
High-speed cryptography,

part 2:

more elliptic-curve formulas;

field arithmetic

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Speed-oriented Jacobian standards

2000 IEEE “Std 1363”

uses Weierstrass curves

in Jacobian coordinates

to “provide the fastest

arithmetic on elliptic curves.”

Also specifies a method of

choosing curves y2 = x3 � 3x + b.

2000 NIST “FIPS 186–2”

standardizes five such curves.

2005 NSA “Suite B” recommends

two of the NIST curves as

the only public-key cryptosystems

for U.S. government use.



High-speed cryptography,

part 2:

more elliptic-curve formulas;

field arithmetic

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Speed-oriented Jacobian standards

2000 IEEE “Std 1363”

uses Weierstrass curves

in Jacobian coordinates

to “provide the fastest

arithmetic on elliptic curves.”

Also specifies a method of

choosing curves y2 = x3 � 3x + b.

2000 NIST “FIPS 186–2”

standardizes five such curves.

2005 NSA “Suite B” recommends

two of the NIST curves as

the only public-key cryptosystems

for U.S. government use.

Projective for Weierstrass

1986 Chudnovsky–Chudnovsky:

Speed up ADD by switching from

(X=Z2; Y=Z3) to (X=Z; Y=Z).

7M + 3S for DBL if a = �3.

12M + 2S for ADD.

12M + 2S for reADD.

Option has been mostly ignored:

DBL dominates in ECDH etc.

But ADD dominates in

some applications: e.g.,

batch signature verification.



High-speed cryptography,

part 2:

more elliptic-curve formulas;

field arithmetic

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Speed-oriented Jacobian standards

2000 IEEE “Std 1363”

uses Weierstrass curves

in Jacobian coordinates

to “provide the fastest

arithmetic on elliptic curves.”

Also specifies a method of

choosing curves y2 = x3 � 3x + b.

2000 NIST “FIPS 186–2”

standardizes five such curves.

2005 NSA “Suite B” recommends

two of the NIST curves as

the only public-key cryptosystems

for U.S. government use.

Projective for Weierstrass

1986 Chudnovsky–Chudnovsky:

Speed up ADD by switching from

(X=Z2; Y=Z3) to (X=Z; Y=Z).

7M + 3S for DBL if a = �3.

12M + 2S for ADD.

12M + 2S for reADD.

Option has been mostly ignored:

DBL dominates in ECDH etc.

But ADD dominates in

some applications: e.g.,

batch signature verification.



High-speed cryptography,

part 2:

more elliptic-curve formulas;

field arithmetic

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Speed-oriented Jacobian standards

2000 IEEE “Std 1363”

uses Weierstrass curves

in Jacobian coordinates

to “provide the fastest

arithmetic on elliptic curves.”

Also specifies a method of

choosing curves y2 = x3 � 3x + b.

2000 NIST “FIPS 186–2”

standardizes five such curves.

2005 NSA “Suite B” recommends

two of the NIST curves as

the only public-key cryptosystems

for U.S. government use.

Projective for Weierstrass

1986 Chudnovsky–Chudnovsky:

Speed up ADD by switching from

(X=Z2; Y=Z3) to (X=Z; Y=Z).

7M + 3S for DBL if a = �3.

12M + 2S for ADD.

12M + 2S for reADD.

Option has been mostly ignored:

DBL dominates in ECDH etc.

But ADD dominates in

some applications: e.g.,

batch signature verification.



Speed-oriented Jacobian standards

2000 IEEE “Std 1363”

uses Weierstrass curves

in Jacobian coordinates

to “provide the fastest

arithmetic on elliptic curves.”

Also specifies a method of

choosing curves y2 = x3 � 3x + b.

2000 NIST “FIPS 186–2”

standardizes five such curves.

2005 NSA “Suite B” recommends

two of the NIST curves as

the only public-key cryptosystems

for U.S. government use.

Projective for Weierstrass

1986 Chudnovsky–Chudnovsky:

Speed up ADD by switching from

(X=Z2; Y=Z3) to (X=Z; Y=Z).

7M + 3S for DBL if a = �3.

12M + 2S for ADD.

12M + 2S for reADD.

Option has been mostly ignored:

DBL dominates in ECDH etc.

But ADD dominates in

some applications: e.g.,

batch signature verification.



Speed-oriented Jacobian standards

2000 IEEE “Std 1363”

uses Weierstrass curves

in Jacobian coordinates

to “provide the fastest

arithmetic on elliptic curves.”

Also specifies a method of

choosing curves y2 = x3 � 3x + b.

2000 NIST “FIPS 186–2”

standardizes five such curves.

2005 NSA “Suite B” recommends

two of the NIST curves as

the only public-key cryptosystems

for U.S. government use.

Projective for Weierstrass

1986 Chudnovsky–Chudnovsky:

Speed up ADD by switching from

(X=Z2; Y=Z3) to (X=Z; Y=Z).

7M + 3S for DBL if a = �3.

12M + 2S for ADD.

12M + 2S for reADD.

Option has been mostly ignored:

DBL dominates in ECDH etc.

But ADD dominates in

some applications: e.g.,

batch signature verification.

Montgomery curves

1987 Montgomery:

Use by2 = x3 + ax2 + x.

Choose small (a + 2)=4.

2(x2; y2) = (x4; y4)

) x4 =
(x2

2 � 1)2

4x2(x2
2 + ax2 + 1)

.

(x3; y3)� (x2; y2) = (x1; y1),

(x3; y3) + (x2; y2) = (x5; y5)

) x5 =
(x2x3 � 1)2

x1(x2 � x3)2
.



Speed-oriented Jacobian standards

2000 IEEE “Std 1363”

uses Weierstrass curves

in Jacobian coordinates

to “provide the fastest

arithmetic on elliptic curves.”

Also specifies a method of

choosing curves y2 = x3 � 3x + b.

2000 NIST “FIPS 186–2”

standardizes five such curves.

2005 NSA “Suite B” recommends

two of the NIST curves as

the only public-key cryptosystems

for U.S. government use.

Projective for Weierstrass

1986 Chudnovsky–Chudnovsky:

Speed up ADD by switching from

(X=Z2; Y=Z3) to (X=Z; Y=Z).

7M + 3S for DBL if a = �3.

12M + 2S for ADD.

12M + 2S for reADD.

Option has been mostly ignored:

DBL dominates in ECDH etc.

But ADD dominates in

some applications: e.g.,

batch signature verification.

Montgomery curves

1987 Montgomery:

Use by2 = x3 + ax2 + x.

Choose small (a + 2)=4.

2(x2; y2) = (x4; y4)

) x4 =
(x2

2 � 1)2

4x2(x2
2 + ax2 + 1)

.

(x3; y3)� (x2; y2) = (x1; y1),

(x3; y3) + (x2; y2) = (x5; y5)

) x5 =
(x2x3 � 1)2

x1(x2 � x3)2
.



Speed-oriented Jacobian standards

2000 IEEE “Std 1363”

uses Weierstrass curves

in Jacobian coordinates

to “provide the fastest

arithmetic on elliptic curves.”

Also specifies a method of

choosing curves y2 = x3 � 3x + b.

2000 NIST “FIPS 186–2”

standardizes five such curves.

2005 NSA “Suite B” recommends

two of the NIST curves as

the only public-key cryptosystems

for U.S. government use.

Projective for Weierstrass

1986 Chudnovsky–Chudnovsky:

Speed up ADD by switching from

(X=Z2; Y=Z3) to (X=Z; Y=Z).

7M + 3S for DBL if a = �3.

12M + 2S for ADD.

12M + 2S for reADD.

Option has been mostly ignored:

DBL dominates in ECDH etc.

But ADD dominates in

some applications: e.g.,

batch signature verification.

Montgomery curves

1987 Montgomery:

Use by2 = x3 + ax2 + x.

Choose small (a + 2)=4.

2(x2; y2) = (x4; y4)

) x4 =
(x2

2 � 1)2

4x2(x2
2 + ax2 + 1)

.

(x3; y3)� (x2; y2) = (x1; y1),

(x3; y3) + (x2; y2) = (x5; y5)

) x5 =
(x2x3 � 1)2

x1(x2 � x3)2
.



Projective for Weierstrass

1986 Chudnovsky–Chudnovsky:

Speed up ADD by switching from

(X=Z2; Y=Z3) to (X=Z; Y=Z).

7M + 3S for DBL if a = �3.

12M + 2S for ADD.

12M + 2S for reADD.

Option has been mostly ignored:

DBL dominates in ECDH etc.

But ADD dominates in

some applications: e.g.,

batch signature verification.

Montgomery curves

1987 Montgomery:

Use by2 = x3 + ax2 + x.

Choose small (a + 2)=4.

2(x2; y2) = (x4; y4)

) x4 =
(x2

2 � 1)2

4x2(x2
2 + ax2 + 1)

.

(x3; y3)� (x2; y2) = (x1; y1),

(x3; y3) + (x2; y2) = (x5; y5)

) x5 =
(x2x3 � 1)2

x1(x2 � x3)2
.



Projective for Weierstrass

1986 Chudnovsky–Chudnovsky:

Speed up ADD by switching from

(X=Z2; Y=Z3) to (X=Z; Y=Z).

7M + 3S for DBL if a = �3.

12M + 2S for ADD.

12M + 2S for reADD.

Option has been mostly ignored:

DBL dominates in ECDH etc.

But ADD dominates in

some applications: e.g.,

batch signature verification.

Montgomery curves

1987 Montgomery:

Use by2 = x3 + ax2 + x.

Choose small (a + 2)=4.

2(x2; y2) = (x4; y4)

) x4 =
(x2

2 � 1)2

4x2(x2
2 + ax2 + 1)

.

(x3; y3)� (x2; y2) = (x1; y1),

(x3; y3) + (x2; y2) = (x5; y5)

) x5 =
(x2x3 � 1)2

x1(x2 � x3)2
.

Represent (x; y)

as (X:Z) satisfying x = X=Z.

B = (X2 + Z2)2,

C = (X2 � Z2)2,

D = B � C, X4 = B � C,

Z4 = D � (C + D(a + 2)=4) )

2(X2:Z2) = (X4:Z4).

(X3:Z3)� (X2:Z2) = (X1:Z1),

E = (X3 � Z3) � (X2 + Z2),

F = (X3 + Z3) � (X2 � Z2),

X5 = Z1 � (E + F )2,

Z5 = X1 � (E � F )2 )

(X3:Z3) + (X2:Z2) = (X5:Z5).



Projective for Weierstrass

1986 Chudnovsky–Chudnovsky:

Speed up ADD by switching from

(X=Z2; Y=Z3) to (X=Z; Y=Z).

7M + 3S for DBL if a = �3.

12M + 2S for ADD.

12M + 2S for reADD.

Option has been mostly ignored:

DBL dominates in ECDH etc.

But ADD dominates in

some applications: e.g.,

batch signature verification.

Montgomery curves

1987 Montgomery:

Use by2 = x3 + ax2 + x.

Choose small (a + 2)=4.

2(x2; y2) = (x4; y4)

) x4 =
(x2

2 � 1)2

4x2(x2
2 + ax2 + 1)

.

(x3; y3)� (x2; y2) = (x1; y1),

(x3; y3) + (x2; y2) = (x5; y5)

) x5 =
(x2x3 � 1)2

x1(x2 � x3)2
.

Represent (x; y)

as (X:Z) satisfying x = X=Z.

B = (X2 + Z2)2,

C = (X2 � Z2)2,

D = B � C, X4 = B � C,

Z4 = D � (C + D(a + 2)=4) )

2(X2:Z2) = (X4:Z4).

(X3:Z3)� (X2:Z2) = (X1:Z1),

E = (X3 � Z3) � (X2 + Z2),

F = (X3 + Z3) � (X2 � Z2),

X5 = Z1 � (E + F )2,

Z5 = X1 � (E � F )2 )

(X3:Z3) + (X2:Z2) = (X5:Z5).



Projective for Weierstrass

1986 Chudnovsky–Chudnovsky:

Speed up ADD by switching from

(X=Z2; Y=Z3) to (X=Z; Y=Z).

7M + 3S for DBL if a = �3.

12M + 2S for ADD.

12M + 2S for reADD.

Option has been mostly ignored:

DBL dominates in ECDH etc.

But ADD dominates in

some applications: e.g.,

batch signature verification.

Montgomery curves

1987 Montgomery:

Use by2 = x3 + ax2 + x.

Choose small (a + 2)=4.

2(x2; y2) = (x4; y4)

) x4 =
(x2

2 � 1)2

4x2(x2
2 + ax2 + 1)

.

(x3; y3)� (x2; y2) = (x1; y1),

(x3; y3) + (x2; y2) = (x5; y5)

) x5 =
(x2x3 � 1)2

x1(x2 � x3)2
.

Represent (x; y)

as (X:Z) satisfying x = X=Z.

B = (X2 + Z2)2,

C = (X2 � Z2)2,

D = B � C, X4 = B � C,

Z4 = D � (C + D(a + 2)=4) )

2(X2:Z2) = (X4:Z4).

(X3:Z3)� (X2:Z2) = (X1:Z1),

E = (X3 � Z3) � (X2 + Z2),

F = (X3 + Z3) � (X2 � Z2),

X5 = Z1 � (E + F )2,

Z5 = X1 � (E � F )2 )

(X3:Z3) + (X2:Z2) = (X5:Z5).



Montgomery curves

1987 Montgomery:

Use by2 = x3 + ax2 + x.

Choose small (a + 2)=4.

2(x2; y2) = (x4; y4)

) x4 =
(x2

2 � 1)2

4x2(x2
2 + ax2 + 1)

.

(x3; y3)� (x2; y2) = (x1; y1),

(x3; y3) + (x2; y2) = (x5; y5)

) x5 =
(x2x3 � 1)2

x1(x2 � x3)2
.

Represent (x; y)

as (X:Z) satisfying x = X=Z.

B = (X2 + Z2)2,

C = (X2 � Z2)2,

D = B � C, X4 = B � C,

Z4 = D � (C + D(a + 2)=4) )

2(X2:Z2) = (X4:Z4).

(X3:Z3)� (X2:Z2) = (X1:Z1),

E = (X3 � Z3) � (X2 + Z2),

F = (X3 + Z3) � (X2 � Z2),

X5 = Z1 � (E + F )2,

Z5 = X1 � (E � F )2 )

(X3:Z3) + (X2:Z2) = (X5:Z5).



Montgomery curves

1987 Montgomery:

Use by2 = x3 + ax2 + x.

Choose small (a + 2)=4.

2(x2; y2) = (x4; y4)

) x4 =
(x2

2 � 1)2

4x2(x2
2 + ax2 + 1)

.

(x3; y3)� (x2; y2) = (x1; y1),

(x3; y3) + (x2; y2) = (x5; y5)

) x5 =
(x2x3 � 1)2

x1(x2 � x3)2
.

Represent (x; y)

as (X:Z) satisfying x = X=Z.

B = (X2 + Z2)2,

C = (X2 � Z2)2,

D = B � C, X4 = B � C,

Z4 = D � (C + D(a + 2)=4) )

2(X2:Z2) = (X4:Z4).

(X3:Z3)� (X2:Z2) = (X1:Z1),

E = (X3 � Z3) � (X2 + Z2),

F = (X3 + Z3) � (X2 � Z2),

X5 = Z1 � (E + F )2,

Z5 = X1 � (E � F )2 )

(X3:Z3) + (X2:Z2) = (X5:Z5).

This representation

does not allow ADD but it allows

DADD, “differential addition”:

Q;R;Q� R 7! Q + R.

e.g. 2P; P; P 7! 3P .

e.g. 3P; 2P; P 7! 5P .

e.g. 6P; 5P; P 7! 11P .

2M + 2S + 1D for DBL.

4M + 2S for DADD.

Save 1M if Z1 = 1.

Easily compute n(X1 : Z1) using

� lgn DBL, � lgn DADD.

Almost as fast as Edwards nP .

Relatively slow for mP + nQ etc.



Montgomery curves

1987 Montgomery:

Use by2 = x3 + ax2 + x.

Choose small (a + 2)=4.

2(x2; y2) = (x4; y4)

) x4 =
(x2

2 � 1)2

4x2(x2
2 + ax2 + 1)

.

(x3; y3)� (x2; y2) = (x1; y1),

(x3; y3) + (x2; y2) = (x5; y5)

) x5 =
(x2x3 � 1)2

x1(x2 � x3)2
.

Represent (x; y)

as (X:Z) satisfying x = X=Z.

B = (X2 + Z2)2,

C = (X2 � Z2)2,

D = B � C, X4 = B � C,

Z4 = D � (C + D(a + 2)=4) )

2(X2:Z2) = (X4:Z4).

(X3:Z3)� (X2:Z2) = (X1:Z1),

E = (X3 � Z3) � (X2 + Z2),

F = (X3 + Z3) � (X2 � Z2),

X5 = Z1 � (E + F )2,

Z5 = X1 � (E � F )2 )

(X3:Z3) + (X2:Z2) = (X5:Z5).

This representation

does not allow ADD but it allows

DADD, “differential addition”:

Q;R;Q� R 7! Q + R.

e.g. 2P; P; P 7! 3P .

e.g. 3P; 2P; P 7! 5P .

e.g. 6P; 5P; P 7! 11P .

2M + 2S + 1D for DBL.

4M + 2S for DADD.

Save 1M if Z1 = 1.

Easily compute n(X1 : Z1) using

� lgn DBL, � lgn DADD.

Almost as fast as Edwards nP .

Relatively slow for mP + nQ etc.



Montgomery curves

1987 Montgomery:

Use by2 = x3 + ax2 + x.

Choose small (a + 2)=4.

2(x2; y2) = (x4; y4)

) x4 =
(x2

2 � 1)2

4x2(x2
2 + ax2 + 1)

.

(x3; y3)� (x2; y2) = (x1; y1),

(x3; y3) + (x2; y2) = (x5; y5)

) x5 =
(x2x3 � 1)2

x1(x2 � x3)2
.

Represent (x; y)

as (X:Z) satisfying x = X=Z.

B = (X2 + Z2)2,

C = (X2 � Z2)2,

D = B � C, X4 = B � C,

Z4 = D � (C + D(a + 2)=4) )

2(X2:Z2) = (X4:Z4).

(X3:Z3)� (X2:Z2) = (X1:Z1),

E = (X3 � Z3) � (X2 + Z2),

F = (X3 + Z3) � (X2 � Z2),

X5 = Z1 � (E + F )2,

Z5 = X1 � (E � F )2 )

(X3:Z3) + (X2:Z2) = (X5:Z5).

This representation

does not allow ADD but it allows

DADD, “differential addition”:

Q;R;Q� R 7! Q + R.

e.g. 2P; P; P 7! 3P .

e.g. 3P; 2P; P 7! 5P .

e.g. 6P; 5P; P 7! 11P .

2M + 2S + 1D for DBL.

4M + 2S for DADD.

Save 1M if Z1 = 1.

Easily compute n(X1 : Z1) using

� lgn DBL, � lgn DADD.

Almost as fast as Edwards nP .

Relatively slow for mP + nQ etc.



Represent (x; y)

as (X:Z) satisfying x = X=Z.

B = (X2 + Z2)2,

C = (X2 � Z2)2,

D = B � C, X4 = B � C,

Z4 = D � (C + D(a + 2)=4) )

2(X2:Z2) = (X4:Z4).

(X3:Z3)� (X2:Z2) = (X1:Z1),

E = (X3 � Z3) � (X2 + Z2),

F = (X3 + Z3) � (X2 � Z2),

X5 = Z1 � (E + F )2,

Z5 = X1 � (E � F )2 )

(X3:Z3) + (X2:Z2) = (X5:Z5).

This representation

does not allow ADD but it allows

DADD, “differential addition”:

Q;R;Q� R 7! Q + R.

e.g. 2P; P; P 7! 3P .

e.g. 3P; 2P; P 7! 5P .

e.g. 6P; 5P; P 7! 11P .

2M + 2S + 1D for DBL.

4M + 2S for DADD.

Save 1M if Z1 = 1.

Easily compute n(X1 : Z1) using

� lgn DBL, � lgn DADD.

Almost as fast as Edwards nP .

Relatively slow for mP + nQ etc.



Represent (x; y)

as (X:Z) satisfying x = X=Z.

B = (X2 + Z2)2,

C = (X2 � Z2)2,

D = B � C, X4 = B � C,

Z4 = D � (C + D(a + 2)=4) )

2(X2:Z2) = (X4:Z4).

(X3:Z3)� (X2:Z2) = (X1:Z1),

E = (X3 � Z3) � (X2 + Z2),

F = (X3 + Z3) � (X2 � Z2),

X5 = Z1 � (E + F )2,

Z5 = X1 � (E � F )2 )

(X3:Z3) + (X2:Z2) = (X5:Z5).

This representation

does not allow ADD but it allows

DADD, “differential addition”:

Q;R;Q� R 7! Q + R.

e.g. 2P; P; P 7! 3P .

e.g. 3P; 2P; P 7! 5P .

e.g. 6P; 5P; P 7! 11P .

2M + 2S + 1D for DBL.

4M + 2S for DADD.

Save 1M if Z1 = 1.

Easily compute n(X1 : Z1) using

� lgn DBL, � lgn DADD.

Almost as fast as Edwards nP .

Relatively slow for mP + nQ etc.

Doubling-oriented curves

2006 Doche–Icart–Kohel:

Use y2 = x3 + ax2 + 16ax.

Choose small a.

Use (X : Y : Z : Z2)

to represent (X=Z; Y=Z2).

3M + 4S + 2D for DBL.

How? Factor DBL as '̂(')

where ' is a 2-isogeny.

2007 Bernstein–Lange:

2M + 5S + 2D for DBL

on the same curves.



Represent (x; y)

as (X:Z) satisfying x = X=Z.

B = (X2 + Z2)2,

C = (X2 � Z2)2,

D = B � C, X4 = B � C,

Z4 = D � (C + D(a + 2)=4) )

2(X2:Z2) = (X4:Z4).

(X3:Z3)� (X2:Z2) = (X1:Z1),

E = (X3 � Z3) � (X2 + Z2),

F = (X3 + Z3) � (X2 � Z2),

X5 = Z1 � (E + F )2,

Z5 = X1 � (E � F )2 )

(X3:Z3) + (X2:Z2) = (X5:Z5).

This representation

does not allow ADD but it allows

DADD, “differential addition”:

Q;R;Q� R 7! Q + R.

e.g. 2P; P; P 7! 3P .

e.g. 3P; 2P; P 7! 5P .

e.g. 6P; 5P; P 7! 11P .

2M + 2S + 1D for DBL.

4M + 2S for DADD.

Save 1M if Z1 = 1.

Easily compute n(X1 : Z1) using

� lgn DBL, � lgn DADD.

Almost as fast as Edwards nP .

Relatively slow for mP + nQ etc.

Doubling-oriented curves

2006 Doche–Icart–Kohel:

Use y2 = x3 + ax2 + 16ax.

Choose small a.

Use (X : Y : Z : Z2)

to represent (X=Z; Y=Z2).

3M + 4S + 2D for DBL.

How? Factor DBL as '̂(')

where ' is a 2-isogeny.

2007 Bernstein–Lange:

2M + 5S + 2D for DBL

on the same curves.



Represent (x; y)

as (X:Z) satisfying x = X=Z.

B = (X2 + Z2)2,

C = (X2 � Z2)2,

D = B � C, X4 = B � C,

Z4 = D � (C + D(a + 2)=4) )

2(X2:Z2) = (X4:Z4).

(X3:Z3)� (X2:Z2) = (X1:Z1),

E = (X3 � Z3) � (X2 + Z2),

F = (X3 + Z3) � (X2 � Z2),

X5 = Z1 � (E + F )2,

Z5 = X1 � (E � F )2 )

(X3:Z3) + (X2:Z2) = (X5:Z5).

