High-speed cryptography,
part 2:

more elliptic-curve formulas;
fleld arithmetic

Daniel J. Bernstein
University of lllinois at Chicago &
Technische Universiteit Eindhoven

Speed-oriented Jacobian standards

2000 IEEE “Std 1363"

uses Welerstrass curves

in Jacobian coordinates

to “provide the fastest

arithmetic on elliptic curves.”

Also specifies a method of
choosing curves y2 = z3 — 3z + b.

2000 NIST “FIPS 186-2"
standardizes five such curves.

2005 NSA “Suite B”" recommends
two of the NIST curves as

the only public-key cryptosystems
for U.S. government use.

ed cryptography,

ptic-curve formulas;
hmetic

. Bernstein
ty of lllinois at Chicago &
he Universiteit Eindhoven

Speed-oriented Jacobian standards

Projecti

2000 IEEE “Std 1363"

uses Welerstrass curves

in Jacobian coordinates

to “provide the fastest

arithmetic on elliptic curves.”

Also specifies a method of
choosing curves y2 = z3 — 3z + b.

2000 NIST “FIPS 186-2"
standardizes five such curves.

2005 NSA “Suite B" recommends
two of the NIST curves as

the only public-key cryptosystems
for U.S. government use.

1986 Ch
Speed u
(X/Z2,"
M —+ 3!
12M +
12M +

Option |
DBL do
But AD
some ap
batch si

graphy,

- formulas:

0
is at Chicago &
siteit Eindhoven

Speed-oriented Jacobian standards

Projective for Wei

2000 IEEE “Std 1363"

uses Welerstrass curves

in Jacobian coordinates

to “provide the fastest

arithmetic on elliptic curves.”

Also specifies a method of
choosing curves y2 = z3 — 3z + b.

2000 NIST “FIPS 186-2"
standardizes five such curves.

2005 NSA “Suite B” recommends
two of the NIST curves as

the only public-key cryptosystems
for U.S. government use.

1986 Chudnovsky-
Speed up ADD by
(X/Z2,Y]Z3) to |
/M + 3S for DBL
12M + 2S for AD
12M + 2S for reA

Option has been r
DBL dominates in
But ADD dominat
some applications:
batch signature ve

g0 &
hoven

Speed-oriented Jacobian standards

Projective for Weierstrass

2000 IEEE “Std 1363"

uses Welerstrass curves

in Jacobian coordinates

to “provide the fastest

arithmetic on elliptic curves.”

Also specifies a method of
choosing curves y2 = z3 — 3z + b.

2000 NIST “FIPS 186-2"
standardizes five such curves.

2005 NSA “Suite B" recommends
two of the NIST curves as

the only public-key cryptosystems
for U.S. government use.

1986 Chudnovsky—Chudnovs
Speed up ADD by switching
(X/Z%,Y)Z3) to (X/Z,Y]Z
/M + 3S for DBL if a = —-
12M + 2S for ADD.

12M + 2S for reADD.

Option has been mostly ignc
DBL dominates in ECDH et
But ADD dominates In
some applications: e.g.,
batch signature verification.

Speed-oriented Jacobian standards

Projective for Weierstrass

2000 IEEE “Std 1363"

uses Welerstrass curves

in Jacobian coordinates

to “provide the fastest

arithmetic on elliptic curves.”

Also specifies a method of
choosing curves y2 = z3 — 3z + b.

2000 NIST “FIPS 186-2"
standardizes five such curves.

2005 NSA “Suite B” recommends
two of the NIST curves as

the only public-key cryptosystems
for U.S. government use.

1986 Chudnovsky—Chudnovsky:
Speed up ADD by switching from
(X/Z%,Y/Z3) to (X/Z,Y]2Z).
/M + 3S for DBL if a = —3.
12M + 2S for ADD.

12M + 2S for reADD.

Option has been mostly ignored:
DBL dominates in ECDH etc.
But ADD dominates In

some applications: e.g.,

batch signature verification.

riented Jacobian standards

Projective for Weierstrass

~E “Std 1363"

lerstrass curves

1an coordinates

ide the fastest

Ic on elliptic curves.”
cifies a method of

- curves y2 = g3 — 3z + b.

ST “FIPS 186-2"
izes five such curves.

A “Suite B" recommends
he NIST curves as
public-key cryptosystems
government use.

1986 Chudnovsky—Chudnovsky:
Speed up ADD by switching from
(X/Z%,Y/Z3) to (X/Z,Y]2Z).
/M + 3S for DBL if a = —3.
12M + 2S for ADD.

12M + 2S for reADD.

Option has been mostly ignored:
DBL dominates in ECDH etc.
But ADD dominates In

some applications: e.g.,

batch signature verification.

Montgoi

1987 Mc

Use by?
Choose

2(z2, Y2

= T4 —

(23, y3)
(23, y3)

= Ty —

cobian standards

Projective for Weierstrass

363"
urves
nates
stest

tic curves.’

ethod of

2 — 23 _ 3z +b.

186—2"
uch curves.

B" recommends
urves as

/ cryptosystems
nt use.

1986 Chudnovsky—Chudnovsky:
Speed up ADD by switching from
(X/Z%,Y/Z3) to (X/Z,Y]2Z).
/M + 3S for DBL if a = —3.
12M + 2S for ADD.

12M + 2S for reADD.

Option has been mostly ignored:
DBL dominates in ECDH etc.
But ADD dominates In

some applications: e.g.,

batch signature verification.

Montgomery curve

1987 Montgomery

Use by? = 23 + a:
Choose small (a +

e — (3321?3—
° z1(xr —

ndards

Projective for Weierstrass

3z + b.

mends

stems

1986 Chudnovsky—Chudnovsky:
Speed up ADD by switching from
(X/Z%,Y/Z3) to (X/Z,Y]2Z).
/M + 3S for DBL if a = —3.
12M + 2S for ADD.

12M + 2S for reADD.

Option has been mostly ignored:
DBL dominates in ECDH etc.
But ADD dominates In

some applications: e.g.,

batch signature verification.

Montgomery curves

1987 Montgomery:

Use by? = 23 + az® + z.
Choose small (a + 2)/4.

2(z2,y2) = (Z4, Ya)
(25 —1)7

Az)(z5 + azy + 1)

= T4 —

(23, 43) — (%2, 92) = (=1, y1
(23, y3) + (22, ¥2) = (25, s
(zoz3 — 1)2
T1(z2 — 333)2'

= Ty —

Projective for Weierstrass

1986 Chudnovsky—Chudnovsky:
Speed up ADD by switching from
(X/Z%,Y/Z3) to (X/Z,Y]2Z).
/M + 3S for DBL if a = —3.
12M + 2S for ADD.

12M + 2S for reADD.

Option has been mostly ignored:
DBL dominates in ECDH etc.
But ADD dominates In

some applications: e.g.,

batch signature verification.

Montgomery curves

1987 Montgomery:

Use by? = 23 + az® + z.
Choose small (a + 2)/4.

2(z2,y2) = (Z4, Ya)
(25 — 1)

4z)(z5 + azp + 1)

— T4 —

(z3,93) — (z2,¥2) = (21, 91),
(z3,93) + (22, 92) = (5, ys)
(zoz3 — 1)?

z1(zy — 23)%

= Ty —

/e for Weierstrass

udnovsky—Chudnovsky:

p ADD by switching from
v/Z3) to (X/Z,Y/2).

> for DBL if a = —3.

)S for ADD.

)S for reADD.

1as been mostly ignored:
minates in ECDH etc.

D dominates in
plications: e.g.,

ynature verification.

Montgomery curves

1987 Montgomery:

Use by? = 23 + az® + z.
Choose small (a + 2)/4.

2(z2,y2) = (24, y4)
(z5 —1)°

Az)(z5 + azp + 1)

= T4 —

(z3,93) — (2, ¥2) = (z1, Y1),

(z3,93) + (22, ¥2) = (z5, y5)
(zpz3 — 1)°
T1(T2 — 333)2'

= Ty —

Represel
as (X:Z

erstrass

-Chudnovsky:
switching from
X/Z,Y[/Z).

if a = —3.

D.

DD.

nostly Ignored:
ECDH etc.
es In

e.g.,
rification.

Montgomery curves

1987 Montgomery:

Use by? = 23 + az® + z.
Choose small (a + 2)/4.

2(z2,y2) = (Z4, Ya)
(23— 1)°
4z)(z5 + azo + 1)

= T4 —

(z3,93) — (22, ¥2) = (z1, 91),

(z3,93) + (22, ¥2) = (=5, Y5)
(zpz3 — 1)°
z1(T2 — ~’B3)2'

= Ty —

Represent (z, y)
as (X:Z) satisfyin

B = (Xo+ Z5)?,
C =(Xo— Z5)?,
D=B-—C, X4 =

Zy =D -(C+ D(
2(X0:2Z2) = (X4:2

Ky:
from

A4 d B
| |

red:

Montgomery curves

1987 Montgomery:

Use by? = 23 + az® + z.
Choose small (a + 2)/4.

2(z2,¥2) = (T4, ya)
(23— 1)°
4z)(z5 + azp + 1)

= T4 —

(z3,93) — (2, ¥2) = (z1, Y1),

(z3,y3) + (22, ¥2) = (=5, y5)
(zpz3 — 1)°
T1(T2 — 333)2'

= Ty —

Represent (z, y)
as (X:Z) satisfying x = X/.

B = (Xo+ Z5)?,

C =(Xy — Z)?,
D=B-C, X4s=8B-C,
Zy=D-(C+ D(a+2)/4)
2(X2:Zz) — (X4ZZ4).

(X3:23) = (X2:22) = (X1:2
E=(X3—23) (X2+ 22),
F=(X3+23) (X2 — 22),
Xs =21 (E+F),

Zs =X1-(E—-F)* =
(X3:Zg) + (XQZZQ) — (X5:Z

Montgomery curves

1987 Montgomery:

Use by? = 23 + az® + z.
Choose small (a + 2)/4.

2(z2,y2) = (Z4, Ya)
(23— 1)°
4z)(z5 + azp + 1)

= T4 —

(z3,93) — (22, ¥2) = (Z1, 91),

(z3,93) + (22, ¥2) = (=5, Y5)
(zpz3 — 1)°
z1(T2 — ~’B3)2'

= Ty —

Represent (z, y)
as (X:Z) satisfying x = X/Z.

B = (Xo+ Z5)?,

= (X2 — 22)%,
D=B-C,X4=B-C,
Zy =D (C+D(a+2)/4) =
2(X2:ZQ) — (X4ZZ4).

(X3:23) — (X2:22) = (X1:21),
E = (X3—23) (X2 + 22),
F=(X3+ Z3)- (X2 — 22),
Xs =21 (E+F),

Zs = X1 - (E — F)?

(Xg:Zg) + (XQZZQ) — (X5:Z5).

nery curves

ontgomery:

— $3 —+ amz + .
small (a + 2)/4.

