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Choose small (a + 2)=4.

2(x2; y2) = (x4; y4)

) x4 =
(x2

2 � 1)2

4x2(x2
2 + ax2 + 1)

.

(x3; y3)� (x2; y2) = (x1; y1),

(x3; y3) + (x2; y2) = (x5; y5)

) x5 =
(x2x3 � 1)2

x1(x2 � x3)2
.
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Doubling-oriented curves

2006 Doche–Icart–Kohel:

Use y2 = x3 + ax2 + 16ax.

Choose small a.

Use (X : Y : Z : Z2)

to represent (X=Z; Y=Z2).

3M + 4S + 2D for DBL.

How? Factor DBL as '̂(')

where ' is a 2-isogeny.

2007 Bernstein–Lange:

2M + 5S + 2D for DBL

on the same curves.
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3M + 6S for DBL.
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Jacobi intersections

1986 Chudnovsky–Chudnovsky:

(S : C : D : Z) represent

(S=Z; C=Z;D=Z) on

s2 + c2 = 1, as2 + d2 = 1.

14M + 2S + 1D for ADD.

“Tremendous advantage”

of being strongly unified.

5M + 3S for DBL.

“Perhaps (?) : : : the most

efficient duplication formulas

which do not depend on the

coefficients of an elliptic curve.”
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Explicit-Formulas Database:
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for ADD, DBL, etc.

in 51 representations

on 13 shapes of elliptic curves.

Not yet handled by computer:

generality of curve shapes

(e.g., Hessian order 2 3Z);

complete addition algorithms

(e.g., checking for 1).
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The scaled variation

839 = 800 + 30 + 9 =

value (at t = 1) of polynomial

800t2 + 30t1 + 9t0.

Squaring: (800t2 +30t1 +9t0)2 =

640000t4 + 48000t3 + 15300t2 +

540t1 + 81t0.

Carrying:

640000t4 + 48000t3 + 15300t2 +

540t1 + 81t0;

640000t4 + 48000t3 + 15300t2 +

620t1 + 1t0; : : :

700000t5 + 0t4 + 3000t3 + 900t2 +

20t1 + 1t0.
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instead of f0; 1; : : : ; 9g.

Small disadvantage: need �.

Several small advantages:
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reduce products a bit.
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Precomputation � 0:5 doublings.
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Scaled: 15900 7! 16000;�100.

Use digits f�5;�4; : : : ; 4; 5g

instead of f0; 1; : : : ; 9g.

Small disadvantage: need �.

Several small advantages:

easily handle negative integers;

easily handle subtraction;

reduce products a bit.
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7t5 + 8t4 + 9t3 + 0t2 + 1t1 + 5t0.
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Eliminate intermediate carries.

Outweighs cost of handling

slightly larger coefficients.

Important to carry between

multiplications (and squarings)

to reduce coefficient size;

but carries are usually a bad idea

before additions, subtractions, etc.
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Speedup: polynomial Karatsuba

How much work to multiply polys

f = f0 + f1t + � � �+ f19t
19,

g = g0 + g1t + � � �+ g19t
19?

Using the obvious method:

400 coeff mults, 361 coeff adds.

Faster: Write f as F0 + F1t
10;

F0 = f0 + f1t + � � �+ f9t
9;

F1 = f10 + f11t + � � �+ f19t
9.

Similarly write g as G0 + G1t
10.

Then fg = (F0 + F1)(G0 + G1)t10

+ (F0G0 � F1G1t
10)(1� t10).
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Faster: multiply a; b polynomials,
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+ (F0G0 � F1G1t
10)(1� t10).

20 adds for F0 + F1, G0 + G1.

300 mults for three products

F0G0, F1G1, (F0 + F1)(G0 + G1).

243 adds for those products.

9 adds for F0G0 � F1G1t
10

with subs counted as adds

and with delayed negations.

19 adds for � � � (1� t10).
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Larger coefficients, slight expense;

still saves time.

Can apply idea recursively

as poly degree grows.
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In some cases, yes!
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for prime-field ECC/ECDLP

on most current CPUs.
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Modular reduction

How to compute f mod p?

Can use definition:

f mod p = f � p bf=pc.

Can multiply f by a

precomputed 1=p approximation;

easily adjust to obtain bf=pc.

Slight speedup: “2-adic inverse”;

“Montgomery reduction.”
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= 578230.

Oops, too big:

578230� 271828 = 306402.

306402� 271828 = 34574.
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for F�p, Clock(Fp), etc.,
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gls1271: p = 2127 � 1,

with degree-2 extension.
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NIST P-224: p = 2224 � 296 + 1.

secp112r1: p = (2128 � 3)=76439.

Divides special form.
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e.g. �677119 � 322884.
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Speedup: non-integer radix

p = 261 � 1.

Five coeffs in radix 213?

f4t
4 + f3t

3 + f2t
2 + f1t

1 + f0t
0.

Most coeffs could be 212.

Square � � �+2(f4f1 +f3f2)t5 +� � �.

Coeff of t5 could be > 225.

Reduce: 265 = 24 in Z=(261 � 1);

� � � + (25(f4f1 + f3f2) + f2
0 )t0.

Coeff could be > 229.

Very little room for

additions, delayed carries, etc.

on 32-bit platforms.
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Scaled: Evaluate at t = 1.

f4 is multiple of 252;

f3 is multiple of 239;

f2 is multiple of 226;

f1 is multiple of 213;

f0 is multiple of 20. Reduce:

� � �+ (2�60(f4f1 + f3f2) + f2
0 )t0.

Better: Non-integer radix 212:2.

f4 is multiple of 249;

f3 is multiple of 237;

f2 is multiple of 225;

f1 is multiple of 213;

f0 is multiple of 20.

Saves a few bits in coeffs.
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carrying the top sooner.

e.g. Start from square 9t10 + 6t9 +

25t8 + 14t7 + 48t6 + 72t5 + 59t4 +

82t3 + 43t2 + 90t1 + 81t0.

Reduce t10 ! t4 and carry t4 !

t5 ! t6: 6t9 +25t8 +14t7 +56t6�

5t5+2t4+82t3+43t2+90t1+81t0.

Finish reduction: �5t5 + 2t4 +

64t3 � 32t2 + 48t1 � 87t0. Carry

t0 ! t1 ! t2 ! t3 ! t4 ! t5:

�4t5� 2t4 + 1t3 + 2t2� 1t1 + 3t0.

Speedup: non-integer radix

p = 261 � 1.

Five coeffs in radix 213?

f4t
4 + f3t

3 + f2t
2 + f1t

1 + f0t
0.

Most coeffs could be 212.

Square � � �+2(f4f1 +f3f2)t5 +� � �.

Coeff of t5 could be > 225.

Reduce: 265 = 24 in Z=(261 � 1);

� � � + (25(f4f1 + f3f2) + f2
0 )t0.

Coeff could be > 229.

Very little room for

additions, delayed carries, etc.

on 32-bit platforms.

Scaled: Evaluate at t = 1.

f4 is multiple of 252;

f3 is multiple of 239;

f2 is multiple of 226;

f1 is multiple of 213;

f0 is multiple of 20. Reduce:

� � �+ (2�60(f4f1 + f3f2) + f2
0 )t0.
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