This representation

does not allow ADD but it allows

DADD, “differential addition”:

Q;R;Q� R 7! Q + R.

e.g. 2P; P; P 7! 3P .

e.g. 3P; 2P; P 7! 5P .

e.g. 6P; 5P; P 7! 11P .

2M + 2S + 1D for DBL.

4M + 2S for DADD.

Save 1M if Z1 = 1.

Easily compute n(X1 : Z1) using

� lgn DBL, � lgn DADD.

Almost as fast as Edwards nP .

Relatively slow for mP + nQ etc.

Doubling-oriented curves

2006 Doche–Icart–Kohel:

Use y2 = x3 + ax2 + 16ax.

Choose small a.

Use (X : Y : Z : Z2)

to represent (X=Z; Y=Z2).

3M + 4S + 2D for DBL.

How? Factor DBL as '̂(')

where ' is a 2-isogeny.

2007 Bernstein–Lange:

2M + 5S + 2D for DBL

on the same curves.



This representation

does not allow ADD but it allows

DADD, “differential addition”:

Q;R;Q� R 7! Q + R.

e.g. 2P; P; P 7! 3P .

e.g. 3P; 2P; P 7! 5P .

e.g. 6P; 5P; P 7! 11P .

2M + 2S + 1D for DBL.

4M + 2S for DADD.

Save 1M if Z1 = 1.

Easily compute n(X1 : Z1) using

� lgn DBL, � lgn DADD.

Almost as fast as Edwards nP .

Relatively slow for mP + nQ etc.

Doubling-oriented curves

2006 Doche–Icart–Kohel:

Use y2 = x3 + ax2 + 16ax.

Choose small a.

Use (X : Y : Z : Z2)

to represent (X=Z; Y=Z2).

3M + 4S + 2D for DBL.

How? Factor DBL as '̂(')

where ' is a 2-isogeny.

2007 Bernstein–Lange:

2M + 5S + 2D for DBL

on the same curves.



This representation

does not allow ADD but it allows

DADD, “differential addition”:

Q;R;Q� R 7! Q + R.

e.g. 2P; P; P 7! 3P .

e.g. 3P; 2P; P 7! 5P .

e.g. 6P; 5P; P 7! 11P .

2M + 2S + 1D for DBL.

4M + 2S for DADD.

Save 1M if Z1 = 1.

Easily compute n(X1 : Z1) using

� lgn DBL, � lgn DADD.

Almost as fast as Edwards nP .

Relatively slow for mP + nQ etc.

Doubling-oriented curves

2006 Doche–Icart–Kohel:

Use y2 = x3 + ax2 + 16ax.

Choose small a.

Use (X : Y : Z : Z2)

to represent (X=Z; Y=Z2).

3M + 4S + 2D for DBL.

How? Factor DBL as '̂(')

where ' is a 2-isogeny.

2007 Bernstein–Lange:

2M + 5S + 2D for DBL

on the same curves.

12M + 5S + 1D for ADD.

Slower ADD than other systems,

typically outweighing benefit

of the very fast DBL.

But isogenies are useful.

Example, 2005 Gaudry:

fast DBL+DADD on Jacobians of

genus-2 hyperelliptic curves,

using similar factorization.

Tricky but potentially helpful:

tripling-oriented curves

(see 2006 Doche–Icart–Kohel),

double-base chains, : : :



This representation

does not allow ADD but it allows

DADD, “differential addition”:

Q;R;Q� R 7! Q + R.

e.g. 2P; P; P 7! 3P .

e.g. 3P; 2P; P 7! 5P .

e.g. 6P; 5P; P 7! 11P .

2M + 2S + 1D for DBL.

4M + 2S for DADD.

Save 1M if Z1 = 1.

Easily compute n(X1 : Z1) using

� lgn DBL, � lgn DADD.

Almost as fast as Edwards nP .

Relatively slow for mP + nQ etc.

Doubling-oriented curves

2006 Doche–Icart–Kohel:

Use y2 = x3 + ax2 + 16ax.

Choose small a.

Use (X : Y : Z : Z2)

to represent (X=Z; Y=Z2).

3M + 4S + 2D for DBL.

How? Factor DBL as '̂(')

where ' is a 2-isogeny.

2007 Bernstein–Lange:

2M + 5S + 2D for DBL

on the same curves.

12M + 5S + 1D for ADD.

Slower ADD than other systems,

typically outweighing benefit

of the very fast DBL.

But isogenies are useful.

Example, 2005 Gaudry:

fast DBL+DADD on Jacobians of

genus-2 hyperelliptic curves,

using similar factorization.

Tricky but potentially helpful:

tripling-oriented curves

(see 2006 Doche–Icart–Kohel),

double-base chains, : : :



This representation

does not allow ADD but it allows

DADD, “differential addition”:

Q;R;Q� R 7! Q + R.

e.g. 2P; P; P 7! 3P .

e.g. 3P; 2P; P 7! 5P .

e.g. 6P; 5P; P 7! 11P .

2M + 2S + 1D for DBL.

4M + 2S for DADD.

Save 1M if Z1 = 1.

Easily compute n(X1 : Z1) using

� lgn DBL, � lgn DADD.

Almost as fast as Edwards nP .

Relatively slow for mP + nQ etc.

Doubling-oriented curves

2006 Doche–Icart–Kohel:

Use y2 = x3 + ax2 + 16ax.

Choose small a.

Use (X : Y : Z : Z2)

to represent (X=Z; Y=Z2).

3M + 4S + 2D for DBL.

How? Factor DBL as '̂(')

where ' is a 2-isogeny.

2007 Bernstein–Lange:

2M + 5S + 2D for DBL

on the same curves.

12M + 5S + 1D for ADD.

Slower ADD than other systems,

typically outweighing benefit

of the very fast DBL.

But isogenies are useful.

Example, 2005 Gaudry:

fast DBL+DADD on Jacobians of

genus-2 hyperelliptic curves,

using similar factorization.

Tricky but potentially helpful:

tripling-oriented curves

(see 2006 Doche–Icart–Kohel),

double-base chains, : : :



Doubling-oriented curves

2006 Doche–Icart–Kohel:

Use y2 = x3 + ax2 + 16ax.

Choose small a.

Use (X : Y : Z : Z2)

to represent (X=Z; Y=Z2).

3M + 4S + 2D for DBL.

How? Factor DBL as '̂(')

where ' is a 2-isogeny.

2007 Bernstein–Lange:

2M + 5S + 2D for DBL

on the same curves.

12M + 5S + 1D for ADD.

Slower ADD than other systems,

typically outweighing benefit

of the very fast DBL.

But isogenies are useful.

Example, 2005 Gaudry:

fast DBL+DADD on Jacobians of

genus-2 hyperelliptic curves,

using similar factorization.

Tricky but potentially helpful:

tripling-oriented curves

(see 2006 Doche–Icart–Kohel),

double-base chains, : : :



Doubling-oriented curves

2006 Doche–Icart–Kohel:

Use y2 = x3 + ax2 + 16ax.

Choose small a.

Use (X : Y : Z : Z2)

to represent (X=Z; Y=Z2).

3M + 4S + 2D for DBL.

How? Factor DBL as '̂(')

where ' is a 2-isogeny.

2007 Bernstein–Lange:

2M + 5S + 2D for DBL

on the same curves.

12M + 5S + 1D for ADD.

Slower ADD than other systems,

typically outweighing benefit

of the very fast DBL.

But isogenies are useful.

Example, 2005 Gaudry:

fast DBL+DADD on Jacobians of

genus-2 hyperelliptic curves,

using similar factorization.

Tricky but potentially helpful:

tripling-oriented curves

(see 2006 Doche–Icart–Kohel),

double-base chains, : : :

Hessian curves

Credited to Sylvester

by 1986 Chudnovsky–Chudnovsky:

(X : Y : Z) represent (X=Z; Y=Z)

on x3 + y3 + 1 = 3dxy.

12M for ADD:

X3 = Y1X2 � Y1Z2 � Z1Y2 �X1Y2,

Y3 = X1Z2 �X1Y2 � Y1X2 � Z1X2,

Z3 = Z1Y2 � Z1X2 �X1Z2 � Y1Z2.

6M + 3S for DBL.



Doubling-oriented curves

2006 Doche–Icart–Kohel:

Use y2 = x3 + ax2 + 16ax.

Choose small a.

Use (X : Y : Z : Z2)

to represent (X=Z; Y=Z2).

3M + 4S + 2D for DBL.

How? Factor DBL as '̂(')

where ' is a 2-isogeny.

2007 Bernstein–Lange:

2M + 5S + 2D for DBL

on the same curves.

12M + 5S + 1D for ADD.

Slower ADD than other systems,

typically outweighing benefit

of the very fast DBL.

But isogenies are useful.

Example, 2005 Gaudry:

fast DBL+DADD on Jacobians of

genus-2 hyperelliptic curves,

using similar factorization.

Tricky but potentially helpful:

tripling-oriented curves

(see 2006 Doche–Icart–Kohel),

double-base chains, : : :

Hessian curves

Credited to Sylvester

by 1986 Chudnovsky–Chudnovsky:

(X : Y : Z) represent (X=Z; Y=Z)

on x3 + y3 + 1 = 3dxy.

12M for ADD:

X3 = Y1X2 � Y1Z2 � Z1Y2 �X1Y2,

Y3 = X1Z2 �X1Y2 � Y1X2 � Z1X2,

Z3 = Z1Y2 � Z1X2 �X1Z2 � Y1Z2.

6M + 3S for DBL.



Doubling-oriented curves

2006 Doche–Icart–Kohel:

Use y2 = x3 + ax2 + 16ax.

Choose small a.

Use (X : Y : Z : Z2)

to represent (X=Z; Y=Z2).

3M + 4S + 2D for DBL.

How? Factor DBL as '̂(')

where ' is a 2-isogeny.

2007 Bernstein–Lange:

2M + 5S + 2D for DBL

on the same curves.

12M + 5S + 1D for ADD.

Slower ADD than other systems,

typically outweighing benefit

of the very fast DBL.

But isogenies are useful.

Example, 2005 Gaudry:

fast DBL+DADD on Jacobians of

genus-2 hyperelliptic curves,

using similar factorization.

Tricky but potentially helpful:

tripling-oriented curves

(see 2006 Doche–Icart–Kohel),

double-base chains, : : :

Hessian curves

Credited to Sylvester

by 1986 Chudnovsky–Chudnovsky:

(X : Y : Z) represent (X=Z; Y=Z)

on x3 + y3 + 1 = 3dxy.

12M for ADD:

X3 = Y1X2 � Y1Z2 � Z1Y2 �X1Y2,

Y3 = X1Z2 �X1Y2 � Y1X2 � Z1X2,

Z3 = Z1Y2 � Z1X2 �X1Z2 � Y1Z2.

6M + 3S for DBL.



12M + 5S + 1D for ADD.

Slower ADD than other systems,

typically outweighing benefit

of the very fast DBL.

But isogenies are useful.

Example, 2005 Gaudry:

fast DBL+DADD on Jacobians of

genus-2 hyperelliptic curves,

using similar factorization.

Tricky but potentially helpful:

tripling-oriented curves

(see 2006 Doche–Icart–Kohel),

double-base chains, : : :

Hessian curves

Credited to Sylvester

by 1986 Chudnovsky–Chudnovsky:

(X : Y : Z) represent (X=Z; Y=Z)

on x3 + y3 + 1 = 3dxy.

12M for ADD:

X3 = Y1X2 � Y1Z2 � Z1Y2 �X1Y2,

Y3 = X1Z2 �X1Y2 � Y1X2 � Z1X2,

Z3 = Z1Y2 � Z1X2 �X1Z2 � Y1Z2.

6M + 3S for DBL.



12M + 5S + 1D for ADD.

Slower ADD than other systems,

typically outweighing benefit

of the very fast DBL.

But isogenies are useful.

Example, 2005 Gaudry:

fast DBL+DADD on Jacobians of

genus-2 hyperelliptic curves,

using similar factorization.

Tricky but potentially helpful:

tripling-oriented curves

(see 2006 Doche–Icart–Kohel),

double-base chains, : : :

Hessian curves

Credited to Sylvester

by 1986 Chudnovsky–Chudnovsky:

(X : Y : Z) represent (X=Z; Y=Z)

on x3 + y3 + 1 = 3dxy.

12M for ADD:

X3 = Y1X2 � Y1Z2 � Z1Y2 �X1Y2,

Y3 = X1Z2 �X1Y2 � Y1X2 � Z1X2,

Z3 = Z1Y2 � Z1X2 �X1Z2 � Y1Z2.

6M + 3S for DBL.

2001 Joye–Quisquater:

2(X1 : Y1 : Z1) =

(Z1 : X1 : Y1) + (Y1 : Z1 : X1)

so can use ADD to double.

“Unified addition formulas,”

helpful against side channels.

But need to permute inputs.

2009 Bernstein–Kohel–Lange:

Easily avoid permutation!

2008 Hisil–Wong–Carter–Dawson:

(X : Y : Z : X2 : Y 2 : Z2

: 2XY : 2XZ : 2Y Z).

6M + 6S for ADD.

3M + 6S for DBL.



12M + 5S + 1D for ADD.

Slower ADD than other systems,

typically outweighing benefit

of the very fast DBL.

But isogenies are useful.

Example, 2005 Gaudry:

fast DBL+DADD on Jacobians of

genus-2 hyperelliptic curves,

using similar factorization.

Tricky but potentially helpful:

tripling-oriented curves

(see 2006 Doche–Icart–Kohel),

double-base chains, : : :

Hessian curves

Credited to Sylvester

by 1986 Chudnovsky–Chudnovsky:

(X : Y : Z) represent (X=Z; Y=Z)

on x3 + y3 + 1 = 3dxy.

12M for ADD:

X3 = Y1X2 � Y1Z2 � Z1Y2 �X1Y2,

Y3 = X1Z2 �X1Y2 � Y1X2 � Z1X2,

Z3 = Z1Y2 � Z1X2 �X1Z2 � Y1Z2.

6M + 3S for DBL.

2001 Joye–Quisquater:

2(X1 : Y1 : Z1) =

(Z1 : X1 : Y1) + (Y1 : Z1 : X1)

so can use ADD to double.

“Unified addition formulas,”

helpful against side channels.

But need to permute inputs.

2009 Bernstein–Kohel–Lange:

Easily avoid permutation!

2008 Hisil–Wong–Carter–Dawson:

(X : Y : Z : X2 : Y 2 : Z2

: 2XY : 2XZ : 2Y Z).

6M + 6S for ADD.

3M + 6S for DBL.



12M + 5S + 1D for ADD.

Slower ADD than other systems,

typically outweighing benefit

of the very fast DBL.

But isogenies are useful.

Example, 2005 Gaudry:

fast DBL+DADD on Jacobians of

genus-2 hyperelliptic curves,

using similar factorization.

Tricky but potentially helpful:

tripling-oriented curves

(see 2006 Doche–Icart–Kohel),

double-base chains, : : :

Hessian curves

Credited to Sylvester

by 1986 Chudnovsky–Chudnovsky:

(X : Y : Z) represent (X=Z; Y=Z)

on x3 + y3 + 1 = 3dxy.

12M for ADD:

X3 = Y1X2 � Y1Z2 � Z1Y2 �X1Y2,

Y3 = X1Z2 �X1Y2 � Y1X2 � Z1X2,

Z3 = Z1Y2 � Z1X2 �X1Z2 � Y1Z2.

6M + 3S for DBL.

2001 Joye–Quisquater:

2(X1 : Y1 : Z1) =

(Z1 : X1 : Y1) + (Y1 : Z1 : X1)

so can use ADD to double.

“Unified addition formulas,”

helpful against side channels.

But need to permute inputs.

2009 Bernstein–Kohel–Lange:

Easily avoid permutation!

2008 Hisil–Wong–Carter–Dawson:

(X : Y : Z : X2 : Y 2 : Z2

: 2XY : 2XZ : 2Y Z).

6M + 6S for ADD.

3M + 6S for DBL.



Hessian curves

Credited to Sylvester

by 1986 Chudnovsky–Chudnovsky:

(X : Y : Z) represent (X=Z; Y=Z)

on x3 + y3 + 1 = 3dxy.

12M for ADD:

X3 = Y1X2 � Y1Z2 � Z1Y2 �X1Y2,

Y3 = X1Z2 �X1Y2 � Y1X2 � Z1X2,

Z3 = Z1Y2 � Z1X2 �X1Z2 � Y1Z2.

6M + 3S for DBL.

2001 Joye–Quisquater:

2(X1 : Y1 : Z1) =

(Z1 : X1 : Y1) + (Y1 : Z1 : X1)

so can use ADD to double.

“Unified addition formulas,”

helpful against side channels.

But need to permute inputs.

2009 Bernstein–Kohel–Lange:

Easily avoid permutation!

2008 Hisil–Wong–Carter–Dawson:

(X : Y : Z : X2 : Y 2 : Z2

: 2XY : 2XZ : 2Y Z).

6M + 6S for ADD.

3M + 6S for DBL.



Hessian curves

Credited to Sylvester

by 1986 Chudnovsky–Chudnovsky:

(X : Y : Z) represent (X=Z; Y=Z)

on x3 + y3 + 1 = 3dxy.

12M for ADD:

X3 = Y1X2 � Y1Z2 � Z1Y2 �X1Y2,

Y3 = X1Z2 �X1Y2 � Y1X2 � Z1X2,

Z3 = Z1Y2 � Z1X2 �X1Z2 � Y1Z2.

6M + 3S for DBL.

2001 Joye–Quisquater:

2(X1 : Y1 : Z1) =

(Z1 : X1 : Y1) + (Y1 : Z1 : X1)

so can use ADD to double.

“Unified addition formulas,”

helpful against side channels.

But need to permute inputs.

2009 Bernstein–Kohel–Lange:

Easily avoid permutation!

2008 Hisil–Wong–Carter–Dawson:

(X : Y : Z : X2 : Y 2 : Z2

: 2XY : 2XZ : 2Y Z).

6M + 6S for ADD.

3M + 6S for DBL.

x3 � y3 + 1 = 0:3xy



Hessian curves

Credited to Sylvester

by 1986 Chudnovsky–Chudnovsky:

(X : Y : Z) represent (X=Z; Y=Z)

on x3 + y3 + 1 = 3dxy.

12M for ADD:

X3 = Y1X2 � Y1Z2 � Z1Y2 �X1Y2,

Y3 = X1Z2 �X1Y2 � Y1X2 � Z1X2,

Z3 = Z1Y2 � Z1X2 �X1Z2 � Y1Z2.

6M + 3S for DBL.

2001 Joye–Quisquater:

2(X1 : Y1 : Z1) =

(Z1 : X1 : Y1) + (Y1 : Z1 : X1)

so can use ADD to double.

“Unified addition formulas,”

helpful against side channels.

But need to permute inputs.

2009 Bernstein–Kohel–Lange:

Easily avoid permutation!

2008 Hisil–Wong–Carter–Dawson:

(X : Y : Z : X2 : Y 2 : Z2

: 2XY : 2XZ : 2Y Z).

6M + 6S for ADD.

3M + 6S for DBL.

x3 � y3 + 1 = 0:3xy



Hessian curves

Credited to Sylvester

by 1986 Chudnovsky–Chudnovsky:

(X : Y : Z) represent (X=Z; Y=Z)

on x3 + y3 + 1 = 3dxy.

12M for ADD:

X3 = Y1X2 � Y1Z2 � Z1Y2 �X1Y2,

Y3 = X1Z2 �X1Y2 � Y1X2 � Z1X2,

Z3 = Z1Y2 � Z1X2 �X1Z2 � Y1Z2.

6M + 3S for DBL.

2001 Joye–Quisquater:

2(X1 : Y1 : Z1) =

(Z1 : X1 : Y1) + (Y1 : Z1 : X1)

so can use ADD to double.

“Unified addition formulas,”

helpful against side channels.

But need to permute inputs.

2009 Bernstein–Kohel–Lange:

Easily avoid permutation!

2008 Hisil–Wong–Carter–Dawson:

(X : Y : Z : X2 : Y 2 : Z2

: 2XY : 2XZ : 2Y Z).

6M + 6S for ADD.

3M + 6S for DBL.

x3 � y3 + 1 = 0:3xy



2001 Joye–Quisquater:

2(X1 : Y1 : Z1) =

(Z1 : X1 : Y1) + (Y1 : Z1 : X1)

so can use ADD to double.

“Unified addition formulas,”

helpful against side channels.

But need to permute inputs.

2009 Bernstein–Kohel–Lange:

Easily avoid permutation!

2008 Hisil–Wong–Carter–Dawson:

(X : Y : Z : X2 : Y 2 : Z2

: 2XY : 2XZ : 2Y Z).

6M + 6S for ADD.

3M + 6S for DBL.

x3 � y3 + 1 = 0:3xy



2001 Joye–Quisquater:

2(X1 : Y1 : Z1) =

(Z1 : X1 : Y1) + (Y1 : Z1 : X1)

so can use ADD to double.

“Unified addition formulas,”

helpful against side channels.

But need to permute inputs.

2009 Bernstein–Kohel–Lange:

Easily avoid permutation!

2008 Hisil–Wong–Carter–Dawson:

(X : Y : Z : X2 : Y 2 : Z2

: 2XY : 2XZ : 2Y Z).

6M + 6S for ADD.

3M + 6S for DBL.

x3 � y3 + 1 = 0:3xy



2001 Joye–Quisquater:

2(X1 : Y1 : Z1) =

(Z1 : X1 : Y1) + (Y1 : Z1 : X1)

so can use ADD to double.

“Unified addition formulas,”

helpful against side channels.

But need to permute inputs.

2009 Bernstein–Kohel–Lange:

Easily avoid permutation!

2008 Hisil–Wong–Carter–Dawson:

(X : Y : Z : X2 : Y 2 : Z2

: 2XY : 2XZ : 2Y Z).

6M + 6S for ADD.

3M + 6S for DBL.

x3 � y3 + 1 = 0:3xy



2001 Joye–Quisquater:

2(X1 : Y1 : Z1) =

(Z1 : X1 : Y1) + (Y1 : Z1 : X1)

so can use ADD to double.

“Unified addition formulas,”

helpful against side channels.

But need to permute inputs.

2009 Bernstein–Kohel–Lange:

Easily avoid permutation!

2008 Hisil–Wong–Carter–Dawson:

(X : Y : Z : X2 : Y 2 : Z2

: 2XY : 2XZ : 2Y Z).

6M + 6S for ADD.

3M + 6S for DBL.

x3 � y3 + 1 = 0:3xy



x3 � y3 + 1 = 0:3xy



x3 � y3 + 1 = 0:3xy

Jacobi intersections

1986 Chudnovsky–Chudnovsky:

(S : C : D : Z) represent

(S=Z; C=Z;D=Z) on

s2 + c2 = 1, as2 + d2 = 1.

14M + 2S + 1D for ADD.

“Tremendous advantage”

of being strongly unified.

5M + 3S for DBL.

“Perhaps (?) : : : the most

efficient duplication formulas

which do not depend on the

coefficients of an elliptic curve.”



x3 � y3 + 1 = 0:3xy

Jacobi intersections

1986 Chudnovsky–Chudnovsky:

(S : C : D : Z) represent

(S=Z; C=Z;D=Z) on

s2 + c2 = 1, as2 + d2 = 1.

14M + 2S + 1D for ADD.

“Tremendous advantage”

of being strongly unified.

5M + 3S for DBL.

“Perhaps (?) : : : the most

efficient duplication formulas

which do not depend on the

coefficients of an elliptic curve.”



x3 � y3 + 1 = 0:3xy

Jacobi intersections

1986 Chudnovsky–Chudnovsky:

(S : C : D : Z) represent

(S=Z; C=Z;D=Z) on

s2 + c2 = 1, as2 + d2 = 1.

14M + 2S + 1D for ADD.

“Tremendous advantage”

of being strongly unified.

5M + 3S for DBL.

“Perhaps (?) : : : the most

efficient duplication formulas

which do not depend on the

coefficients of an elliptic curve.”