) = (T4, Ya)
(z5 — 1)°

4z)(z5 + azp + 1)

— (22, 92) = (21, v1),

(z2,y2) = (25, y5)
(zpz3 — 1)°
T1(T2 — 333)2'

Represent (z, y)
as (X:Z) satisfying x = X/Z.

B = (Xo+ Z5)?,

C = (X2 — Z2)?,

D=B-C, Xs=8B-C,
Zy=D - (C+D(a+2)/4) =
2(X2:Zz) — (X4ZZ4).

(X3:2Z3) — (X2:2Z>) = (X1:271),

E=(X3—23) (X2+ 2£2),
F=(X3+23) (X2— 22),
X5 =21 (E+F),

Zs =X1-(E—-F)* =

(X3:Zg) + (XQZZQ) — (X5:Z5).

This rep

does not
DADD,

W, R Q

e.g. 2P,
e.g. 3P,
e.g. OP,

2M + 2
4M + 2
Save 1MV

Easily cc
~ lgn L
Almost :
Relativel

Represent (z, y)
as (X:Z) satisfying x = X/Z.

B = (Xo+ Z5)?,

= (Xo — Z2)°,
D=B-C, Xs=8BC,
Zy =D (C+D(a+2)/4) =
2(X2:ZQ) — (X4ZZ4).

(X3:23) — (X2:2Zo) = (X1:271),

E = (X3—23) (X2 + 22),
F=(X3+23) (X2 — 27),
X5 =Z1-(E+F)?
75 = X1 (E — F)?
(Xg:Zg) —+ (XQZZQ) —

(X5:Z5).

This representatio

does not al

DADD, “dif

ow AL
ferenti

@, RI&-—R—{

eg. 2P,P,P—3
eg. 3P, 2P, P —!
eg. 6P, bP P —

2M + 2S + 1D fo
4M + 2S for DAD
Save 1M if Z1 =

Easily compute 7 (

~ lgmn DBL,

("\J|1
~ g

Almost as fast as

Relatively slow for

Represent (z, y)
as (X:Z) satisfying x = X/Z.

B = (Xo+ Z5)?,

C =(Xy — Z5)?,

D=B-C, X4s=8B-C,
Zy=D - (C+D(a+2)/4) =
2(X2:Zz) — (X4ZZ4).

(X3:2Z3) — (X2:2Z>) = (X1:271),

E=(X3—23) (X2+ 2£2),
F=(X3+23) (X2 — 22),
Xs =21 (E+F),

Zs =X1-(E—-F)* =

(X3:Zg) + (XQZZQ) — (X5:Z5).

This representation
does not allow ADD but it :
DADD, “differential additior

QR Q—R—Q+R.

eg. 2P, P,P— 3P.
e.g. 3P,2P,P — 5P.
e.g. 6P, bP, P — 11P.

2M + 2S + 1D for DBL.
4M + 2S for DADD.
Save IM if Z1 = 1.

Easily compute n(X7 : Z1) 1
~ lgn DBL, ~ Ign DADD.
Almost as fast as Edwards 7

Relatively slow for m P + n(

Represent (z, y)
as (X:Z) satisfying x = X/Z.

B = (Xo+ Z5)?,

= (X2 — 22)%,
D=B-C,X4=B-C,
Zy =D (C+D(a+2)/4) =
2(X2:ZQ) — (X4ZZ4).

(X3:23) — (X2:2Z>) = (X1:271),

E=(X3—23) (X2+ 22),
F=(Xs+23) (X2 — 22),
Xs =21 (E+F),
Zs = X1 - (E — F)?

(Xg:Zg) + (XQZZQ) — (X5:Z5).

This representation

does not allow ADD but it allows
DADD, “differential addition” :

Q. RQ-—R—Q+R.

eg. 2P, P,P— 3P.
e.g. 3P,2P, P — b5P.
e.g. 6P, bP P — 11P.

2M + 2S + 1D for DBL.
4M + 2S for DADD.
Save IM if Z1 = 1.

Easily compute n(X7 : Z1) using
~ lgn DBL, ~ Ign DADD.
Almost as fast as Edwards nP.

Relatively slow for mP + nQ etc.

1t (2, y)
) satisfying £ = X/Z.

)+ Z3)?,

— 75)?,

- C, Xa=8B-C,
(C+D(a+2)/4) =
): (X4ZZ4).

— (Xo:2Zo) = (X1:271),

 — Z3) - (X2 + 22),
1+ Z3) - (X2 — 2£7),
- (E+F)%
L-(E—F)2=>

+ (XQZZQ) — (X5:Z5).

This representation

does not allow ADD but it allows
DADD, “differential addition”:

QR Q—R—Q+R.

eg. 2P, P,P— 3P.
e.g. 3P,2P,P — 5P.
e.g. 6P, bP, P — 11P.

2M + 2S + 1D for DBL.
4M + 2S for DADD.
Save IM if Z1 = 1.

Easily compute n(X7 : Z1) using
~ lgn DBL, ~ Ign DADD.
Almost as fast as Edwards nP.

Relatively slow for mP

nQ etc.

Doublin;

2006 Dc

Use y?2 -
Choose

Use (X
to repre:s

3M + 4
How? F

where ¢

2007 Be
2M -+ 5
on the s

gz =X/Z.

This representation

does not allow ADD but it allows
DADD, “differential addition” :

Q. RQ-—R—Q+R.

eg. 2P, P,P— 3P.
e.g. 3P,2P, P — b5P.
e.g. 6P, bP P — 11P.

2M + 2S + 1D for DBL.
4M + 2S for DADD.
Save IM if Z1 = 1.

Easily compute n(X7 : Z1) using
~ lgn DBL, ~ Ign DADD.
Almost as fast as Edwards nP.

Relatively slow for mP

n@) etc.

Doubling-oriented

2006 Doche—lcart-

Use y? = 23 + ax
Choose small a.

Use (X :Y :Z: 2
to represent (X/Z

3M +4S + 2D fo
How? Factor DBL

where ¢ Is a 2-1s0

2007 Bernstein—Lz:

2M + 58S + 2D fo
on the same curve

This representation

does not allow ADD but it allows
DADD, “differential addition”:

QR Q—R—Q+R.

eg. 2P, P,P— 3P.
e.g. 3P,2P,P — 5P.
e.g. 6P, bP, P — 11P.

2M + 2S + 1D for DBL.
4M + 2S for DADD.
Save IM if Z1 = 1.

Easily compute n(X7 : Z1) using
~ lgn DBL, ~ Ign DADD.
Almost as fast as Edwards nP.

Relatively slow for mP + n@ etc.

Doubling-oriented curves

20006 Doche—Ilcart—Kohel:

Use y2 = 23 + az? + 16az.
Choose small a.

Use (X :Y :Z:2Z%)

to represent (X/Z,Y/Z?).

3M + 4S + 2D for DBL.
How? Factor DBL as @()
where ¢ is a 2-isogeny.

2007 Bernstein—Lange:
2M + 58 + 2D for DBL

on the same curves.

This representation

does not allow ADD but it allows
DADD, “differential addition” :

Q. RQ-—R—Q+R.

eg. 2P, P,P— 3P.
e.g. 3P,2P, P — bP.
e.g. OP,bP, P — 11P.

2M + 2S + 1D for DBL.
4M + 2S for DADD.
Save IM if Z1 = 1.

Easily compute n(X7 : Z1) using
~ lgn DBL, ~ Ign DADD.
Almost as fast as Edwards nP.

Relatively slow for mP + nQ etc.

Doubling-oriented curves

2006 Doche—Ilcart—Kohel:

Use y2 = z3 + az? + 16az.
Choose small a.

Use (X :Y :Z:Z%)

to represent (X/Z,Y/Z?).

3M + 4S + 2D for DBL.
How? Factor DBL as @()
where @ Is a 2-isogeny.

2007 Bernstein—Lange:
2M + 58 + 2D for DBL

on the same curves.

resentation

- allow ADD but i1t allows
“differential addition’ :

—R— @+ R.

P P— 3P.
2P P — 5P,
5P, P — 11P.

> + 1D for DBL.

5 for DADD.
it Z1 = 1.

ympute n(X1 : Z1) using
)BL, ~ lgn DADD.
s fast as Edwards nP.

y slow for mP

nQ etc.

Doubling-oriented curves

20006 Doche—Ilcart—Kohel:

Use y2 = 23 + az? + 16az.

Choose small a.

Use (X :Y :Z:Z%)
to represent (X/Z,Y/Z?).

3M + 4S + 2D for DBL.
How? Factor DBL as @()
where ¢ Is a 2-isogeny.

2007 Bernstein—Lange:
2M + 58 + 2D for DBL

on the same curves.

12M + !
Slower /

typically
of the v

But Isog
Example
fast DB
genus-2
using sir

Tricky b
tripling-
(see 200
double-k

N
D but 1t allows
al addition’ :

+ R.

P.
HP.
11P.

- DBL.
D.
L.

X1 : Z1) using
n DADD.
Edwards nP.

mP + nQ etc.

Doubling-oriented curves

2006 Doche—Ilcart—Kohel:

Use y2 = z3 + az? + 16az.

Choose small a.

Use (X :Y :Z:Z%)
to represent (X/Z,Y/Z?).

3M + 4S + 2D for DBL.
How? Factor DBL as @()
where @ Is a 2-1sogeny.

2007 Bernstein—Lange:
2M + 58S + 2D for DBL

on the same curves.

12M +5S + 1D f
Slower ADD than
typically outweigh
of the very fast DI

But i1sogenies are |
Example, 2005 Ga
fast DBL+DADD
genus-2 hyperellip
using similar facto

Tricky but potenti
tripling-oriented ci
(see 2006 Doche—
double-base chain:

[lows

1

1sing

P

) etc.

Doubling-oriented curves

20006 Doche—Ilcart—Kohel:

Use y2 = 23 + az? + 16az.

Choose small a.

Use (X :Y :Z:Z%)
to represent (X/Z,Y/Z?).

3M + 4S + 2D for DBL.
How? Factor DBL as @()
where ¢ is a 2-isogeny.

2007 Bernstein—Lange:

2M + 58S + 2D for DBL
on the same curves.

12M + 55 + 1D for ADD.
Slower ADD than other syst
typically outweighing benefi
of the very fast DBL.

But isogenies are useful.
Example, 2005 Gaudry:

fast DBL+DADD on Jacobi
genus-2 hyperelliptic curves,
using similar factorization.

Tricky but potentially helpfL
tripling-oriented curves
(see 2006 Doche—lcart—Koh

double-base chains, ...

Doubling-oriented curves

2006 Doche—Ilcart—Kohel:

Use y2 = z3 + az? + 16az.

Choose small a.

Use (X :Y :Z:Z%)
to represent (X/Z,Y/Z?).

3M + 4S + 2D for DBL.
How? Factor DBL as @()
where @ Is a 2-isogeny.

