - X1Y7,
Ly - X1Yp — Y1 Xo - £1 X7,

Yo - L1 Xo — X145 - Y14o.

> for DBL.

2001
2( X1
(Z7 :

Joye—Quisquater:
Y1 Z1) =
X1 Yl) -+ (Yl AR Xl)

so can use ADD to double.

“Unified addition formulas,”

helpful against side channels.

But need to permute inputs.

2009

Bernstein—Kohel-Lange:

Easily avoid permutation!

2008
(X :

oM -

Hisil-Wong—Carter—Dawson:
Y Z:X?2:Y%:27°
2XY 1 2XZ :2Y Z).
- 6S for ADD.

3M -

- 6S for DBL.




ter

ky—Chudnovsky:

ent (X/Z,Y/Z)
3dzy.

— Z1Y2 - X1Y2,
— Y1Xo - £1Xo,

— X142 - Y14>.

2001
2( X1
(Z£7 :
SO CAa

Joye—Quisquater:

Y1 :Z1) =

X1 : Yl) -+ (Yl AR Xl)
n use ADD to double.

“Unified addition formulas,”

helpf

ul against side channels.

But need to permute inputs.

2009

Bernstein—Kohel-Lange:

Easily avoid permutation!

2008
(X :

oM -

Hisil-Wong—Carter—Dawson:

Y - Z:X2:Y2. 72
2XY :2XZ :2Y Z).
- 6S for ADD.

3M -

- 6S for DBL.

z3 —y3 +1=0.3



ovsky:

Y/Z)

X1Y2,
£1X2,
Y1Z>.

2001 Joye—Quisquater:
2(X1:Y1:41) =

(Zl X1 : Yl) -+ (Yl AR Xl)
so can use ADD to double.

“Unified addition formulas,”

helpful against side channels.
But need to permute inputs.

2009 Bernstein—Kohel-Lange:
Easily avoid permutation!

2008 Hisil-Wong—Carter—Dawson:

(X:Y:Z:X°:Y%:2Z°
2XY 12X Z :2Y Z).

6M + 6S for ADD.

3M + 6S for DBL.

z3 —y3 +1=0.3zy



2001 Joye—Quisquater:
2(X1:Y1: Z1) =
(Zl X1 Yl) -+ (Yl AR Xl)

SO

"L

he

can use ADD to double.

nified addition formulas,”
pful against side channels.

But need to permute inputs.
2009 Bernstein—Kohel-Lange:
Easily avoid permutation!

2008 Hisil-Wong—Carter—Dawson:

(X:Y:Z:X°:Y%:2Z°

2XY 12X Z :2Y Z).

6M + 6S for ADD.
3M + 6S for DBL.

z3 —y3+1=0.3zy



ve—Quisquater:

1:21) =
Y1)+ (M 24y Xy)
se ADD to double.

addition formulas,”
gainst side channels.
1 to permute Inputs.
rnstein—Kohel-Lange:
/old permutation!

1l-\Wong—Carter—Dawson:

7 X%:Y2: 72
Y :2XZ :2Y 2).
5 for ADD.

> for DBL.

23 —y3 +1=0.3zy




ater:

121 X1)
o double.

formulas,”

e channels.
ute Inputs.
ohel-Lange:
itation!

Carter—Dawson:
/2. 72
. 2Y 7).




WSon.

23 —y3+1=0.32zy

The Hessian—ray: u

not stro

=



The Hessian—ray: uniform
-

not sfrangl y so

23 —y3 +1=0.3zy




+1=0.3zy

The Hessian—ray: uniform
fr—

not sfrangi y so

Jacobi it

1986 Ch

(S:C:
(5/Z,C
s° + ¢

14M +
“Tremer
of being

5M + 3
"Perhap
efficient
which de

coefficie



The Hessian—ray: uniform
-

not sfrangl y so

Jacobi intersectior

1986 Chudnovsky-
(S:C:D:2) re
(5/Z,C/Z,D/2Z)
§2 1 % = 1, as?
14M +2S + 1D f

“Tremendous adv:
of being strongly 1

5M + 3S for DBL
“Perhaps (7) ... 1
efficient duplicatic

which do not depe
coefficients of an «



The Hessian—ray: uniform Jacobi intersections
fr—

1986 Chudnovsky—Chudnovs

(S:C:D:Z) represent
(5/Z,C/Z,D/Z) on
21 c?2=1 as?+d*=1.

14M + 2S5 + 1D for ADD.
“Tremendous advantage”

not strongly so of being strongly unified.

5M + 3S for DBL.

“Perhaps (?7) ... the most
efficient duplication formula:
which do not depend on the
coefficients of an elliptic cur




The Hessian—ray: uniform Jacobi intersections
-

1986 Chudnovsky—Chudnovsky:

(S:C:D:Z) represent
(5/Z,C/Z,D/Z) on
21 c?=1 as?+d?=1

14M + 2S + 1D for ADD.

“Tremendous advantage”

not strongly so of being strongly unified.

5M + 3S for DBL.
“Perhaps (?7) ... the most
efficient duplication formulas

which do not depend on the
coefficients of an elliptic curve.”




The Hgssian—ray; uniform Jacobi intersections 2001 Lic

- C
1986 Chudnovsky—Chudnovsky: 13M +.

4M + 3!
(S:C:D:Z) represent
2007 Be
(§/Z,C/Z,D/Z) on IM L 48
21 c?2=1 as?+d*=1. T
14M + 2S + 1D for ADD. 2008 His
¥ , 13M +:
Tremendous advantage
+ st | of being strongly unified 2M+5:
notT S F'Gﬂg y S0 - AlSQ (5
5M + 3S for DBL. 11M -+
“Perhaps (?) ... the most OM -+ 5!

efficient duplication formulas
which do not depend on the
coefficients of an elliptic curve.”




sian-ray. uniform
fr—

not sfrongl y so

Jacobi intersections

1986 Chudnovsky—Chudnovsky:

(S:C:D:Z) represent
(5/Z,C/Z,D/Z) on
21 c?=1 as?+d?=1

14M + 2S + 1D for ADD.

“Tremendous advantage”
of being strongly unified.

5M + 3S for DBL.
“Perhaps (?7) ... the most
efficient duplication formulas

which do not depend on the

coefficients of an elliptic curve.”

2001 Liardet—Sma
13M +2S + 1D f
4M + 3S for DBL

2007 Bernstein—L:
3M 4+ 4S for DBL

2008 Hisil-Wong—
13M + 1S + 2D fi
2M + 5S + 1D fol
Also (S:C: D : .
11M + 1S + 2D f
2M + 5S + 1D fol




miform

but
ngi y so

Jacobi intersections

1986 Chudnovsky—Chudnovsky:

(S:C:D:Z) represent
(5/Z,C/Z,D/Z) on
21 c?2=1 as?+d*=1.

14M + 2S + 1D for ADD.

“Tremendous advantage”
of being strongly unified.

5M + 3S for DBL.

“Perhaps (?7) ... the most
efficient duplication formulas
which do not depend on the

coefficients of an elliptic curve.”

2001 Liardet—Smart:
13M 4+ 2S + 1D for ADD.
4M + 3S for DBL.

2007 Bernstein—Lange:
3M + 4S8 for DBL.

2008 Hisil-Wong—Carter—Da
13M + 1S + 2D for ADD.
2M + 58S + 1D for DBL.
Also (§:C:D:Z:5C:D
11M + 1S + 2D for ADD.
2M + 55 + 1D for DBL.




Jacobi intersections 2001 Liardet—Smart:
13M +2S + 1D for ADD.
4M <+ 3S for DBL.

1986 Chudnovsky—Chudnovsky:

(S:C:D: Z) represent
(5/Z,C/Z,D/Z) on
21 c?=1 as?+d?=1

2007 Bernstein—Lange:
3M + 4S8 for DBL.

2008 Hisil-Wong—Carter—Dawson:
13M + 1S + 2D for ADD.

2M + 58S + 1D for DBL.

Also (§:C:D:Z:5C:D2):
5M + 35 for DBL. 11M + 1S + 2D for ADD.

“Perhaps (?) ... the most oM + 5S + 1D for DBL.
efficient duplication formulas

14M + 2S + 1D for ADD.
“Tremendous advantage”

of being strongly unified.

which do not depend on the
coefficients of an elliptic curve.”




1tersections

udnovsky—Chudnovsky:

D : Z) represent
/Z,D/Z) on
=1, as? +d? =1

S + 1D for ADD.

\dous advantage”
strongly unified.

> for DBL.

s (7) ... the most
duplication formulas
b not depend on the

nts of an elliptic curve.”

2001 Liardet—Smart:
13M 4+ 2S + 1D for ADD.
4M -+ 3S for DBL.

2007 Bernstein—Lange:
3M + 4S8 for DBL.

2008 Hisil-Wong—Carter—Dawson:

13M + 1S + 2D for ADD.

2M +5S + 1D for DBL.

Also (§:C:D:Z:5C:D2):
11M + 1S + 2D for ADD.

2M + 55 + 1D for DBL.

Jacobi ¢

(X:Y:Z
on y° =

1986 Ch
3M - 68
Slow AL

2002 Bil
New chc
10M +
strongly

2007 Be
IM + 98



1S

-Chudnovsky:

resent

on
_d? =1.

or ADD.

intage”
inified.

‘he most
n formulas
nd on the

|liptic curve.”

2001 Liardet—Smart:
13M +2S + 1D for ADD.
4M -+ 3S for DBL.

2007 Bernstein—Lange:
3M + 4S8 for DBL.

2008 Hisil-Wong—Carter—Dawson:

13M + 1S + 2D for ADD.

2M +5S + 1D for DBL.

Also (§:C:D:Z:5C:D2):
11M + 1S + 2D for ADD.

2M + 55 + 1D for DBL.