Jacobi intersections

1986 Chudnovsky–Chudnovsky:

(S : C : D : Z) represent

(S=Z; C=Z;D=Z) on

s2 + c2 = 1, as2 + d2 = 1.

14M + 2S + 1D for ADD.

“Tremendous advantage”

of being strongly unified.

5M + 3S for DBL.

“Perhaps (?) : : : the most

efficient duplication formulas

which do not depend on the

coefficients of an elliptic curve.”



Jacobi intersections

1986 Chudnovsky–Chudnovsky:

(S : C : D : Z) represent

(S=Z; C=Z;D=Z) on

s2 + c2 = 1, as2 + d2 = 1.

14M + 2S + 1D for ADD.

“Tremendous advantage”

of being strongly unified.

5M + 3S for DBL.

“Perhaps (?) : : : the most

efficient duplication formulas

which do not depend on the

coefficients of an elliptic curve.”

2001 Liardet–Smart:

13M + 2S + 1D for ADD.

4M + 3S for DBL.

2007 Bernstein–Lange:

3M + 4S for DBL.

2008 Hisil–Wong–Carter–Dawson:

13M + 1S + 2D for ADD.

2M + 5S + 1D for DBL.

Also (S : C : D : Z : SC : DZ):

11M + 1S + 2D for ADD.

2M + 5S + 1D for DBL.



Jacobi intersections

1986 Chudnovsky–Chudnovsky:

(S : C : D : Z) represent

(S=Z; C=Z;D=Z) on

s2 + c2 = 1, as2 + d2 = 1.

14M + 2S + 1D for ADD.

“Tremendous advantage”

of being strongly unified.

5M + 3S for DBL.

“Perhaps (?) : : : the most

efficient duplication formulas

which do not depend on the

coefficients of an elliptic curve.”

2001 Liardet–Smart:

13M + 2S + 1D for ADD.

4M + 3S for DBL.

2007 Bernstein–Lange:

3M + 4S for DBL.

2008 Hisil–Wong–Carter–Dawson:

13M + 1S + 2D for ADD.

2M + 5S + 1D for DBL.

Also (S : C : D : Z : SC : DZ):

11M + 1S + 2D for ADD.

2M + 5S + 1D for DBL.



Jacobi intersections

1986 Chudnovsky–Chudnovsky:

(S : C : D : Z) represent

(S=Z; C=Z;D=Z) on

s2 + c2 = 1, as2 + d2 = 1.

14M + 2S + 1D for ADD.

“Tremendous advantage”

of being strongly unified.

5M + 3S for DBL.

“Perhaps (?) : : : the most

efficient duplication formulas

which do not depend on the

coefficients of an elliptic curve.”

2001 Liardet–Smart:

13M + 2S + 1D for ADD.

4M + 3S for DBL.

2007 Bernstein–Lange:

3M + 4S for DBL.

2008 Hisil–Wong–Carter–Dawson:

13M + 1S + 2D for ADD.

2M + 5S + 1D for DBL.

Also (S : C : D : Z : SC : DZ):

11M + 1S + 2D for ADD.

2M + 5S + 1D for DBL.



Jacobi intersections

1986 Chudnovsky–Chudnovsky:

(S : C : D : Z) represent

(S=Z; C=Z;D=Z) on

s2 + c2 = 1, as2 + d2 = 1.

14M + 2S + 1D for ADD.

“Tremendous advantage”

of being strongly unified.

5M + 3S for DBL.

“Perhaps (?) : : : the most

efficient duplication formulas

which do not depend on the

coefficients of an elliptic curve.”

2001 Liardet–Smart:

13M + 2S + 1D for ADD.

4M + 3S for DBL.

2007 Bernstein–Lange:

3M + 4S for DBL.

2008 Hisil–Wong–Carter–Dawson:

13M + 1S + 2D for ADD.

2M + 5S + 1D for DBL.

Also (S : C : D : Z : SC : DZ):

11M + 1S + 2D for ADD.

2M + 5S + 1D for DBL.



Jacobi intersections

1986 Chudnovsky–Chudnovsky:

(S : C : D : Z) represent

(S=Z; C=Z;D=Z) on

s2 + c2 = 1, as2 + d2 = 1.

14M + 2S + 1D for ADD.

“Tremendous advantage”

of being strongly unified.

5M + 3S for DBL.

“Perhaps (?) : : : the most

efficient duplication formulas

which do not depend on the

coefficients of an elliptic curve.”

2001 Liardet–Smart:

13M + 2S + 1D for ADD.

4M + 3S for DBL.

2007 Bernstein–Lange:

3M + 4S for DBL.

2008 Hisil–Wong–Carter–Dawson:

13M + 1S + 2D for ADD.

2M + 5S + 1D for DBL.

Also (S : C : D : Z : SC : DZ):

11M + 1S + 2D for ADD.

2M + 5S + 1D for DBL.

Jacobi quartics

(X:Y :Z) represent (X=Z; Y=Z2)

on y2 = x4 + 2ax2 + 1.

1986 Chudnovsky–Chudnovsky:

3M + 6S + 2D for DBL.

Slow ADD.

2002 Billet–Joye:

New choice of neutral element.

10M + 3S + 1D for ADD,

strongly unified.

2007 Bernstein–Lange:

1M + 9S + 1D for DBL.



Jacobi intersections

1986 Chudnovsky–Chudnovsky:

(S : C : D : Z) represent

(S=Z; C=Z;D=Z) on

s2 + c2 = 1, as2 + d2 = 1.

14M + 2S + 1D for ADD.

“Tremendous advantage”

of being strongly unified.

5M + 3S for DBL.

“Perhaps (?) : : : the most

efficient duplication formulas

which do not depend on the

coefficients of an elliptic curve.”

2001 Liardet–Smart:

13M + 2S + 1D for ADD.

4M + 3S for DBL.

2007 Bernstein–Lange:

3M + 4S for DBL.

2008 Hisil–Wong–Carter–Dawson:

13M + 1S + 2D for ADD.

2M + 5S + 1D for DBL.

Also (S : C : D : Z : SC : DZ):

11M + 1S + 2D for ADD.

2M + 5S + 1D for DBL.

Jacobi quartics

(X:Y :Z) represent (X=Z; Y=Z2)

on y2 = x4 + 2ax2 + 1.

1986 Chudnovsky–Chudnovsky:

3M + 6S + 2D for DBL.

Slow ADD.

2002 Billet–Joye:

New choice of neutral element.

10M + 3S + 1D for ADD,

strongly unified.

2007 Bernstein–Lange:

1M + 9S + 1D for DBL.



Jacobi intersections

1986 Chudnovsky–Chudnovsky:

(S : C : D : Z) represent

(S=Z; C=Z;D=Z) on

s2 + c2 = 1, as2 + d2 = 1.

14M + 2S + 1D for ADD.

“Tremendous advantage”

of being strongly unified.

5M + 3S for DBL.

“Perhaps (?) : : : the most

efficient duplication formulas

which do not depend on the

coefficients of an elliptic curve.”

2001 Liardet–Smart:

13M + 2S + 1D for ADD.

4M + 3S for DBL.

2007 Bernstein–Lange:

3M + 4S for DBL.

2008 Hisil–Wong–Carter–Dawson:

13M + 1S + 2D for ADD.

2M + 5S + 1D for DBL.

Also (S : C : D : Z : SC : DZ):

11M + 1S + 2D for ADD.

2M + 5S + 1D for DBL.

Jacobi quartics

(X:Y :Z) represent (X=Z; Y=Z2)

on y2 = x4 + 2ax2 + 1.

1986 Chudnovsky–Chudnovsky:

3M + 6S + 2D for DBL.

Slow ADD.

2002 Billet–Joye:

New choice of neutral element.

10M + 3S + 1D for ADD,

strongly unified.

2007 Bernstein–Lange:

1M + 9S + 1D for DBL.



2001 Liardet–Smart:

13M + 2S + 1D for ADD.

4M + 3S for DBL.

2007 Bernstein–Lange:

3M + 4S for DBL.

2008 Hisil–Wong–Carter–Dawson:

13M + 1S + 2D for ADD.

2M + 5S + 1D for DBL.

Also (S : C : D : Z : SC : DZ):

11M + 1S + 2D for ADD.

2M + 5S + 1D for DBL.

Jacobi quartics

(X:Y :Z) represent (X=Z; Y=Z2)

on y2 = x4 + 2ax2 + 1.

1986 Chudnovsky–Chudnovsky:

3M + 6S + 2D for DBL.

Slow ADD.

2002 Billet–Joye:

New choice of neutral element.

10M + 3S + 1D for ADD,

strongly unified.

2007 Bernstein–Lange:

1M + 9S + 1D for DBL.



2001 Liardet–Smart:

13M + 2S + 1D for ADD.

4M + 3S for DBL.

2007 Bernstein–Lange:

3M + 4S for DBL.

2008 Hisil–Wong–Carter–Dawson:

13M + 1S + 2D for ADD.

2M + 5S + 1D for DBL.

Also (S : C : D : Z : SC : DZ):

11M + 1S + 2D for ADD.

2M + 5S + 1D for DBL.

Jacobi quartics

(X:Y :Z) represent (X=Z; Y=Z2)

on y2 = x4 + 2ax2 + 1.

1986 Chudnovsky–Chudnovsky:

3M + 6S + 2D for DBL.

Slow ADD.

2002 Billet–Joye:

New choice of neutral element.

10M + 3S + 1D for ADD,

strongly unified.

2007 Bernstein–Lange:

1M + 9S + 1D for DBL.

2007 Hisil–Carter–Dawson:

2M + 6S + 2D for DBL.

2007 Feng–Wu:

2M + 6S + 1D for DBL.

1M + 7S + 3D for DBL

on curves chosen with a2 +c2 = 1.

More speedups: 2007 Duquesne,

2007 Hisil–Carter–Dawson,

2008 Hisil–Wong–Carter–Dawson:

use (X : Y : Z : X2 : Z2)

or (X : Y : Z : X2 : Z2 : 2XZ).

Can combine with Feng–Wu.

Competitive with Edwards!



2001 Liardet–Smart:

13M + 2S + 1D for ADD.

4M + 3S for DBL.

2007 Bernstein–Lange:

3M + 4S for DBL.

2008 Hisil–Wong–Carter–Dawson:

13M + 1S + 2D for ADD.

2M + 5S + 1D for DBL.

Also (S : C : D : Z : SC : DZ):

11M + 1S + 2D for ADD.

2M + 5S + 1D for DBL.

Jacobi quartics

(X:Y :Z) represent (X=Z; Y=Z2)

on y2 = x4 + 2ax2 + 1.

1986 Chudnovsky–Chudnovsky:

3M + 6S + 2D for DBL.

Slow ADD.

2002 Billet–Joye:

New choice of neutral element.

10M + 3S + 1D for ADD,

strongly unified.

2007 Bernstein–Lange:

1M + 9S + 1D for DBL.

2007 Hisil–Carter–Dawson:

2M + 6S + 2D for DBL.

2007 Feng–Wu:

2M + 6S + 1D for DBL.

1M + 7S + 3D for DBL

on curves chosen with a2 +c2 = 1.

More speedups: 2007 Duquesne,

2007 Hisil–Carter–Dawson,

2008 Hisil–Wong–Carter–Dawson:

use (X : Y : Z : X2 : Z2)

or (X : Y : Z : X2 : Z2 : 2XZ).

Can combine with Feng–Wu.

Competitive with Edwards!



2001 Liardet–Smart:

13M + 2S + 1D for ADD.

4M + 3S for DBL.

2007 Bernstein–Lange:

3M + 4S for DBL.

2008 Hisil–Wong–Carter–Dawson:

13M + 1S + 2D for ADD.

2M + 5S + 1D for DBL.

Also (S : C : D : Z : SC : DZ):

11M + 1S + 2D for ADD.

2M + 5S + 1D for DBL.

Jacobi quartics

(X:Y :Z) represent (X=Z; Y=Z2)

on y2 = x4 + 2ax2 + 1.

1986 Chudnovsky–Chudnovsky:

3M + 6S + 2D for DBL.

Slow ADD.

2002 Billet–Joye:

New choice of neutral element.

10M + 3S + 1D for ADD,

strongly unified.

2007 Bernstein–Lange:

1M + 9S + 1D for DBL.

2007 Hisil–Carter–Dawson:

2M + 6S + 2D for DBL.

2007 Feng–Wu:

2M + 6S + 1D for DBL.

1M + 7S + 3D for DBL

on curves chosen with a2 +c2 = 1.

More speedups: 2007 Duquesne,

2007 Hisil–Carter–Dawson,

2008 Hisil–Wong–Carter–Dawson:

use (X : Y : Z : X2 : Z2)

or (X : Y : Z : X2 : Z2 : 2XZ).

Can combine with Feng–Wu.

Competitive with Edwards!



Jacobi quartics

(X:Y :Z) represent (X=Z; Y=Z2)

on y2 = x4 + 2ax2 + 1.

1986 Chudnovsky–Chudnovsky:

3M + 6S + 2D for DBL.

Slow ADD.

2002 Billet–Joye:

New choice of neutral element.

10M + 3S + 1D for ADD,

strongly unified.

2007 Bernstein–Lange:

1M + 9S + 1D for DBL.

2007 Hisil–Carter–Dawson:

2M + 6S + 2D for DBL.

2007 Feng–Wu:

2M + 6S + 1D for DBL.

1M + 7S + 3D for DBL

on curves chosen with a2 +c2 = 1.

More speedups: 2007 Duquesne,

2007 Hisil–Carter–Dawson,

2008 Hisil–Wong–Carter–Dawson:

use (X : Y : Z : X2 : Z2)

or (X : Y : Z : X2 : Z2 : 2XZ).

Can combine with Feng–Wu.

Competitive with Edwards!



Jacobi quartics

(X:Y :Z) represent (X=Z; Y=Z2)

on y2 = x4 + 2ax2 + 1.

1986 Chudnovsky–Chudnovsky:

3M + 6S + 2D for DBL.

Slow ADD.

2002 Billet–Joye:

New choice of neutral element.

10M + 3S + 1D for ADD,

strongly unified.

2007 Bernstein–Lange:

1M + 9S + 1D for DBL.

2007 Hisil–Carter–Dawson:

2M + 6S + 2D for DBL.

2007 Feng–Wu:

2M + 6S + 1D for DBL.

1M + 7S + 3D for DBL

on curves chosen with a2 +c2 = 1.

More speedups: 2007 Duquesne,

2007 Hisil–Carter–Dawson,

2008 Hisil–Wong–Carter–Dawson:

use (X : Y : Z : X2 : Z2)

or (X : Y : Z : X2 : Z2 : 2XZ).

Can combine with Feng–Wu.

Competitive with Edwards!

x2 = y4 � 1:9y2 + 1



Jacobi quartics

(X:Y :Z) represent (X=Z; Y=Z2)

on y2 = x4 + 2ax2 + 1.

1986 Chudnovsky–Chudnovsky:

3M + 6S + 2D for DBL.

Slow ADD.

2002 Billet–Joye:

New choice of neutral element.

10M + 3S + 1D for ADD,

strongly unified.

2007 Bernstein–Lange:

1M + 9S + 1D for DBL.

2007 Hisil–Carter–Dawson:

2M + 6S + 2D for DBL.

2007 Feng–Wu:

2M + 6S + 1D for DBL.

1M + 7S + 3D for DBL

on curves chosen with a2 +c2 = 1.

More speedups: 2007 Duquesne,

2007 Hisil–Carter–Dawson,

2008 Hisil–Wong–Carter–Dawson:

use (X : Y : Z : X2 : Z2)

or (X : Y : Z : X2 : Z2 : 2XZ).

Can combine with Feng–Wu.

Competitive with Edwards!

x2 = y4 � 1:9y2 + 1



Jacobi quartics

(X:Y :Z) represent (X=Z; Y=Z2)

on y2 = x4 + 2ax2 + 1.

1986 Chudnovsky–Chudnovsky:

3M + 6S + 2D for DBL.

Slow ADD.

2002 Billet–Joye:

New choice of neutral element.

10M + 3S + 1D for ADD,

strongly unified.

2007 Bernstein–Lange:

1M + 9S + 1D for DBL.

2007 Hisil–Carter–Dawson:

2M + 6S + 2D for DBL.

2007 Feng–Wu:

2M + 6S + 1D for DBL.

1M + 7S + 3D for DBL

on curves chosen with a2 +c2 = 1.

More speedups: 2007 Duquesne,

2007 Hisil–Carter–Dawson,

2008 Hisil–Wong–Carter–Dawson:

use (X : Y : Z : X2 : Z2)

or (X : Y : Z : X2 : Z2 : 2XZ).

Can combine with Feng–Wu.

Competitive with Edwards!

x2 = y4 � 1:9y2 + 1



2007 Hisil–Carter–Dawson:

2M + 6S + 2D for DBL.

2007 Feng–Wu:

2M + 6S + 1D for DBL.

1M + 7S + 3D for DBL

on curves chosen with a2 +c2 = 1.

More speedups: 2007 Duquesne,

2007 Hisil–Carter–Dawson,

2008 Hisil–Wong–Carter–Dawson:

use (X : Y : Z : X2 : Z2)

or (X : Y : Z : X2 : Z2 : 2XZ).

Can combine with Feng–Wu.

Competitive with Edwards!

x2 = y4 � 1:9y2 + 1



2007 Hisil–Carter–Dawson:

2M + 6S + 2D for DBL.

2007 Feng–Wu:

2M + 6S + 1D for DBL.

1M + 7S + 3D for DBL

on curves chosen with a2 +c2 = 1.

More speedups: 2007 Duquesne,

2007 Hisil–Carter–Dawson,

2008 Hisil–Wong–Carter–Dawson:

use (X : Y : Z : X2 : Z2)

or (X : Y : Z : X2 : Z2 : 2XZ).

Can combine with Feng–Wu.

Competitive with Edwards!

x2 = y4 � 1:9y2 + 1



2007 Hisil–Carter–Dawson:

2M + 6S + 2D for DBL.

2007 Feng–Wu:

2M + 6S + 1D for DBL.

1M + 7S + 3D for DBL

on curves chosen with a2 +c2 = 1.

More speedups: 2007 Duquesne,

2007 Hisil–Carter–Dawson,

2008 Hisil–Wong–Carter–Dawson:

use (X : Y : Z : X2 : Z2)

or (X : Y : Z : X2 : Z2 : 2XZ).

Can combine with Feng–Wu.

Competitive with Edwards!

x2 = y4 � 1:9y2 + 1



2007 Hisil–Carter–Dawson:

2M + 6S + 2D for DBL.

2007 Feng–Wu:

2M + 6S + 1D for DBL.

1M + 7S + 3D for DBL

on curves chosen with a2 +c2 = 1.

More speedups: 2007 Duquesne,

2007 Hisil–Carter–Dawson,

2008 Hisil–Wong–Carter–Dawson:

use (X : Y : Z : X2 : Z2)

or (X : Y : Z : X2 : Z2 : 2XZ).

Can combine with Feng–Wu.

Competitive with Edwards!

x2 = y4 � 1:9y2 + 1



x2 = y4 � 1:9y2 + 1



x2 = y4 � 1:9y2 + 1



x2 = y4 � 1:9y2 + 1



x2 = y4 � 1:9y2 + 1





































More addition formulas

Explicit-Formulas Database:

hyperelliptic.org/EFD

EFD has 583 computer-verified

formulas and operation counts

for ADD, DBL, etc.

in 51 representations

on 13 shapes of elliptic curves.

Not yet handled by computer:

generality of curve shapes

(e.g., Hessian order 2 3Z);

complete addition algorithms

(e.g., checking for 1).



More addition formulas

Explicit-Formulas Database:

hyperelliptic.org/EFD

EFD has 583 computer-verified

formulas and operation counts

for ADD, DBL, etc.

in 51 representations

on 13 shapes of elliptic curves.

Not yet handled by computer:

generality of curve shapes

(e.g., Hessian order 2 3Z);

complete addition algorithms

(e.g., checking for 1).



More addition formulas

Explicit-Formulas Database:

hyperelliptic.org/EFD

EFD has 583 computer-verified

formulas and operation counts

for ADD, DBL, etc.

in 51 representations

on 13 shapes of elliptic curves.

Not yet handled by computer:

generality of curve shapes

(e.g., Hessian order 2 3Z);

complete addition algorithms

(e.g., checking for 1).



More addition formulas

Explicit-Formulas Database:

hyperelliptic.org/EFD

EFD has 583 computer-verified

formulas and operation counts

for ADD, DBL, etc.

in 51 representations

on 13 shapes of elliptic curves.

Not yet handled by computer:

generality of curve shapes

(e.g., Hessian order 2 3Z);

complete addition algorithms

(e.g., checking for 1).



More addition formulas

Explicit-Formulas Database:

hyperelliptic.org/EFD

EFD has 583 computer-verified

formulas and operation counts

for ADD, DBL, etc.

in 51 representations

on 13 shapes of elliptic curves.

Not yet handled by computer:

generality of curve shapes

(e.g., Hessian order 2 3Z);

complete addition algorithms

(e.g., checking for 1).

How to multiply big integers

Standard idea: Use polynomial

with coefficients in f0; 1; : : : ; 9g

to represent integer in radix 10.

Example of representation:

839 = 8 � 102 + 3 � 101 + 9 � 100 =

value (at t = 10) of polynomial

8t2 + 3t1 + 9t0.

Convenient to express polynomial

inside computer as array 9; 3; 8

(or 9; 3; 8; 0 or 9; 3; 8; 0; 0 or : : : ):

“p[0] = 9; p[1] = 3; p[2] = 8”



More addition formulas

Explicit-Formulas Database:

hyperelliptic.org/EFD

EFD has 583 computer-verified

formulas and operation counts

for ADD, DBL, etc.

in 51 representations

on 13 shapes of elliptic curves.

Not yet handled by computer:

generality of curve shapes

(e.g., Hessian order 2 3Z);

complete addition algorithms

(e.g., checking for 1).

How to multiply big integers

Standard idea: Use polynomial

with coefficients in f0; 1; : : : ; 9g

to represent integer in radix 10.

Example of representation:

839 = 8 � 102 + 3 � 101 + 9 � 100 =

value (at t = 10) of polynomial

8t2 + 3t1 + 9t0.

Convenient to express polynomial

inside computer as array 9; 3; 8

(or 9; 3; 8; 0 or 9; 3; 8; 0; 0 or : : : ):

“p[0] = 9; p[1] = 3; p[2] = 8”



More addition formulas

Explicit-Formulas Database:

hyperelliptic.org/EFD

EFD has 583 computer-verified

formulas and operation counts

for ADD, DBL, etc.

in 51 representations

on 13 shapes of elliptic curves.

Not yet handled by computer:

generality of curve shapes

(e.g., Hessian order 2 3Z);

complete addition algorithms

(e.g., checking for 1).

How to multiply big integers

Standard idea: Use polynomial

with coefficients in f0; 1; : : : ; 9g

to represent integer in radix 10.

Example of representation:

839 = 8 � 102 + 3 � 101 + 9 � 100 =

value (at t = 10) of polynomial

8t2 + 3t1 + 9t0.

Convenient to express polynomial

inside computer as array 9; 3; 8

(or 9; 3; 8; 0 or 9; 3; 8; 0; 0 or : : : ):

“p[0] = 9; p[1] = 3; p[2] = 8”



More addition formulas

Explicit-Formulas Database:

hyperelliptic.org/EFD

EFD has 583 computer-verified

formulas and operation counts

for ADD, DBL, etc.

in 51 representations

on 13 shapes of elliptic curves.

Not yet handled by computer:

generality of curve shapes

(e.g., Hessian order 2 3Z);

complete addition algorithms

(e.g., checking for 1).

How to multiply big integers

Standard idea: Use polynomial

with coefficients in f0; 1; : : : ; 9g

to represent integer in radix 10.

Example of representation:

839 = 8 � 102 + 3 � 101 + 9 � 100 =

value (at t = 10) of polynomial

8t2 + 3t1 + 9t0.