2007 Bernstein—Lange:

2M + 58S + 2D for DBL
on the same curves.

12M + 58 + 1D for ADD.
Slower ADD than other systems,
typically outweighing benefit

of the very fast DBL.

But isogenies are useful.

Example, 2005 Gaudry:

fast DBL+DADD on Jacobians of
genus-2 hyperelliptic curves,

using similar factorization.

Tricky but potentially helpful:
tripling-oriented curves
(see 2006 Doche—Icart—Kohel),

double-base chains, ...

y-oriented curves

che—lcart—Kohel:

- 23 1+ az? + 16az.

small a.

Y Z: 7%
sent (X/Z,Y/Z?).
5 + 2D for DBL.

actor DBL as ¢(¢p)
IS a 2-1sogeny.

rnstein—Lange:
5> + 2D for DBL

dMeE CUrves.

12M + 5S + 1D for ADD.
Slower ADD than other systems,
typically outweighing benefit

of the very fast DBL.

But isogenies are useful.

Example, 2005 Gaudry:

fast DBL+DADD on Jacobians of
genus-2 hyperelliptic curves,

using similar factorization.

Tricky but potentially helpful:
tripling-oriented curves
(see 2006 Doche—Icart—Kohel),

double-base chains, ...

Hessian

Credited
by 1986

(X :Y:
on :1;3 -
12M for
X3 ="

Y3 = X1
L3 = £

6M + 3!

curves

-Kohel:

2 1 16az.

2)
Y/Z?).
- DBL.
_as ()
geny.

Inge:
- DBL
S.

12M + 58 + 1D for ADD.
Slower ADD than other systems,
typically outweighing benefit

of the very fast DBL.

But isogenies are useful.

Example, 2005 Gaudry:

fast DBL+DADD on Jacobians of
genus-2 hyperelliptic curves,

using similar factorization.

Tricky but potentially helpful:
tripling-oriented curves
(see 2006 Doche—Icart—Kohel),

double-base chains, ...

Hessian curves

Credited to Sylves
by 1986 Chudnovs

(X :Y : Z) repres
on z3 + y3 + 1 =
12M for ADD:

X3=Y1X2-Y1Z>
Y3 = X112y - X1Y5
L3 = Z£1Y2 - £1X2

6M + 3S for DBL

12M + 5S + 1D for ADD.
Slower ADD than other systems,
typically outweighing benefit

of the very fast DBL.

But isogenies are useful.

Example, 2005 Gaudry:

fast DBL+DADD on Jacobians of
genus-2 hyperelliptic curves,

using similar factorization.

Tricky but potentially helpful:
tripling-oriented curves
(see 2006 Doche—Icart—Kohel),

double-base chains, ...

Hessian curves

Credited to Sylvester
by 1986 Chudnovsky—Chudn

(X :Y : Z) represent (X/Z,
on z3 + y3 + 1 = 3dzy.
12M for ADD:

X3 =Y1Xo-Y1Z> — Z1Y5 -.
Y3 = X1Zy - X1Yo — Y1 X -
L3 = 2L1Y2 - L1Xo — X142

6M + 3S for DBL.

12M + 58 + 1D for ADD.
Slower ADD than other systems,
typically outweighing benefit

of the very fast DBL.

But isogenies are useful.

Example, 2005 Gaudry:

fast DBL+DADD on Jacobians of
genus-2 hyperelliptic curves,

using similar factorization.

Tricky but potentially helpful:
tripling-oriented curves
(see 2006 Doche—Icart—Kohel),

double-base chains, ...

Hessian curves

Credited to Sylvester
by 1986 Chudnovsky—Chudnovsky:

(X :Y :Z) represent (X/Z,Y/Z)
on z3 + y3 + 1 = 3dzy.

12M for ADD:

X3 =Y1Xo Y140 — £1Yo - X177,
Y3 = X142 X1Yo — Y1 X0 - £1 X2,
L3 =212 - L1 Xo — X124 - Y1Z4o.

6M —+ 3S for DBL.

S + 1D for ADD.
\DD than other systems,

outweighing benefit
ry fast DBL.

enies are useful.

, 2005 Gaudry:

_+DADD on Jacobians of
hyperelliptic curves,

nilar factorization.

ut potentially helpful:
oriented curves

6 Doche—Icart—Kohel),
ase chains, ...

Hessian curves

Credited to Sylvester

by 1986 Chudnovsky—Chudnovsky:

(X :Y : Z) represent (X/Z,Y/Z)
on z3 + y3 + 1 = 3dzy.
12M for ADD:

X3 =Y1X0 Y14 — Z1Yo - X1Y2,
Y3 = X127 - X1Yo — Y1 X0 - Z1 X2,

L3 = 2L1Yo - L1 Xo — X142 - Y1 4>,

6M + 3S for DBL.

2001 Jo
2(X71:Y
(Z1 : X1
SO can u

“Unified
helpful ¢

But nee
2009 Be
Easily a\

2008 His
(X :Y:

27
oM + 6!
3M + 6!

or ADD.

other systems,
ng benefit
S,

useful.

udry:

on Jacobians of
tiC curves,
rization.

ally helpful:
Irves
|cart—Kohel),

5, [] [] n

Hessian curves

Credited to Sylvester

by 1986 Chudnovsky—Chudnovsky:

(X :Y :Z) represent (X/Z,Y/Z)
on z3 + y3 + 1 = 3dzy.
12M for ADD:

X3 =Y1X0 Y14 — Z1Yo - X1Y2,
Y3 = X142 - X1Yo — Y1 X0 - Z1 X2,

L3 = 2L1Yy - L1 Xo — X142 - Y145,

6M —+ 3S for DBL.

2001
2(X1
(Z7 :
SO Ca

Joye—Quisqu
Y1 :Z1) =
X1:71)+(
n use ADD t

“Unified addition

helpf

ul against sid

But need to perm

2009 Bernstein—K
Easily avoid permi
2008 Hisil-Wong—t
(X:Y:Z:X%:)

:2XY 2XZ
oM + 6S for ADC
3M + 6S for DBL

ems,

ans of

Hessian curves

Credited to Sylvester

by 1986 Chudnovsky—Chudnovsky:

(X :Y : Z) represent (X/Z,Y/Z)
on z3 + y3 + 1 = 3dzy.
12M for ADD:

X3 =Y1X0 Y14 — Z1Yo - X1Y2,
Y3 = X127 - X1Yo — Y1 X2 - Z1 X2,

L3 = 2L1Yo - L1 Xo — X142 - Y1 4>,

6M + 3S for DBL.

2001 Joye—Quisquater:
2(X1:Y1: Z1) =

(Zl :Xl:Yl)—I—(Yl:Zl . X
so can use ADD to double.

“Unified addition formulas,”

helpful against side channels
But need to permute inputs

2009 Bernstein—Kohel-Lang
Easily avoid permutation!

2008 Hisil-Wong—Carter—Da

(X:Y:Z:X?:Y?%: 27
2XY 1 2XZ :2Y Z).

6M 4 6S for ADD.

3M + 6S for DBL.

Hessian curves

Credited to Sylvester

by 1986 Chudnovsky—Chudnovsky:

(X :Y :Z) represent (X/Z,Y/Z)
on z3 + y3 + 1 = 3dzy.

12M for ADD:

X3 =Y1X0 Y14 — Z1Yo - X1Y2,
Y3 = X122 - X1Yo — Y1 X0 - Z1 X2,

L3 = 2L1Yy - L1 Xo — X142 - Y145,

6M —+ 3S for DBL.

2001
2(X1
(Z7 :
SO CAa

Joye—Quisquater:

Y1 :Z1) =

X1 : Yl) -+ (Yl AR Xl)
n use ADD to double.

“Unified addition formulas,”

helpf

ul against side channels.

But need to permute inputs.

2009

Bernstein—Kohel-Lange:

Easily avoid permutation!

2008
(X :

oM -

Hisil-Wong—Carter—Dawson:
Y Z:X%2:Y%:27°
2XY :2XZ :2Y Z).
- 6S for ADD.

3M -

- 6S for DBL.

curves

to Sylvester

Chudnovsky—Chudnovsky:

Z) represent (X/Z,Y/Z)
y3 + 1 = 3dzy.

ADD:
Xo Y14y — £1Yo - X1Y7,
Ly - X1Yp — Y1 Xo - £1 X7,

Yo - L1 Xo — X145 - Y14o.

> for DBL.

2001
2(X1
(Z7 :

Joye—Quisquater:
Y1 Z1) =
X1 Yl) -+ (Yl AR Xl)

so can use ADD to double.

“Unified addition formulas,”

helpful against side channels.

But need to permute inputs.

2009

Bernstein—Kohel-Lange:

Easily avoid permutation!

2008
(X :

oM -

Hisil-Wong—Carter—Dawson:
Y Z:X?2:Y%:27°
2XY 1 2XZ :2Y Z).
- 6S for ADD.

3M -

- 6S for DBL.

ter

ky—Chudnovsky:

ent (X/Z,Y/Z)
3dzy.

— Z1Y2 - X1Y2,
— Y1Xo - £1Xo,

— X142 - Y14>.

2001
2(X1
(Z£7 :
SO CAa

Joye—Quisquater:

Y1 :Z1) =

X1 : Yl) -+ (Yl AR Xl)
n use ADD to double.

“Unified addition formulas,”

helpf

ul against side channels.

But need to permute inputs.

2009

Bernstein—Kohel-Lange:

Easily avoid permutation!

2008
(X :

oM -

Hisil-Wong—Carter—Dawson:

Y - Z:X2:Y2. 72
2XY :2XZ :2Y Z).
- 6S for ADD.

3M -

- 6S for DBL.

z3 —y3 +1=0.3

ovsky:

Y/Z)

X1Y2,
£1X2,
Y1Z>.

2001 Joye—Quisquater:
2(X1:Y1:41) =

(Zl X1 : Yl) -+ (Yl AR Xl)
so can use ADD to double.

“Unified addition formulas,”

helpful against side channels.
But need to permute inputs.

2009 Bernstein—Kohel-Lange:
Easily avoid permutation!

2008 Hisil-Wong—Carter—Dawson:

(X:Y:Z:X°:Y%:2Z°
2XY 12X Z :2Y Z).

6M + 6S for ADD.

3M + 6S for DBL.

z3 —y3 +1=0.3zy

2001 Joye—Quisquater:
2(X1:Y1: Z1) =
(Zl X1 Yl) -+ (Yl AR Xl)

SO

"L

he

can use ADD to double.

nified addition formulas,”
pful against side channels.

But need to permute inputs.
2009 Bernstein—Kohel-Lange:
Easily avoid permutation!

2008 Hisil-Wong—Carter—Dawson:

(X:Y:Z:X°:Y%:2Z°

2XY 12X Z :2Y Z).