Jacobi quartics

(X:Y:Z) represent
on y2 — 2% + 2az

1986 Chudnovsky-
3M + 6S + 2D fol
Slow ADD.

2002 Billet—Joye:
New choice of ner
10M + 3S + 1D f
strongly unified.

2007 Bernstein—L:
1M +9S + 1D fol



Ky:

2001 Liardet—Smart:
13M 4+ 2S + 1D for ADD.
4M -+ 3S for DBL.

2007 Bernstein—Lange:
3M + 4S8 for DBL.

2008 Hisil-Wong—Carter—Dawson:

13M + 1S + 2D for ADD.

2M +5S + 1D for DBL.

Also (§:C:D:Z:5C:D2):
11M + 1S + 2D for ADD.

2M + 55 + 1D for DBL.

Jacobi quartics

(X:Y:Z) represent (X/Z,Y/
on y° = z* + 2az? + 1.

1986 Chudnovsky—Chudnovs
3M + 6S + 2D for DBL.
Slow ADD.

2002 Billet—Joye:

New choice of neutral eleme
10M + 3S + 1D for ADD,
strongly unified.

2007 Bernstein—Lange:
1M +9S + 1D for DBL.



2001 Liardet—Smart:
13M +2S + 1D for ADD.
4M -+ 3S for DBL.

2007 Bernstein—Lange:
3M + 4S8 for DBL.

2008 Hisil-Wong—Carter—Dawson:

13M + 1S + 2D for ADD.

2M +5S + 1D for DBL.

Also (§:C:D:Z:5C:D2):
11M + 1S + 2D for ADD.

2M + 55 + 1D for DBL.

Jacobi quartics

(X:Y:Z) represent (X/Z,Y/Z?)
on y? = z* + 2az’® + 1.

1986 Chudnovsky—Chudnovsky:
3M + 6S + 2D for DBL.
Slow ADD.

2002 Billet—Joye:

New choice of neutral element.
10M + 3S + 1D for ADD,
strongly unified.

2007 Bernstein—Lange:
1M +9S + 1D for DBL.



rdet—Smart:
S + 1D for ADD.
s for DBL.

rnstein—Lange:
> for DBL.

1l-\WWong—Carter—Dawson:

(S + 2D for ADD.

5> + 1D for DBL.

2 C:D:Z:5C:D2):
(S + 2D for ADD.

5 + 1D for DBL.

Jacobi quartics

(X:Y:Z) represent (X/Z,Y/Z?)
on y° = z* + 2az? + 1.

1986 Chudnovsky—Chudnovsky:
3M + 6S + 2D for DBL.
Slow ADD.

2002 Billet—Joye:
New choice of neutral element.
10M + 3S + 1D for ADD,

strongly unified.

2007 Bernstein—Lange:
1M +9S + 1D for DBL.

2007 Hie
2M + 6

2007 Fe
2M -+ 6
1M + 7

on Curve

More sp
2007 Hi
2008 His
use (X
or (X :}
Can con
Competi



or ADD.

Inge:

Carter—Dawson:

or ADD.

- DBL.

7 :5C: DZ):
or ADD.

- DBL.

Jacobi quartics

(X:Y:Z) represent (X/Z,Y/Z?)
on y° = z* + 2az’® + 1.

1986 Chudnovsky—Chudnovsky:
3M + 6S + 2D for DBL.
Slow ADD.

2002 Billet—Joye:
New choice of neutral element.
10M + 3S + 1D for ADD,

strongly unified.

2007 Bernstein—Lange:
1M +9S + 1D for DBL.

2007 Hisil—-Carter-
2M + 6S + 2D fo

2007 Feng—\Wu:
2M + 6S + 1D fol
1M + 7S + 3D fol

on curves chosen \

More speedups: 2
2007 Hisil-Carter-
2008 Hisil-Wong—
use (X :Y :Z: X
or (X:Y :Z:X?
Can combine with
Competitive with



WSOon.

Jacobi quartics

(X:Y:Z) represent (X/Z,Y/Z?)
on y° = z* + 2az? + 1.

1986 Chudnovsky—Chudnovsky:
3M + 6S + 2D for DBL.
Slow ADD.

2002 Billet—Joye:
New choice of neutral element.
10M + 3S + 1D for ADD,

strongly unified.

2007 Bernstein—Lange:
1M +9S + 1D for DBL.

2007 Hisil-Carter—-Dawson:
2M + 6S + 2D for DBL.

2007 Feng—Wau:

2M + 6S + 1D for DBL.
1M+ 7S + 3D for DBL

on curves chosen with a2+

More speedups: 2007 Duqus
2007 Hisil-Carter—Dawson,
2008 Hisil-Wong—Carter—Da
use (X 1Y : Z: X?:2Z%)
or (X:Y :1Z:X?:2%:2X
Can combine with Feng—Wu
Competitive with Edwards!



Jacobi quartics

(X:Y:Z) represent (X/Z,Y/Z?)
on y° = z* + 2az’® + 1.

1986 Chudnovsky—Chudnovsky:
3M + 6S + 2D for DBL.
Slow ADD.

2002 Billet—Joye:

New choice of neutral element.
10M + 3S + 1D for ADD,
strongly unified.

2007 Bernstein—Lange:
1M +9S + 1D for DBL.

2007 Hisil-Carter—-Dawson:
2M + 6S + 2D for DBL.

2007 Feng—\Wu:
2M + 6S + 1D for DBL.
1M + 7S + 3D for DBL

on curves chosen with a2+c2 = 1.

More speedups: 2007 Duquesne,
2007 Hisil-Carter—Dawson,

2008 Hisil-Wong—Carter—Dawson:
use (X 1Y : Z: X?:2Z?%)

or (X:Y :Z:X?:2°:2X2).
Can combine with Feng—Wau.
Competitive with Edwards!



uartics

) represent (X/Z,Y/Z?)
4 + 20z + 1.

udnovsky—Chudnovsky:
> + 2D for DBL.

)D.

let—Joye:
ice of neutral element.
3S + 1D for ADD,

unified.

rnstein—Lange:
> + 1D for DBL.

2007 Hisil-Carter—Dawson:
2M + 6S + 2D for DBL.

2007 Feng—\Wu:
2M + 6S + 1D for DBL.
1M + 7S + 3D for DBL

on curves chosen with c:r,2+c2 = 1.

More speedups: 2007 Duquesne,
2007 Hisil-Carter—Dawson,

2008 Hisil-Wong—Carter—Dawson:
use (X 1Y : Z: X?:2Z%)

or (X:Y :Z:X?:2%:2X2).
Can combine with Feng—Wau.
Competitive with Edwards!




- (X/Z,Y]Z?)
241,

-Chudnovsky:
- DBL.

tral element.
or ADD,

Inge:
- DBL.

2007 Hisil-Carter—-Dawson:
2M + 6S + 2D for DBL.

2007 Feng—\Wu:
2M + 6S + 1D for DBL.
1M + 7S + 3D for DBL

on curves chosen with a2+c2 = 1.

More speedups: 2007 Duquesne,
2007 Hisil-Carter—Dawson,

2008 Hisil-Wong—Carter—Dawson:
use (X 1Y : Z: X?:2Z%)

or (X:Y :Z:X?:2°%:2X2).
Can combine with Feng—Wau.
Competitive with Edwards!




Nnt.

2007 Hisil-Carter—-Dawson:
2M + 6S + 2D for DBL.

2007 Feng—\Wu:
2M + 6S + 1D for DBL.
1M + 7S + 3D for DBL

on curves chosen with c:r,2+c2 = 1.

More speedups: 2007 Duquesne,
2007 Hisil-Carter—Dawson,

2008 Hisil-Wong—Carter—Dawson:
use (X 1Y : Z: X?:2Z%)

or (X:Y :Z:X%:2%:2X2).
Can combine with Feng—Wau.
Competitive with Edwards!




2007 Hisil-Carter—-Dawson:
2M + 6S + 2D for DBL.

2007 Feng—\Wu:
2M + 6S + 1D for DBL.
1M + 7S + 3D for DBL

on curves chosen with a2+c2 = 1.

More speedups: 2007 Duquesne,
2007 Hisil-Carter—Dawson,

2008 Hisil-Wong—Carter—Dawson:
use (X 1Y : Z: X?:2Z%)

or (X:Y :Z:X?:2°:2X2).
Can combine with Feng—Wau.
Competitive with Edwards!




sil—Carter—Dawson:
> + 2D for DBL.

ng—Wu:
> + 1D -
> + 3D -

or DBL.

s chosen with c:r,2+c2 = 1.

‘or DBL

eedups: 2007 Duquesne,

sil—Carter—Dawson,

1lI-\WWong—Carter—Dawson:
Y Z:X?%:2Z?%)

/7 X% Z%:2X2).
\bine with Feng—Wau.
tive with Edwards!

The Jac
extended

XXYZZ1
giaﬂf sq

IIQ‘
&



-Dawson: The Jacobi-quartic
- DBL. extended to %y
XXYZZR l
giant squid.
- DBL.
- DBL -

vith a2 +c? = 1.

007 Duquesne,
-Dawson,

Carter—Dawson:
2 : 22)
7% :2X2).
Feng—Wu.
Edwards!




The Jacabi-—quarﬁc squid: ca

eiterded 1o% \
XXYZZR t j
’ 0

giant squia'.

e

Wson: z° =yt —1.9y° +1




The Jacab:-—quarﬁc squ;d can be
extended fr.:: \

XXYZZR l
giant squid.

l, \'



—1.9y° +1

The Jacab:-—quarﬁc squ;d can be
extended fc: N\

XXYZZR t
giant squia'.

l, \'




The Jacabx-—quarﬁc squ;d can be
extended fr.:: \

XXYZZR l
giant squid.

l’ \




The Jac:ab:-quar'ﬁr: squ:a' can be
extended fc: N\

XXYZZR t
giant squid.

J | \




The Jacab:-quar'ﬁr: squra' can be
extended fr.:: \

XXYZZR l
giant squid.