Convenient to express polynomial

inside computer as array 9; 3; 8

(or 9; 3; 8; 0 or 9; 3; 8; 0; 0 or : : : ):

“p[0] = 9; p[1] = 3; p[2] = 8”



More addition formulas

Explicit-Formulas Database:

hyperelliptic.org/EFD

EFD has 583 computer-verified

formulas and operation counts

for ADD, DBL, etc.

in 51 representations

on 13 shapes of elliptic curves.

Not yet handled by computer:

generality of curve shapes

(e.g., Hessian order 2 3Z);

complete addition algorithms

(e.g., checking for 1).

How to multiply big integers

Standard idea: Use polynomial

with coefficients in f0; 1; : : : ; 9g

to represent integer in radix 10.

Example of representation:

839 = 8 � 102 + 3 � 101 + 9 � 100 =

value (at t = 10) of polynomial

8t2 + 3t1 + 9t0.

Convenient to express polynomial

inside computer as array 9; 3; 8

(or 9; 3; 8; 0 or 9; 3; 8; 0; 0 or : : : ):

“p[0] = 9; p[1] = 3; p[2] = 8”

Multiply two integers

by multiplying polynomials

that represent the integers.

Polynomial multiplication

involves small integer coefficients.

Have split one big multiplication

into many small operations.

Example, squaring 839:

(8t2 + 3t1 + 9t0)2 =

64t4 + 48t3 + 153t2 + 54t1 + 81t0.



More addition formulas

Explicit-Formulas Database:

hyperelliptic.org/EFD

EFD has 583 computer-verified

formulas and operation counts

for ADD, DBL, etc.

in 51 representations

on 13 shapes of elliptic curves.

Not yet handled by computer:

generality of curve shapes

(e.g., Hessian order 2 3Z);

complete addition algorithms

(e.g., checking for 1).

How to multiply big integers

Standard idea: Use polynomial

with coefficients in f0; 1; : : : ; 9g

to represent integer in radix 10.

Example of representation:

839 = 8 � 102 + 3 � 101 + 9 � 100 =

value (at t = 10) of polynomial

8t2 + 3t1 + 9t0.

Convenient to express polynomial

inside computer as array 9; 3; 8

(or 9; 3; 8; 0 or 9; 3; 8; 0; 0 or : : : ):

“p[0] = 9; p[1] = 3; p[2] = 8”

Multiply two integers

by multiplying polynomials

that represent the integers.

Polynomial multiplication

involves small integer coefficients.

Have split one big multiplication

into many small operations.

Example, squaring 839:

(8t2 + 3t1 + 9t0)2 =

64t4 + 48t3 + 153t2 + 54t1 + 81t0.



More addition formulas

Explicit-Formulas Database:

hyperelliptic.org/EFD

EFD has 583 computer-verified

formulas and operation counts

for ADD, DBL, etc.

in 51 representations

on 13 shapes of elliptic curves.

Not yet handled by computer:

generality of curve shapes

(e.g., Hessian order 2 3Z);

complete addition algorithms

(e.g., checking for 1).

How to multiply big integers

Standard idea: Use polynomial

with coefficients in f0; 1; : : : ; 9g

to represent integer in radix 10.

Example of representation:

839 = 8 � 102 + 3 � 101 + 9 � 100 =

value (at t = 10) of polynomial

8t2 + 3t1 + 9t0.

Convenient to express polynomial

inside computer as array 9; 3; 8

(or 9; 3; 8; 0 or 9; 3; 8; 0; 0 or : : : ):

“p[0] = 9; p[1] = 3; p[2] = 8”

Multiply two integers

by multiplying polynomials

that represent the integers.

Polynomial multiplication

involves small integer coefficients.

Have split one big multiplication

into many small operations.

Example, squaring 839:

(8t2 + 3t1 + 9t0)2 =

64t4 + 48t3 + 153t2 + 54t1 + 81t0.



How to multiply big integers

Standard idea: Use polynomial

with coefficients in f0; 1; : : : ; 9g

to represent integer in radix 10.

Example of representation:

839 = 8 � 102 + 3 � 101 + 9 � 100 =

value (at t = 10) of polynomial

8t2 + 3t1 + 9t0.

Convenient to express polynomial

inside computer as array 9; 3; 8

(or 9; 3; 8; 0 or 9; 3; 8; 0; 0 or : : : ):

“p[0] = 9; p[1] = 3; p[2] = 8”

Multiply two integers

by multiplying polynomials

that represent the integers.

Polynomial multiplication

involves small integer coefficients.

Have split one big multiplication

into many small operations.

Example, squaring 839:

(8t2 + 3t1 + 9t0)2 =

64t4 + 48t3 + 153t2 + 54t1 + 81t0.



How to multiply big integers

Standard idea: Use polynomial

with coefficients in f0; 1; : : : ; 9g

to represent integer in radix 10.

Example of representation:

839 = 8 � 102 + 3 � 101 + 9 � 100 =

value (at t = 10) of polynomial

8t2 + 3t1 + 9t0.

Convenient to express polynomial

inside computer as array 9; 3; 8

(or 9; 3; 8; 0 or 9; 3; 8; 0; 0 or : : : ):

“p[0] = 9; p[1] = 3; p[2] = 8”

Multiply two integers

by multiplying polynomials

that represent the integers.

Polynomial multiplication

involves small integer coefficients.

Have split one big multiplication

into many small operations.

Example, squaring 839:

(8t2 + 3t1 + 9t0)2 =

64t4 + 48t3 + 153t2 + 54t1 + 81t0.

Oops, product polynomial

usually has coefficients > 9.

So “carry” extra digits:

ctj ! bc=10c tj+1 + (c mod 10)tj .

Example, squaring 839:

64t4 + 48t3 + 153t2 + 54t1 + 81t0;

64t4 + 48t3 + 153t2 + 62t1 + 1t0;

64t4 + 48t3 + 159t2 + 2t1 + 1t0;

64t4 + 63t3 + 9t2 + 2t1 + 1t0;

70t4 + 3t3 + 9t2 + 2t1 + 1t0;

7t5 + 0t4 + 3t3 + 9t2 + 2t1 + 1t0.

In other words, 8392 = 703921.



How to multiply big integers

Standard idea: Use polynomial

with coefficients in f0; 1; : : : ; 9g

to represent integer in radix 10.

Example of representation:

839 = 8 � 102 + 3 � 101 + 9 � 100 =

value (at t = 10) of polynomial

8t2 + 3t1 + 9t0.

Convenient to express polynomial

inside computer as array 9; 3; 8

(or 9; 3; 8; 0 or 9; 3; 8; 0; 0 or : : : ):

“p[0] = 9; p[1] = 3; p[2] = 8”

Multiply two integers

by multiplying polynomials

that represent the integers.

Polynomial multiplication

involves small integer coefficients.

Have split one big multiplication

into many small operations.

Example, squaring 839:

(8t2 + 3t1 + 9t0)2 =

64t4 + 48t3 + 153t2 + 54t1 + 81t0.

Oops, product polynomial

usually has coefficients > 9.

So “carry” extra digits:

ctj ! bc=10c tj+1 + (c mod 10)tj .

Example, squaring 839:

64t4 + 48t3 + 153t2 + 54t1 + 81t0;

64t4 + 48t3 + 153t2 + 62t1 + 1t0;

64t4 + 48t3 + 159t2 + 2t1 + 1t0;

64t4 + 63t3 + 9t2 + 2t1 + 1t0;

70t4 + 3t3 + 9t2 + 2t1 + 1t0;

7t5 + 0t4 + 3t3 + 9t2 + 2t1 + 1t0.

In other words, 8392 = 703921.



How to multiply big integers

Standard idea: Use polynomial

with coefficients in f0; 1; : : : ; 9g

to represent integer in radix 10.

Example of representation:

839 = 8 � 102 + 3 � 101 + 9 � 100 =

value (at t = 10) of polynomial

8t2 + 3t1 + 9t0.

Convenient to express polynomial

inside computer as array 9; 3; 8

(or 9; 3; 8; 0 or 9; 3; 8; 0; 0 or : : : ):

“p[0] = 9; p[1] = 3; p[2] = 8”

Multiply two integers

by multiplying polynomials

that represent the integers.

Polynomial multiplication

involves small integer coefficients.

Have split one big multiplication

into many small operations.

Example, squaring 839:

(8t2 + 3t1 + 9t0)2 =

64t4 + 48t3 + 153t2 + 54t1 + 81t0.

Oops, product polynomial

usually has coefficients > 9.

So “carry” extra digits:

ctj ! bc=10c tj+1 + (c mod 10)tj .

Example, squaring 839:

64t4 + 48t3 + 153t2 + 54t1 + 81t0;

64t4 + 48t3 + 153t2 + 62t1 + 1t0;

64t4 + 48t3 + 159t2 + 2t1 + 1t0;

64t4 + 63t3 + 9t2 + 2t1 + 1t0;

70t4 + 3t3 + 9t2 + 2t1 + 1t0;

7t5 + 0t4 + 3t3 + 9t2 + 2t1 + 1t0.

In other words, 8392 = 703921.



Multiply two integers

by multiplying polynomials

that represent the integers.

Polynomial multiplication

involves small integer coefficients.

Have split one big multiplication

into many small operations.

Example, squaring 839:

(8t2 + 3t1 + 9t0)2 =

64t4 + 48t3 + 153t2 + 54t1 + 81t0.

Oops, product polynomial

usually has coefficients > 9.

So “carry” extra digits:

ctj ! bc=10c tj+1 + (c mod 10)tj .

Example, squaring 839:

64t4 + 48t3 + 153t2 + 54t1 + 81t0;

64t4 + 48t3 + 153t2 + 62t1 + 1t0;

64t4 + 48t3 + 159t2 + 2t1 + 1t0;

64t4 + 63t3 + 9t2 + 2t1 + 1t0;

70t4 + 3t3 + 9t2 + 2t1 + 1t0;

7t5 + 0t4 + 3t3 + 9t2 + 2t1 + 1t0.

In other words, 8392 = 703921.



Multiply two integers

by multiplying polynomials

that represent the integers.

Polynomial multiplication

involves small integer coefficients.

Have split one big multiplication

into many small operations.

Example, squaring 839:

(8t2 + 3t1 + 9t0)2 =

64t4 + 48t3 + 153t2 + 54t1 + 81t0.

Oops, product polynomial

usually has coefficients > 9.

So “carry” extra digits:

ctj ! bc=10c tj+1 + (c mod 10)tj .

Example, squaring 839:

64t4 + 48t3 + 153t2 + 54t1 + 81t0;

64t4 + 48t3 + 153t2 + 62t1 + 1t0;

64t4 + 48t3 + 159t2 + 2t1 + 1t0;

64t4 + 63t3 + 9t2 + 2t1 + 1t0;

70t4 + 3t3 + 9t2 + 2t1 + 1t0;

7t5 + 0t4 + 3t3 + 9t2 + 2t1 + 1t0.

In other words, 8392 = 703921.

What operations were used here?

8

�� ((PP
PPP

PPP
PPP

P 3

		��

9

vvnnn
nnn

nnn
nnn

multiply
��

72

  @
@@

@@
@ 9

��

72

add~~~~
~~
~~

153

��

. . .

����
��
��

6

add~~}}
}}
}}

159
divide by 10

~~}}
}}
}}
}

mod 10
��

15 9



Multiply two integers

by multiplying polynomials

that represent the integers.

Polynomial multiplication

involves small integer coefficients.

Have split one big multiplication

into many small operations.

Example, squaring 839:

(8t2 + 3t1 + 9t0)2 =

64t4 + 48t3 + 153t2 + 54t1 + 81t0.

Oops, product polynomial

usually has coefficients > 9.

So “carry” extra digits:

ctj ! bc=10c tj+1 + (c mod 10)tj .

Example, squaring 839:

64t4 + 48t3 + 153t2 + 54t1 + 81t0;

64t4 + 48t3 + 153t2 + 62t1 + 1t0;

64t4 + 48t3 + 159t2 + 2t1 + 1t0;

64t4 + 63t3 + 9t2 + 2t1 + 1t0;

70t4 + 3t3 + 9t2 + 2t1 + 1t0;

7t5 + 0t4 + 3t3 + 9t2 + 2t1 + 1t0.

In other words, 8392 = 703921.

What operations were used here?

8

�� ((PP
PPP

PPP
PPP

P 3

		��

9

vvnnn
nnn

nnn
nnn

multiply
��

72

  @
@@

@@
@ 9

��

72

add~~~~
~~
~~

153

��

. . .

����
��
��

6

add~~}}
}}
}}

159
divide by 10

~~}}
}}
}}
}

mod 10
��

15 9



Multiply two integers

by multiplying polynomials

that represent the integers.

Polynomial multiplication

involves small integer coefficients.

Have split one big multiplication

into many small operations.

Example, squaring 839:

(8t2 + 3t1 + 9t0)2 =

64t4 + 48t3 + 153t2 + 54t1 + 81t0.

Oops, product polynomial

usually has coefficients > 9.

So “carry” extra digits:

ctj ! bc=10c tj+1 + (c mod 10)tj .

Example, squaring 839:

64t4 + 48t3 + 153t2 + 54t1 + 81t0;

64t4 + 48t3 + 153t2 + 62t1 + 1t0;

64t4 + 48t3 + 159t2 + 2t1 + 1t0;

64t4 + 63t3 + 9t2 + 2t1 + 1t0;

70t4 + 3t3 + 9t2 + 2t1 + 1t0;

7t5 + 0t4 + 3t3 + 9t2 + 2t1 + 1t0.

In other words, 8392 = 703921.

What operations were used here?

8

�� ((PP
PPP

PPP
PPP

P 3

		��

9

vvnnn
nnn

nnn
nnn

multiply
��

72

  @
@@

@@
@ 9

��

72

add~~~~
~~
~~

153

��

. . .

����
��
��

6

add~~}}
}}
}}

159
divide by 10

~~}}
}}
}}
}

mod 10
��

15 9



Oops, product polynomial

usually has coefficients > 9.

So “carry” extra digits:

ctj ! bc=10c tj+1 + (c mod 10)tj .

Example, squaring 839:

64t4 + 48t3 + 153t2 + 54t1 + 81t0;

64t4 + 48t3 + 153t2 + 62t1 + 1t0;

64t4 + 48t3 + 159t2 + 2t1 + 1t0;

64t4 + 63t3 + 9t2 + 2t1 + 1t0;

70t4 + 3t3 + 9t2 + 2t1 + 1t0;

7t5 + 0t4 + 3t3 + 9t2 + 2t1 + 1t0.

In other words, 8392 = 703921.

What operations were used here?

8

�� ((PP
PPP

PPP
PPP

P 3

		��

9

vvnnn
nnn

nnn
nnn

multiply
��

72

  @
@@

@@
@ 9

��

72

add~~~~
~~
~~

153

��

. . .

����
��
��

6

add~~}}
}}
}}

159
divide by 10

~~}}
}}
}}
}

mod 10
��

15 9



Oops, product polynomial

usually has coefficients > 9.

So “carry” extra digits:

ctj ! bc=10c tj+1 + (c mod 10)tj .

Example, squaring 839:

64t4 + 48t3 + 153t2 + 54t1 + 81t0;

64t4 + 48t3 + 153t2 + 62t1 + 1t0;

64t4 + 48t3 + 159t2 + 2t1 + 1t0;

64t4 + 63t3 + 9t2 + 2t1 + 1t0;

70t4 + 3t3 + 9t2 + 2t1 + 1t0;

7t5 + 0t4 + 3t3 + 9t2 + 2t1 + 1t0.

In other words, 8392 = 703921.

What operations were used here?

8

�� ((PP
PPP

PPP
PPP

P 3

		��

9

vvnnn
nnn

nnn
nnn

multiply
��

72

  @
@@

@@
@ 9

��

72

add~~~~
~~
~~

153

��

. . .

����
��
��

6

add~~}}
}}
}}

159
divide by 10

~~}}
}}
}}
}

mod 10
��

15 9

8

�� �� ��

((

00

��

3

�� !! ''

((

��

��
11
11

9
�� �� ""

��

vv

��
72

��

27

��
++
++
++
+ 81

((QQ
QQ

24

��
%%
%%
%%
%%
%%
%%
%%
% 9

��
11
11
11
11
11

27

%%LL
LLL

LLL
81

��
64

��
))
))
))
))
))
))
))
))
))

24

��
44

44
44

44
44

44
44

72

$$
III

III
III

III
54

��

81
��}}||

8
}}||

1

153

��

62
��}}||

6
}}||

2

48

��

159
��}}||

15
}}||

9

64

��

63
��}}||

6
}}||

3

70
��}}||

7
}}||

0

7
��

7



Oops, product polynomial

usually has coefficients > 9.

So “carry” extra digits:

ctj ! bc=10c tj+1 + (c mod 10)tj .

Example, squaring 839:

64t4 + 48t3 + 153t2 + 54t1 + 81t0;

64t4 + 48t3 + 153t2 + 62t1 + 1t0;

64t4 + 48t3 + 159t2 + 2t1 + 1t0;

64t4 + 63t3 + 9t2 + 2t1 + 1t0;

70t4 + 3t3 + 9t2 + 2t1 + 1t0;

7t5 + 0t4 + 3t3 + 9t2 + 2t1 + 1t0.

In other words, 8392 = 703921.

What operations were used here?

8

�� ((PP
PPP

PPP
PPP

P 3

		��

9

vvnnn
nnn

nnn
nnn

multiply
��

72

  @
@@

@@
@ 9

��

72

add~~~~
~~
~~

153

��

. . .

����
��
��

6

add~~}}
}}
}}

159
divide by 10

~~}}
}}
}}
}

mod 10
��

15 9

8

�� �� ��

((

00

��

3

�� !! ''

((

��

��
11
11

9
�� �� ""

��

vv

��
72

��

27

��
++
++
++
+ 81

((QQ
QQ

24

��
%%
%%
%%
%%
%%
%%
%%
% 9

��
11
11
11
11
11

27

%%LL
LLL

LLL
81

��
64

��
))
))
))
))
))
))
))
))
))

24

��
44

44
44

44
44

44
44

72

$$
III

III
III

III
54

��

81
��}}||

8
}}||

1

153

��

62
��}}||

6
}}||

2

48

��

159
��}}||

15
}}||

9

64

��

63
��}}||

6
}}||

3

70
��}}||

7
}}||

0

7
��

7



Oops, product polynomial

usually has coefficients > 9.

So “carry” extra digits:

ctj ! bc=10c tj+1 + (c mod 10)tj .

Example, squaring 839:

64t4 + 48t3 + 153t2 + 54t1 + 81t0;

64t4 + 48t3 + 153t2 + 62t1 + 1t0;

64t4 + 48t3 + 159t2 + 2t1 + 1t0;

64t4 + 63t3 + 9t2 + 2t1 + 1t0;

70t4 + 3t3 + 9t2 + 2t1 + 1t0;

7t5 + 0t4 + 3t3 + 9t2 + 2t1 + 1t0.

In other words, 8392 = 703921.

What operations were used here?

8

�� ((PP
PPP

PPP
PPP

P 3

		��

9

vvnnn
nnn

nnn
nnn

multiply
��

72

  @
@@

@@
@ 9

��

72

add~~~~
~~
~~

153

��

. . .

����
��
��

6

add~~}}
}}
}}

159
divide by 10

~~}}
}}
}}
}

mod 10
��

15 9

8

�� �� ��

((

00

��

3

�� !! ''

((

��

��
11
11

9
�� �� ""

��

vv

��
72

��

27

��
++
++
++
+ 81

((QQ
QQ

24

��
%%
%%
%%
%%
%%
%%
%%
% 9

��
11
11
11
11
11

27

%%LL
LLL

LLL
81

��
64

��
))
))
))
))
))
))
))
))
))

24

��
44

44
44

44
44

44
44

72

$$
III

III
III

III
54

��

81
��}}||

8
}}||

1

153

��

62
��}}||

6
}}||

2

48

��

159
��}}||

15
}}||

9

64

��

63
��}}||

6
}}||

3

70
��}}||

7
}}||

0

7
��

7



What operations were used here?

8

�� ((PP
PPP

PPP
PPP

P 3

		��

9

vvnnn
nnn

nnn
nnn

multiply
��

72

  @
@@

@@
@ 9

��

72

add~~~~
~~
~~

153

��

. . .

����
��
��

6

add~~}}
}}
}}

159
divide by 10

~~}}
}}
}}
}

mod 10
��

15 9

8

�� �� ��

((

00

��

3

�� !! ''

((

��

��
11
11

9
�� �� ""

��

vv

��
72

��

27

��
++
++
++
+ 81

((QQ
QQ

24

��
%%
%%
%%
%%
%%
%%
%%
% 9

��
11
11
11
11
11

27

%%LL
LLL

LLL
81

��
64

��
))
))
))
))
))
))
))
))
))

24

��
44

44
44

44
44

44
44

72

$$
III

III
III

III
54

��

81
��}}||

8
}}||

1

153

��

62
��}}||

6
}}||

2

48

��

159
��}}||

15
}}||

9

64

��

63
��}}||

6
}}||

3

70
��}}||

7
}}||

0

7
��

7



What operations were used here?

8

�� ((PP
PPP

PPP
PPP

P 3

		��

9

vvnnn
nnn

nnn
nnn

multiply
��

72

  @
@@

@@
@ 9

��

72

add~~~~
~~
~~

153

��

. . .

����
��
��

6

add~~}}
}}
}}

159
divide by 10

~~}}
}}
}}
}

mod 10
��

15 9

8

�� �� ��

((

00

��

3

�� !! ''

((

��

��
11
11

9
�� �� ""

��

vv

��
72

��

27

��
++
++
++
+ 81

((QQ
QQ

24

��
%%
%%
%%
%%
%%
%%
%%
% 9

��
11
11
11
11
11

27

%%LL
LLL

LLL
81

��
64

��
))
))
))
))
))
))
))
))
))

24

��
44

44
44

44
44

44
44

72

$$
III

III
III

III
54

��

81
��}}||

8
}}||

1

153

��

62
��}}||

6
}}||

2

48

��

159
��}}||

15
}}||

9

64

��

63
��}}||

6
}}||

3

70
��}}||

7
}}||

0

7
��

7

The scaled variation

839 = 800 + 30 + 9 =

value (at t = 1) of polynomial

800t2 + 30t1 + 9t0.

Squaring: (800t2 +30t1 +9t0)2 =

640000t4 + 48000t3 + 15300t2 +

540t1 + 81t0.

Carrying:

640000t4 + 48000t3 + 15300t2 +

540t1 + 81t0;

640000t4 + 48000t3 + 15300t2 +

620t1 + 1t0; : : :

700000t5 + 0t4 + 3000t3 + 900t2 +

20t1 + 1t0.



What operations were used here?

8

�� ((PP
PPP

PPP
PPP

P 3

		��

9

vvnnn
nnn

nnn
nnn

multiply
��

72

  @
@@

@@
@ 9

��

72

add~~~~
~~
~~

153

��

. . .

����
��
��

6

add~~}}
}}
}}

159
divide by 10

~~}}
}}
}}
}

mod 10
��

15 9

8

�� �� ��

((

00

��

3

�� !! ''

((

��

��
11
11

9
�� �� ""

��

vv

��
72

��

27

��
++
++
++
+ 81

((QQ
QQ

24

��
%%
%%
%%
%%
%%
%%
%%
% 9

��
11
11
11
11
11

27

%%LL
LLL

LLL
81

��
64

��
))
))
))
))
))
))
))
))
))

24

��
44

44
44

44
44

44
44

72

$$
III

III
III

III
54

��

81
��}}||

8
}}||

1

153

��

62
��}}||

6
}}||

2

48

��

159
��}}||

15
}}||

9

64

��

63
��}}||

6
}}||

3

70
��}}||

7
}}||

0

7
��

7

The scaled variation

839 = 800 + 30 + 9 =

value (at t = 1) of polynomial

800t2 + 30t1 + 9t0.