6M + 6S for ADD.
3M + 6S for DBL.

z3 —y3+1=0.3zy

ve—Quisquater:

1:21) =
Y1)+ (M 24y Xy)
se ADD to double.

addition formulas,”
gainst side channels.
1 to permute Inputs.
rnstein—Kohel-Lange:
/old permutation!

1l-\Wong—Carter—Dawson:

7 X%:Y2: 72
Y :2XZ :2Y 2).
5 for ADD.

> for DBL.

23 —y3 +1=0.3zy

ater:

121 X1)
o double.

formulas,”

e channels.
ute Inputs.
ohel-Lange:
itation!

Carter—Dawson:
/2. 72
. 2Y 7).

WSon.

23 —y3+1=0.32zy

The Hessian—ray: u

not stro

=

The Hessian—ray: uniform
-

not sfrangl y so

23 —y3 +1=0.3zy

+1=0.3zy

The Hessian—ray: uniform
fr—

not sfrangi y so

Jacobi it

1986 Ch

(S:C:
(5/Z,C
s° + ¢

14M +
“Tremer
of being

5M + 3
"Perhap
efficient
which de

coefficie

The Hessian—ray: uniform
-

not sfrangl y so

Jacobi intersectior

1986 Chudnovsky-
(S:C:D:2) re
(5/Z,C/Z,D/2Z)
§2 1 % = 1, as?
14M +2S + 1D f

“Tremendous adv:
of being strongly 1

5M + 3S for DBL
“Perhaps (7) ... 1
efficient duplicatic

which do not depe
coefficients of an «

The Hessian—ray: uniform Jacobi intersections
fr—

1986 Chudnovsky—Chudnovs

(S:C:D:Z) represent
(5/Z,C/Z,D/Z) on
21 c?2=1 as?+d*=1.

14M + 2S5 + 1D for ADD.
“Tremendous advantage”

not strongly so of being strongly unified.

5M + 3S for DBL.

“Perhaps (?7) ... the most
efficient duplication formula:
which do not depend on the
coefficients of an elliptic cur

The Hessian—ray: uniform Jacobi intersections
-

1986 Chudnovsky—Chudnovsky:

(S:C:D:Z) represent
(5/Z,C/Z,D/Z) on
21 c?=1 as?+d?=1

14M + 2S + 1D for ADD.

“Tremendous advantage”

not strongly so of being strongly unified.

5M + 3S for DBL.
“Perhaps (?7) ... the most
efficient duplication formulas

which do not depend on the
coefficients of an elliptic curve.”

The Hgssian—ray; uniform Jacobi intersections 2001 Lic

- C
1986 Chudnovsky—Chudnovsky: 13M +.

4M + 3!
(S:C:D:Z) represent
2007 Be
(§/Z,C/Z,D/Z) on IM L 48
21 c?2=1 as?+d*=1. T
14M + 2S + 1D for ADD. 2008 His
¥ , 13M +:
Tremendous advantage
+ st | of being strongly unified 2M+5:
notT S F'Gﬂg y S0 - AlSQ (5
5M + 3S for DBL. 11M -+
“Perhaps (?) ... the most OM -+ 5!

efficient duplication formulas
which do not depend on the
coefficients of an elliptic curve.”

sian-ray. uniform
fr—

not sfrongl y so

Jacobi intersections

1986 Chudnovsky—Chudnovsky:

(S:C:D:Z) represent
(5/Z,C/Z,D/Z) on
21 c?=1 as?+d?=1

14M + 2S + 1D for ADD.

“Tremendous advantage”
of being strongly unified.

5M + 3S for DBL.
“Perhaps (?7) ... the most
efficient duplication formulas

which do not depend on the

coefficients of an elliptic curve.”

2001 Liardet—Sma
13M +2S + 1D f
4M + 3S for DBL

2007 Bernstein—L:
3M 4+ 4S for DBL

2008 Hisil-Wong—
13M + 1S + 2D fi
2M + 5S + 1D fol
Also (S:C: D : .
11M + 1S + 2D f
2M + 5S + 1D fol

miform

but
ngi y so

Jacobi intersections

1986 Chudnovsky—Chudnovsky:

(S:C:D:Z) represent
(5/Z,C/Z,D/Z) on
21 c?2=1 as?+d*=1.

14M + 2S + 1D for ADD.

“Tremendous advantage”
of being strongly unified.

5M + 3S for DBL.

“Perhaps (?7) ... the most
efficient duplication formulas
which do not depend on the

coefficients of an elliptic curve.”

2001 Liardet—Smart:
13M 4+ 2S + 1D for ADD.
4M + 3S for DBL.

2007 Bernstein—Lange:
3M + 4S8 for DBL.

2008 Hisil-Wong—Carter—Da
13M + 1S + 2D for ADD.
2M + 58S + 1D for DBL.
Also (§:C:D:Z:5C:D
11M + 1S + 2D for ADD.
2M + 55 + 1D for DBL.

Jacobi intersections 2001 Liardet—Smart:
13M +2S + 1D for ADD.
4M <+ 3S for DBL.

1986 Chudnovsky—Chudnovsky:

(S:C:D: Z) represent
(5/Z,C/Z,D/Z) on
21 c?=1 as?+d?=1

2007 Bernstein—Lange:
3M + 4S8 for DBL.

2008 Hisil-Wong—Carter—Dawson:
13M + 1S + 2D for ADD.

2M + 58S + 1D for DBL.

Also (§:C:D:Z:5C:D2):
5M + 35 for DBL. 11M + 1S + 2D for ADD.

“Perhaps (?) ... the most oM + 5S + 1D for DBL.
efficient duplication formulas

14M + 2S + 1D for ADD.
“Tremendous advantage”

of being strongly unified.

which do not depend on the
coefficients of an elliptic curve.”

1tersections

udnovsky—Chudnovsky:

D : Z) represent
/Z,D/Z) on
=1, as? +d? =1

S + 1D for ADD.

\dous advantage”
strongly unified.

> for DBL.

s (7) ... the most
duplication formulas
b not depend on the

nts of an elliptic curve.”

2001 Liardet—Smart:
13M 4+ 2S + 1D for ADD.
4M -+ 3S for DBL.

2007 Bernstein—Lange:
3M + 4S8 for DBL.

2008 Hisil-Wong—Carter—Dawson:

13M + 1S + 2D for ADD.

2M +5S + 1D for DBL.

Also (§:C:D:Z:5C:D2):
11M + 1S + 2D for ADD.

2M + 55 + 1D for DBL.

Jacobi ¢

(X:Y:Z
on y° =

1986 Ch
3M - 68
Slow AL

2002 Bil
New chc
10M +
strongly

2007 Be
IM + 98

1S

-Chudnovsky:

resent

on
_d? =1.

or ADD.

intage”
inified.

‘he most
n formulas
nd on the

|liptic curve.”

2001 Liardet—Smart:
13M +2S + 1D for ADD.
4M -+ 3S for DBL.

2007 Bernstein—Lange:
3M + 4S8 for DBL.

2008 Hisil-Wong—Carter—Dawson:

13M + 1S + 2D for ADD.

2M +5S + 1D for DBL.

Also (§:C:D:Z:5C:D2):
11M + 1S + 2D for ADD.

2M + 55 + 1D for DBL.

Jacobi quartics

(X:Y:Z) represent
on y2 — 2% + 2az

1986 Chudnovsky-
3M + 6S + 2D fol
Slow ADD.

2002 Billet—Joye:
New choice of ner
10M + 3S + 1D f
strongly unified.

2007 Bernstein—L:
1M +9S + 1D fol

Ky:

2001 Liardet—Smart:
13M 4+ 2S + 1D for ADD.
4M -+ 3S for DBL.

2007 Bernstein—Lange:
3M + 4S8 for DBL.

2008 Hisil-Wong—Carter—Dawson:

13M + 1S + 2D for ADD.

2M +5S + 1D for DBL.

Also (§:C:D:Z:5C:D2):
11M + 1S + 2D for ADD.

2M + 55 + 1D for DBL.

Jacobi quartics

(X:Y:Z) represent (X/Z,Y/
on y° = z* + 2az? + 1.

1986 Chudnovsky—Chudnovs
3M + 6S + 2D for DBL.
Slow ADD.

2002 Billet—Joye:

New choice of neutral eleme
10M + 3S + 1D for ADD,
strongly unified.

2007 Bernstein—Lange:
1M +9S + 1D for DBL.

2001 Liardet—Smart:
13M +2S + 1D for ADD.
4M -+ 3S for DBL.

2007 Bernstein—Lange:
3M + 4S8 for DBL.

2008 Hisil-Wong—Carter—Dawson:

13M + 1S + 2D for ADD.

2M +5S + 1D for DBL.

Also (§:C:D:Z:5C:D2):
11M + 1S + 2D for ADD.

2M + 55 + 1D for DBL.

Jacobi quartics

(X:Y:Z) represent (X/Z,Y/Z?)
on y? = z* + 2az’® + 1.

1986 Chudnovsky—Chudnovsky:
3M + 6S + 2D for DBL.
Slow ADD.

2002 Billet—Joye:

New choice of neutral element.
10M + 3S + 1D for ADD,
strongly unified.

2007 Bernstein—Lange:
1M +9S + 1D for DBL.

rdet—Smart:
S + 1D for ADD.
s for DBL.

rnstein—Lange:
> for DBL.

1l-\WWong—Carter—Dawson:

(S + 2D for ADD.

5> + 1D for DBL.

2 C:D:Z:5C:D2):
(S + 2D for ADD.

5 + 1D for DBL.

Jacobi quartics

(X:Y:Z) represent (X/Z,Y/Z?)
on y° = z* + 2az? + 1.

1986 Chudnovsky—Chudnovsky:
3M + 6S + 2D for DBL.
Slow ADD.

2002 Billet—Joye:
New choice of neutral element.
10M + 3S + 1D for ADD,

strongly unified.

2007 Bernstein—Lange:
1M +9S + 1D for DBL.

2007 Hie
2M + 6

2007 Fe
2M -+ 6
1M + 7

on Curve

More sp
2007 Hi
2008 His
use (X
or (X :}
Can con
Competi

or ADD.

Inge:

Carter—Dawson:

or ADD.

- DBL.

7 :5C: DZ):
or ADD.

- DBL.

Jacobi quartics

(X:Y:Z) represent (X/Z,Y/Z?)
on y° = z* + 2az’® + 1.

1986 Chudnovsky—Chudnovsky:
3M + 6S + 2D for DBL.
Slow ADD.

2002 Billet—Joye:
New choice of neutral element.
10M + 3S + 1D for ADD,

strongly unified.

2007 Bernstein—Lange:
1M +9S + 1D for DBL.

2007 Hisil—-Carter-
2M + 6S + 2D fo

2007 Feng—\Wu:
2M + 6S + 1D fol
1M + 7S + 3D fol

on curves chosen \

More speedups: 2
2007 Hisil-Carter-
2008 Hisil-Wong—
use (X :Y :Z: X
or (X:Y :Z:X?
Can combine with
Competitive with

WSOon.