‘" \




obi- quarﬁc squ:a' can be

| to .
,nre::ft j

-))i\

-

















































More ad

Explicit-
hyperel

EFD has
formulas
for ADLC

in b1 rej
on 13 sf

Not yet
generalit
(e.g., He
complet
(e.g., ch




More addition forr

Explicit-Formulas
hyperelliptic.c

EFD has 583 com
formulas and oper
for ADD, DBL, et

In b1 representatic

on 13 shapes of el

Not yet handled b
generality of curve
(e.g., Hessian orde
complete addition
(e.g., checking for




More addition formulas

Explicit-Formulas Database:
hyperelliptic.org/EFD

EFD has 583 computer-verif

formulas and operation cour
for ADD, DBL, etc.

iIn 51 representations

on 13 shapes of elliptic curv

Not yet handled by compute
generality of curve shapes
(e.g., Hessian order € 3Z);
complete addition algorithm
(e.g., checking for c0).




More addition formulas

Explicit-Formulas Database:
hyperelliptic.org/EFD

EFD has 583 computer-verified
formulas and operation counts
for ADD, DBL, etc.

In 51 representations

on 13 shapes of elliptic curves.

Not yet handled by computer:
generality of curve shapes
(e.g., Hessian order € 3Z);
complete addition algorithms
(e.g., checking for co).



More addition formulas

Explicit-Formulas Database:
hyperelliptic.org/EFD

EFD has 583 computer-verified
formulas and operation counts
for ADD, DBL, etc.

iIn 51 representations

on 13 shapes of elliptic curves.

Not yet handled by computer:
generality of curve shapes
(e.g., Hessian order € 3Z);
complete addition algorithms
(e.g., checking for co).

How to

Standarce
with coe
to repre:s

Example
839 = 8
value (a
8t° + 3t

Convenis
Inside cc
(or 9, 3,
plO] =



N\ ‘7
(.
p | _—

More addition formulas

Explicit-Formulas Database:
hyperelliptic.org/EFD

EFD has 583 computer-verified
formulas and operation counts
for ADD, DBL, etc.

In 51 representations

on 13 shapes of elliptic curves.

Not yet handled by computer:
generality of curve shapes
(e.g., Hessian order € 3Z);
complete addition algorithms
(e.g., checking for co).

How to multiply b

Standard idea: Us
with coefficients ir
to represent intege

Example of repres
839 = 8-10% 4 3
value (at ¢t = 10)
8t% + 3t 4 90,

Convenient to exp
Inside computer a:
(or 9,3,8,0 0r 9,7
“p[0] =9; pl1]



More addition formulas

Explicit-Formulas Database:
hyperelliptic.org/EFD

EFD has 583 computer-verified
formulas and operation counts
for ADD, DBL, etc.

iIn 51 representations

on 13 shapes of elliptic curves.

Not yet handled by computer:
generality of curve shapes
(e.g., Hessian order € 3Z);
complete addition algorithms
(e.g., checking for co).
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to represent integer in radix
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More addition formulas

Explicit-Formulas Database:
hyperelliptic.org/EFD

EFD has 583 computer-verified
formulas and operation counts
for ADD, DBL, etc.

In 51 representations

on 13 shapes of elliptic curves.

Not yet handled by computer:
generality of curve shapes
(e.g., Hessian order € 3Z);
complete addition algorithms
(e.g., checking for co).

How to multiply big integers

Standard idea: Use polynomial
with coefficients in {0,1,...,9}
to represent integer in radix 10.

Example of representation:

839 = 8-10°+3-10' +9-10% =
value (at ¢t = 10) of polynomial
8t% + 3t 4 90,

Convenient to express polynomial
inside computer as array 9, 3, 8

(or 9,3,8,00r9,3,8,0,00r...):
"p[0] =9; p[1] = 3; p[2] = 8"
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with coefficients in {0,1,...,9}
to represent integer in radix 10.

Example of representation:

839 = 8-10°+3-10' +9-10% =
value (at ¢t = 10) of polynomial
8t% + 3t 4 90,

Convenient to express polynomial
inside computer as array 9, 3, 8
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How to multiply big integers

Standard idea: Use polynomial
with coefficients in {0,1,...,9}
to represent integer in radix 10.

Example of representation:

839 = 8-10°+3-10' +9-10% =
value (at ¢ = 10) of polynomial
8t% + 3t 4 90,

Convenient to express polynomial
inside computer as array 9, 3, 8

(or 9,3,8,00r9,3,8,0,00r...):
"p[0] =9; p[1] = 3; p[2] = 8"

Multiply two integers
by multiplying polynomials
that represent the integers.

Polynomial multiplication

involves small integer coetfi
Have split one big multiplic:
into many small operations.

Example, squaring 839:
(82 4 3t! + 9tY)? =
t* + 488> 4 1532 + 54! -



How to multiply big integers

Standard idea: Use polynomial
with coefficients in {0,1,...,9}
to represent integer in radix 10.

Example of representation:

839 = 8-10°+3-10' +9-10% =
value (at ¢t = 10) of polynomial
8t% + 3t 4 90,

Convenient to express polynomial
inside computer as array 9, 3, 8

(or 9,3,8,00r9,3,8,0,00r...):
"p[0] =9; p[1] = 3; p[2] = 8"

Multiply two integers
by multiplying polynomials
that represent the integers.

Polynomial multiplication
involves small integer coefficients.
Have split one big multiplication
Into many small operations.

Example, squaring 839:
(8t 4 3t! + 9tY)? =
t* + 488> + 153t% 4 54¢t + 81¢0.
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Multiply two integers
by multiplying polynomials
that represent the integers.

Polynomial multiplication

involves small integer coetficients.

Have split one big multiplication
into many small operations.

Example, squaring 839:
(8t2 4 3t! + 9tY)? =

t* + 4883 + 1532 4 54t! + 8140
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usually t
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ct! — |

Example
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t*
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70t% + 2
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Multiply two integers
by multiplying polynomials
that represent the integers.

Polynomial multiplication

involves small integer coefficients.

Have split one big multiplication
Into many small operations.

Example, squaring 839:
(8t 4 3t! + 9tY)? =

t* + 488> + 153t% 4 54¢t + 81¢0.

Oops, product pol
usually has coeffic

So “carry” extra ¢
ct! — |c/10] t7 1

Example, squaring
4 1 28¢3 -+ 1
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Multiply two integers
by multiplying polynomials
that represent the integers.

Polynomial multiplication

involves small integer coetficients.

Have split one big multiplication
into many small operations.

Example, squaring 839:
(8% + 3t! 4 9t7)% =
t* + 48t° + 1532 +

t1 + 8149,

Oops, product polynomial

usually has coefficients > 9.

So “carry” extra digits:
ct! — |c/10| /1 + (¢ mod

Exam

ole, squaring 839:

t> +

£2 1 54¢L -
- 153¢2 1+ 62t!

1592 4+ 2t 4

63t -

o2 Lol 41

70t% 4+ 383 + 02 + ol 14
7 4+ 0% + 33 + 92 + 2tl

In other words, 8392 = 703¢



Multiply two integers
by multiplying polynomials
that represent the integers.

Polynomial multiplication

involves small integer coefficients.

Have split one big multiplication
Into many small operations.

Example, squaring 839:
(8t 4 3t! + 9tY)? =

t* + 488> + 153t% 4 54¢t + 81¢0.

Oops, product polynomial
usually has coefficients > 9.
So “carry’ extra digits:

ct! = |¢/10] /1 + (¢ mod 10)¢/.

Example, squaring 839:
t* + 483 4+ 153t% + 54t + 81¢°;

t* 4 48¢3 t? + 62t1 + 1¢0;
t* + 48¢3 4 159¢% + 2¢1 + 140
t* + 63t3 + 9t° + 2t1 + 1¢0;

70t% + 383 + 082 + 2t + 14V
782 + 0t + 383 + 9t2 + 2t 4 149

In other words, 8392 = 703921
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al multiplication

small integer coetficients.

It one big multiplication
1y small operations.

, squaring 839:
t! 4+ 9¢9)? =

£3 1 153¢2 1+ 54¢1 18149,

Oops, product polynomial
usually has coefficients > 9.
So “carry” extra digits:

ct! = |c¢/10] /T + (¢ mod 10)#.

Example, squaring 839:

t* + 483 4+ 153t% + 54t 4 81¢°;

t* 4+ 4883 + 15382 + 621 + 140

t* + 4883 + 159¢2 + 21 + 140

t* + 63¢3 + 92 + 2t1 + 149;
70t% + 3¢3 + o2 + 2t + 14Y;

782 + 0t + 383 + 982 + 2t 4 149,

In other words, 8392 = 703921

What of
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- 3839:

2 1544l 18149,

Oops, product polynomial
usually has coefficients > 9.
So “carry’ extra digits:

ct! = |¢/10] /1 + (¢ mod 10)¢/.

Example, squaring 839:

t* + 483 4+ 153t% + 541 + 81¢°;

£ 4+ 4883 + 15382 + 62t + 140

t* 4+ 4883 + 159¢2 + 2t + 140

t* + 63¢3 + 92 + 2t + 149;
70t% + 3¢3 + o2 + 2t + 14Y;

782 + 0t + 383 + 982 + 2t 4+ 149

In other words, 8392 = 703921
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Oops, product polynomial
usually has coefficients > 9.
So “carry” extra digits:

ct! = |c¢/10] /T + (¢ mod 10)#.

Example, squaring 839:

t* + 483 + 153t% + 54t 4 81¢°;
t4 14843 1+ 153¢2 + 62t 4 140

t* + 48t3 + 1592 + 2¢1 + 19,
t4 16383 1+ 02 1+ ¢l 1 140
70t% 4+ 383 + 02 + 2¢l o+ 14

782 + 0t + 383 + 02 + 2¢1 4 149,

In other words, 8392 = 703921

What operations were used

vAjd

159

divide by 10
/ lmod 10

15 9



Oops, product polynomial
usually has coefficients > 9.
So “carry’ extra digits:

ct! = |¢/10] /1 + (¢ mod 10)¢/.