Squaring: (800t2 +30t1 +9t0)2 =

640000t4 + 48000t3 + 15300t2 +

540t1 + 81t0.

Carrying:

640000t4 + 48000t3 + 15300t2 +

540t1 + 81t0;

640000t4 + 48000t3 + 15300t2 +

620t1 + 1t0; : : :

700000t5 + 0t4 + 3000t3 + 900t2 +

20t1 + 1t0.



What operations were used here?

8

�� ((PP
PPP

PPP
PPP

P 3

		��

9

vvnnn
nnn

nnn
nnn

multiply
��

72

  @
@@

@@
@ 9

��

72

add~~~~
~~
~~

153

��

. . .

����
��
��

6

add~~}}
}}
}}

159
divide by 10

~~}}
}}
}}
}

mod 10
��

15 9

8

�� �� ��

((

00

��

3

�� !! ''

((

��

��
11
11

9
�� �� ""

��

vv

��
72

��

27

��
++
++
++
+ 81

((QQ
QQ

24

��
%%
%%
%%
%%
%%
%%
%%
% 9

��
11
11
11
11
11

27

%%LL
LLL

LLL
81

��
64

��
))
))
))
))
))
))
))
))
))

24

��
44

44
44

44
44

44
44

72

$$
III

III
III

III
54

��

81
��}}||

8
}}||

1

153

��

62
��}}||

6
}}||

2

48

��

159
��}}||

15
}}||

9

64

��

63
��}}||

6
}}||

3

70
��}}||

7
}}||

0

7
��

7

The scaled variation

839 = 800 + 30 + 9 =

value (at t = 1) of polynomial

800t2 + 30t1 + 9t0.

Squaring: (800t2 +30t1 +9t0)2 =

640000t4 + 48000t3 + 15300t2 +

540t1 + 81t0.

Carrying:

640000t4 + 48000t3 + 15300t2 +

540t1 + 81t0;

640000t4 + 48000t3 + 15300t2 +

620t1 + 1t0; : : :

700000t5 + 0t4 + 3000t3 + 900t2 +

20t1 + 1t0.



8

�� �� ��

((

00

��

3

�� !! ''

((

��

��
11
11

9
�� �� ""

��

vv

��
72

��

27

��
++
++
++
+ 81

((QQ
QQ

24

��
%%
%%
%%
%%
%%
%%
%%
% 9

��
11
11
11
11
11

27

%%LL
LLL

LLL
81

��
64

��
))
))
))
))
))
))
))
))
))

24

��
44

44
44

44
44

44
44

72

$$
III

III
III

III
54

��

81
��}}||

8
}}||

1

153

��

62
��}}||

6
}}||

2

48

��

159
��}}||

15
}}||

9

64

��

63
��}}||

6
}}||

3

70
��}}||

7
}}||

0

7
��

7

The scaled variation

839 = 800 + 30 + 9 =

value (at t = 1) of polynomial

800t2 + 30t1 + 9t0.

Squaring: (800t2 +30t1 +9t0)2 =

640000t4 + 48000t3 + 15300t2 +

540t1 + 81t0.

Carrying:

640000t4 + 48000t3 + 15300t2 +

540t1 + 81t0;

640000t4 + 48000t3 + 15300t2 +

620t1 + 1t0; : : :

700000t5 + 0t4 + 3000t3 + 900t2 +

20t1 + 1t0.



8

�� �� ��

((

00

��

3

�� !! ''

((

��

��
11
11

9
�� �� ""

��

vv

��
72

��

27

��
++
++
++
+ 81

((QQ
QQ

24

��
%%
%%
%%
%%
%%
%%
%%
% 9

��
11
11
11
11
11

27

%%LL
LLL

LLL
81

��
64

��
))
))
))
))
))
))
))
))
))

24

��
44

44
44

44
44

44
44

72

$$
III

III
III

III
54

��

81
��}}||

8
}}||

1

153

��

62
��}}||

6
}}||

2

48

��

159
��}}||

15
}}||

9

64

��

63
��}}||

6
}}||

3

70
��}}||

7
}}||

0

7
��

7

The scaled variation

839 = 800 + 30 + 9 =

value (at t = 1) of polynomial

800t2 + 30t1 + 9t0.

Squaring: (800t2 +30t1 +9t0)2 =

640000t4 + 48000t3 + 15300t2 +

540t1 + 81t0.

Carrying:

640000t4 + 48000t3 + 15300t2 +

540t1 + 81t0;

640000t4 + 48000t3 + 15300t2 +

620t1 + 1t0; : : :

700000t5 + 0t4 + 3000t3 + 900t2 +

20t1 + 1t0.

What operations were used here?

800

�� ))TTT
TTTT

TTTT
TTT 30

		��

9

uujjjj
jjjj

jjjj
jjj

multiply
��

7200

$$I
II

II
II

900

��

7200

add{{www
ww
ww

15300

��

. . .

}}{{
{{
{{

600

addzzvvv
vvv

v

15900
subtract

zzuuu
uu
uu
u

mod 1000
��

15000 900



8

�� �� ��

((

00

��

3

�� !! ''

((

��

��
11
11

9
�� �� ""

��

vv

��
72

��

27

��
++
++
++
+ 81

((QQ
QQ

24

��
%%
%%
%%
%%
%%
%%
%%
% 9

��
11
11
11
11
11

27

%%LL
LLL

LLL
81

��
64

��
))
))
))
))
))
))
))
))
))

24

��
44

44
44

44
44

44
44

72

$$
III

III
III

III
54

��

81
��}}||

8
}}||

1

153

��

62
��}}||

6
}}||

2

48

��

159
��}}||

15
}}||

9

64

��

63
��}}||

6
}}||

3

70
��}}||

7
}}||

0

7
��

7

The scaled variation

839 = 800 + 30 + 9 =

value (at t = 1) of polynomial

800t2 + 30t1 + 9t0.

Squaring: (800t2 +30t1 +9t0)2 =

640000t4 + 48000t3 + 15300t2 +

540t1 + 81t0.

Carrying:

640000t4 + 48000t3 + 15300t2 +

540t1 + 81t0;

640000t4 + 48000t3 + 15300t2 +

620t1 + 1t0; : : :

700000t5 + 0t4 + 3000t3 + 900t2 +

20t1 + 1t0.

What operations were used here?

800

�� ))TTT
TTTT

TTTT
TTT 30

		��

9

uujjjj
jjjj

jjjj
jjj

multiply
��

7200

$$I
II

II
II

900

��

7200

add{{www
ww
ww

15300

��

. . .

}}{{
{{
{{

600

addzzvvv
vvv

v

15900
subtract

zzuuu
uu
uu
u

mod 1000
��

15000 900



8

�� �� ��

((

00

��

3

�� !! ''

((

��

��
11
11

9
�� �� ""

��

vv

��
72

��

27

��
++
++
++
+ 81

((QQ
QQ

24

��
%%
%%
%%
%%
%%
%%
%%
% 9

��
11
11
11
11
11

27

%%LL
LLL

LLL
81

��
64

��
))
))
))
))
))
))
))
))
))

24

��
44

44
44

44
44

44
44

72

$$
III

III
III

III
54

��

81
��}}||

8
}}||

1

153

��

62
��}}||

6
}}||

2

48

��

159
��}}||

15
}}||

9

64

��

63
��}}||

6
}}||

3

70
��}}||

7
}}||

0

7
��

7

The scaled variation

839 = 800 + 30 + 9 =

value (at t = 1) of polynomial

800t2 + 30t1 + 9t0.

Squaring: (800t2 +30t1 +9t0)2 =

640000t4 + 48000t3 + 15300t2 +

540t1 + 81t0.

Carrying:

640000t4 + 48000t3 + 15300t2 +

540t1 + 81t0;

640000t4 + 48000t3 + 15300t2 +

620t1 + 1t0; : : :

700000t5 + 0t4 + 3000t3 + 900t2 +

20t1 + 1t0.

What operations were used here?

800

�� ))TTT
TTTT

TTTT
TTT 30

		��

9

uujjjj
jjjj

jjjj
jjj

multiply
��

7200

$$I
II

II
II

900

��

7200

add{{www
ww
ww

15300

��

. . .

}}{{
{{
{{

600

addzzvvv
vvv

v

15900
subtract

zzuuu
uu
uu
u

mod 1000
��

15000 900



The scaled variation

839 = 800 + 30 + 9 =

value (at t = 1) of polynomial

800t2 + 30t1 + 9t0.

Squaring: (800t2 +30t1 +9t0)2 =

640000t4 + 48000t3 + 15300t2 +

540t1 + 81t0.

Carrying:

640000t4 + 48000t3 + 15300t2 +

540t1 + 81t0;

640000t4 + 48000t3 + 15300t2 +

620t1 + 1t0; : : :

700000t5 + 0t4 + 3000t3 + 900t2 +

20t1 + 1t0.

What operations were used here?

800

�� ))TTT
TTTT

TTTT
TTT 30

		��

9

uujjjj
jjjj

jjjj
jjj

multiply
��

7200

$$I
II

II
II

900

��

7200

add{{www
ww
ww

15300

��

. . .

}}{{
{{
{{

600

addzzvvv
vvv

v

15900
subtract

zzuuu
uu
uu
u

mod 1000
��

15000 900



The scaled variation

839 = 800 + 30 + 9 =

value (at t = 1) of polynomial

800t2 + 30t1 + 9t0.

Squaring: (800t2 +30t1 +9t0)2 =

640000t4 + 48000t3 + 15300t2 +

540t1 + 81t0.

Carrying:

640000t4 + 48000t3 + 15300t2 +

540t1 + 81t0;

640000t4 + 48000t3 + 15300t2 +

620t1 + 1t0; : : :

700000t5 + 0t4 + 3000t3 + 900t2 +

20t1 + 1t0.

What operations were used here?

800

�� ))TTT
TTTT

TTTT
TTT 30

		��

9

uujjjj
jjjj

jjjj
jjj

multiply
��

7200

$$I
II

II
II

900

��

7200

add{{www
ww
ww

15300

��

. . .

}}{{
{{
{{

600

addzzvvv
vvv

v

15900
subtract

zzuuu
uu
uu
u

mod 1000
��

15000 900

Speedup: double inside squaring

(� � �+ f2t
2 + f1t

1 + f0t
0)2

has coefficients such as

f4f0 + f3f1 + f2f2 + f1f3 + f0f4.

5 mults, 4 adds.



The scaled variation

839 = 800 + 30 + 9 =

value (at t = 1) of polynomial

800t2 + 30t1 + 9t0.

Squaring: (800t2 +30t1 +9t0)2 =

640000t4 + 48000t3 + 15300t2 +

540t1 + 81t0.

Carrying:

640000t4 + 48000t3 + 15300t2 +

540t1 + 81t0;

640000t4 + 48000t3 + 15300t2 +

620t1 + 1t0; : : :

700000t5 + 0t4 + 3000t3 + 900t2 +

20t1 + 1t0.

What operations were used here?

800

�� ))TTT
TTTT

TTTT
TTT 30

		��

9

uujjjj
jjjj

jjjj
jjj

multiply
��

7200

$$I
II

II
II

900

��

7200

add{{www
ww
ww

15300

��

. . .

}}{{
{{
{{

600

addzzvvv
vvv

v

15900
subtract

zzuuu
uu
uu
u

mod 1000
��

15000 900

Speedup: double inside squaring

(� � �+ f2t
2 + f1t

1 + f0t
0)2

has coefficients such as

f4f0 + f3f1 + f2f2 + f1f3 + f0f4.

5 mults, 4 adds.



The scaled variation

839 = 800 + 30 + 9 =

value (at t = 1) of polynomial

800t2 + 30t1 + 9t0.

Squaring: (800t2 +30t1 +9t0)2 =

640000t4 + 48000t3 + 15300t2 +

540t1 + 81t0.

Carrying:

640000t4 + 48000t3 + 15300t2 +

540t1 + 81t0;

640000t4 + 48000t3 + 15300t2 +

620t1 + 1t0; : : :

700000t5 + 0t4 + 3000t3 + 900t2 +

20t1 + 1t0.

What operations were used here?

800

�� ))TTT
TTTT

TTTT
TTT 30

		��

9

uujjjj
jjjj

jjjj
jjj

multiply
��

7200

$$I
II

II
II

900

��

7200

add{{www
ww
ww

15300

��

. . .

}}{{
{{
{{

600

addzzvvv
vvv

v

15900
subtract

zzuuu
uu
uu
u

mod 1000
��

15000 900

Speedup: double inside squaring

(� � �+ f2t
2 + f1t

1 + f0t
0)2

has coefficients such as

f4f0 + f3f1 + f2f2 + f1f3 + f0f4.

5 mults, 4 adds.



What operations were used here?

800

�� ))TTT
TTTT

TTTT
TTT 30

		��

9

uujjjj
jjjj

jjjj
jjj

multiply
��

7200

$$I
II

II
II

900

��

7200

add{{www
ww
ww

15300

��

. . .

}}{{
{{
{{

600

addzzvvv
vvv

v

15900
subtract

zzuuu
uu
uu
u

mod 1000
��

15000 900

Speedup: double inside squaring

(� � �+ f2t
2 + f1t

1 + f0t
0)2

has coefficients such as

f4f0 + f3f1 + f2f2 + f1f3 + f0f4.

5 mults, 4 adds.



What operations were used here?

800

�� ))TTT
TTTT

TTTT
TTT 30

		��

9

uujjjj
jjjj

jjjj
jjj

multiply
��

7200

$$I
II

II
II

900

��

7200

add{{www
ww
ww

15300

��

. . .

}}{{
{{
{{

600

addzzvvv
vvv

v

15900
subtract

zzuuu
uu
uu
u

mod 1000
��

15000 900

Speedup: double inside squaring

(� � �+ f2t
2 + f1t

1 + f0t
0)2

has coefficients such as

f4f0 + f3f1 + f2f2 + f1f3 + f0f4.

5 mults, 4 adds.

Compute more efficiently as

2f4f0 + 2f3f1 + f2f2.

3 mults, 2 adds, 2 doublings.

Save � 1=2 of the mults

if there are many coefficients.



What operations were used here?

800

�� ))TTT
TTTT

TTTT
TTT 30

		��

9

uujjjj
jjjj

jjjj
jjj

multiply
��

7200

$$I
II

II
II

900

��

7200

add{{www
ww
ww

15300

��

. . .

}}{{
{{
{{

600

addzzvvv
vvv

v

15900
subtract

zzuuu
uu
uu
u

mod 1000
��

15000 900

Speedup: double inside squaring

(� � �+ f2t
2 + f1t

1 + f0t
0)2

has coefficients such as

f4f0 + f3f1 + f2f2 + f1f3 + f0f4.

5 mults, 4 adds.

Compute more efficiently as

2f4f0 + 2f3f1 + f2f2.

3 mults, 2 adds, 2 doublings.

Save � 1=2 of the mults

if there are many coefficients.

Faster alternative:

2(f4f0 + f3f1) + f2f2.

3 mults, 2 adds, 1 doubling.

Save � 1=2 of the adds

if there are many coefficients.



What operations were used here?

800

�� ))TTT
TTTT

TTTT
TTT 30

		��

9

uujjjj
jjjj

jjjj
jjj

multiply
��

7200

$$I
II

II
II

900

��

7200

add{{www
ww
ww

15300

��

. . .

}}{{
{{
{{

600

addzzvvv
vvv

v

15900
subtract

zzuuu
uu
uu
u

mod 1000
��

15000 900

Speedup: double inside squaring

(� � �+ f2t
2 + f1t

1 + f0t
0)2

has coefficients such as

f4f0 + f3f1 + f2f2 + f1f3 + f0f4.

5 mults, 4 adds.

Compute more efficiently as

2f4f0 + 2f3f1 + f2f2.

3 mults, 2 adds, 2 doublings.

Save � 1=2 of the mults

if there are many coefficients.

Faster alternative:

2(f4f0 + f3f1) + f2f2.

3 mults, 2 adds, 1 doubling.

Save � 1=2 of the adds

if there are many coefficients.



What operations were used here?

800

�� ))TTT
TTTT

TTTT
TTT 30

		��

9

uujjjj
jjjj

jjjj
jjj

multiply
��

7200

$$I
II

II
II

900

��

7200

add{{www
ww
ww

15300

��

. . .

}}{{
{{
{{

600

addzzvvv
vvv

v

15900
subtract

zzuuu
uu
uu
u

mod 1000
��

15000 900

Speedup: double inside squaring

(� � �+ f2t
2 + f1t

1 + f0t
0)2

has coefficients such as

f4f0 + f3f1 + f2f2 + f1f3 + f0f4.

5 mults, 4 adds.

Compute more efficiently as

2f4f0 + 2f3f1 + f2f2.

3 mults, 2 adds, 2 doublings.

Save � 1=2 of the mults

if there are many coefficients.

Faster alternative:

2(f4f0 + f3f1) + f2f2.

3 mults, 2 adds, 1 doubling.

Save � 1=2 of the adds

if there are many coefficients.



Speedup: double inside squaring

(� � �+ f2t
2 + f1t

1 + f0t
0)2

has coefficients such as

f4f0 + f3f1 + f2f2 + f1f3 + f0f4.

5 mults, 4 adds.

Compute more efficiently as

2f4f0 + 2f3f1 + f2f2.

3 mults, 2 adds, 2 doublings.

Save � 1=2 of the mults

if there are many coefficients.

Faster alternative:

2(f4f0 + f3f1) + f2f2.

3 mults, 2 adds, 1 doubling.

Save � 1=2 of the adds

if there are many coefficients.



Speedup: double inside squaring

(� � �+ f2t
2 + f1t

1 + f0t
0)2

has coefficients such as

f4f0 + f3f1 + f2f2 + f1f3 + f0f4.

5 mults, 4 adds.

Compute more efficiently as

2f4f0 + 2f3f1 + f2f2.

3 mults, 2 adds, 2 doublings.

Save � 1=2 of the mults

if there are many coefficients.

Faster alternative:

2(f4f0 + f3f1) + f2f2.

3 mults, 2 adds, 1 doubling.

Save � 1=2 of the adds

if there are many coefficients.

Even faster alternative:

(2f0)f4 + (2f1)f3 + f2f2,

after precomputing 2f0; 2f1; : : :.

3 mults, 2 adds, 0 doublings.

Precomputation � 0:5 doublings.



Speedup: double inside squaring

(� � �+ f2t
2 + f1t

1 + f0t
0)2

has coefficients such as

f4f0 + f3f1 + f2f2 + f1f3 + f0f4.

5 mults, 4 adds.

Compute more efficiently as

2f4f0 + 2f3f1 + f2f2.

3 mults, 2 adds, 2 doublings.

Save � 1=2 of the mults

if there are many coefficients.

Faster alternative:

2(f4f0 + f3f1) + f2f2.

3 mults, 2 adds, 1 doubling.

Save � 1=2 of the adds

if there are many coefficients.

Even faster alternative:

(2f0)f4 + (2f1)f3 + f2f2,

after precomputing 2f0; 2f1; : : :.

3 mults, 2 adds, 0 doublings.

Precomputation � 0:5 doublings.

Speedup: allow negative coeffs

Recall 159 7! 15; 9.

Scaled: 15900 7! 15000; 900.

Alternative: 159 7! 16;�1.

Scaled: 15900 7! 16000;�100.

Use digits f�5;�4; : : : ; 4; 5g

instead of f0; 1; : : : ; 9g.

Small disadvantage: need �.

Several small advantages:

easily handle negative integers;

easily handle subtraction;

reduce products a bit.



Speedup: double inside squaring

(� � �+ f2t
2 + f1t

1 + f0t
0)2

has coefficients such as

f4f0 + f3f1 + f2f2 + f1f3 + f0f4.

5 mults, 4 adds.

Compute more efficiently as

2f4f0 + 2f3f1 + f2f2.

3 mults, 2 adds, 2 doublings.

Save � 1=2 of the mults

if there are many coefficients.

Faster alternative:

2(f4f0 + f3f1) + f2f2.

3 mults, 2 adds, 1 doubling.

Save � 1=2 of the adds

if there are many coefficients.

Even faster alternative:

(2f0)f4 + (2f1)f3 + f2f2,

after precomputing 2f0; 2f1; : : :.

3 mults, 2 adds, 0 doublings.

Precomputation � 0:5 doublings.

Speedup: allow negative coeffs

Recall 159 7! 15; 9.

Scaled: 15900 7! 15000; 900.

Alternative: 159 7! 16;�1.

Scaled: 15900 7! 16000;�100.

Use digits f�5;�4; : : : ; 4; 5g

instead of f0; 1; : : : ; 9g.

Small disadvantage: need �.

Several small advantages:

easily handle negative integers;

easily handle subtraction;

reduce products a bit.



Speedup: double inside squaring

(� � �+ f2t
2 + f1t

1 + f0t
0)2

has coefficients such as

f4f0 + f3f1 + f2f2 + f1f3 + f0f4.

5 mults, 4 adds.

Compute more efficiently as

2f4f0 + 2f3f1 + f2f2.

3 mults, 2 adds, 2 doublings.

Save � 1=2 of the mults

if there are many coefficients.

Faster alternative:

2(f4f0 + f3f1) + f2f2.

3 mults, 2 adds, 1 doubling.

Save � 1=2 of the adds

if there are many coefficients.

Even faster alternative:

(2f0)f4 + (2f1)f3 + f2f2,

after precomputing 2f0; 2f1; : : :.

3 mults, 2 adds, 0 doublings.

Precomputation � 0:5 doublings.

Speedup: allow negative coeffs

Recall 159 7! 15; 9.

Scaled: 15900 7! 15000; 900.

Alternative: 159 7! 16;�1.

Scaled: 15900 7! 16000;�100.

Use digits f�5;�4; : : : ; 4; 5g

instead of f0; 1; : : : ; 9g.

Small disadvantage: need �.

Several small advantages:

easily handle negative integers;

easily handle subtraction;

reduce products a bit.



Faster alternative:

2(f4f0 + f3f1) + f2f2.

3 mults, 2 adds, 1 doubling.

Save � 1=2 of the adds

if there are many coefficients.

Even faster alternative:

(2f0)f4 + (2f1)f3 + f2f2,

after precomputing 2f0; 2f1; : : :.

3 mults, 2 adds, 0 doublings.

Precomputation � 0:5 doublings.

Speedup: allow negative coeffs

Recall 159 7! 15; 9.

Scaled: 15900 7! 15000; 900.

Alternative: 159 7! 16;�1.

Scaled: 15900 7! 16000;�100.

Use digits f�5;�4; : : : ; 4; 5g

instead of f0; 1; : : : ; 9g.

Small disadvantage: need �.

Several small advantages:

easily handle negative integers;

easily handle subtraction;

reduce products a bit.



Faster alternative:

2(f4f0 + f3f1) + f2f2.

3 mults, 2 adds, 1 doubling.

Save � 1=2 of the adds

if there are many coefficients.

Even faster alternative:

(2f0)f4 + (2f1)f3 + f2f2,

after precomputing 2f0; 2f1; : : :.

3 mults, 2 adds, 0 doublings.

Precomputation � 0:5 doublings.

Speedup: allow negative coeffs

Recall 159 7! 15; 9.

Scaled: 15900 7! 15000; 900.

Alternative: 159 7! 16;�1.

Scaled: 15900 7! 16000;�100.

Use digits f�5;�4; : : : ; 4; 5g

instead of f0; 1; : : : ; 9g.

Small disadvantage: need �.

Several small advantages:

easily handle negative integers;

easily handle subtraction;

reduce products a bit.

Speedup: delay carries

Computing (e.g.) big ab + c2:

multiply a; b polynomials, carry,

square c poly, carry, add, carry.

e.g. a = 314, b = 271, c = 839:

(3t2 +1t1 +4t0)(2t2 +7t1 +1t0) =

6t4 + 23t3 + 18t2 + 29t1 + 4t0;

carry: 8t4 + 5t3 + 0t2 + 9t1 + 4t0.