Jacobi quartics

(X:Y:Z) represent (X/Z,Y/Z?)
on y° = z* + 2az? + 1.

1986 Chudnovsky—Chudnovsky:
3M + 6S + 2D for DBL.
Slow ADD.

2002 Billet—Joye:
New choice of neutral element.
10M + 3S + 1D for ADD,

strongly unified.

2007 Bernstein—Lange:
1M +9S + 1D for DBL.

2007 Hisil-Carter—-Dawson:
2M + 6S + 2D for DBL.

2007 Feng—Wau:

2M + 6S + 1D for DBL.
1M+ 7S + 3D for DBL

on curves chosen with a2+

More speedups: 2007 Duqus
2007 Hisil-Carter—Dawson,
2008 Hisil-Wong—Carter—Da
use (X 1Y : Z: X?:2Z%)
or (X:Y :1Z:X?:2%:2X
Can combine with Feng—Wu
Competitive with Edwards!

Jacobi quartics

(X:Y:Z) represent (X/Z,Y/Z?)
on y° = z* + 2az’® + 1.

1986 Chudnovsky—Chudnovsky:
3M + 6S + 2D for DBL.
Slow ADD.

2002 Billet—Joye:

New choice of neutral element.
10M + 3S + 1D for ADD,
strongly unified.

2007 Bernstein—Lange:
1M +9S + 1D for DBL.

2007 Hisil-Carter—-Dawson:
2M + 6S + 2D for DBL.

2007 Feng—\Wu:
2M + 6S + 1D for DBL.
1M + 7S + 3D for DBL

on curves chosen with a2+c2 = 1.

More speedups: 2007 Duquesne,
2007 Hisil-Carter—Dawson,

2008 Hisil-Wong—Carter—Dawson:
use (X 1Y : Z: X?:2Z?%)

or (X:Y :Z:X?:2°:2X2).
Can combine with Feng—Wau.
Competitive with Edwards!

uartics

) represent (X/Z,Y/Z?)
4 + 20z + 1.

udnovsky—Chudnovsky:
> + 2D for DBL.

)D.

let—Joye:
ice of neutral element.
3S + 1D for ADD,

unified.

rnstein—Lange:
> + 1D for DBL.

2007 Hisil-Carter—Dawson:
2M + 6S + 2D for DBL.

2007 Feng—\Wu:
2M + 6S + 1D for DBL.
1M + 7S + 3D for DBL

on curves chosen with c:r,2+c2 = 1.

More speedups: 2007 Duquesne,
2007 Hisil-Carter—Dawson,

2008 Hisil-Wong—Carter—Dawson:
use (X 1Y : Z: X?:2Z%)

or (X:Y :Z:X?:2%:2X2).
Can combine with Feng—Wau.
Competitive with Edwards!

- (X/Z,Y]Z?)
241,

-Chudnovsky:
- DBL.

tral element.
or ADD,

Inge:
- DBL.

2007 Hisil-Carter—-Dawson:
2M + 6S + 2D for DBL.

2007 Feng—\Wu:
2M + 6S + 1D for DBL.
1M + 7S + 3D for DBL

on curves chosen with a2+c2 = 1.

More speedups: 2007 Duquesne,
2007 Hisil-Carter—Dawson,

2008 Hisil-Wong—Carter—Dawson:
use (X 1Y : Z: X?:2Z%)

or (X:Y :Z:X?:2°%:2X2).
Can combine with Feng—Wau.
Competitive with Edwards!

Nnt.

2007 Hisil-Carter—-Dawson:
2M + 6S + 2D for DBL.

2007 Feng—\Wu:
2M + 6S + 1D for DBL.
1M + 7S + 3D for DBL

on curves chosen with c:r,2+c2 = 1.

More speedups: 2007 Duquesne,
2007 Hisil-Carter—Dawson,

2008 Hisil-Wong—Carter—Dawson:
use (X 1Y : Z: X?:2Z%)

or (X:Y :Z:X%:2%:2X2).
Can combine with Feng—Wau.
Competitive with Edwards!

2007 Hisil-Carter—-Dawson:
2M + 6S + 2D for DBL.

2007 Feng—\Wu:
2M + 6S + 1D for DBL.
1M + 7S + 3D for DBL

on curves chosen with a2+c2 = 1.

More speedups: 2007 Duquesne,
2007 Hisil-Carter—Dawson,

2008 Hisil-Wong—Carter—Dawson:
use (X 1Y : Z: X?:2Z%)

or (X:Y :Z:X?:2°:2X2).
Can combine with Feng—Wau.
Competitive with Edwards!

sil—Carter—Dawson:
> + 2D for DBL.

ng—Wu:
> + 1D -
> + 3D -

or DBL.

s chosen with c:r,2+c2 = 1.

‘or DBL

eedups: 2007 Duquesne,

sil—Carter—Dawson,

1lI-\WWong—Carter—Dawson:
Y Z:X?%:2Z?%)

/7 X% Z%:2X2).
\bine with Feng—Wau.
tive with Edwards!

The Jac
extended

XXYZZ1
giaﬂf sq

IIQ‘
&

-Dawson: The Jacobi-quartic
- DBL. extended to %y
XXYZZR l
giant squid.
- DBL.
- DBL -

vith a2 +c? = 1.

007 Duquesne,
-Dawson,

Carter—Dawson:
2 : 22)
7% :2X2).
Feng—Wu.
Edwards!

The Jacabi-—quarﬁc squid: ca

eiterded 1o% \
XXYZZR t j
’ 0

giant squia'.

e

Wson: z° =yt —1.9y° +1

The Jacab:-—quarﬁc squ;d can be
extended fr.:: \

XXYZZR l
giant squid.

l, \'

—1.9y° +1

The Jacab:-—quarﬁc squ;d can be
extended fc: N\

XXYZZR t
giant squia'.

l, \'

The Jacabx-—quarﬁc squ;d can be
extended fr.:: \

XXYZZR l
giant squid.

l’ \

The Jac:ab:-quar'ﬁr: squ:a' can be
extended fc: N\

XXYZZR t
giant squid.

J | \

The Jacab:-quar'ﬁr: squra' can be
extended fr.:: \

XXYZZR l
giant squid.

‘" \

obi- quarﬁc squ:a' can be

| to .
,nre::ft j

-))i\

-

More ad

Explicit-
hyperel

EFD has
formulas
for ADLC

in b1 rej
on 13 sf

Not yet
generalit
(e.g., He
complet
(e.g., ch

More addition forr

Explicit-Formulas
hyperelliptic.c

EFD has 583 com
formulas and oper
for ADD, DBL, et

In b1 representatic

on 13 shapes of el

Not yet handled b
generality of curve
(e.g., Hessian orde
complete addition
(e.g., checking for

More addition formulas

Explicit-Formulas Database:
hyperelliptic.org/EFD

EFD has 583 computer-verif

formulas and operation cour
for ADD, DBL, etc.

iIn 51 representations

on 13 shapes of elliptic curv

Not yet handled by compute
generality of curve shapes
(e.g., Hessian order € 3Z);
complete addition algorithm
(e.g., checking for c0).

More addition formulas

Explicit-Formulas Database:
hyperelliptic.org/EFD

EFD has 583 computer-verified
formulas and operation counts
for ADD, DBL, etc.

In 51 representations

on 13 shapes of elliptic curves.

Not yet handled by computer:
generality of curve shapes
(e.g., Hessian order € 3Z);
complete addition algorithms
(e.g., checking for co).

More addition formulas

Explicit-Formulas Database:
hyperelliptic.org/EFD

EFD has 583 computer-verified
formulas and operation counts
for ADD, DBL, etc.

iIn 51 representations

on 13 shapes of elliptic curves.

Not yet handled by computer:
generality of curve shapes
(e.g., Hessian order € 3Z);
complete addition algorithms
(e.g., checking for co).

How to

Standarce
with coe
to repre:s

Example
839 = 8
value (a
8t° + 3t

Convenis
Inside cc
(or 9, 3,
plO] =

N\ ‘7
(.
p | _—

More addition formulas

Explicit-Formulas Database:
hyperelliptic.org/EFD

EFD has 583 computer-verified
formulas and operation counts
for ADD, DBL, etc.

In 51 representations

on 13 shapes of elliptic curves.

Not yet handled by computer:
generality of curve shapes
(e.g., Hessian order € 3Z);
complete addition algorithms
(e.g., checking for co).

How to multiply b

Standard idea: Us
with coefficients ir
to represent intege

Example of repres
839 = 8-10% 4 3
value (at ¢t = 10)
8t% + 3t 4 90,

Convenient to exp
Inside computer a:
(or 9,3,8,0 0r 9,7
“p[0] =9; pl1]

More addition formulas

Explicit-Formulas Database:
hyperelliptic.org/EFD

EFD has 583 computer-verified
formulas and operation counts
for ADD, DBL, etc.

iIn 51 representations

on 13 shapes of elliptic curves.

Not yet handled by computer:
generality of curve shapes
(e.g., Hessian order € 3Z);
complete addition algorithms
(e.g., checking for co).

How to multiply big integer:

Standard

idea: Use polynon

with coe

ficients in {0, 1, ...

to represent integer in radix

Example

839 = 38 -

of representation:
10° +3-101 +9-

value (at ¢ = 10) of polynor
8t2 + 3tt + 0t

Convenient to express polyn

inside computer as array 9, :
(or 9,3,8,00r9,3,8,0,0 or

plO] =

9; pl1] = 3; pl[2]

More addition formulas

Explicit-Formulas Database:
hyperelliptic.org/EFD

EFD has 583 computer-verified
formulas and operation counts
for ADD, DBL, etc.

In 51 representations

on 13 shapes of elliptic curves.

Not yet handled by computer:
generality of curve shapes
(e.g., Hessian order € 3Z);
complete addition algorithms
(e.g., checking for co).

How to multiply big integers

Standard idea: Use polynomial
with coefficients in {0,1,...,9}
to represent integer in radix 10.

Example of representation:

839 = 8-10°+3-10' +9-10% =
value (at ¢t = 10) of polynomial
8t% + 3t 4 90,

Convenient to express polynomial
inside computer as array 9, 3, 8

(or 9,3,8,00r9,3,8,0,00r...):
"p[0] =9; p[1] = 3; p[2] = 8"

dition formulas

Formulas Database:
liptic.org/EFD

5 583 computer-verified
and operation counts
 DBL, etc.
resentations

apes of elliptic curves.

handled by computer:
y of curve shapes
ssian order € 3Z);

> addition algorithms
ecking for 00).

How to multiply big integers

Standard idea: Use polynomial
with coefficients in {0,1,...,9}
to represent integer in radix 10.