Example, squaring 839:

t* + 483 4+ 153t% + 54t + 81¢°;
t* + 48¢3 4+ 1532 + 62t + 10,

t* + 48¢3 4 1592 + 21 + 1¢9;
t4 16383 + 982 1+ ¢l 1 140
70t% 4 383 + 02 + 2¢l o+ 140

782 + 0t + 383 + 9t + 2t 4 149

In other words, 8392 = 703921

What operations were used here?
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15 9



-oduct polynomial
1as coefficients > 9.
y' extra digits:
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, squaring 839:

t> + 153t% + 54t + 81¢°;
t> + 153t2 + 62t + 1¢0;

£3 1 15942 1+ 2t 1 140
3¢5 + 02 + 2¢1 + 149
3 4+ 02 + 21 + 1£0;

433 o2 ol 140,

words, 8392 = 703921
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02 + ¢l 1+ 140

02 = 703921.
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540t + 81¢0.
Carrying:
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The scaled variation

839 =800+ 3049 =
value (at ¢ = 1) of polynom
800t* + 30t* + 9¢°.

Squaring: (800t% + 30t! + 91
640000¢* + 48000¢3 + 1530
540t + 81£0.

Carrying:
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20t + 149,
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The scaled variation

839 =800+ 3049 =
value (at ¢t = 1) of polynomial
800t* + 30t + 9¢°.

Squaring: (800¢% +30t! +9t%)? =
640000¢% + 48000%3 + 15300¢2 +

540¢1 + 8140,

Carrying:

640000¢% + 48000%3 + 15300¢2 +

540t + 81¢Y;

640000¢% + 48000%3 + 15300¢2 +

620t + 19 L

700000t + 0¢* + 3000¢3 + 900¢2 +
20t + 1¢9.
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The scaled variation

839 =800+ 3049 =
value (at ¢ = 1) of polynomial
800t* + 30t* + 9¢°.

Squaring: (800t% +30t! +9t°)? =
640000¢% + 48000%3 + 15300¢2 +

540¢1 + 81£0.

Carrying:

640000¢% + 48000%3 + 15300¢2 +

540t + 81¢Y;

640000¢% + 48000%3 + 15300¢2 +

620t + 19 L

700000t + 0¢* + 3000¢3 + 900¢2 +
20t + 149,
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The scaled variation

839 =800+ 3049 =
value (at ¢t = 1) of polynomial
800t* + 30t + 9¢°.

Squaring: (800¢% +30t! +9t%)? =
640000¢% + 48000%3 + 15300¢2 +

540¢1 + 8140,

Carrying:

640000¢% + 48000%3 + 15300¢2 +

540t1 + 81¢Y;

640000¢% + 48000%3 + 15300¢2 +

620t + 19 L

700000t + 0¢* + 3000¢3 + 900¢2 +
20t + 149
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The scaled variation

839 =800+ 3049 =
value (at ¢ = 1) of polynomial
800t* + 30t* + 9¢°.

Squaring: (800t% +30t! +9t°)? =
640000¢% + 48000%3 + 15300¢2 +

540¢1 + 81£0.

Carrying:

640000¢% + 48000%3 + 15300¢2 +

540t + 81¢Y;
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700000t + 0¢* + 3000¢3 + 900t2 +
20t + 149,
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The scaled variation

839 =800+ 3049 =
value (at ¢t = 1) of polynomial
800t* + 30t + 9¢°.

Squaring: (800¢% +30t! +9t%)? =
640000¢4 + 48000%3 + 15300¢2 +

540¢1 + 8140,

Carrying:

640000¢% + 48000%3 + 15300¢2 +

540t1 + 81¢Y;

640000¢% + 48000%3 + 15300¢2 +
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700000t + 0¢* + 3000¢3 + 900¢2 +
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What operations were used here?

300 30 9
¢ imultiply
7200 900 7200

g e

600

L

15900

S“by lmod 1000

15000 900

Speedup: double inside squaring

a

(- + fot? + ft! + fot")’
has coefficients such as

fafo+ f3fi+ fofo+ f1f3+ fofa.
5 mults, 4 adds.

Compute more efficiently as

2fafo +2f3f1+ faf2.
3 mults, 2 adds, 2 doublings.

Save &~ 1/2 of the mults
if there are many coetfficients.
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Speedup: double inside squaring

a

(- + fot? + frtt + fot0)?
has coefficients such as

fafo+ f3fi+ oo+ fifs+ fofa
5 mults, 4 adds.

Compute more efficiently as

2fafo

21311
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Speedup: double inside squaring

(- + fot? + ft! + fot")’
has coefficients such as

fafo+ f3fi+ fofo+ f1f3+ fofa.

5 mults, 4 adds.

Compute more efficiently as

2fafo +2f3f1+ faf2.
3 mults, 2 adds, 2 doublings.

Save & 1/2 of the mults
if there are many coetfficients.

Faster alternative:

2(fafo+ faf1) +
3 mults, 2 adds, 1

Save ~ 1/2 of the
if there are many
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Speedup: double inside squaring

(- + fot? + frtt + fot0)?
has coefficients such as

fafo+ f3fi+ fofo+ f1f3+ fofa.

5 mults, 4 adds.

Compute more efficiently as

2fafo +2f3f1 + f2f2.
3 mults, 2 adds, 2 doublings.

Save & 1/2 of the mults
if there are many coetficients.

Faster alternative:

2(fafo + f3f1) + f2fo.
3 mults, 2 adds, 1 doubling.

Save & 1/2 of the adds
if there are many coefficient



Speedup: double inside squaring

(- + fot? + ft! + fot")’
has coefficients such as

fafo+ f3fi+ fofo+ f1f3+ fofa.

5 mults, 4 adds.

Compute more efficiently as

2fafo +2f3f1+ faf2.
3 mults, 2 adds, 2 doublings.

Save &~ 1/2 of the mults
if there are many coetfficients.

Faster alternative:

2(fafo + f3f1) + fafo.
3 mults, 2 adds, 1 doubling.

Save &~ 1/2 of the adds
if there are many coetfficients.




Speedup: double inside squaring

(- + fot? + ft! + fot")’
has coefficients such as

fafo+ f3fi+ fofo+ f1f3+ fofa.

5 mults, 4 adds.

Compute more efficiently as

2fafo +2f3f1+ faf2.
3 mults, 2 adds, 2 doublings.

Save &~ 1/2 of the mults
if there are many coetfficients.

Faster alternative:

2(fafo + f3f1) + fafo.
3 mults, 2 adds, 1 doubling.

Save &~ 1/2 of the adds

if there are many coef

lcients.

Even faster alternative:

(2fo)fa + (2f1)f3 + f2fo.

after precomputing 2o, 2f1,. ...

3 mults, 2 adds, 0 doublings.
Precomputation =~ 0.5 doublings.




. double Inside squaring

t2 + frt! + fot0)3
ficients such as

31+ ofo+ fifs+ fofa
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e more efficiently as

2f3f1 + fafe.
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are many coetfficients.
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3 mults, 2 adds, 1 doubling.

Save & 1/2 of the adds

if there are many coetfficients.
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after precomputing 2 fp,

3 mults, 2 adds, 0 doub

Precomputation ~ 0.5 ¢
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iciently as

2f2.
doublings.

mults

coefficients.

Faster alternative:

2(fafo+ f3f1) + f2fe.

3 mults, 2 adds, 1 doubling.

Save & 1/2 of the adds

if there are many coetfficients.

Even faster alternative:

(2fo)fa + (2f1)fz3 + f2fo.

after precomputing 2o, 2f1, . ...

3 mults, 2 adds, 0 doub

Precomputation ~ 0.5 ¢

Ings.

oublings.

Speedup: allow neg

Recall 159 — 15, ¢
Scaled: 15900 —

Alternative: 159
Scaled: 15900 —

Use digits {—5, —
instead of {0, 1, ..
Small disadvantag

Several small adve

easl
easl

y
y

Nanad

Nanad

e nega
e subti

reduce products a



ring

- fofa.

Faster alternative:

2(fafo + f3f1) + f2fo.
3 mults, 2 adds, 1 doubling.

Save & 1/2 of the adds
if there are many coetfficients.

Even faster alternative:

(2fo)fa + (2f1)f3 + f2fo.

after precomputing 2,211, .. ..

3 mults, 2 adds, 0 doublings.

Precomputation =~ 0.5 doublings.

Speedup: allow negative cot

Recall 159 — 15, 9.
Scaled: 15900 — 15000, 90(

Alternative: 159 — 16, —1.
Scaled: 15900 — 16000, —1

Use digits {—5, —4, ..., 4,5
instead of {0, 1, ..., 9}.
Small disadvantage: need —
Several small advantages:
easily handle negative intege

easily handle subtraction;
reduce products a bit.



Faster alternative:

2(fafo+ f3f1) + f2fe.

3 mults, 2 adds, 1 doubling.

Save & 1/2 of the adds

if there are many coetfficients.

Even faster alternative:

(2fo)fa + (2f1)fz3 + f2fo.

after precomputing 2o, 2f1, . ...

3 mults, 2 adds, 0 doub

Precomputation ~ 0.5 ¢

Ings.

oublings.

Speedup: allow negative coeffs

Recall 159 — 15, 9.
Scaled: 15900 — 15000, 900.

Alternative: 159 — 16, —1.
Scaled: 15900 — 16000, —100.

Use digits {—5, —4, ..., 4,5}
instead of {0,1,..., 9}.

Small disadvantage: need —.
Several small advantages:
easily handle negative integers;

easily handle subtraction;
reduce products a bit.



lternative:

- f3f1) + faf2.

2 adds, 1 doubling.

1/2 of the adds

are many coefficients.

ter alternative:

computing 2 fp,

2 adds, 0 doub

yutation ~ 0.5 ¢

(2f1)f3 + fafo

2f1, ...

Ings.

oublings.

Speedup: allow negative coeffs

Recall 159 — 15, 9.
Scaled: 15900 — 15000, 900.

Alternative: 159 — 16, —1.

Scaled: 15900 — 16000, —100.