As before (8t2 + 3t1 + 9t0)2 =

64t4 + 48t3 + 153t2 + 54t1 + 81t0;

7t5 + 0t4 + 3t3 + 9t2 + 2t1 + 1t0.

+: 7t5+8t4+8t3+9t2+11t1+5t0;

7t5 + 8t4 + 9t3 + 0t2 + 1t1 + 5t0.



Faster alternative:

2(f4f0 + f3f1) + f2f2.

3 mults, 2 adds, 1 doubling.

Save � 1=2 of the adds

if there are many coefficients.

Even faster alternative:

(2f0)f4 + (2f1)f3 + f2f2,

after precomputing 2f0; 2f1; : : :.

3 mults, 2 adds, 0 doublings.

Precomputation � 0:5 doublings.

Speedup: allow negative coeffs

Recall 159 7! 15; 9.

Scaled: 15900 7! 15000; 900.

Alternative: 159 7! 16;�1.

Scaled: 15900 7! 16000;�100.

Use digits f�5;�4; : : : ; 4; 5g

instead of f0; 1; : : : ; 9g.

Small disadvantage: need �.

Several small advantages:

easily handle negative integers;

easily handle subtraction;

reduce products a bit.

Speedup: delay carries

Computing (e.g.) big ab + c2:

multiply a; b polynomials, carry,

square c poly, carry, add, carry.

e.g. a = 314, b = 271, c = 839:

(3t2 +1t1 +4t0)(2t2 +7t1 +1t0) =

6t4 + 23t3 + 18t2 + 29t1 + 4t0;

carry: 8t4 + 5t3 + 0t2 + 9t1 + 4t0.

As before (8t2 + 3t1 + 9t0)2 =

64t4 + 48t3 + 153t2 + 54t1 + 81t0;

7t5 + 0t4 + 3t3 + 9t2 + 2t1 + 1t0.

+: 7t5+8t4+8t3+9t2+11t1+5t0;

7t5 + 8t4 + 9t3 + 0t2 + 1t1 + 5t0.



Faster alternative:

2(f4f0 + f3f1) + f2f2.

3 mults, 2 adds, 1 doubling.

Save � 1=2 of the adds

if there are many coefficients.

Even faster alternative:

(2f0)f4 + (2f1)f3 + f2f2,

after precomputing 2f0; 2f1; : : :.

3 mults, 2 adds, 0 doublings.

Precomputation � 0:5 doublings.

Speedup: allow negative coeffs

Recall 159 7! 15; 9.

Scaled: 15900 7! 15000; 900.

Alternative: 159 7! 16;�1.

Scaled: 15900 7! 16000;�100.

Use digits f�5;�4; : : : ; 4; 5g

instead of f0; 1; : : : ; 9g.

Small disadvantage: need �.

Several small advantages:

easily handle negative integers;

easily handle subtraction;

reduce products a bit.

Speedup: delay carries

Computing (e.g.) big ab + c2:

multiply a; b polynomials, carry,

square c poly, carry, add, carry.

e.g. a = 314, b = 271, c = 839:

(3t2 +1t1 +4t0)(2t2 +7t1 +1t0) =

6t4 + 23t3 + 18t2 + 29t1 + 4t0;

carry: 8t4 + 5t3 + 0t2 + 9t1 + 4t0.

As before (8t2 + 3t1 + 9t0)2 =

64t4 + 48t3 + 153t2 + 54t1 + 81t0;

7t5 + 0t4 + 3t3 + 9t2 + 2t1 + 1t0.

+: 7t5+8t4+8t3+9t2+11t1+5t0;

7t5 + 8t4 + 9t3 + 0t2 + 1t1 + 5t0.



Speedup: allow negative coeffs

Recall 159 7! 15; 9.

Scaled: 15900 7! 15000; 900.

Alternative: 159 7! 16;�1.

Scaled: 15900 7! 16000;�100.

Use digits f�5;�4; : : : ; 4; 5g

instead of f0; 1; : : : ; 9g.

Small disadvantage: need �.

Several small advantages:

easily handle negative integers;

easily handle subtraction;

reduce products a bit.

Speedup: delay carries

Computing (e.g.) big ab + c2:

multiply a; b polynomials, carry,

square c poly, carry, add, carry.

e.g. a = 314, b = 271, c = 839:

(3t2 +1t1 +4t0)(2t2 +7t1 +1t0) =

6t4 + 23t3 + 18t2 + 29t1 + 4t0;

carry: 8t4 + 5t3 + 0t2 + 9t1 + 4t0.

As before (8t2 + 3t1 + 9t0)2 =

64t4 + 48t3 + 153t2 + 54t1 + 81t0;

7t5 + 0t4 + 3t3 + 9t2 + 2t1 + 1t0.

+: 7t5+8t4+8t3+9t2+11t1+5t0;

7t5 + 8t4 + 9t3 + 0t2 + 1t1 + 5t0.



Speedup: allow negative coeffs

Recall 159 7! 15; 9.

Scaled: 15900 7! 15000; 900.

Alternative: 159 7! 16;�1.

Scaled: 15900 7! 16000;�100.

Use digits f�5;�4; : : : ; 4; 5g

instead of f0; 1; : : : ; 9g.

Small disadvantage: need �.

Several small advantages:

easily handle negative integers;

easily handle subtraction;

reduce products a bit.

Speedup: delay carries

Computing (e.g.) big ab + c2:

multiply a; b polynomials, carry,

square c poly, carry, add, carry.

e.g. a = 314, b = 271, c = 839:

(3t2 +1t1 +4t0)(2t2 +7t1 +1t0) =

6t4 + 23t3 + 18t2 + 29t1 + 4t0;

carry: 8t4 + 5t3 + 0t2 + 9t1 + 4t0.

As before (8t2 + 3t1 + 9t0)2 =

64t4 + 48t3 + 153t2 + 54t1 + 81t0;

7t5 + 0t4 + 3t3 + 9t2 + 2t1 + 1t0.

+: 7t5+8t4+8t3+9t2+11t1+5t0;

7t5 + 8t4 + 9t3 + 0t2 + 1t1 + 5t0.

Faster: multiply a; b polynomials,

square c polynomial, add, carry.

(6t4 + 23t3 + 18t2 + 29t1 + 4t0) +

(64t4 + 48t3 + 153t2 + 54t1 + 81t0)

= 70t4+71t3+171t2+83t1+85t0;

7t5 + 8t4 + 9t3 + 0t2 + 1t1 + 5t0.

Eliminate intermediate carries.

Outweighs cost of handling

slightly larger coefficients.

Important to carry between

multiplications (and squarings)

to reduce coefficient size;

but carries are usually a bad idea

before additions, subtractions, etc.



Speedup: allow negative coeffs

Recall 159 7! 15; 9.

Scaled: 15900 7! 15000; 900.

Alternative: 159 7! 16;�1.

Scaled: 15900 7! 16000;�100.

Use digits f�5;�4; : : : ; 4; 5g

instead of f0; 1; : : : ; 9g.

Small disadvantage: need �.

Several small advantages:

easily handle negative integers;

easily handle subtraction;

reduce products a bit.

Speedup: delay carries

Computing (e.g.) big ab + c2:

multiply a; b polynomials, carry,

square c poly, carry, add, carry.

e.g. a = 314, b = 271, c = 839:

(3t2 +1t1 +4t0)(2t2 +7t1 +1t0) =

6t4 + 23t3 + 18t2 + 29t1 + 4t0;

carry: 8t4 + 5t3 + 0t2 + 9t1 + 4t0.

As before (8t2 + 3t1 + 9t0)2 =

64t4 + 48t3 + 153t2 + 54t1 + 81t0;

7t5 + 0t4 + 3t3 + 9t2 + 2t1 + 1t0.

+: 7t5+8t4+8t3+9t2+11t1+5t0;

7t5 + 8t4 + 9t3 + 0t2 + 1t1 + 5t0.

Faster: multiply a; b polynomials,

square c polynomial, add, carry.

(6t4 + 23t3 + 18t2 + 29t1 + 4t0) +

(64t4 + 48t3 + 153t2 + 54t1 + 81t0)

= 70t4+71t3+171t2+83t1+85t0;

7t5 + 8t4 + 9t3 + 0t2 + 1t1 + 5t0.

Eliminate intermediate carries.

Outweighs cost of handling

slightly larger coefficients.

Important to carry between

multiplications (and squarings)

to reduce coefficient size;

but carries are usually a bad idea

before additions, subtractions, etc.



Speedup: allow negative coeffs

Recall 159 7! 15; 9.

Scaled: 15900 7! 15000; 900.

Alternative: 159 7! 16;�1.

Scaled: 15900 7! 16000;�100.

Use digits f�5;�4; : : : ; 4; 5g

instead of f0; 1; : : : ; 9g.

Small disadvantage: need �.

Several small advantages:

easily handle negative integers;

easily handle subtraction;

reduce products a bit.

Speedup: delay carries

Computing (e.g.) big ab + c2:

multiply a; b polynomials, carry,

square c poly, carry, add, carry.

e.g. a = 314, b = 271, c = 839:

(3t2 +1t1 +4t0)(2t2 +7t1 +1t0) =

6t4 + 23t3 + 18t2 + 29t1 + 4t0;

carry: 8t4 + 5t3 + 0t2 + 9t1 + 4t0.

As before (8t2 + 3t1 + 9t0)2 =

64t4 + 48t3 + 153t2 + 54t1 + 81t0;

7t5 + 0t4 + 3t3 + 9t2 + 2t1 + 1t0.

+: 7t5+8t4+8t3+9t2+11t1+5t0;

7t5 + 8t4 + 9t3 + 0t2 + 1t1 + 5t0.

Faster: multiply a; b polynomials,

square c polynomial, add, carry.

(6t4 + 23t3 + 18t2 + 29t1 + 4t0) +

(64t4 + 48t3 + 153t2 + 54t1 + 81t0)

= 70t4+71t3+171t2+83t1+85t0;

7t5 + 8t4 + 9t3 + 0t2 + 1t1 + 5t0.

Eliminate intermediate carries.

Outweighs cost of handling

slightly larger coefficients.

Important to carry between

multiplications (and squarings)

to reduce coefficient size;

but carries are usually a bad idea

before additions, subtractions, etc.



Speedup: delay carries

Computing (e.g.) big ab + c2:

multiply a; b polynomials, carry,

square c poly, carry, add, carry.

e.g. a = 314, b = 271, c = 839:

(3t2 +1t1 +4t0)(2t2 +7t1 +1t0) =

6t4 + 23t3 + 18t2 + 29t1 + 4t0;

carry: 8t4 + 5t3 + 0t2 + 9t1 + 4t0.

As before (8t2 + 3t1 + 9t0)2 =

64t4 + 48t3 + 153t2 + 54t1 + 81t0;

7t5 + 0t4 + 3t3 + 9t2 + 2t1 + 1t0.

+: 7t5+8t4+8t3+9t2+11t1+5t0;

7t5 + 8t4 + 9t3 + 0t2 + 1t1 + 5t0.

Faster: multiply a; b polynomials,

square c polynomial, add, carry.

(6t4 + 23t3 + 18t2 + 29t1 + 4t0) +

(64t4 + 48t3 + 153t2 + 54t1 + 81t0)

= 70t4+71t3+171t2+83t1+85t0;

7t5 + 8t4 + 9t3 + 0t2 + 1t1 + 5t0.

Eliminate intermediate carries.

Outweighs cost of handling

slightly larger coefficients.

Important to carry between

multiplications (and squarings)

to reduce coefficient size;

but carries are usually a bad idea

before additions, subtractions, etc.



Speedup: delay carries

Computing (e.g.) big ab + c2:

multiply a; b polynomials, carry,

square c poly, carry, add, carry.

e.g. a = 314, b = 271, c = 839:

(3t2 +1t1 +4t0)(2t2 +7t1 +1t0) =

6t4 + 23t3 + 18t2 + 29t1 + 4t0;

carry: 8t4 + 5t3 + 0t2 + 9t1 + 4t0.

As before (8t2 + 3t1 + 9t0)2 =

64t4 + 48t3 + 153t2 + 54t1 + 81t0;

7t5 + 0t4 + 3t3 + 9t2 + 2t1 + 1t0.

+: 7t5+8t4+8t3+9t2+11t1+5t0;

7t5 + 8t4 + 9t3 + 0t2 + 1t1 + 5t0.

Faster: multiply a; b polynomials,

square c polynomial, add, carry.

(6t4 + 23t3 + 18t2 + 29t1 + 4t0) +

(64t4 + 48t3 + 153t2 + 54t1 + 81t0)

= 70t4+71t3+171t2+83t1+85t0;

7t5 + 8t4 + 9t3 + 0t2 + 1t1 + 5t0.

Eliminate intermediate carries.

Outweighs cost of handling

slightly larger coefficients.

Important to carry between

multiplications (and squarings)

to reduce coefficient size;

but carries are usually a bad idea

before additions, subtractions, etc.

Speedup: polynomial Karatsuba

How much work to multiply polys

f = f0 + f1t + � � �+ f19t
19,

g = g0 + g1t + � � �+ g19t
19?

Using the obvious method:

400 coeff mults, 361 coeff adds.

Faster: Write f as F0 + F1t
10;

F0 = f0 + f1t + � � �+ f9t
9;

F1 = f10 + f11t + � � �+ f19t
9.

Similarly write g as G0 + G1t
10.

Then fg = (F0 + F1)(G0 + G1)t10

+ (F0G0 � F1G1t
10)(1� t10).



Speedup: delay carries

Computing (e.g.) big ab + c2:

multiply a; b polynomials, carry,

square c poly, carry, add, carry.

e.g. a = 314, b = 271, c = 839:

(3t2 +1t1 +4t0)(2t2 +7t1 +1t0) =

6t4 + 23t3 + 18t2 + 29t1 + 4t0;

carry: 8t4 + 5t3 + 0t2 + 9t1 + 4t0.

As before (8t2 + 3t1 + 9t0)2 =

64t4 + 48t3 + 153t2 + 54t1 + 81t0;

7t5 + 0t4 + 3t3 + 9t2 + 2t1 + 1t0.

+: 7t5+8t4+8t3+9t2+11t1+5t0;

7t5 + 8t4 + 9t3 + 0t2 + 1t1 + 5t0.

Faster: multiply a; b polynomials,

square c polynomial, add, carry.

(6t4 + 23t3 + 18t2 + 29t1 + 4t0) +

(64t4 + 48t3 + 153t2 + 54t1 + 81t0)

= 70t4+71t3+171t2+83t1+85t0;

7t5 + 8t4 + 9t3 + 0t2 + 1t1 + 5t0.

Eliminate intermediate carries.

Outweighs cost of handling

slightly larger coefficients.

Important to carry between

multiplications (and squarings)

to reduce coefficient size;

but carries are usually a bad idea

before additions, subtractions, etc.

Speedup: polynomial Karatsuba

How much work to multiply polys

f = f0 + f1t + � � �+ f19t
19,

g = g0 + g1t + � � �+ g19t
19?

Using the obvious method:

400 coeff mults, 361 coeff adds.

Faster: Write f as F0 + F1t
10;

F0 = f0 + f1t + � � �+ f9t
9;

F1 = f10 + f11t + � � �+ f19t
9.

Similarly write g as G0 + G1t
10.

Then fg = (F0 + F1)(G0 + G1)t10

+ (F0G0 � F1G1t
10)(1� t10).



Speedup: delay carries

Computing (e.g.) big ab + c2:

multiply a; b polynomials, carry,

square c poly, carry, add, carry.

e.g. a = 314, b = 271, c = 839:

(3t2 +1t1 +4t0)(2t2 +7t1 +1t0) =

6t4 + 23t3 + 18t2 + 29t1 + 4t0;

carry: 8t4 + 5t3 + 0t2 + 9t1 + 4t0.

As before (8t2 + 3t1 + 9t0)2 =

64t4 + 48t3 + 153t2 + 54t1 + 81t0;

7t5 + 0t4 + 3t3 + 9t2 + 2t1 + 1t0.

+: 7t5+8t4+8t3+9t2+11t1+5t0;

7t5 + 8t4 + 9t3 + 0t2 + 1t1 + 5t0.

Faster: multiply a; b polynomials,

square c polynomial, add, carry.

(6t4 + 23t3 + 18t2 + 29t1 + 4t0) +

(64t4 + 48t3 + 153t2 + 54t1 + 81t0)

= 70t4+71t3+171t2+83t1+85t0;

7t5 + 8t4 + 9t3 + 0t2 + 1t1 + 5t0.

Eliminate intermediate carries.

Outweighs cost of handling

slightly larger coefficients.

Important to carry between

multiplications (and squarings)

to reduce coefficient size;

but carries are usually a bad idea

before additions, subtractions, etc.

Speedup: polynomial Karatsuba

How much work to multiply polys

f = f0 + f1t + � � �+ f19t
19,

g = g0 + g1t + � � �+ g19t
19?

Using the obvious method:

400 coeff mults, 361 coeff adds.

Faster: Write f as F0 + F1t
10;

F0 = f0 + f1t + � � �+ f9t
9;

F1 = f10 + f11t + � � �+ f19t
9.

Similarly write g as G0 + G1t
10.

Then fg = (F0 + F1)(G0 + G1)t10

+ (F0G0 � F1G1t
10)(1� t10).



Faster: multiply a; b polynomials,

square c polynomial, add, carry.

(6t4 + 23t3 + 18t2 + 29t1 + 4t0) +

(64t4 + 48t3 + 153t2 + 54t1 + 81t0)

= 70t4+71t3+171t2+83t1+85t0;

7t5 + 8t4 + 9t3 + 0t2 + 1t1 + 5t0.

Eliminate intermediate carries.

Outweighs cost of handling

slightly larger coefficients.

Important to carry between

multiplications (and squarings)

to reduce coefficient size;

but carries are usually a bad idea

before additions, subtractions, etc.

Speedup: polynomial Karatsuba

How much work to multiply polys

f = f0 + f1t + � � �+ f19t
19,

g = g0 + g1t + � � �+ g19t
19?

Using the obvious method:

400 coeff mults, 361 coeff adds.

Faster: Write f as F0 + F1t
10;

F0 = f0 + f1t + � � �+ f9t
9;

F1 = f10 + f11t + � � �+ f19t
9.

Similarly write g as G0 + G1t
10.

Then fg = (F0 + F1)(G0 + G1)t10

+ (F0G0 � F1G1t
10)(1� t10).



Faster: multiply a; b polynomials,

square c polynomial, add, carry.

(6t4 + 23t3 + 18t2 + 29t1 + 4t0) +

(64t4 + 48t3 + 153t2 + 54t1 + 81t0)

= 70t4+71t3+171t2+83t1+85t0;

7t5 + 8t4 + 9t3 + 0t2 + 1t1 + 5t0.

Eliminate intermediate carries.

Outweighs cost of handling

slightly larger coefficients.

Important to carry between

multiplications (and squarings)

to reduce coefficient size;

but carries are usually a bad idea

before additions, subtractions, etc.

Speedup: polynomial Karatsuba

How much work to multiply polys

f = f0 + f1t + � � �+ f19t
19,

g = g0 + g1t + � � �+ g19t
19?

Using the obvious method:

400 coeff mults, 361 coeff adds.

Faster: Write f as F0 + F1t
10;

F0 = f0 + f1t + � � �+ f9t
9;

F1 = f10 + f11t + � � �+ f19t
9.

Similarly write g as G0 + G1t
10.

Then fg = (F0 + F1)(G0 + G1)t10

+ (F0G0 � F1G1t
10)(1� t10).

20 adds for F0 + F1, G0 + G1.

300 mults for three products

F0G0, F1G1, (F0 + F1)(G0 + G1).

243 adds for those products.

9 adds for F0G0 � F1G1t
10

with subs counted as adds

and with delayed negations.

19 adds for � � � (1� t10).

19 adds to finish.

Total 300 mults, 310 adds.

Larger coefficients, slight expense;

still saves time.

Can apply idea recursively

as poly degree grows.



Faster: multiply a; b polynomials,

square c polynomial, add, carry.

(6t4 + 23t3 + 18t2 + 29t1 + 4t0) +

(64t4 + 48t3 + 153t2 + 54t1 + 81t0)

= 70t4+71t3+171t2+83t1+85t0;

7t5 + 8t4 + 9t3 + 0t2 + 1t1 + 5t0.

Eliminate intermediate carries.

Outweighs cost of handling

slightly larger coefficients.

Important to carry between

multiplications (and squarings)

to reduce coefficient size;

but carries are usually a bad idea

before additions, subtractions, etc.

Speedup: polynomial Karatsuba

How much work to multiply polys

f = f0 + f1t + � � �+ f19t
19,

g = g0 + g1t + � � �+ g19t
19?

Using the obvious method:

400 coeff mults, 361 coeff adds.

Faster: Write f as F0 + F1t
10;

F0 = f0 + f1t + � � �+ f9t
9;

F1 = f10 + f11t + � � �+ f19t
9.

Similarly write g as G0 + G1t
10.

Then fg = (F0 + F1)(G0 + G1)t10

+ (F0G0 � F1G1t
10)(1� t10).

20 adds for F0 + F1, G0 + G1.

300 mults for three products

F0G0, F1G1, (F0 + F1)(G0 + G1).

243 adds for those products.

9 adds for F0G0 � F1G1t
10

with subs counted as adds

and with delayed negations.

19 adds for � � � (1� t10).

19 adds to finish.

Total 300 mults, 310 adds.

Larger coefficients, slight expense;

still saves time.

Can apply idea recursively

as poly degree grows.



Faster: multiply a; b polynomials,

square c polynomial, add, carry.

(6t4 + 23t3 + 18t2 + 29t1 + 4t0) +

(64t4 + 48t3 + 153t2 + 54t1 + 81t0)

= 70t4+71t3+171t2+83t1+85t0;

7t5 + 8t4 + 9t3 + 0t2 + 1t1 + 5t0.

Eliminate intermediate carries.

Outweighs cost of handling

slightly larger coefficients.

Important to carry between

multiplications (and squarings)

to reduce coefficient size;

but carries are usually a bad idea

before additions, subtractions, etc.

Speedup: polynomial Karatsuba

How much work to multiply polys

f = f0 + f1t + � � �+ f19t
19,

g = g0 + g1t + � � �+ g19t
19?

Using the obvious method:

400 coeff mults, 361 coeff adds.

Faster: Write f as F0 + F1t
10;

F0 = f0 + f1t + � � �+ f9t
9;

F1 = f10 + f11t + � � �+ f19t
9.

Similarly write g as G0 + G1t
10.

Then fg = (F0 + F1)(G0 + G1)t10

+ (F0G0 � F1G1t
10)(1� t10).

20 adds for F0 + F1, G0 + G1.

300 mults for three products

F0G0, F1G1, (F0 + F1)(G0 + G1).

243 adds for those products.

9 adds for F0G0 � F1G1t
10

with subs counted as adds

and with delayed negations.

19 adds for � � � (1� t10).

19 adds to finish.

Total 300 mults, 310 adds.

Larger coefficients, slight expense;

still saves time.

Can apply idea recursively

as poly degree grows.



Speedup: polynomial Karatsuba

How much work to multiply polys

f = f0 + f1t + � � �+ f19t
19,

g = g0 + g1t + � � �+ g19t
19?

Using the obvious method:

400 coeff mults, 361 coeff adds.

Faster: Write f as F0 + F1t
10;

F0 = f0 + f1t + � � �+ f9t
9;

F1 = f10 + f11t + � � �+ f19t
9.

Similarly write g as G0 + G1t
10.

Then fg = (F0 + F1)(G0 + G1)t10

+ (F0G0 � F1G1t
10)(1� t10).

20 adds for F0 + F1, G0 + G1.

300 mults for three products

F0G0, F1G1, (F0 + F1)(G0 + G1).

243 adds for those products.

9 adds for F0G0 � F1G1t
10

with subs counted as adds

and with delayed negations.