Example of representation:

839 =8-10°+3-10' +9-10% =
value (at ¢ = 10) of polynomial
8t% + 3t 4 90,

Convenient to express polynomial
inside computer as array 9, 3, 8

(or 9,3,8,00r9,3,8,0,00r...):
"p[0] =9; p[1] = 3; p[2] = 8"

Multiply
by multi
that rep

Polynon
involves
Have spl
Into mat

Example
(8t 4 3
t* 4

nulas

Database:
brg/EFD

puter-verified
ation counts
C.

NS

liptic curves.

y computer:
 shapes

r € 3Z);
algorithms
00).

How to multiply big integers

Standard idea: Use polynomial
with coefficients in {0,1,...,9}
to represent integer in radix 10.

Example of representation:

839 = 8-10°+3-10' +9-10% =
value (at ¢t = 10) of polynomial
8t% + 3t 4 90,

Convenient to express polynomial
inside computer as array 9, 3, 8

(or 9,3,8,00r9,3,8,0,00r...):
"p[0] =9; p[1] = 3; p[2] = 8"

Multiply two integ
by multiplying pol
that represent the

Polynomial multip
involves small inte
Have split one big
into many small o

Example, squaring
(8t° + 3t1 + 9tY)?
t* + 4883 + 153

1ed
1tS

A

How to multiply big integers

Standard idea: Use polynomial
with coefficients in {0,1,...,9}
to represent integer in radix 10.

Example of representation:

839 = 8-10°+3-10' +9-10% =
value (at ¢ = 10) of polynomial
8t% + 3t 4 90,

Convenient to express polynomial
inside computer as array 9, 3, 8

(or 9,3,8,00r9,3,8,0,00r...):
"p[0] =9; p[1] = 3; p[2] = 8"

Multiply two integers
by multiplying polynomials
that represent the integers.

Polynomial multiplication

involves small integer coetfi
Have split one big multiplic:
into many small operations.

Example, squaring 839:
(82 4 3t! + 9tY)? =
t* + 488> 4 1532 + 54! -

How to multiply big integers

Standard idea: Use polynomial
with coefficients in {0,1,...,9}
to represent integer in radix 10.

Example of representation:

839 = 8-10°+3-10' +9-10% =
value (at ¢t = 10) of polynomial
8t% + 3t 4 90,

Convenient to express polynomial
inside computer as array 9, 3, 8

(or 9,3,8,00r9,3,8,0,00r...):
"p[0] =9; p[1] = 3; p[2] = 8"

Multiply two integers
by multiplying polynomials
that represent the integers.

Polynomial multiplication
involves small integer coefficients.
Have split one big multiplication
Into many small operations.

Example, squaring 839:
(8t 4 3t! + 9tY)? =
t* + 488> + 153t% 4 54¢t + 81¢0.

multiply big integers

] iIdea: Use polynomial
fficients in {0,1,...,9}
sent integer in radix 10.

 of representation:

-10%2 +3-101 +9-10° =
t £ = 10) of polynomial

L ot0,

ent to express polynomial

ymputer as array 9, 3, 8
8,00r9,3,8,0,00r...):
9; pll] =3; pl[2] =8

Multiply two integers
by multiplying polynomials
that represent the integers.

Polynomial multiplication

involves small integer coetficients.

Have split one big multiplication
into many small operations.

Example, squaring 839:
(8t2 4 3t! + 9tY)? =

t* + 4883 + 1532 4 54t! + 8140

Oops, pi
usually t
So “carr
ct! — |

Example

A

t*

£4 1 €
70t% + 2
7t + 0t

In other

1g Integers

e polynomial
1 {0,1,...,9}
r in radix 10.

entation:
101 +9- 100 =
of polynomial

ress polynomial
5 array 9, 3,3

3,8,0,00r ...):
=3; pl2] = 8"

Multiply two integers
by multiplying polynomials
that represent the integers.

Polynomial multiplication

involves small integer coefficients.

Have split one big multiplication
Into many small operations.

Example, squaring 839:
(8t 4 3t! + 9tY)? =

t* + 488> + 153t% 4 54¢t + 81¢0.

Oops, product pol
usually has coeffic

So “carry” extra ¢
ct! — |c/10] t7 1

Example, squaring
4 1 28¢3 -+ 1
t* + 483 +
£4 1 48¢3 + 159
t* + 63t3 4 9¢t2

70t* + 3t> + 9¢°
T 4+ 0t + 383 +

In other words, 83

Multiply two integers
by multiplying polynomials
that represent the integers.

Polynomial multiplication

involves small integer coetficients.

Have split one big multiplication
into many small operations.

Example, squaring 839:
(8% + 3t! 4 9t7)% =
t* + 48t° + 1532 +

t1 + 8149,

Oops, product polynomial

usually has coefficients > 9.

So “carry” extra digits:
ct! — |c/10| /1 + (¢ mod

Exam

ole, squaring 839:

t> +

£2 1 54¢L -
- 153¢2 1+ 62t!

1592 4+ 2t 4

63t -

o2 Lol 41

70t% 4+ 383 + 02 + ol 14
7 4+ 0% + 33 + 92 + 2tl

In other words, 8392 = 703¢

Multiply two integers
by multiplying polynomials
that represent the integers.

Polynomial multiplication

involves small integer coefficients.

Have split one big multiplication
Into many small operations.

Example, squaring 839:
(8t 4 3t! + 9tY)? =

t* + 488> + 153t% 4 54¢t + 81¢0.

Oops, product polynomial
usually has coefficients > 9.
So “carry’ extra digits:

ct! = |¢/10] /1 + (¢ mod 10)¢/.

Example, squaring 839:
t* + 483 4+ 153t% + 54t + 81¢°;

t* 4 48¢3 t? + 62t1 + 1¢0;
t* + 48¢3 4 159¢% + 2¢1 + 140
t* + 63t3 + 9t° + 2t1 + 1¢0;

70t% + 383 + 082 + 2t + 14V
782 + 0t + 383 + 9t2 + 2t 4 149

In other words, 8392 = 703921

two Integers
plying polynomials
resent the integers.

al multiplication

small integer coetficients.

It one big multiplication
1y small operations.

, squaring 839:
t! 4+ 9¢9)? =

£3 1 153¢2 1+ 54¢1 18149,

Oops, product polynomial
usually has coefficients > 9.
So “carry” extra digits:

ct! = |c¢/10] /T + (¢ mod 10)#.

Example, squaring 839:

t* + 483 4+ 153t% + 54t 4 81¢°;

t* 4+ 4883 + 15382 + 621 + 140

t* + 4883 + 159¢2 + 21 + 140

t* + 63¢3 + 92 + 2t1 + 149;
70t% + 3¢3 + o2 + 2t + 14Y;

782 + 0t + 383 + 982 + 2t 4 149,

In other words, 8392 = 703921

What of

divide L

ers
ynomials
Integers.

lication

ger coefficients.

multiplication
perations.

- 3839:

2 1544l 18149,

Oops, product polynomial
usually has coefficients > 9.
So “carry’ extra digits:

ct! = |¢/10] /1 + (¢ mod 10)¢/.

Example, squaring 839:

t* + 483 4+ 153t% + 541 + 81¢°;

£ 4+ 4883 + 15382 + 62t + 140

t* 4+ 4883 + 159¢2 + 2t + 140

t* + 63¢3 + 92 + 2t + 149;
70t% + 3¢3 + o2 + 2t + 14Y;

782 + 0t + 383 + 982 + 2t 4+ 149

In other words, 8392 = 703921

What operations v

Y
15¢

divide byy l
|

15 9

“lents.
ytion

Oops, product polynomial
usually has coefficients > 9.
So “carry” extra digits:

ct! = |c¢/10] /T + (¢ mod 10)#.

Example, squaring 839:

t* + 483 + 153t% + 54t 4 81¢°;
t4 14843 1+ 153¢2 + 62t 4 140

t* + 48t3 + 1592 + 2¢1 + 19,
t4 16383 1+ 02 1+ ¢l 1 140
70t% 4+ 383 + 02 + 2¢l o+ 14

782 + 0t + 383 + 02 + 2¢1 4 149,

In other words, 8392 = 703921

What operations were used

vAjd

159

divide by 10
/ lmod 10

15 9

Oops, product polynomial
usually has coefficients > 9.
So “carry’ extra digits:

ct! = |¢/10] /1 + (¢ mod 10)¢/.

Example, squaring 839:

t* + 483 4+ 153t% + 54t + 81¢°;
t* + 48¢3 4+ 1532 + 62t + 10,

t* + 48¢3 4 1592 + 21 + 1¢9;
t4 16383 + 982 1+ ¢l 1 140
70t% 4 383 + 02 + 2¢l o+ 140

782 + 0t + 383 + 9t + 2t 4 149

In other words, 8392 = 703921

What operations were used here?

multiply

\l

N < — OO

0%&)
= O

VAd

159

divide by 10
/ lmod 10

15 9

-oduct polynomial
1as coefficients > 9.
y' extra digits:

/10| #771 + (¢ mod 10)#.

, squaring 839:

t> + 153t% + 54t + 81¢°;
t> + 153t2 + 62t + 1¢0;

£3 1 15942 1+ 2t 1 140
3¢5 + 02 + 2¢1 + 149
3 4+ 02 + 21 + 1£0;

433 o2 ol 140,

words, 8392 = 703921

What operations were used here?

vAjd

159

divide by 10
/ lmod 10

15 9

(%

64 24 7

P

~ <~

ynomial
lents > 9.
Igits:

+ (c mod 10)¢/.

- 339:

2+ 54t 4 81¢°;
t2 1 62t 1+ 140

£2 1 2t 1 140;
| ¢l -+ ltO;
ol -+ 1t0;

02 + ¢l 1+ 140

02 = 703921.

What operations were used here?

multiply

\I

ho-<e——-oo
K{E§B<igu
= O

VAId

159

divide by 10
/ lmod 10

15 9

64 24 72

~ &~

10)¢/ .

- 81¢Y:
+ 1¢9;

- ltO;

1+ 149,

)21.

What operations were used here?

vAjd

159

divide by 10
/ lmod 10

15 9

64 24 72 \\\\ji>

|
159
>/¢
IRCE:
e
63
v +
J 6 3
4
70
v +
7 0

~ <~

What operations were used here? g 3

\\ /}72 07 81
- 24 9 27\ \
multiply \\\x

64 24 72

Nt q

add | . 62/

n) \L)/ J/

6 2
‘/// | v
l [139
6 15
/ Al

Y add ao

\l

N < — OO

0%*)
= O

ik | o
divide by 10 70‘/
/ lmod 10 Y
70
15 9 4

~ &~

yerations were used here?

8 3

64 24 (2

> (2~ 27 3l

\\
|

\

4

8

l

31

v
1

T he scal

839 = 8
value (a
80042 +

Squaring
"

tl
Carrying
"

th +

"

620t +
700000t
20t! + 1

vere used here?