Use digits {—5, —4, ..., 4,5}
instead of {0, 1, ..., 9}.

Small disadvantage: need —.
Several small advantages:
easily handle negative integers;

easily handle subtraction;
reduce products a bit.

Speedug

Comput
multiply
square ¢

e.g. a=
(32 + 1t
t4
carry: &

As befor
th 4+
7t + 0t
+: 78+
7t° + 8t



f2f2.
doubling.

radCS

coefficients.

tive:

faf2.
> 210,211, . ...

doublings.

, 0.5 doublings.

Speedup: allow negative coeffs

Recall 159 — 15, 9.
Scaled: 15900 — 15000, 900.

Alternative: 159 — 16, —1.
Scaled: 15900 — 16000, —100.

Use digits {—5, —4, ..., 4,5}
instead of {0,1,..., 9}.

Small disadvantage: need —.
Several small advantages:
easily handle negative integers;

easily handle subtraction;
reduce products a bit.

Speedup: delay ca

Computing (e.g.)
multiply a, b polyr
square ¢ poly, carr

e.g. a =314, b=
(3t2 + 1t +4t0)(2:

t* 4 2383 + 18¢2
carry: 8t* 4 5t3 +

As before (8t% + 3

£4 L4843 1+ 153
7+ 4+ 0t* + 383 +
b TE 81883
T+ 8% 1+ 083 +



lings.

Speedup: allow negative coeffs

Recall 159 — 15, 9.
Scaled: 15900 — 15000, 900.

Alternative: 159 — 16, —1.

Scaled: 15900 — 16000, —100.

Use digits {—5, —4, ..., 4,5}
instead of {0, 1, ..., 9}.

Small disadvantage: need —.
Several small advantages:
easily handle negative integers;

easily handle subtraction;
reduce products a bit.

Speedup: delay carries

Computing (e.g.) big ab + c
multiply a, b polynomials, cz
square ¢ poly, carry, add, ca

eg. a =314, 6 =271, c =
(3t2 + 1t +4¢0) (282 + 7t 41

t4 t3 t2 t1
carry: 8t* + 5t3 + 0t% 4 ot!

As before (82 4 3t! + 9tY)-
t4 4+ 4883 + 15382 + 544! -
70 4+ 084 + 383 + 9¢2 + 2tl

o T +8t*+8t3 4942 +11¢
7+ + 8% + 083 + 082 + 1¢L



Speedup: allow negative coeffs

Recall 159 — 15, 9.
Scaled: 15900 — 15000, 900.

Alternative: 159 — 16, —1.
Scaled: 15900 — 16000, —100.

Use digits {—5, —4, ..., 4,5}
instead of {0,1,..., 9}.

Small disadvantage: need —.
Several small advantages:
easily handle negative integers;

easily handle subtraction;
reduce products a bit.

Speedup: delay carries

Computing (e.g.) big ab + c*:
multiply a, 6 polynomials, carry,
square ¢ poly, carry, add, carry.

e.g. a =314, b = 271, ¢ = 839:
(3t° + 1t +4t0) (262 + 7t 4+ 1tY) =
t4 t3 t2 tl tO'
carry: 8t* 4 5t3 + 0t% + 9t! + 440,

As before (8% + 3t + 9tY)? =
t* + 4883 4+ 153t 4 54¢ + 817,
78> + 0t* + 3¢3 + 92 + 2t 4 140,

4o T +-8t%+-8t34+9¢t2 + 111 +5£0;
7H2 + 8t* + 9t3 + 0t? + 1#1 + 5¢Y.



: allow negative coeffs

hO — 15, 9.
15900 — 15000, 900.

ive: 159 — 16, —1.

15900 — 16000, —100.

sadvantage: need —.
small advantages:
ndle negative integers;

ndle subtraction:
roducts a bit.

Speedup: delay carries

Computing (e.g.) big ab + c*:
multiply a, b polynomials, carry,
square ¢ poly, carry, add, carry.

e.g. a =314, b =271, ¢ = 839:

(3t2 + 1t +4¢0) (262 + 7t 4+-1¢Y) =
t4 t3 t2 tl tO.

carry: 8t* 4 5t3 + 0t% + 9t! + 440,

As before (8% + 3t + 9tY)? =
t* -+ 48¢3 4 153t 4 54¢ + 817,
76> + 0t* + 3¢3 + 92 + 2t + 140,

1 728t 18310t 111 54
7t + 8t* 4+ 9t3 + 0t? + 1#! + 5¢V.

Faster:

Eliminat
Outweig
slightly |

Importal
multiplic
to reduc
out carr

hefore a



gative coeffs

).
15000, 900.

- 106, —1.
16000, —100.

e: need —.
ntages:

tive Integers;
-action;

bit.

Speedup: delay carries

Computing (e.g.) big ab + c*:
multiply a, 6 polynomials, carry,
square ¢ poly, carry, add, carry.

e.g. a =314, b = 271, ¢ = 839:

(3t° + 1t +4t9) (2t2 4+ 7t +140) =
t4 t3 t2 tl tO'

carry: 8t* 4 5t3 + 0t% + 9t! + 440,

As before (8% + 3t + 9tY)? =
t* + 4883 4+ 153t 4 54¢ + 817,
762 + 0t* + 3¢3 + 92 + 2t 4 140

1 728t 183 4-9t2 111 540
7E2 + 8t* + 9t3 + 0t? + 1#1 + 5¢Y.

Faster: multiply a
square ¢ polynomi

(6t* 4 23¢3 + 18¢
(64¢* + 4883 +
— 704+ 7183+
Tt> + 8t% 4+ 983 +

Eliminate interme
Outweighs cost of
slightly larger coef

Important to carry
multiplications (ar
to reduce coefficie
out carries are usu

hefore additions, s



ffs

IS,

Speedup: delay carries

Computing (e.g.) big ab + c*:
multiply a, b polynomials, carry,
square ¢ poly, carry, add, carry.

e.g. a =314, b =271, ¢ = 839:

(3t° + 1t +4t9) (282 + 7L +140) =
t4 t3 t2 tl tO.

carry: 8t* 4 5t3 + 0t% + 9t! + 440,

As before (8% + 3t + 9tY)? =
t* -+ 4883 4+ 153t 4 54¢ + 817,
7> + 0t* + 3¢3 + 92 + 2t + 140,

1 728t 183 1-0t2 111 54
7t + 8t* + 9t3 + 0t? + 1#! + 5¢V.

Faster: multiply a, 6 polynoi
square ¢ polynomial, add, cz:

(6¢* + 2383 + 18¢2 + 20t +
(64¢* + 48¢3 4 153t2 4 54t -
= 70t + 7183417182 +83¢!-
7t> + 8t* + o3 4 0t 4 1¢

Eliminate intermediate carrie
Outweighs cost of handling
slightly larger coefficients.

Important to carry between

multiplications (and squarin,
to reduce coefficient size;
out carries are usually a bad

hefore additions, subtractior



Speedup: delay carries

Computing (e.g.) big ab + c*:
multiply a, 6 polynomials, carry,
square ¢ poly, carry, add, carry.

e.g. a =314, b = 271, ¢ = 839:

(3t2 + 1L +4¢0) (2t2 + 7t +1¢0) =
t4 t3 t2 tl tO.

carry: 8t* 4+ 5t3 + 0t° + ot + 4t

As before (8% + 3t + 9tY)? =
t* + 4883 4+ 153t 4 54¢ + 817,
76> + 0t* + 3¢3 + 92 + 2t + 14,

1 728t 183 1-9t2 111 540
7H2 + 8t* + 9t3 + 0t? + 1#! + 549,

Faster: multiply a, 6 polynomials,
square ¢ polynomial, add, carry.

(6¢% +23¢3 + 182 4 20t! + 4¢9) +
(64¢* 4 4883 +153¢2 4 54¢L +31¢9)
= 70t*+ 7183+ 17182 +-83¢1 4-85¢°;
782 + 8t* + o3 4 0t° + 1¢! + 5¢0.

Eliminate intermediate carries.
Outweighs cost of handling
slightly larger coetficients.

Important to carry between

multiplications (and squarings)
to reduce coefficient size;
out carries are usually a bad idea

before additions, subtractions, etc.



. delay carries

ng (e.g.) big ab + c*:
a, b polynomials, carry,
poly, carry, add, carry.

- 314, b = 271, ¢ = 839:
L4 449)(2¢2 4741 +180) =
t3 t2 tl tO'
4 4 583 + 0t° + 9tt + 420,

e (8t + 3t! 4+ 9t0)? =
t3 + 153t% + 54¢+ 4 81¢°;
Y4383 +9t2 2t + 140,

8t 1813192111 1 5¢0-
403 o+ 02 + 1L + 540,

Faster: multiply a, 6 polynomials,
square ¢ polynomial, add, carry.

(6t + 2383 4 182 + 29¢1 4 449) +
(64¢* 4 4883 +153¢2 4 54¢L +31¢Y)
—= 70t*+ 71834+ 171¢2 4831 +85¢0;
7t 4 8t* + 9t3 + 0t% + 1¢1 + 520,

Eliminate intermediate carries.
Outweighs cost of handling
slightly larger coefficients.

Important to carry between

multiplications (and squarings)
to reduce coefficient size;
out carries are usually a bad idea

hefore additions, subtractions, etc.

Using th
400 coef

\

Faster:

Fo = fo
F1 = fi
Similarly

Then f¢
+ (FoGo



rries

big ab + c?:
omials, carry,

y, add, carry.

271, ¢ = 839:
2+ 7t + 1Y) =

tl

+0.

0¢2 + ot + 449

!+ 9t9)2 =

2 4

tl 4

+0.

0t2 + 2¢1 1+ 140

10¢2 1111 4+ 5¢0-
0t2 + 1¢1 + 549,

Faster: multiply a, 6 polynomials,
square ¢ polynomial, add, carry.

(6t* + 23¢3 4 182 + 20t! 4 4¢9) +
(64¢* 4 4883 +153¢2 4 54¢L +31¢9)
—= 70t* 4+ 7183+ 171¢2 + 83t +85¢0,;
782 + 8t* + o3 4 0t° + 1¢! + 5¢0.