19 adds for � � � (1� t10).

19 adds to finish.

Total 300 mults, 310 adds.

Larger coefficients, slight expense;

still saves time.

Can apply idea recursively

as poly degree grows.



Speedup: polynomial Karatsuba

How much work to multiply polys

f = f0 + f1t + � � �+ f19t
19,

g = g0 + g1t + � � �+ g19t
19?

Using the obvious method:

400 coeff mults, 361 coeff adds.

Faster: Write f as F0 + F1t
10;

F0 = f0 + f1t + � � �+ f9t
9;

F1 = f10 + f11t + � � �+ f19t
9.

Similarly write g as G0 + G1t
10.

Then fg = (F0 + F1)(G0 + G1)t10

+ (F0G0 � F1G1t
10)(1� t10).

20 adds for F0 + F1, G0 + G1.

300 mults for three products

F0G0, F1G1, (F0 + F1)(G0 + G1).

243 adds for those products.

9 adds for F0G0 � F1G1t
10

with subs counted as adds

and with delayed negations.

19 adds for � � � (1� t10).

19 adds to finish.

Total 300 mults, 310 adds.

Larger coefficients, slight expense;

still saves time.

Can apply idea recursively

as poly degree grows.

Many other algebraic speedups

in polynomial multiplication:

“Toom,” “FFT,” etc.

Increasingly important as

polynomial degree grows.

O(n lgn lg lgn) coeff operations

to compute n-coeff product.

Useful for sizes of n

that occur in cryptography?

In some cases, yes!

But Karatsuba is the limit

for prime-field ECC/ECDLP

on most current CPUs.



Speedup: polynomial Karatsuba

How much work to multiply polys

f = f0 + f1t + � � �+ f19t
19,

g = g0 + g1t + � � �+ g19t
19?

Using the obvious method:

400 coeff mults, 361 coeff adds.

Faster: Write f as F0 + F1t
10;

F0 = f0 + f1t + � � �+ f9t
9;

F1 = f10 + f11t + � � �+ f19t
9.

Similarly write g as G0 + G1t
10.

Then fg = (F0 + F1)(G0 + G1)t10

+ (F0G0 � F1G1t
10)(1� t10).

20 adds for F0 + F1, G0 + G1.

300 mults for three products

F0G0, F1G1, (F0 + F1)(G0 + G1).

243 adds for those products.

9 adds for F0G0 � F1G1t
10

with subs counted as adds

and with delayed negations.

19 adds for � � � (1� t10).

19 adds to finish.

Total 300 mults, 310 adds.

Larger coefficients, slight expense;

still saves time.

Can apply idea recursively

as poly degree grows.

Many other algebraic speedups

in polynomial multiplication:

“Toom,” “FFT,” etc.

Increasingly important as

polynomial degree grows.

O(n lgn lg lgn) coeff operations

to compute n-coeff product.

Useful for sizes of n

that occur in cryptography?

In some cases, yes!

But Karatsuba is the limit

for prime-field ECC/ECDLP

on most current CPUs.



Speedup: polynomial Karatsuba

How much work to multiply polys

f = f0 + f1t + � � �+ f19t
19,

g = g0 + g1t + � � �+ g19t
19?

Using the obvious method:

400 coeff mults, 361 coeff adds.

Faster: Write f as F0 + F1t
10;

F0 = f0 + f1t + � � �+ f9t
9;

F1 = f10 + f11t + � � �+ f19t
9.

Similarly write g as G0 + G1t
10.

Then fg = (F0 + F1)(G0 + G1)t10

+ (F0G0 � F1G1t
10)(1� t10).

20 adds for F0 + F1, G0 + G1.

300 mults for three products

F0G0, F1G1, (F0 + F1)(G0 + G1).

243 adds for those products.

9 adds for F0G0 � F1G1t
10

with subs counted as adds

and with delayed negations.

19 adds for � � � (1� t10).

19 adds to finish.

Total 300 mults, 310 adds.

Larger coefficients, slight expense;

still saves time.

Can apply idea recursively

as poly degree grows.

Many other algebraic speedups

in polynomial multiplication:

“Toom,” “FFT,” etc.

Increasingly important as

polynomial degree grows.

O(n lgn lg lgn) coeff operations

to compute n-coeff product.

Useful for sizes of n

that occur in cryptography?

In some cases, yes!

But Karatsuba is the limit

for prime-field ECC/ECDLP

on most current CPUs.



20 adds for F0 + F1, G0 + G1.

300 mults for three products

F0G0, F1G1, (F0 + F1)(G0 + G1).

243 adds for those products.

9 adds for F0G0 � F1G1t
10

with subs counted as adds

and with delayed negations.

19 adds for � � � (1� t10).

19 adds to finish.

Total 300 mults, 310 adds.

Larger coefficients, slight expense;

still saves time.

Can apply idea recursively

as poly degree grows.

Many other algebraic speedups

in polynomial multiplication:

“Toom,” “FFT,” etc.

Increasingly important as

polynomial degree grows.

O(n lgn lg lgn) coeff operations

to compute n-coeff product.

Useful for sizes of n

that occur in cryptography?

In some cases, yes!

But Karatsuba is the limit

for prime-field ECC/ECDLP

on most current CPUs.



20 adds for F0 + F1, G0 + G1.

300 mults for three products

F0G0, F1G1, (F0 + F1)(G0 + G1).

243 adds for those products.

9 adds for F0G0 � F1G1t
10

with subs counted as adds

and with delayed negations.

19 adds for � � � (1� t10).

19 adds to finish.

Total 300 mults, 310 adds.

Larger coefficients, slight expense;

still saves time.

Can apply idea recursively

as poly degree grows.

Many other algebraic speedups

in polynomial multiplication:

“Toom,” “FFT,” etc.

Increasingly important as

polynomial degree grows.

O(n lgn lg lgn) coeff operations

to compute n-coeff product.

Useful for sizes of n

that occur in cryptography?

In some cases, yes!

But Karatsuba is the limit

for prime-field ECC/ECDLP

on most current CPUs.

Modular reduction

How to compute f mod p?

Can use definition:

f mod p = f � p bf=pc.

Can multiply f by a

precomputed 1=p approximation;

easily adjust to obtain bf=pc.

Slight speedup: “2-adic inverse”;

“Montgomery reduction.”



20 adds for F0 + F1, G0 + G1.

300 mults for three products

F0G0, F1G1, (F0 + F1)(G0 + G1).

243 adds for those products.

9 adds for F0G0 � F1G1t
10

with subs counted as adds

and with delayed negations.

19 adds for � � � (1� t10).

19 adds to finish.

Total 300 mults, 310 adds.

Larger coefficients, slight expense;

still saves time.

Can apply idea recursively

as poly degree grows.

Many other algebraic speedups

in polynomial multiplication:

“Toom,” “FFT,” etc.

Increasingly important as

polynomial degree grows.

O(n lgn lg lgn) coeff operations

to compute n-coeff product.

Useful for sizes of n

that occur in cryptography?

In some cases, yes!

But Karatsuba is the limit

for prime-field ECC/ECDLP

on most current CPUs.

Modular reduction

How to compute f mod p?

Can use definition:

f mod p = f � p bf=pc.

Can multiply f by a

precomputed 1=p approximation;

easily adjust to obtain bf=pc.

Slight speedup: “2-adic inverse”;

“Montgomery reduction.”



20 adds for F0 + F1, G0 + G1.

300 mults for three products

F0G0, F1G1, (F0 + F1)(G0 + G1).

243 adds for those products.

9 adds for F0G0 � F1G1t
10

with subs counted as adds

and with delayed negations.

19 adds for � � � (1� t10).

19 adds to finish.

Total 300 mults, 310 adds.

Larger coefficients, slight expense;

still saves time.

Can apply idea recursively

as poly degree grows.

Many other algebraic speedups

in polynomial multiplication:

“Toom,” “FFT,” etc.

Increasingly important as

polynomial degree grows.

O(n lgn lg lgn) coeff operations

to compute n-coeff product.

Useful for sizes of n

that occur in cryptography?

In some cases, yes!

But Karatsuba is the limit

for prime-field ECC/ECDLP

on most current CPUs.

Modular reduction

How to compute f mod p?

Can use definition:

f mod p = f � p bf=pc.

Can multiply f by a

precomputed 1=p approximation;

easily adjust to obtain bf=pc.

Slight speedup: “2-adic inverse”;

“Montgomery reduction.”



Many other algebraic speedups

in polynomial multiplication:

“Toom,” “FFT,” etc.

Increasingly important as

polynomial degree grows.

O(n lgn lg lgn) coeff operations

to compute n-coeff product.

Useful for sizes of n

that occur in cryptography?

In some cases, yes!

But Karatsuba is the limit

for prime-field ECC/ECDLP

on most current CPUs.

Modular reduction

How to compute f mod p?

Can use definition:

f mod p = f � p bf=pc.

Can multiply f by a

precomputed 1=p approximation;

easily adjust to obtain bf=pc.

Slight speedup: “2-adic inverse”;

“Montgomery reduction.”



Many other algebraic speedups

in polynomial multiplication:

“Toom,” “FFT,” etc.

Increasingly important as

polynomial degree grows.

O(n lgn lg lgn) coeff operations

to compute n-coeff product.

Useful for sizes of n

that occur in cryptography?

In some cases, yes!

But Karatsuba is the limit

for prime-field ECC/ECDLP

on most current CPUs.

Modular reduction

How to compute f mod p?

Can use definition:

f mod p = f � p bf=pc.

Can multiply f by a

precomputed 1=p approximation;

easily adjust to obtain bf=pc.

Slight speedup: “2-adic inverse”;

“Montgomery reduction.”

e.g. 314159265358 mod 271828:

Precompute

b1000000000000=271828c

= 3678796.

Compute

314159 � 3678796

= 1155726872564.

Compute

314159265358� 1155726 � 271828

= 578230.

Oops, too big:

578230� 271828 = 306402.

306402� 271828 = 34574.



Many other algebraic speedups

in polynomial multiplication:

“Toom,” “FFT,” etc.

Increasingly important as

polynomial degree grows.

O(n lgn lg lgn) coeff operations

to compute n-coeff product.

Useful for sizes of n

that occur in cryptography?

In some cases, yes!

But Karatsuba is the limit

for prime-field ECC/ECDLP

on most current CPUs.

Modular reduction

How to compute f mod p?

Can use definition:

f mod p = f � p bf=pc.

Can multiply f by a

precomputed 1=p approximation;

easily adjust to obtain bf=pc.

Slight speedup: “2-adic inverse”;

“Montgomery reduction.”

e.g. 314159265358 mod 271828:

Precompute

b1000000000000=271828c

= 3678796.

Compute

314159 � 3678796

= 1155726872564.

Compute

314159265358� 1155726 � 271828

= 578230.

Oops, too big:

578230� 271828 = 306402.

306402� 271828 = 34574.



Many other algebraic speedups

in polynomial multiplication:

“Toom,” “FFT,” etc.

Increasingly important as

polynomial degree grows.

O(n lgn lg lgn) coeff operations

to compute n-coeff product.

Useful for sizes of n

that occur in cryptography?

In some cases, yes!

But Karatsuba is the limit

for prime-field ECC/ECDLP

on most current CPUs.

Modular reduction

How to compute f mod p?

Can use definition:

f mod p = f � p bf=pc.

Can multiply f by a

precomputed 1=p approximation;

easily adjust to obtain bf=pc.

Slight speedup: “2-adic inverse”;

“Montgomery reduction.”

e.g. 314159265358 mod 271828:

Precompute

b1000000000000=271828c

= 3678796.

Compute

314159 � 3678796

= 1155726872564.

Compute

314159265358� 1155726 � 271828

= 578230.

Oops, too big:

578230� 271828 = 306402.

306402� 271828 = 34574.



Modular reduction

How to compute f mod p?

Can use definition:

f mod p = f � p bf=pc.

Can multiply f by a

precomputed 1=p approximation;

easily adjust to obtain bf=pc.

Slight speedup: “2-adic inverse”;

“Montgomery reduction.”

e.g. 314159265358 mod 271828:

Precompute

b1000000000000=271828c

= 3678796.

Compute

314159 � 3678796

= 1155726872564.

Compute

314159265358� 1155726 � 271828

= 578230.

Oops, too big:

578230� 271828 = 306402.

306402� 271828 = 34574.



Modular reduction

How to compute f mod p?

Can use definition:

f mod p = f � p bf=pc.

Can multiply f by a

precomputed 1=p approximation;

easily adjust to obtain bf=pc.

Slight speedup: “2-adic inverse”;

“Montgomery reduction.”

e.g. 314159265358 mod 271828:

Precompute

b1000000000000=271828c

= 3678796.

Compute

314159 � 3678796

= 1155726872564.

Compute

314159265358� 1155726 � 271828

= 578230.

Oops, too big:

578230� 271828 = 306402.

306402� 271828 = 34574.

We can do better: normally

p is chosen with a special form

to make f mod p much faster.

Special primes hurt security

for F�p, Clock(Fp), etc.,

but not for elliptic curves!

gls1271: p = 2127 � 1,

with degree-2 extension.

Curve25519: p = 2255 � 19.

NIST P-224: p = 2224 � 296 + 1.

secp112r1: p = (2128 � 3)=76439.

Divides special form.



Modular reduction

How to compute f mod p?

Can use definition:

f mod p = f � p bf=pc.

Can multiply f by a

precomputed 1=p approximation;

easily adjust to obtain bf=pc.

Slight speedup: “2-adic inverse”;

“Montgomery reduction.”

e.g. 314159265358 mod 271828:

Precompute

b1000000000000=271828c

= 3678796.

Compute

314159 � 3678796

= 1155726872564.

Compute

314159265358� 1155726 � 271828

= 578230.

Oops, too big:

578230� 271828 = 306402.

306402� 271828 = 34574.

We can do better: normally

p is chosen with a special form

to make f mod p much faster.

Special primes hurt security

for F�p, Clock(Fp), etc.,

but not for elliptic curves!

gls1271: p = 2127 � 1,

with degree-2 extension.

Curve25519: p = 2255 � 19.

NIST P-224: p = 2224 � 296 + 1.

secp112r1: p = (2128 � 3)=76439.

Divides special form.



Modular reduction

How to compute f mod p?

Can use definition:

f mod p = f � p bf=pc.

Can multiply f by a

precomputed 1=p approximation;

easily adjust to obtain bf=pc.

Slight speedup: “2-adic inverse”;

“Montgomery reduction.”

e.g. 314159265358 mod 271828:

Precompute

b1000000000000=271828c

= 3678796.

Compute

314159 � 3678796

= 1155726872564.

Compute

314159265358� 1155726 � 271828

= 578230.

Oops, too big:

578230� 271828 = 306402.

306402� 271828 = 34574.

We can do better: normally

p is chosen with a special form

to make f mod p much faster.

Special primes hurt security

for F�p, Clock(Fp), etc.,

but not for elliptic curves!

gls1271: p = 2127 � 1,

with degree-2 extension.

Curve25519: p = 2255 � 19.

NIST P-224: p = 2224 � 296 + 1.

secp112r1: p = (2128 � 3)=76439.

Divides special form.



e.g. 314159265358 mod 271828:

Precompute

b1000000000000=271828c

= 3678796.

Compute

314159 � 3678796

= 1155726872564.

Compute

314159265358� 1155726 � 271828

= 578230.

Oops, too big:

578230� 271828 = 306402.

306402� 271828 = 34574.

We can do better: normally

p is chosen with a special form

to make f mod p much faster.

Special primes hurt security

for F�p, Clock(Fp), etc.,

but not for elliptic curves!

gls1271: p = 2127 � 1,

with degree-2 extension.

Curve25519: p = 2255 � 19.

NIST P-224: p = 2224 � 296 + 1.

secp112r1: p = (2128 � 3)=76439.

Divides special form.



e.g. 314159265358 mod 271828:

Precompute

b1000000000000=271828c

= 3678796.

Compute

314159 � 3678796

= 1155726872564.

Compute

314159265358� 1155726 � 271828

= 578230.

Oops, too big:

578230� 271828 = 306402.

306402� 271828 = 34574.

We can do better: normally

p is chosen with a special form

to make f mod p much faster.

Special primes hurt security

for F�p, Clock(Fp), etc.,

but not for elliptic curves!

gls1271: p = 2127 � 1,

with degree-2 extension.

Curve25519: p = 2255 � 19.

NIST P-224: p = 2224 � 296 + 1.

secp112r1: p = (2128 � 3)=76439.

Divides special form.

Small example: p = 1000003.

Then 1000000a + b � b� 3a.

e.g. 314159265358 =

314159 � 1000000 + 265358 �

314159(�3) + 265358 =

�942477 + 265358 =

�677119.

Easily adjust b� 3a

to the range f0; 1; : : : ; p� 1g

by adding/subtracting a few p’s:

e.g. �677119 � 322884.



e.g. 314159265358 mod 271828:

Precompute

b1000000000000=271828c

= 3678796.

Compute

314159 � 3678796

= 1155726872564.

Compute

314159265358� 1155726 � 271828

= 578230.

Oops, too big:

578230� 271828 = 306402.

306402� 271828 = 34574.

We can do better: normally

p is chosen with a special form

to make f mod p much faster.

Special primes hurt security

for F�p, Clock(Fp), etc.,

but not for elliptic curves!

gls1271: p = 2127 � 1,

with degree-2 extension.

Curve25519: p = 2255 � 19.

NIST P-224: p = 2224 � 296 + 1.

secp112r1: p = (2128 � 3)=76439.

Divides special form.

Small example: p = 1000003.

Then 1000000a + b � b� 3a.

e.g. 314159265358 =

314159 � 1000000 + 265358 �

314159(�3) + 265358 =

�942477 + 265358 =

�677119.

Easily adjust b� 3a

to the range f0; 1; : : : ; p� 1g

by adding/subtracting a few p’s:

e.g. �677119 � 322884.



e.g. 314159265358 mod 271828:

Precompute

b1000000000000=271828c

= 3678796.

Compute

314159 � 3678796

= 1155726872564.

Compute

314159265358� 1155726 � 271828

= 578230.

Oops, too big:

578230� 271828 = 306402.

306402� 271828 = 34574.

We can do better: normally

p is chosen with a special form

to make f mod p much faster.

Special primes hurt security

for F�p, Clock(Fp), etc.,

but not for elliptic curves!

gls1271: p = 2127 � 1,

with degree-2 extension.

Curve25519: p = 2255 � 19.

NIST P-224: p = 2224 � 296 + 1.

secp112r1: p = (2128 � 3)=76439.

Divides special form.

Small example: p = 1000003.

Then 1000000a + b � b� 3a.

e.g. 314159265358 =

314159 � 1000000 + 265358 �

314159(�3) + 265358 =

�942477 + 265358 =

�677119.

Easily adjust b� 3a

to the range f0; 1; : : : ; p� 1g

by adding/subtracting a few p’s:

e.g. �677119 � 322884.



We can do better: normally

p is chosen with a special form

to make f mod p much faster.

Special primes hurt security

for F�p, Clock(Fp), etc.,

but not for elliptic curves!

gls1271: p = 2127 � 1,

with degree-2 extension.

Curve25519: p = 2255 � 19.

NIST P-224: p = 2224 � 296 + 1.

secp112r1: p = (2128 � 3)=76439.

Divides special form.

Small example: p = 1000003.

Then 1000000a + b � b� 3a.

e.g. 314159265358 =

314159 � 1000000 + 265358 �

314159(�3) + 265358 =

�942477 + 265358 =

�677119.

Easily adjust b� 3a

to the range f0; 1; : : : ; p� 1g

by adding/subtracting a few p’s:

e.g. �677119 � 322884.



We can do better: normally

p is chosen with a special form

to make f mod p much faster.

Special primes hurt security

for F�p, Clock(Fp), etc.,

but not for elliptic curves!

gls1271: p = 2127 � 1,

with degree-2 extension.

Curve25519: p = 2255 � 19.

NIST P-224: p = 2224 � 296 + 1.

secp112r1: p = (2128 � 3)=76439.

Divides special form.

Small example: p = 1000003.

Then 1000000a + b � b� 3a.

e.g. 314159265358 =

314159 � 1000000 + 265358 �

314159(�3) + 265358 =

�942477 + 265358 =

�677119.

Easily adjust b� 3a

to the range f0; 1; : : : ; p� 1g

by adding/subtracting a few p’s:

e.g. �677119 � 322884.

Hmmm, is adjustment so easy?

Conditional branches are slow.

(Also dangerous for defenders:

branch timing leaks secrets.)

Can eliminate the branches,

but adjustment isn’t free.

Speedup: Skip the adjustment

for intermediate results.

“Lazy reduction.”

Adjust only for output.

b� 3a is small enough

to continue computations.



We can do better: normally

p is chosen with a special form

to make f mod p much faster.

Special primes hurt security

for F�p, Clock(Fp), etc.,

but not for elliptic curves!

gls1271: p = 2127 � 1,

with degree-2 extension.

Curve25519: p = 2255 � 19.

NIST P-224: p = 2224 � 296 + 1.

secp112r1: p = (2128 � 3)=76439.

Divides special form.

Small example: p = 1000003.

Then 1000000a + b � b� 3a.

e.g. 314159265358 =

314159 � 1000000 + 265358 �

314159(�3) + 265358 =

�942477 + 265358 =

�677119.

Easily adjust b� 3a

to the range f0; 1; : : : ; p� 1g

by adding/subtracting a few p’s:

e.g. �677119 � 322884.

Hmmm, is adjustment so easy?

Conditional branches are slow.

(Also dangerous for defenders:

branch timing leaks secrets.)

Can eliminate the branches,

but adjustment isn’t free.

Speedup: Skip the adjustment

for intermediate results.

“Lazy reduction.”

Adjust only for output.

b� 3a is small enough

to continue computations.



We can do better: normally

p is chosen with a special form

to make f mod p much faster.

Special primes hurt security

for F�p, Clock(Fp), etc.,

but not for elliptic curves!

gls1271: p = 2127 � 1,

with degree-2 extension.

Curve25519: p = 2255 � 19.

NIST P-224: p = 2224 � 296 + 1.

secp112r1: p = (2128 � 3)=76439.

Divides special form.

Small example: p = 1000003.

Then 1000000a + b � b� 3a.

e.g. 314159265358 =

314159 � 1000000 + 265358 �

314159(�3) + 265358 =

�942477 + 265358 =

�677119.

Easily adjust b� 3a

to the range f0; 1; : : : ; p� 1g

by adding/subtracting a few p’s:

e.g. �677119 � 322884.

Hmmm, is adjustment so easy?

Conditional branches are slow.

(Also dangerous for defenders:

branch timing leaks secrets.)

Can eliminate the branches,

but adjustment isn’t free.

Speedup: Skip the adjustment

for intermediate results.

“Lazy reduction.”

Adjust only for output.

b� 3a is small enough

to continue computations.



Small example: p = 1000003.

Then 1000000a + b � b� 3a.

e.g. 314159265358 =

314159 � 1000000 + 265358 �

314159(�3) + 265358 =

�942477 + 265358 =

�677119.

Easily adjust b� 3a

to the range f0; 1; : : : ; p� 1g

by adding/subtracting a few p’s:

e.g. �677119 � 322884.

Hmmm, is adjustment so easy?

Conditional branches are slow.

(Also dangerous for defenders:

branch timing leaks secrets.)

Can eliminate the branches,

but adjustment isn’t free.

Speedup: Skip the adjustment

for intermediate results.

“Lazy reduction.”

Adjust only for output.

b� 3a is small enough

to continue computations.



Small example: p = 1000003.

Then 1000000a + b � b� 3a.

e.g. 314159265358 =

314159 � 1000000 + 265358 �

314159(�3) + 265358 =

�942477 + 265358 =

�677119.

Easily adjust b� 3a

to the range f0; 1; : : : ; p� 1g

by adding/subtracting a few p’s:

e.g. �677119 � 322884.

Hmmm, is adjustment so easy?