9
)< imultiply

(2

/

6

Ad

)
mod 10

3

64 24 (2

\

/ *72 27 81

27

\\

T he scaled variatic

839 — 800 -+ 30 -
value (att=1) o
800#2 + 30t + ot

Squaring: (800t -
640000t* + 48000
540t + 81¢0.
Carrying:
640000t* + 48000
540t1 + 81¢Y;
640000t* + 48000
620t + 149
700000¢° + 0t* 4 -
20t + 1¢9.

here?

1ltiply

3

64 24 (2

\ / \>72 07 81

\\

The scaled variation

839 =800+ 3049 =
value (at ¢ = 1) of polynom
800t* + 30t* + 9¢°.

Squaring: (800t% + 30t! + 91
640000¢* + 48000¢3 + 1530
540t + 81£0.

Carrying:

640000¢* 4+ 48000%3 + 1530
540t + 81¢9;

640000¢* + 48000¢3 + 1530
620t + 19 L
700000¢° 4 0t* + 3000¢3 49
20t + 149,

64 24 (2

3

\

/ *72 27 81

\\

The scaled variation

839 =800+ 3049 =
value (at ¢t = 1) of polynomial
800t* + 30t + 9¢°.

Squaring: (800¢% +30t! +9t%)? =
640000¢% + 48000%3 + 15300¢2 +

540¢1 + 8140,

Carrying:

640000¢% + 48000%3 + 15300¢2 +

540t + 81¢Y;

640000¢% + 48000%3 + 15300¢2 +

620t + 19 L

700000t + 0¢* + 3000¢3 + 900¢2 +
20t + 1¢9.

I\
»72 727 81
/

N

The scaled variation

839 =800+ 3049 =
value (at ¢ = 1) of polynomial
800t* + 30t* + 9¢°.

Squaring: (800t% +30t! +9t°)? =
640000¢% + 48000%3 + 15300¢2 +

540¢1 + 81£0.

Carrying:

640000¢% + 48000%3 + 15300¢2 +

540t + 81¢Y;

640000¢% + 48000%3 + 15300¢2 +

620t + 19 L

700000t + 0¢* + 3000¢3 + 900¢2 +
20t + 149,

What of

800 —

L
7200

subtra

e
15000

%72 27 81
i N
k

5 9

The scaled variation

839 =800+ 3049 =
value (at ¢t = 1) of polynomial
800t* + 30t + 9¢°.

Squaring: (800¢% +30t! +9t%)? =
640000¢% + 48000%3 + 15300¢2 +

540¢1 + 8140,

Carrying:

640000¢% + 48000%3 + 15300¢2 +

540t1 + 81¢Y;

640000¢% + 48000%3 + 15300¢2 +

620t + 19 L

700000t + 0¢* + 3000¢3 + 900¢2 +
20t + 149

What operations v

800 30

=t

7200 900

Nt

15300

Y £
15900

SUbV l
1qle

15000 900

The scaled variation

839 =800+ 3049 =
value (at ¢ = 1) of polynomial
800t* + 30t* + 9¢°.

Squaring: (800t% +30t! +9t°)? =
640000¢% + 48000%3 + 15300¢2 +

540¢1 + 81£0.

Carrying:

640000¢% + 48000%3 + 15300¢2 +

540t + 81¢Y;

640000¢% + 48000%3 + 15300¢2 +

620t + 19 L

700000t + 0¢* + 3000¢3 + 900t2 +
20t + 149,

What operations were used

300 30 0
|
7200 900 7200
N /dd
15300
%
600
e
15900
S‘”’V lmod 1000
15000 900

The scaled variation

839 =800+ 3049 =
value (at ¢t = 1) of polynomial
800t* + 30t + 9¢°.

Squaring: (800¢% +30t! +9t%)? =
640000¢4 + 48000%3 + 15300¢2 +

540¢1 + 8140,

Carrying:

640000¢% + 48000%3 + 15300¢2 +

540t1 + 81¢Y;

640000¢% + 48000%3 + 15300¢2 +

620t + 19 L

700000t + 0¢* + 3000¢3 + 900¢2 +
20t + 149

What operations were used here?

800 30 0
¢ Lmultiply
7200 900 7200
N |
15300 .
600
b
15900
SUPLEE;///ljnod 1000
15000 900

ed variation

00+ 30+ 9 =
t £ = 1) of polynomial
30t + 9¢°.

: (800t% 430t +9t7)2 =

'+ t> + t2 +
0.

"+ t> + t2 +
+0.

"+ t> + t? +

1t0; .

> +0t* 430003 + 900¢2 +

+V.

What operations were used here?

300 30 9
i imultiply
7200 900 7200

g e

600

e

15900

S‘”’V lmod 1000

15000 900

Speedug

a

(- + f

has coef

fafo+]

5 mults,

9 —

f polynomial

).

-30t! +9tY)% =
t> + t% +

t> + t* +

t3 + t2 +

3000¢3 + 900t +

What operations were used here?

300 30 9
¢ imultiply
7200 900 7200

g e

600

L

15900

S“by lmod 1000

15000 900

Speedup: double i

a

(- + fot® + frt!
has coefficients su

fafo+ f3fi+ fof
5 mults, 4 adds.

1al

2 4

What operations were used here?

300 30 9
i imultiply
7200 900 7200

g e

600

e

15900

S‘”’V lmod 1000

15000 900

Speedup: double inside squz

a

(- + fot? + frtt + fot0)?
has coefficients such as

fafo+ f3fi+ fofo+ f1f3
5 mults, 4 adds.

What operations were used here?

300 30 9
¢ imultiply
7200 900 7200

g e

600

L

15900

S“by lmod 1000

15000 900

Speedup: double inside squaring

a

(- + fot? + ft! + fot")’
has coefficients such as

fafo+ f3fi+ fofo+ f1f3+ fofa.
5 mults, 4 adds.

What operations were used here?

300 30 9
¢ imultiply
7200 900 7200

g e

600

L

15900

S“by lmod 1000

15000 900

Speedup: double inside squaring

a

(- + fot? + ft! + fot")’
has coefficients such as

fafo+ f3fi+ fofo+ f1f3+ fofa.
5 mults, 4 adds.

Compute more efficiently as

2fafo +2f3f1+ faf2.
3 mults, 2 adds, 2 doublings.

Save &~ 1/2 of the mults
if there are many coetfficients.

yerations were used here?

30 9
imultiply
900 7200
N l Aj

600

e

15900

ct~ lmod 1000

900

Speedup: double inside squaring

a

(- + fot? + frtt + fot0)?
has coefficients such as

fafo+ f3fi+ oo+ fifs+ fofa
5 mults, 4 adds.

Compute more efficiently as

2fafo

21311

f2f2.

3 mults, 2 adds, 2 doublings.

Save & 1/2 of the mults
if there are many coetficients.

Faster a

2(fafo

3 mults,

Save ~
If there .

vere used here?

/ 9
imultiply

T~

7200

ad

ol

a

600

e

" ad

o

d 1000

Speedup: double inside squaring

(- + fot? + ft! + fot")’
has coefficients such as

fafo+ f3fi+ fofo+ f1f3+ fofa.

5 mults, 4 adds.

Compute more efficiently as

2fafo +2f3f1+ faf2.
3 mults, 2 adds, 2 doublings.

Save & 1/2 of the mults
if there are many coetfficients.

Faster alternative:

2(fafo+ faf1) +
3 mults, 2 adds, 1

Save ~ 1/2 of the
if there are many

here?

1tiply

Speedup: double inside squaring

(- + fot? + frtt + fot0)?
has coefficients such as

fafo+ f3fi+ fofo+ f1f3+ fofa.

5 mults, 4 adds.

Compute more efficiently as

2fafo +2f3f1 + f2f2.
3 mults, 2 adds, 2 doublings.

Save & 1/2 of the mults
if there are many coetficients.

Faster alternative:

2(fafo + f3f1) + f2fo.
3 mults, 2 adds, 1 doubling.

Save & 1/2 of the adds
if there are many coefficient

Speedup: double inside squaring

(- + fot? + ft! + fot")’
has coefficients such as

fafo+ f3fi+ fofo+ f1f3+ fofa.

5 mults, 4 adds.

Compute more efficiently as

2fafo +2f3f1+ faf2.
3 mults, 2 adds, 2 doublings.

Save &~ 1/2 of the mults
if there are many coetfficients.

Faster alternative:

2(fafo + f3f1) + fafo.
3 mults, 2 adds, 1 doubling.

Save &~ 1/2 of the adds
if there are many coetfficients.

Speedup: double inside squaring

(- + fot? + ft! + fot")’
has coefficients such as

fafo+ f3fi+ fofo+ f1f3+ fofa.

5 mults, 4 adds.

Compute more efficiently as

2fafo +2f3f1+ faf2.
3 mults, 2 adds, 2 doublings.

Save &~ 1/2 of the mults
if there are many coetfficients.

Faster alternative:

2(fafo + f3f1) + fafo.
3 mults, 2 adds, 1 doubling.

Save &~ 1/2 of the adds

if there are many coef

lcients.

Even faster alternative:

(2fo)fa + (2f1)f3 + f2fo.

after precomputing 2o, 2f1,. ...

3 mults, 2 adds, 0 doublings.
Precomputation =~ 0.5 doublings.

. double Inside squaring

t2 + frt! + fot0)3
ficients such as

31+ ofo+ fifs+ fofa

4 adds.

e more efficiently as

2f3f1 + fafe.
2 adds, 2 doublings.

1/2 of the mults
are many coetfficients.

Faster alternative:

2(fafo + f3f1) + f2fe.

3 mults, 2 adds, 1 doubling.

Save & 1/2 of the adds

if there are many coetfficients.

Even faster alternative:

(2f0)fa + (2f1)f3

after precomputing 2 fp,

3 mults, 2 adds, 0 doub

Precomputation ~ 0.5 ¢

f2f2,

2f1, ...

Ings.

oublings.

Speedug

Recall 1
Scaled:

Alternat
Scaled:

Use digi
iInstead «
Small di
Several
easily he

easily he
reduce

nside squaring

+ fotY)?
Cn as

>+ f1f3 + fofa.

iciently as

2f2.
doublings.

mults

coefficients.

Faster alternative:

2(fafo+ f3f1) + f2fe.

3 mults, 2 adds, 1 doubling.

Save & 1/2 of the adds

if there are many coetfficients.

Even faster alternative:

(2fo)fa + (2f1)fz3 + f2fo.

after precomputing 2o, 2f1,

3 mults, 2 adds, 0 doub

Precomputation ~ 0.5 ¢

Ings.

oublings.

Speedup: allow neg

Recall 159 — 15, ¢
Scaled: 15900 —

Alternative: 159
Scaled: 15900 —

Use digits {—5, —
instead of {0, 1, ..
Small disadvantag

Several small adve

easl
easl

y
y

Nanad

Nanad

e nega
e subti

reduce products a

ring

- fofa.

Faster alternative:

2(fafo + f3f1) + f2fo.
3 mults, 2 adds, 1 doubling.