Eliminate intermediate carries.
Outweighs cost of handling
slightly larger coetficients.

Important to carry between

multiplications (and squarings)
to reduce coefficient size;
out carries are usually a bad idea

before additions, subtractions, etc.

Speedup: polynon

How much work t

f=1rlo+ fit+-
g=g0+g1t+ -

Using the obvious
400 coeff mults, 3

Faster: Write f ac
Fo = fo+ fit + -

F1=fi0+ fuat +
Similarly write g a

Then fg = (Fo+
+ (F()GO — FlGlt]



Faster: multiply a, 6 polynomials,
square ¢ polynomial, add, carry.

(6t* + 2383 4 182 + 29¢1 4 449) +
(64¢* 4 4883 + 153¢2 4 54¢L +81¢Y)
= 70t* 4+ 7183+ 171¢2 + 83t +85¢0;
7t + 8t* + o3 4 0t2 + 1¢! + 5¢°.

Eliminate intermediate carries.
Outweighs cost of handling
slightly larger coefficients.

Important to carry between

multiplications (and squarings)
to reduce coefficient size;
out carries are usually a bad idea

hefore additions, subtractions, etc.

Speedup: polynomial Karats

How much work to multiply

f=fo+ fit+-+ frot'?
g =90+ g1t + -+ grot'”

Using the obvious method:
400 coeff mults, 361 coeff a

Faster: Write f as Fg + Fit
Fo= fo+ fit+-- + fot’;

F1 = fio+ fuit + - + fio:
Similarly write g as Gg + Gy

Then fg = (Fo+ F1)(Go +
-+ (F()GO — FlGltlo)(l _ ¢1C



Faster: multiply a, 6 polynomials,
square ¢ polynomial, add, carry.

(6t* + 23¢3 4 182 + 20t! 4 4¢9) +
(64¢* 4 4883 +153¢2 4 54¢L +31¢9)
—= 70t* 4+ 7183+ 1712 + 83t +85¢0,;
780 + 8t* + o3 4 0t° + 1¢! + 5¢0.

Eliminate intermediate carries.
Outweighs cost of handling
slightly larger coetficients.

Important to carry between

multiplications (and squarings)
to reduce coefficient size;
out carries are usually a bad idea

before additions, subtractions, etc.

Speedup: polynomial Karatsuba

How much work to multiply polys

f=fo+ fit+--+ fot?,
g =9go+git+---+g1ot'’?

Using the obvious method:
400 coeff mults, 361 coeff adds.

Faster: Write f as Fy + Fqtt9;
Fo = fo+ fit +--- + fot”;

F1 :f10‘|‘f11t—|-"'—|-f19t9.
Similarly write g as Gg + G1t1Y.

Then fg = (Fo+ F1)(Gg + Gl)tlo
+ (FoGo — FlGltlo)(l — th)_



multiply a, b6 polynomials,
polynomial, add, carry.

t3 +18¢° + 20t 4 4¢9) +

£3 4+ 153¢% +54¢! +81¢0)
7183+ 17182 +83¢1 4-85¢°;
Y ot3 +0t? + 14 + 580,

e Intermediate carries.
hs cost of handling
arger coefficients.

1t to carry between

ations (and squarings)
e coefficient size;
es are usually a bad idea

dditions, subtractions, etc.

Speedup: polynomial Karatsuba

How much work to multiply polys

f=fo+ fit+--+ fiot??,
g=9go+git+---+ g19t77?

Using the obvious method:
400 coeff mults, 361 coeff adds.

Faster: Write f as Fy + FittY;
Fo = fo+ fit +--- + fot”:

F1 :f10+f11t+"'+f19t9.
Similarly write g as Gg + G1t1Y.

Then fg = (Fo+ F1)(Gg + Gl)tlo
+ (FoGg — FlGltlo)(l — th)_

20 adds
300 mul
FoGo, F
243 add
O adds f

with suk

and witl

19 ac

19 ac

C

C

S
S

Total 30
Larger c

still save

Can app

as poly «



, b polynomials,

al, add, carry.

+ 20t 4+ 4t%) +
t2 + 54t! 4 81t0)
t2+83t! +85¢0;
0t? + 1¢1 4 520,
liate carries.
handling
ficients.

' between

\d squarings)

nt size:
ally a bad idea
ubtractions, etc.

Speedup: polynomial Karatsuba

How much work to multiply polys

f=fo+ fit+--+ fiot?,
g =9go+git+---+g1ot'’?

Using the obvious method:
400 coeff mults, 361 coeff adds.

Faster: Write f as Fy + Ftt9;
Fo = fo+ fit +--- + fot”;

F1 :f10‘|‘f11t—|-"'—|-f19t9.
Similarly write g as Gg + G1t1Y.

Then fg = (Fo+ F1)(Gg + Gl)tlo
+ (FoGo — FlGltlo)(l — th)_

20 adds for Fg + /
300 mults for thre
FoGo, F1G1, (Fo -
243 adds for those

O adds for FoGg —
with subs counted

and with

delayed 1

19 adds for --- (1
19 adds to finish.

Total 300 mults, -
Larger coefficients

still saves time.

Can app

y idea rec

as poly ¢

egree gro



mials,

Idea
1S, etcC.

Speedup: polynomial Karatsuba

How much work to multiply polys

f=fo+ fit+--+ fiot,
g=9go+git+---+ g19t77?

Using the obvious method:
400 coeff mults, 361 coeff

adds.

Faster: Write f as Fy + FittY;
Fo = fo+ fit +--- + fot”:

F1 :f10+f11t+"'+f19t9.
Similarly write g as Gg + G1t1Y.

Then fg = (Fo+ F1)(Gg + Gl)tlo
+ (FoGg — FlGltlo)(l — th).

20 adds for Fg + F1, Gg + C
300 mults for three product:
FoGo, F1G1, (Fo + F1)(Go -
243 adds for those products
O adds for FpGp — FlGltlo
with subs counted as adds

and with delayed negations.

19 ac

19 ac

C

C

(1 —¢10).
s to finish.

s for - -

Total 300 mults, 310 adds.
Larger coefficients, slight ex

still saves time.

Can apply idea recursively

as poly degree grows.



Speedup: polynomial Karatsuba

How much work to multiply polys

f=fo+ fit+--+ frot?,
g =9go+git+---+g1ot'’?

Using the obvious method:
400 coeff mults, 361 coeff adds.

Faster: Write f as Fy + Ftt9;
Fo = fo+ fit +--- + fot”;

F1 :f10‘|‘f11t—|-"'—|-f19t9.
Similarly write g as Gg + G1t1Y.

Then fg = (Fo+ F1)(Gg + Gl)tlo
+ (FoGo — FlGltlo)(l — th)_

20 adds for Fo + F1, Gg + G1.
300 mults for three products
FoGo, F1G1, (Fo + F1)(Go + G1).
243 adds for those products.

O adds for FoGg — F1G1t10

with subs counted as adds

and with delayed negations.
19 adds for - -- (1 — ¢t19).
19 adds to finish.

Total 300 mults, 310 adds.

Larger coefficients, slight expense;
still saves time.

Can apply idea recursively

as poly degree grows.



. _polynomial Karatsuba

ch work to multiply polys
- fit+ -+ frott?,
g1t + - + g1t1?

e obvious method:
f mults, 361 coeff adds.

Write f as Fo + Fpti0;

+ fit + -+ fot?;

)+ fuit + -+ fiot?.

write g as Gg + G110,

= (Fo + F1)(Go + G1)t°
) — FlGltlo)(l — th).

20 adds for Fo + F1, Gg + G1.
300 mults for three products

FoGo, F1G1, (Fo + F1)(Go + G1).

243 adds for those products.
O adds for FopGp — FlGltlo
with subs counted as adds

and with

19 adds for - -

delayed negations.
(1 —¢10).

19 adds to finish.

Total 300 mults, 310 adds.

Larger coefficients, slight expense;

still saves time.

Can app

y Idea recursively

as poly ¢

egree grows.
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Increasir
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11al Karatsuba

o multiply polys
-+ frot!?,
. 197
+ g19t77

method:
61 coeff adds.

s Fo + Fltlo;

F1)(Go + Gl)tlo
'O)(l o th)_

20 adds for Fo + F1, Gg + G1.
300 mults for three products

FoGo, F1G1, (Fo + F1)(Ggo + G1).

243 adds for those products.
O adds for FoGg — F1G1t10
with subs counted as adds

and with delayed negations.
19 adds for - -- (1 — t19).
19 adds to finish.

Total 300 mults, 310 adds.

Larger coefficients, slight expense;

still saves time.

Can apply idea recursively

as poly degree grows.

Many other algebr

in polynomial mul
lchom,ll llFFT,11 ‘

Increasingly impor
polynomial degree
O(nlgnlglgn) cc
to compute n-coe

Useful for sizes of

that occur In cryp
In some cases, yes
But Karatsuba is 1
for prime-field ECH
on most current C



suba

polys

dds.

20 adds for Fo + F1, Gg + G1.
300 mults for three products

FoGo, F1G1, (Fo + F1)(Go + G1).

243 adds for those products.
O adds for FopGp — FlGltlo
with subs counted as adds

and with delayed negations.
19 adds for - - - (1 — t10).
19 adds to finish.

Total 300 mults, 310 adds.

Larger coefficients, slight expense;

still saves time.

Can apply idea recursively

as poly degree grows.

Many other algebraic speed:
in polynomial multiplication
“Toom,” "FFT," etc

Increasingly important as
polynomial degree grows.
O(nlgnlglgn) coeff operat
to compute n-coeff product

Useful for sizes of n

that occur in cryptography?
In some cases, yes!

But Karatsuba is the limit
for prime-field ECC/ECDLP

on most current CPUs.



20 adds for Fo + F1, Gg + G1.
300 mults for three products

FoGo, F1G1, (Fo + F1)(Go + G1).