Conditional branches are slow.

(Also dangerous for defenders:

branch timing leaks secrets.)

Can eliminate the branches,

but adjustment isn’t free.

Speedup: Skip the adjustment

for intermediate results.

“Lazy reduction.”

Adjust only for output.

b� 3a is small enough

to continue computations.

Can delay carries until after

multiplication by 3.

e.g. To square 314159

in Z=1000003: Square poly

3t5 + 1t4 + 4t3 + 1t2 + 5t1 + 9t0,

obtaining 9t10 + 6t9 + 25t8 +

14t7 + 48t6 + 72t5 + 59t4 +

82t3 + 43t2 + 90t1 + 81t0.

Reduce: replace (ci)t
6+i by

(�3ci)t
i, obtaining 72t5 + 32t4 +

64t3 � 32t2 + 48t1 � 63t0.

Carry: 8t6 � 4t5 � 2t4 +

1t3 + 2t2 + 2t1 � 3t0.



Small example: p = 1000003.

Then 1000000a + b � b� 3a.

e.g. 314159265358 =

314159 � 1000000 + 265358 �

314159(�3) + 265358 =

�942477 + 265358 =

�677119.

Easily adjust b� 3a

to the range f0; 1; : : : ; p� 1g

by adding/subtracting a few p’s:

e.g. �677119 � 322884.

Hmmm, is adjustment so easy?

Conditional branches are slow.

(Also dangerous for defenders:

branch timing leaks secrets.)

Can eliminate the branches,

but adjustment isn’t free.

Speedup: Skip the adjustment

for intermediate results.

“Lazy reduction.”

Adjust only for output.

b� 3a is small enough

to continue computations.

Can delay carries until after

multiplication by 3.

e.g. To square 314159

in Z=1000003: Square poly

3t5 + 1t4 + 4t3 + 1t2 + 5t1 + 9t0,

obtaining 9t10 + 6t9 + 25t8 +

14t7 + 48t6 + 72t5 + 59t4 +

82t3 + 43t2 + 90t1 + 81t0.

Reduce: replace (ci)t
6+i by

(�3ci)t
i, obtaining 72t5 + 32t4 +

64t3 � 32t2 + 48t1 � 63t0.

Carry: 8t6 � 4t5 � 2t4 +

1t3 + 2t2 + 2t1 � 3t0.



Small example: p = 1000003.

Then 1000000a + b � b� 3a.

e.g. 314159265358 =

314159 � 1000000 + 265358 �

314159(�3) + 265358 =

�942477 + 265358 =

�677119.

Easily adjust b� 3a

to the range f0; 1; : : : ; p� 1g

by adding/subtracting a few p’s:

e.g. �677119 � 322884.

Hmmm, is adjustment so easy?

Conditional branches are slow.

(Also dangerous for defenders:

branch timing leaks secrets.)

Can eliminate the branches,

but adjustment isn’t free.

Speedup: Skip the adjustment

for intermediate results.

“Lazy reduction.”

Adjust only for output.

b� 3a is small enough

to continue computations.

Can delay carries until after

multiplication by 3.

e.g. To square 314159

in Z=1000003: Square poly

3t5 + 1t4 + 4t3 + 1t2 + 5t1 + 9t0,

obtaining 9t10 + 6t9 + 25t8 +

14t7 + 48t6 + 72t5 + 59t4 +

82t3 + 43t2 + 90t1 + 81t0.

Reduce: replace (ci)t
6+i by

(�3ci)t
i, obtaining 72t5 + 32t4 +

64t3 � 32t2 + 48t1 � 63t0.

Carry: 8t6 � 4t5 � 2t4 +

1t3 + 2t2 + 2t1 � 3t0.



Hmmm, is adjustment so easy?

Conditional branches are slow.

(Also dangerous for defenders:

branch timing leaks secrets.)

Can eliminate the branches,

but adjustment isn’t free.

Speedup: Skip the adjustment

for intermediate results.

“Lazy reduction.”

Adjust only for output.

b� 3a is small enough

to continue computations.

Can delay carries until after

multiplication by 3.

e.g. To square 314159

in Z=1000003: Square poly

3t5 + 1t4 + 4t3 + 1t2 + 5t1 + 9t0,

obtaining 9t10 + 6t9 + 25t8 +

14t7 + 48t6 + 72t5 + 59t4 +

82t3 + 43t2 + 90t1 + 81t0.

Reduce: replace (ci)t
6+i by

(�3ci)t
i, obtaining 72t5 + 32t4 +

64t3 � 32t2 + 48t1 � 63t0.

Carry: 8t6 � 4t5 � 2t4 +

1t3 + 2t2 + 2t1 � 3t0.



Hmmm, is adjustment so easy?

Conditional branches are slow.

(Also dangerous for defenders:

branch timing leaks secrets.)

Can eliminate the branches,

but adjustment isn’t free.

Speedup: Skip the adjustment

for intermediate results.

“Lazy reduction.”

Adjust only for output.

b� 3a is small enough

to continue computations.

Can delay carries until after

multiplication by 3.

e.g. To square 314159

in Z=1000003: Square poly

3t5 + 1t4 + 4t3 + 1t2 + 5t1 + 9t0,

obtaining 9t10 + 6t9 + 25t8 +

14t7 + 48t6 + 72t5 + 59t4 +

82t3 + 43t2 + 90t1 + 81t0.

Reduce: replace (ci)t
6+i by

(�3ci)t
i, obtaining 72t5 + 32t4 +

64t3 � 32t2 + 48t1 � 63t0.

Carry: 8t6 � 4t5 � 2t4 +

1t3 + 2t2 + 2t1 � 3t0.

To minimize poly degree,

mix reduction and carrying,

carrying the top sooner.

e.g. Start from square 9t10 + 6t9 +

25t8 + 14t7 + 48t6 + 72t5 + 59t4 +

82t3 + 43t2 + 90t1 + 81t0.

Reduce t10 ! t4 and carry t4 !

t5 ! t6: 6t9 +25t8 +14t7 +56t6�

5t5+2t4+82t3+43t2+90t1+81t0.

Finish reduction: �5t5 + 2t4 +

64t3 � 32t2 + 48t1 � 87t0. Carry

t0 ! t1 ! t2 ! t3 ! t4 ! t5:

�4t5� 2t4 + 1t3 + 2t2� 1t1 + 3t0.



Hmmm, is adjustment so easy?

Conditional branches are slow.

(Also dangerous for defenders:

branch timing leaks secrets.)

Can eliminate the branches,

but adjustment isn’t free.

Speedup: Skip the adjustment

for intermediate results.

“Lazy reduction.”

Adjust only for output.

b� 3a is small enough

to continue computations.

Can delay carries until after

multiplication by 3.

e.g. To square 314159

in Z=1000003: Square poly

3t5 + 1t4 + 4t3 + 1t2 + 5t1 + 9t0,

obtaining 9t10 + 6t9 + 25t8 +

14t7 + 48t6 + 72t5 + 59t4 +

82t3 + 43t2 + 90t1 + 81t0.

Reduce: replace (ci)t
6+i by

(�3ci)t
i, obtaining 72t5 + 32t4 +

64t3 � 32t2 + 48t1 � 63t0.

Carry: 8t6 � 4t5 � 2t4 +

1t3 + 2t2 + 2t1 � 3t0.

To minimize poly degree,

mix reduction and carrying,

carrying the top sooner.

e.g. Start from square 9t10 + 6t9 +

25t8 + 14t7 + 48t6 + 72t5 + 59t4 +

82t3 + 43t2 + 90t1 + 81t0.

Reduce t10 ! t4 and carry t4 !

t5 ! t6: 6t9 +25t8 +14t7 +56t6�

5t5+2t4+82t3+43t2+90t1+81t0.

Finish reduction: �5t5 + 2t4 +

64t3 � 32t2 + 48t1 � 87t0. Carry

t0 ! t1 ! t2 ! t3 ! t4 ! t5:

�4t5� 2t4 + 1t3 + 2t2� 1t1 + 3t0.



Hmmm, is adjustment so easy?

Conditional branches are slow.

(Also dangerous for defenders:

branch timing leaks secrets.)

Can eliminate the branches,

but adjustment isn’t free.

Speedup: Skip the adjustment

for intermediate results.

“Lazy reduction.”

Adjust only for output.

b� 3a is small enough

to continue computations.

Can delay carries until after

multiplication by 3.

e.g. To square 314159

in Z=1000003: Square poly

3t5 + 1t4 + 4t3 + 1t2 + 5t1 + 9t0,

obtaining 9t10 + 6t9 + 25t8 +

14t7 + 48t6 + 72t5 + 59t4 +

82t3 + 43t2 + 90t1 + 81t0.

Reduce: replace (ci)t
6+i by

(�3ci)t
i, obtaining 72t5 + 32t4 +

64t3 � 32t2 + 48t1 � 63t0.

Carry: 8t6 � 4t5 � 2t4 +

1t3 + 2t2 + 2t1 � 3t0.

To minimize poly degree,

mix reduction and carrying,

carrying the top sooner.

e.g. Start from square 9t10 + 6t9 +

25t8 + 14t7 + 48t6 + 72t5 + 59t4 +

82t3 + 43t2 + 90t1 + 81t0.

Reduce t10 ! t4 and carry t4 !

t5 ! t6: 6t9 +25t8 +14t7 +56t6�

5t5+2t4+82t3+43t2+90t1+81t0.

Finish reduction: �5t5 + 2t4 +

64t3 � 32t2 + 48t1 � 87t0. Carry

t0 ! t1 ! t2 ! t3 ! t4 ! t5:

�4t5� 2t4 + 1t3 + 2t2� 1t1 + 3t0.



Can delay carries until after

multiplication by 3.

e.g. To square 314159

in Z=1000003: Square poly

3t5 + 1t4 + 4t3 + 1t2 + 5t1 + 9t0,

obtaining 9t10 + 6t9 + 25t8 +

14t7 + 48t6 + 72t5 + 59t4 +

82t3 + 43t2 + 90t1 + 81t0.

Reduce: replace (ci)t
6+i by

(�3ci)t
i, obtaining 72t5 + 32t4 +

64t3 � 32t2 + 48t1 � 63t0.

Carry: 8t6 � 4t5 � 2t4 +

1t3 + 2t2 + 2t1 � 3t0.

To minimize poly degree,

mix reduction and carrying,

carrying the top sooner.

e.g. Start from square 9t10 + 6t9 +

25t8 + 14t7 + 48t6 + 72t5 + 59t4 +

82t3 + 43t2 + 90t1 + 81t0.

Reduce t10 ! t4 and carry t4 !

t5 ! t6: 6t9 +25t8 +14t7 +56t6�

5t5+2t4+82t3+43t2+90t1+81t0.

Finish reduction: �5t5 + 2t4 +

64t3 � 32t2 + 48t1 � 87t0. Carry

t0 ! t1 ! t2 ! t3 ! t4 ! t5:

�4t5� 2t4 + 1t3 + 2t2� 1t1 + 3t0.



Can delay carries until after

multiplication by 3.

e.g. To square 314159

in Z=1000003: Square poly

3t5 + 1t4 + 4t3 + 1t2 + 5t1 + 9t0,

obtaining 9t10 + 6t9 + 25t8 +

14t7 + 48t6 + 72t5 + 59t4 +

82t3 + 43t2 + 90t1 + 81t0.

Reduce: replace (ci)t
6+i by

(�3ci)t
i, obtaining 72t5 + 32t4 +

64t3 � 32t2 + 48t1 � 63t0.

Carry: 8t6 � 4t5 � 2t4 +

1t3 + 2t2 + 2t1 � 3t0.

To minimize poly degree,

mix reduction and carrying,

carrying the top sooner.

e.g. Start from square 9t10 + 6t9 +

25t8 + 14t7 + 48t6 + 72t5 + 59t4 +

82t3 + 43t2 + 90t1 + 81t0.

Reduce t10 ! t4 and carry t4 !

t5 ! t6: 6t9 +25t8 +14t7 +56t6�

5t5+2t4+82t3+43t2+90t1+81t0.

Finish reduction: �5t5 + 2t4 +

64t3 � 32t2 + 48t1 � 87t0. Carry

t0 ! t1 ! t2 ! t3 ! t4 ! t5:

�4t5� 2t4 + 1t3 + 2t2� 1t1 + 3t0.

Speedup: non-integer radix

p = 261 � 1.

Five coeffs in radix 213?

f4t
4 + f3t

3 + f2t
2 + f1t

1 + f0t
0.

Most coeffs could be 212.

Square � � �+2(f4f1 +f3f2)t5 +� � �.

Coeff of t5 could be > 225.

Reduce: 265 = 24 in Z=(261 � 1);

� � � + (25(f4f1 + f3f2) + f2
0 )t0.

Coeff could be > 229.

Very little room for

additions, delayed carries, etc.

on 32-bit platforms.



Can delay carries until after

multiplication by 3.

e.g. To square 314159

in Z=1000003: Square poly

3t5 + 1t4 + 4t3 + 1t2 + 5t1 + 9t0,

obtaining 9t10 + 6t9 + 25t8 +

14t7 + 48t6 + 72t5 + 59t4 +

82t3 + 43t2 + 90t1 + 81t0.

Reduce: replace (ci)t
6+i by

(�3ci)t
i, obtaining 72t5 + 32t4 +

64t3 � 32t2 + 48t1 � 63t0.

Carry: 8t6 � 4t5 � 2t4 +

1t3 + 2t2 + 2t1 � 3t0.

To minimize poly degree,

mix reduction and carrying,

carrying the top sooner.

e.g. Start from square 9t10 + 6t9 +

25t8 + 14t7 + 48t6 + 72t5 + 59t4 +

82t3 + 43t2 + 90t1 + 81t0.

Reduce t10 ! t4 and carry t4 !

t5 ! t6: 6t9 +25t8 +14t7 +56t6�

5t5+2t4+82t3+43t2+90t1+81t0.

Finish reduction: �5t5 + 2t4 +

64t3 � 32t2 + 48t1 � 87t0. Carry

t0 ! t1 ! t2 ! t3 ! t4 ! t5:

�4t5� 2t4 + 1t3 + 2t2� 1t1 + 3t0.

Speedup: non-integer radix

p = 261 � 1.

Five coeffs in radix 213?

f4t
4 + f3t

3 + f2t
2 + f1t

1 + f0t
0.

Most coeffs could be 212.

Square � � �+2(f4f1 +f3f2)t5 +� � �.

Coeff of t5 could be > 225.

Reduce: 265 = 24 in Z=(261 � 1);

� � � + (25(f4f1 + f3f2) + f2
0 )t0.

Coeff could be > 229.

Very little room for

additions, delayed carries, etc.

on 32-bit platforms.



Can delay carries until after

multiplication by 3.

e.g. To square 314159

in Z=1000003: Square poly

3t5 + 1t4 + 4t3 + 1t2 + 5t1 + 9t0,

obtaining 9t10 + 6t9 + 25t8 +

14t7 + 48t6 + 72t5 + 59t4 +

82t3 + 43t2 + 90t1 + 81t0.

Reduce: replace (ci)t
6+i by

(�3ci)t
i, obtaining 72t5 + 32t4 +

64t3 � 32t2 + 48t1 � 63t0.

Carry: 8t6 � 4t5 � 2t4 +

1t3 + 2t2 + 2t1 � 3t0.

To minimize poly degree,

mix reduction and carrying,

carrying the top sooner.

e.g. Start from square 9t10 + 6t9 +

25t8 + 14t7 + 48t6 + 72t5 + 59t4 +

82t3 + 43t2 + 90t1 + 81t0.

Reduce t10 ! t4 and carry t4 !

t5 ! t6: 6t9 +25t8 +14t7 +56t6�

5t5+2t4+82t3+43t2+90t1+81t0.

Finish reduction: �5t5 + 2t4 +

64t3 � 32t2 + 48t1 � 87t0. Carry

t0 ! t1 ! t2 ! t3 ! t4 ! t5:

�4t5� 2t4 + 1t3 + 2t2� 1t1 + 3t0.

Speedup: non-integer radix

p = 261 � 1.

Five coeffs in radix 213?

f4t
4 + f3t

3 + f2t
2 + f1t

1 + f0t
0.

Most coeffs could be 212.

Square � � �+2(f4f1 +f3f2)t5 +� � �.

Coeff of t5 could be > 225.

Reduce: 265 = 24 in Z=(261 � 1);

� � � + (25(f4f1 + f3f2) + f2
0 )t0.

Coeff could be > 229.

Very little room for

additions, delayed carries, etc.

on 32-bit platforms.



To minimize poly degree,

mix reduction and carrying,

carrying the top sooner.

e.g. Start from square 9t10 + 6t9 +

25t8 + 14t7 + 48t6 + 72t5 + 59t4 +

82t3 + 43t2 + 90t1 + 81t0.

Reduce t10 ! t4 and carry t4 !

t5 ! t6: 6t9 +25t8 +14t7 +56t6�

5t5+2t4+82t3+43t2+90t1+81t0.

Finish reduction: �5t5 + 2t4 +

64t3 � 32t2 + 48t1 � 87t0. Carry

t0 ! t1 ! t2 ! t3 ! t4 ! t5:

�4t5� 2t4 + 1t3 + 2t2� 1t1 + 3t0.

Speedup: non-integer radix

p = 261 � 1.

Five coeffs in radix 213?

f4t
4 + f3t

3 + f2t
2 + f1t

1 + f0t
0.

Most coeffs could be 212.

Square � � �+2(f4f1 +f3f2)t5 +� � �.

Coeff of t5 could be > 225.

Reduce: 265 = 24 in Z=(261 � 1);

� � � + (25(f4f1 + f3f2) + f2
0 )t0.

Coeff could be > 229.

Very little room for

additions, delayed carries, etc.

on 32-bit platforms.



To minimize poly degree,

mix reduction and carrying,

carrying the top sooner.

e.g. Start from square 9t10 + 6t9 +

25t8 + 14t7 + 48t6 + 72t5 + 59t4 +

82t3 + 43t2 + 90t1 + 81t0.

Reduce t10 ! t4 and carry t4 !

t5 ! t6: 6t9 +25t8 +14t7 +56t6�

5t5+2t4+82t3+43t2+90t1+81t0.

Finish reduction: �5t5 + 2t4 +

64t3 � 32t2 + 48t1 � 87t0. Carry

t0 ! t1 ! t2 ! t3 ! t4 ! t5:

�4t5� 2t4 + 1t3 + 2t2� 1t1 + 3t0.

Speedup: non-integer radix

p = 261 � 1.

Five coeffs in radix 213?

f4t
4 + f3t

3 + f2t
2 + f1t

1 + f0t
0.

Most coeffs could be 212.

Square � � �+2(f4f1 +f3f2)t5 +� � �.

Coeff of t5 could be > 225.

Reduce: 265 = 24 in Z=(261 � 1);

� � � + (25(f4f1 + f3f2) + f2
0 )t0.

Coeff could be > 229.

Very little room for

additions, delayed carries, etc.

on 32-bit platforms.

Scaled: Evaluate at t = 1.

f4 is multiple of 252;

f3 is multiple of 239;

f2 is multiple of 226;

f1 is multiple of 213;

f0 is multiple of 20. Reduce:

� � �+ (2�60(f4f1 + f3f2) + f2
0 )t0.

Better: Non-integer radix 212:2.

f4 is multiple of 249;

f3 is multiple of 237;

f2 is multiple of 225;

f1 is multiple of 213;

f0 is multiple of 20.

Saves a few bits in coeffs.



To minimize poly degree,

mix reduction and carrying,

carrying the top sooner.

e.g. Start from square 9t10 + 6t9 +

25t8 + 14t7 + 48t6 + 72t5 + 59t4 +

82t3 + 43t2 + 90t1 + 81t0.

Reduce t10 ! t4 and carry t4 !

t5 ! t6: 6t9 +25t8 +14t7 +56t6�

5t5+2t4+82t3+43t2+90t1+81t0.

Finish reduction: �5t5 + 2t4 +

64t3 � 32t2 + 48t1 � 87t0. Carry

t0 ! t1 ! t2 ! t3 ! t4 ! t5:

�4t5� 2t4 + 1t3 + 2t2� 1t1 + 3t0.

Speedup: non-integer radix

p = 261 � 1.

Five coeffs in radix 213?

f4t
4 + f3t

3 + f2t
2 + f1t

1 + f0t
0.

Most coeffs could be 212.

Square � � �+2(f4f1 +f3f2)t5 +� � �.

Coeff of t5 could be > 225.

Reduce: 265 = 24 in Z=(261 � 1);

� � � + (25(f4f1 + f3f2) + f2
0 )t0.

Coeff could be > 229.

Very little room for

additions, delayed carries, etc.

on 32-bit platforms.

Scaled: Evaluate at t = 1.

f4 is multiple of 252;

f3 is multiple of 239;

f2 is multiple of 226;

f1 is multiple of 213;

f0 is multiple of 20. Reduce:

� � �+ (2�60(f4f1 + f3f2) + f2
0 )t0.

Better: Non-integer radix 212:2.

f4 is multiple of 249;

f3 is multiple of 237;

f2 is multiple of 225;

f1 is multiple of 213;

f0 is multiple of 20.

Saves a few bits in coeffs.



To minimize poly degree,

mix reduction and carrying,

carrying the top sooner.

e.g. Start from square 9t10 + 6t9 +

25t8 + 14t7 + 48t6 + 72t5 + 59t4 +

82t3 + 43t2 + 90t1 + 81t0.

Reduce t10 ! t4 and carry t4 !

t5 ! t6: 6t9 +25t8 +14t7 +56t6�

5t5+2t4+82t3+43t2+90t1+81t0.

Finish reduction: �5t5 + 2t4 +

64t3 � 32t2 + 48t1 � 87t0. Carry

t0 ! t1 ! t2 ! t3 ! t4 ! t5:

�4t5� 2t4 + 1t3 + 2t2� 1t1 + 3t0.

Speedup: non-integer radix

p = 261 � 1.

Five coeffs in radix 213?

f4t
4 + f3t

3 + f2t
2 + f1t

1 + f0t
0.

Most coeffs could be 212.

Square � � �+2(f4f1 +f3f2)t5 +� � �.

Coeff of t5 could be > 225.

Reduce: 265 = 24 in Z=(261 � 1);

� � � + (25(f4f1 + f3f2) + f2
0 )t0.

Coeff could be > 229.

Very little room for

additions, delayed carries, etc.

on 32-bit platforms.

Scaled: Evaluate at t = 1.

f4 is multiple of 252;

f3 is multiple of 239;

f2 is multiple of 226;

f1 is multiple of 213;

f0 is multiple of 20. Reduce:

� � �+ (2�60(f4f1 + f3f2) + f2
0 )t0.

Better: Non-integer radix 212:2.

f4 is multiple of 249;

f3 is multiple of 237;

f2 is multiple of 225;

f1 is multiple of 213;

f0 is multiple of 20.

Saves a few bits in coeffs.



Speedup: non-integer radix

p = 261 � 1.

Five coeffs in radix 213?

f4t
4 + f3t

3 + f2t
2 + f1t

1 + f0t
0.

Most coeffs could be 212.

Square � � �+2(f4f1 +f3f2)t5 +� � �.

Coeff of t5 could be > 225.

Reduce: 265 = 24 in Z=(261 � 1);

� � � + (25(f4f1 + f3f2) + f2
0 )t0.

Coeff could be > 229.

Very little room for

additions, delayed carries, etc.

on 32-bit platforms.

Scaled: Evaluate at t = 1.

f4 is multiple of 252;

f3 is multiple of 239;

f2 is multiple of 226;

f1 is multiple of 213;

f0 is multiple of 20. Reduce:

� � �+ (2�60(f4f1 + f3f2) + f2
0 )t0.

Better: Non-integer radix 212:2.

f4 is multiple of 249;

f3 is multiple of 237;

f2 is multiple of 225;

f1 is multiple of 213;

f0 is multiple of 20.

Saves a few bits in coeffs.