243 adds for those products.
O adds for FoGg — F1G1t10
with subs counted as adds

and with delayed negations.
19 adds for - -- (1 — ¢t19).
19 adds to finish.

Total 300 mults, 310 adds.

Larger coefficients, slight expense;

still saves time.

Can apply idea recursively

as poly degree grows.

Many other algebraic speedups
in polynomial multiplication:
“Toom,” "FFT,” etc

Increasingly important as
polynomial degree grows.
O(nlgnlglgn) coeff operations
to compute n-coeff product.

Useful for sizes of n

that occur in cryptography?
In some cases, yes!
But Karatsuba is the limit

for prime-field ECC/ECDLP
on most current CPUs.



for Fo + F1, Gg + G7.

ts for three products

1G1, (Fo + F1)(Go + G1).
s for those products.

or FoGp — FlGltlo

s counted as adds

1 delayed negations.

for --- (1 — t19).

to finish.

0 mults, 310 adds.
oefficients, slight expense;
S time.

ly idea recursively

legree grows.

Many other algebraic speedups
in polynomial multiplication:
“Toom,” "FFT," etc.

Increasingly important as
polynomial degree grows.
O(nlgnlglgn) coeff operations
to compute n-coeff product.

Useful for sizes of n

that occur in cryptography?
In some cases, yes!

But Karatsuba is the limit
for prime-field ECC/ECDLP

on most current CPUs.

Modular

How to

Can use
f mod ¢
Can mul
precomg
easily ac

Slight sy
“Montg:



-1, Go + G7.
e products
- Fl)(Go —+ Gl).
 products.
FlGltlo
as adds

1egations.
— ¢19).

10 adds.
, slight expense;

ursively

WS.

Many other algebraic speedups
in polynomial multiplication:
“Toom,” "FFT," etc.

Increasingly important as
polynomial degree grows.
O(nlgnlglgn) coeff operations
to compute n-coeff product.

Useful for sizes of n

that occur in cryptography?
In some cases, yes!

But Karatsuba is the limit
for prime-field ECC/ECDLP

on most current CPUs.

Modular reduction

How to compute |

Can use definition
fmodp=f—p]
Can multiply f by
precomputed 1/p
easily adjust to ob

(¥ ¥,

Slight speedup:
“Montgomery red



DENSE;

Many other algebraic speedups
in polynomial multiplication:
“Toom,” "FFT,” etc.

Increasingly important as
polynomial degree grows.
O(nlgnlglgn) coeff operations
to compute n-coeff product.

Useful for sizes of n

that occur in cryptography?
In some cases, yes!

But Karatsuba is the limit
for prime-field ECC/ECDLP

on most current CPUs.

Modular reduction

How to compute f mod »?

Can use definition:
fmodp=f—plf/p].
Can multiply f by a
precomputed 1/p approxima
easily adjust to obtain | f/p

Slight speedup: “2-adic inve
“Montgomery reduction.”
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Modular reduction

How to compute f mod »?

Can use definition:

fmodp=f—pl|f/p]
Can multiply f by a

precomputed 1/p approximation;

easily adjust to obtain | f/p].

Slight speedup: “2-adic inverse”;

“Montgomery reduction.”

e.g. 314159265358 mod 271

Precompute

11000000000000/271828|
— 3678796.

Compute

314159 - 3673796
= 11557263872564.

Compute
314159265358 — 1155726 - -

= 578230.

Oops, too big:

578230 — 271828 = 306402.
306402 — 271828 = 34574



Modular reduction

How to compute f mod p?

Can use definition:

fmodp=f—plf/p]
Can multiply f by a

precomputed 1/p approximation;

easily adjust to obtain | f/p].

Slight speedup: “2-adic inverse”;

“Montgomery reduction.”

e.g. 314159265358 mod 271328:

Precompute
1 1000000000000/271828

= 3678796.

Compute

314159 - 3678796
= 11557263872564.

Compute

314159265358 — 1155726 - 271828
= 578230.

Oops, too big:

578230 — 271828 = 306402.
306402 — 271828 = 34574
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e.g. 314159265358 mod 271328:

Precompute
1 1000000000000/271828
= 3673796.

Compute
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Divides special form.




We can do better: normally
p Is chosen with a special form

to make f mod » much faster.
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but not for elliptic curves!
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with degree-2 extension.

Curve25519: p = 22°° — 19,
NIST P-224: p = 2224 _ 296 4 1
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Divides special form.

Small example: p = 1000003.
Then 1000000a + 6 = b — 3a.

e.g. 314159265358 =
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314159(—3) + 265358 =

— 942477 + 265358 =
—677119.

Easily adjust 6 — 3a

to the range {0, 1, ..., p—1}
by adding/subtracting a few p's:
e.g. —677119 = 322884.
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Small example: p = 1000003.
Then 1000000a + 6 = b — 3a.

e.g. 314159265358 =
314159 - 1000000 + 265358 =
314159(—3) + 265358 =

— 942477 + 265358 =
—677119.

Easily adjust 6 — 3a
to the range {0, 1, ..., p—1}

by adding/subtracting a few p's:

e.g. —677119 = 322884

Hmmm, is adjustment so easy?

Conditional branches are slow.

(Also dangerous for defenders:
branch timing leaks secrets.)
Can eliminate the branches,

but adjustment isn't free.

Speedup: Skip the adjustment
for intermediate results.

“Lazy reduction.”

Adjust only for output.

b — 3a is small enough
to continue computations.
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Hmmm, is adjustment so easy?

Conditional branches are slow.

(Also dangerous for defenders:
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Can e
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Speedup: Skip the adjustment

for iIntermediate results.
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Adjust only for output.
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Can delay carries until after
multiplication by 3.

e.g. To square 314159

in Z/1000003: Square poly

32 4 1t4 + 4¢3 + 1¢2 + 5¢!

obtaining 9t10 + 6¢7 4 25¢8
t7 4+ 48t0 4 728 + 50t% 4
t3 + 43t% + 90t! + 810,

Reduce: replace (¢;)t°T* by
(—3c¢;)t*, obtaining 72t + °
64t> — 32t + 48t1 — 63tV

Carry: 8t — 4¢> — 2% +
183 + 22 + 2t1 — 30,



Hmmm, is adjustment so easy?

Conditional branches are slow.

(Also dangerous for defenders:
branch timing leaks secrets.)
Can eliminate the branches,

but adjustment isn't free.

Speedup: Skip the adjustment
for intermediate results.

“Lazy reduction.”

Adjust only for output.

b — 3a is small enough
to continue computations.

Can delay carries until after
multiplication by 3.

e.g. To square 314159

in Z/1000003: Square poly

3t 4 1t* + 4¢3 + 12 + 5¢1 + 9ot

obtaining 9tV + 6t + 25¢8 +
t7 + 43¢0 t° + 50t* +
t3 4 43¢ t1 4+ 810,

Reduce: replace (¢;)t%T* by
(—3c¢;)t?, obtaining 72¢° + 32t* +
64> — 32t° + 48t! — 630,

Carry: 8t0 — 4> — 2¢% +
1#3 4+ 2¢2 + 21 — 3¢9,
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Can delay carries until after
multiplication by 3.

e.g. To square 314159

in Z/1000003: Square poly

3t° + 1t* + 4¢3 + 1#2 + 5¢t + 9tY,

obtaining 9t19 + 67 + 25¢8 +
t7 4+ 48t0 4 72t + 50t* +
t3 + 43t% + 90t! + 810,

Reduce: replace (¢;)t°T* by
(—3c¢;)t*, obtaining 72¢° + 32t* +
64> — 32t° + 48t1 — 63t

Carry: 8t — 4¢> — 2% +
13 + 22 + 2t1 — 30,
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e.g. Star
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Can delay carries until after
multiplication by 3.

e.g. To square 314159

in Z/1000003: Square poly

32 + 1t* 4 4¢3 + 12 + 5t + 9t

obtaining 9tV + 6t + 25¢8 +
t7 4+ 48t0 4 728> + 50t* +
t3 + 43t% + 90t! + 81¢0.

Reduce: replace (¢;)t°T* by
(—3c¢;)t?, obtaining 72¢° + 32t* +
64> — 32t° + 48t! — 630,

Carry: 8t0 — 4> — 2¢% +
1#3 4+ 22 + 2t1 — 3¢9,

To minimize poly
mix reduction and
carrying the top s

e.g. Start from sq\
t° + 148" + 48¢°
t> 4 43t% 4+ 90t

Reduce t10 — ¢+,
£ s 0. 69 105t
512 4+ 2t4 1803 +

Finish reduction:
643 — 32t2 + 48t
0 5 ¢l 542
482 — Dt + 183 4
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Can delay carries until after
multiplication by 3.

e.g. To square 314159

in Z/1000003: Square poly

3t° + 1t* + 4¢3 + 1#2 + 5¢t + 9tY,

obtaining 9tV + 67 + 25¢8 +
t7 4 48t0 4 72t + 50t* +
t3 + 43t% + 90t! + 810,

Reduce: replace (¢;)t®T* by
(—3c;)t*, obtaining 72¢° + 32t* +
64> — 32t° + 48t1 — 63t

Carry: 8t — 4¢> — 2% +
13 + 22 + 2t1 — 30

To minimize poly degree,
mix reduction and carrying,
carrying the top sooner.

e.g. Start from square 9t10-
t8 + 14¢7 + 48t 4 72t +
t3 + 43t2 4+ 90¢! + 8149,

Reduce t10 — ¢* and carry
> — 5 667 +25¢5 4 14¢" +
5t° +2¢% 8243 4-43¢% +90¢ 1

Finish reduction: —5¢° + 2¢
64t3 — 32t + 48t1 — 87tY.

t0 5 ¢l o5 2 583 5 7 -
A0 — 2t 183 212 — 1



Can delay carries until after
multiplication by 3.

e.g. To square 314159

in Z/1000003: Square poly

32 + 1t* 4 4¢3 + 12 + 5t + 9t

obtaining 9tV + 6t + 25¢8 +
t7 4+ 48t0 4 728> + 50t* +
t3 + 43t% + 90t! + 81¢0.

Reduce: replace (¢;)t°T* by
(—3c¢;)t?, obtaining 72¢° + 32t* +
64> — 32t° + 48t! — 630,

Carry: 8t0 — 4> — 2¢% +
183 + 2¢2 4+ 2t1 — 3¢0.

To minimize poly degree,
mix reduction and carrying,
carrying the top sooner.

e.g. Start from square 0t19 4 6¢7 +
#8 1 1447 4+ 4880 4 7045 1 504 +
t3 + 432 + 90! + 810,

Reduce t10 — ¢* and carry t* —
t2 — 0 682 +25¢8 + 14¢7 +56¢° —
5t° 4+ 2t4 +82¢3 + 432+ 90t +31¢0.

Finish reduction: —5¢° + 2t* +
64t3 — 32t2 + 48t1 — 87t0. Carry
t0 s ¢l 52 5 3 5 ¢t 5 40
— 42 — 2t% 143 4 242 — 1t 43¢0,
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square 314159

)0003: Square poly

Y43 + 1¢% + 5t 4 otY,

g 0t'0 + 617 4 25¢° +
t0 + 70t° 4+ 50t* +
t2 + 90t! + 81¢0.

replace (c;)t®T* by
. obtaining 72¢° + 32¢* +
2t2 + 48t — 63¢0.

t0 440 — ¢4 &
2 1ol 340

To minimize poly degree,
mix reduction and carrying,
carrying the top sooner.

e.g. Start from square 0t19 4 6¢7 +
£8 1 14¢7 + 480 4 725 1 5044 +

£3 1 43t2 1 00! + 8149,

Reduce t10 — ¢* and carry t* —
t2 — 9 6¢2 4258+ 14¢7 +56¢° —
5t° 424+ 823 + 432+ 90t +31¢0.

Finish reduction: —5¢° + 2t* +
64t3 — 322 + 48t1 — 87tY. Carry
(0 s ¢l 52 5 3 5 ¢t 5 40
— 42 — 2% 143 4 2¢% — 11 4 3¢V,

Five coe

fat* +
Most co

Square -
Coeff of

Reduce:

-4+ (2
Coeff co
Very litt
addition
on 32-bi



intil after
.

1159

uare poly

1t% 4 5t1 + 9¢Y,
t? + 25¢8 +
5 L 5044 1
| tO_

:i)t6—|—’i by
g 72t + 32t* +
L _ 63¢0.

- 2t% +
3tY.

To minimize poly degree,
mix reduction and carrying,
carrying the top sooner.

e.g. Start from square 0t19 4 6¢7 +
t8 1+ 1447 + 480 4 7285 + 504 +
t3 + 43t2 + 90t + 81¢0.

Reduce t10 — ¢* and carry t* —
t2 — 0 682 +25¢8 + 14¢7 +56¢° —
52 +2t4 +82¢3 + 432490t +31¢0.

Finish reduction: —5¢° + 2t* +
64t3 — 32t + 48t1 — 87t0. Carry
0 s ¢l 52 5 3 5 ¢t 5 40
— 42 — 2t% 143 4242 — 1t 43¢0,

Speedup: non-inte

p =201 1

Five coeffs in radi;
fat* + f3t° + fot*
Most coeffs could

Square - - -+2(f4f
Coeff of 2 could |

Reduce: 20° = 24
o (P(fafr +
Coeff could be >
Very little room fc
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To minimize poly degree,
mix reduction and carrying,
carrying the top sooner.

e.g. Start from square 0t19 4 6¢7 +
t8 + 14¢7 + 480 4 7280 + 504 +
t3 + 43t2 + 90t + 81¢0.

Reduce t10 — ¢* and carry t* —
t2 — 9 6¢2 4258+ 14¢7 +56¢° —
5t° 424 +82t3 + 432+ 90t +31¢0.

Finish reduction: —5¢° + 2t* +
64t3 — 32t2 + 48t1 — 87tY. Carry
(0 s ¢l 52 5 3 5 ¢t 5 40
— 42 — 2% 143 4 2¢% — 1t 4 3¢V,

Speedup: non-integer radix

p =201 1

Five coeffs in radix 2137

fat" + f3t® + fot? + fit' +

Most coeffs could be 212

Square - -+2(faf1+ f3f2)t
Coeff of 2 could be > 22°.

Reduce: 22 = 2% in Z /(201

ot ((fahr + f3f2) +
Coeff could be > 229,

Very little room for
additions, delayed carries, et
on 32-bit platforms.



To minimize poly degree,
mix reduction and carrying,
carrying the top sooner.

e.g. Start from square 9t19 4 6¢7 +
t8 1+ 1447 + 480 4 7285 + 504 +

t> + 43t + 90t + 81¢°.

Reduce t10 — ¢* and carry t* —
t2 — 0 682 +25¢8 + 14¢7 +56¢° —
52 +2t4 +82¢3 + 432490t 4310,

Finish reduction: —5¢° + 2t* +
64t3 — 322 + 48t1 — 87t0. Carry
t0 s ¢l 52 5 3 5 ¢t 5 40
— 42 — 2t* 143 4242 — 1t 43¢0,

Speedup: non-integer radix

p=201_1

Five coeffs in radix 2137

fat* + f3t3 + fot® + f1tt + fot°.

Most coeffs could be 212

Square - - -+2(faf1+ f3f2)t>+ - -
Coeff of 2 could be > 2%°.

Reduce: 2°° =2%in Z/(2%! —1);

o+ (O(fafr + f3f2) + O
Coeff could be > 229,

Very little room for
additions, delayed carries, etc.
on 32-bit platforms.



nize poly degree,
Iction and carrying,
the top sooner.

t from square 9¢19 + 627 +
t7 480 + 7282 4+ 50t% +
t2 + 90t + 81¢0.

110

— t* and carry t* —
t? +25¢8 +14¢" +56¢° —
+82¢°+43t2 490t +81¢°.

duction: —5¢2 + 2% +
2t2 + 48t — 87tY. Carry
12 o 13t ot
4+ 183 + 2¢2 — 181 + 340,

Speedup: non-integer radix

p=201_1

Five coeffs in radix 2137

fat* + f3t3 + fot® + fitt + fot.

Most coeffs could be 212.

Square - - +2(fafi+ f3fo)>+- - -.

Coeff of 2 could be > 22°.

Reduce: 2%° =2%in Z/(2°1 — 1);

4 (O(fafr + f3f2) + fOE
Coeff could be > 229,

Very little room for
additions, delayed carries, etc.
on 32-bit platforms.

Scaled:

f4 IS mu

f3 I1s mu
f2 IS mu

fl IS ML

fo IS ML
-+ (2

Better:

fa 1s mu

f3 1s mu
fo i1s mu

f1 1s mu

fo IS mL
Saves a



degree, Speedup: non-integer radix Scaled: Evaluate :
carrying, p— 6l _ 1 fa 1s multiple of 2

oner. f3 is multiple of 2
are 0410 4 649 4 Fivi coeffs3in radi2x 2137 1 O f» is multiple of 2
L7945 4 5084 4 fat™ + f3t= + fot +f117; + fot”. f1 is multiple of 2
L4 5140, Most coeffs could be 2. o is mu 203 e of 2
ind carry £ — Square "'5+2(f4f1 +f3f225)t5+- o (@ (fadr -
8 1447 4 5646 _ Coeff of ¢° could be > 24°. Better: Non-integ
21 00#1 18140, Reduce: 205 = 24 in Z /(20! — 1), fa 1s multiple of 2

55+ ot C@Ush T SR) ) ;3 e o
1 _ 870, Carry Coeff .could be > 2<7. f2 e
(3, 44 45 Ver3-/ .Ilttle room for | fl | ) -
0i2 14l 30 additions, delayed carries, etc. 0 15 Mutipie ot -
L on 32-bit platforms. Saves a few bits ir




Speedup: non-integer radix

p=201_1

Five coeffs in radix 2137

fat* + f3t3 + fot® + fitt + fot.

Most coeffs could be 212.

Square -
Coeff of 2 could be > 22°.

Reduce: 2%° =2%in Z/(2°1 — 1);

+ (2°(fafr + f3£2) + f5)t°.
Coeff could be > 229,

Very little room for
additions, delayed carries, etc.
on 32-bit platforms.

+2(fafr+ f3f2)+ -

Scaled: Evaluate at t = 1.

f4 IS mu
f3 1s mu
f2 IS mu
fl IS mu
fo IS mu

ti
ti
ti
ti
tip

D

D
D
D

e of

e of 239;

e of 226;
213.

e of
e of 2U.

252.

Reduce

+ (270 faf1 + f3f2) +

Better: Non-integer radix 2

fa 1s mu
f3 1s mu

fo i1s mu
f1 1s mu
fo IS mu

ti
ti
ti
ti
ti

D
D
D
D

D

e of 249;
237.

e of

e of 225;
e of 213;

e of 2U.

Saves a few bits in coeffs.



Speedup: non-integer radix

p=201_1

Five coeffs in radix 2137

fat* + f3t3 + fot® + f1tt + fot°.

Most coeffs could be 212

Square - - +2(fafi+ f3fo)>+---.

Coeff of 2 could be > 2%°.

Reduce: 2°° =2%in Z/(2%! —1);

4 (O(fafr + f3f2) + fOE
Coeff could be > 229,

Very little room for
additions, delayed carries, etc.
on 32-bit platforms.

Scaled: Evaluate att =1.

fa is multiple of 292,

e of 239;

e of 226;
213.

f3 is multip
fo is multip
iple of
fo is multiple of 2°. Reduce:

4 (270 f1 + fafo) + £E)E.

Better: Non-integer radix 2122,

fa 1s multiple of 249,
237.

f1 1s multi

f3 is multiple of
fo is multiple of 22°;
f1 is multiple of 213;
fo is multiple of 20,

Saves a few bits in coeffs.