Save & 1/2 of the adds
if there are many coetfficients.

Even faster alternative:

(2fo)fa + (2f1)f3 + f2fo.

after precomputing 2,211,

3 mults, 2 adds, 0 doublings.

Precomputation =~ 0.5 doublings.

Speedup: allow negative cot

Recall 159 — 15, 9.
Scaled: 15900 — 15000, 90(

Alternative: 159 — 16, —1.
Scaled: 15900 — 16000, —1

Use digits {—5, —4, ..., 4,5
instead of {0, 1, ..., 9}.
Small disadvantage: need —
Several small advantages:
easily handle negative intege

easily handle subtraction;
reduce products a bit.

Faster alternative:

2(fafo+ f3f1) + f2fe.

3 mults, 2 adds, 1 doubling.

Save & 1/2 of the adds

if there are many coetfficients.

Even faster alternative:

(2fo)fa + (2f1)fz3 + f2fo.

after precomputing 2o, 2f1,

3 mults, 2 adds, 0 doub

Precomputation ~ 0.5 ¢

Ings.

oublings.

Speedup: allow negative coeffs

Recall 159 — 15, 9.
Scaled: 15900 — 15000, 900.

Alternative: 159 — 16, —1.
Scaled: 15900 — 16000, —100.

Use digits {—5, —4, ..., 4,5}
instead of {0,1,..., 9}.

Small disadvantage: need —.
Several small advantages:
easily handle negative integers;

easily handle subtraction;
reduce products a bit.

lternative:

- f3f1) + faf2.

2 adds, 1 doubling.

1/2 of the adds

are many coefficients.

ter alternative:

computing 2 fp,

2 adds, 0 doub

yutation ~ 0.5 ¢

(2f1)f3 + fafo

2f1, ...

Ings.

oublings.

Speedup: allow negative coeffs

Recall 159 — 15, 9.
Scaled: 15900 — 15000, 900.

Alternative: 159 — 16, —1.

Scaled: 15900 — 16000, —100.

Use digits {—5, —4, ..., 4,5}
instead of {0, 1, ..., 9}.

Small disadvantage: need —.
Several small advantages:
easily handle negative integers;

easily handle subtraction;
reduce products a bit.

Speedug

Comput
multiply
square ¢

e.g. a=
(32 + 1t
t4
carry: &

As befor
th 4+
7t + 0t
+: 78+
7t° + 8t

f2f2.
doubling.

radCS

coefficients.

tive:

faf2.
> 210,211,

doublings.

, 0.5 doublings.

Speedup: allow negative coeffs

Recall 159 — 15, 9.
Scaled: 15900 — 15000, 900.

Alternative: 159 — 16, —1.
Scaled: 15900 — 16000, —100.

Use digits {—5, —4, ..., 4,5}
instead of {0,1,..., 9}.

Small disadvantage: need —.
Several small advantages:
easily handle negative integers;

easily handle subtraction;
reduce products a bit.

Speedup: delay ca

Computing (e.g.)
multiply a, b polyr
square ¢ poly, carr

e.g. a =314, b=
(3t2 + 1t +4t0)(2:

t* 4 2383 + 18¢2
carry: 8t* 4 5t3 +

As before (8t% + 3

£4 L4843 1+ 153
7+ 4+ 0t* + 383 +
b TE 81883
T+ 8% 1+ 083 +

lings.

Speedup: allow negative coeffs

Recall 159 — 15, 9.
Scaled: 15900 — 15000, 900.

Alternative: 159 — 16, —1.

Scaled: 15900 — 16000, —100.

Use digits {—5, —4, ..., 4,5}
instead of {0, 1, ..., 9}.

Small disadvantage: need —.
Several small advantages:
easily handle negative integers;

easily handle subtraction;
reduce products a bit.

Speedup: delay carries

Computing (e.g.) big ab + c
multiply a, b polynomials, cz
square ¢ poly, carry, add, ca

eg. a =314, 6 =271, c =
(3t2 + 1t +4¢0) (282 + 7t 41

t4 t3 t2 t1
carry: 8t* + 5t3 + 0t% 4 ot!

As before (82 4 3t! + 9tY)-
t4 4+ 4883 + 15382 + 544! -
70 4+ 084 + 383 + 9¢2 + 2tl

o T +8t*+8t3 4942 +11¢
7+ + 8% + 083 + 082 + 1¢L

Speedup: allow negative coeffs

Recall 159 — 15, 9.
Scaled: 15900 — 15000, 900.

Alternative: 159 — 16, —1.
Scaled: 15900 — 16000, —100.

Use digits {—5, —4, ..., 4,5}
instead of {0,1,..., 9}.

Small disadvantage: need —.
Several small advantages:
easily handle negative integers;

easily handle subtraction;
reduce products a bit.

Speedup: delay carries

Computing (e.g.) big ab + c*:
multiply a, 6 polynomials, carry,
square ¢ poly, carry, add, carry.

e.g. a =314, b = 271, ¢ = 839:
(3t° + 1t +4t0) (262 + 7t 4+ 1tY) =
t4 t3 t2 tl tO'
carry: 8t* 4 5t3 + 0t% + 9t! + 440,

As before (8% + 3t + 9tY)? =
t* + 4883 4+ 153t 4 54¢ + 817,
78> + 0t* + 3¢3 + 92 + 2t 4 140,

4o T +-8t%+-8t34+9¢t2 + 111 +5£0;
7H2 + 8t* + 9t3 + 0t? + 1#1 + 5¢Y.

: allow negative coeffs

hO — 15, 9.
15900 — 15000, 900.

ive: 159 — 16, —1.

15900 — 16000, —100.

sadvantage: need —.
small advantages:
ndle negative integers;

ndle subtraction:
roducts a bit.

Speedup: delay carries

Computing (e.g.) big ab + c*:
multiply a, b polynomials, carry,
square ¢ poly, carry, add, carry.

e.g. a =314, b =271, ¢ = 839:

(3t2 + 1t +4¢0) (262 + 7t 4+-1¢Y) =
t4 t3 t2 tl tO.

carry: 8t* 4 5t3 + 0t% + 9t! + 440,

As before (8% + 3t + 9tY)? =
t* -+ 48¢3 4 153t 4 54¢ + 817,
76> + 0t* + 3¢3 + 92 + 2t + 140,

1 728t 18310t 111 54
7t + 8t* 4+ 9t3 + 0t? + 1#! + 5¢V.

Faster:

Eliminat
Outweig
slightly |

Importal
multiplic
to reduc
out carr

hefore a

gative coeffs

).
15000, 900.

- 106, —1.
16000, —100.

e: need —.
ntages:

tive Integers;
-action;

bit.

Speedup: delay carries

Computing (e.g.) big ab + c*:
multiply a, 6 polynomials, carry,
square ¢ poly, carry, add, carry.

e.g. a =314, b = 271, ¢ = 839:

(3t° + 1t +4t9) (2t2 4+ 7t +140) =
t4 t3 t2 tl tO'

carry: 8t* 4 5t3 + 0t% + 9t! + 440,

As before (8% + 3t + 9tY)? =
t* + 4883 4+ 153t 4 54¢ + 817,
762 + 0t* + 3¢3 + 92 + 2t 4 140

1 728t 183 4-9t2 111 540
7E2 + 8t* + 9t3 + 0t? + 1#1 + 5¢Y.

Faster: multiply a
square ¢ polynomi

(6t* 4 23¢3 + 18¢
(64¢* + 4883 +
— 704+ 7183+
Tt> + 8t% 4+ 983 +

Eliminate interme
Outweighs cost of
slightly larger coef

Important to carry
multiplications (ar
to reduce coefficie
out carries are usu

hefore additions, s

ffs

IS,

Speedup: delay carries

Computing (e.g.) big ab + c*:
multiply a, b polynomials, carry,
square ¢ poly, carry, add, carry.

e.g. a =314, b =271, ¢ = 839:

(3t° + 1t +4t9) (282 + 7L +140) =
t4 t3 t2 tl tO.

carry: 8t* 4 5t3 + 0t% + 9t! + 440,

As before (8% + 3t + 9tY)? =
t* -+ 4883 4+ 153t 4 54¢ + 817,
7> + 0t* + 3¢3 + 92 + 2t + 140,

1 728t 183 1-0t2 111 54
7t + 8t* + 9t3 + 0t? + 1#! + 5¢V.

Faster: multiply a, 6 polynoi
square ¢ polynomial, add, cz:

(6¢* + 2383 + 18¢2 + 20t +
(64¢* + 48¢3 4 153t2 4 54t -
= 70t + 7183417182 +83¢!-
7t> + 8t* + o3 4 0t 4 1¢

Eliminate intermediate carrie
Outweighs cost of handling
slightly larger coefficients.

Important to carry between

multiplications (and squarin,
to reduce coefficient size;
out carries are usually a bad

hefore additions, subtractior

Speedup: delay carries

Computing (e.g.) big ab + c*:
multiply a, 6 polynomials, carry,
square ¢ poly, carry, add, carry.

e.g. a =314, b = 271, ¢ = 839:

(3t2 + 1L +4¢0) (2t2 + 7t +1¢0) =
t4 t3 t2 tl tO.

carry: 8t* 4+ 5t3 + 0t° + ot + 4t

As before (8% + 3t + 9tY)? =
t* + 4883 4+ 153t 4 54¢ + 817,
76> + 0t* + 3¢3 + 92 + 2t + 14,

1 728t 183 1-9t2 111 540
7H2 + 8t* + 9t3 + 0t? + 1#! + 549,

Faster: multiply a, 6 polynomials,
square ¢ polynomial, add, carry.

(6¢% +23¢3 + 182 4 20t! + 4¢9) +
(64¢* 4 4883 +153¢2 4 54¢L +31¢9)
= 70t*+ 7183+ 17182 +-83¢1 4-85¢°;
782 + 8t* + o3 4 0t° + 1¢! + 5¢0.

Eliminate intermediate carries.
Outweighs cost of handling
slightly larger coetficients.

Important to carry between

multiplications (and squarings)
to reduce coefficient size;
out carries are usually a bad idea

before additions, subtractions, etc.

. delay carries

ng (e.g.) big ab + c*:
a, b polynomials, carry,
poly, carry, add, carry.

- 314, b = 271, ¢ = 839:
L4 449)(2¢2 4741 +180) =
t3 t2 tl tO'
4 4 583 + 0t° + 9tt + 420,

e (8t + 3t! 4+ 9t0)? =
t3 + 153t% + 54¢+ 4 81¢°;
Y4383 +9t2 2t + 140,

8t 1813192111 1 5¢0-
403 o+ 02 + 1L + 540,

Faster: multiply a, 6 polynomials,
square ¢ polynomial, add, carry.

(6t + 2383 4 182 + 29¢1 4 449) +
(64¢* 4 4883 +153¢2 4 54¢L +31¢Y)
—= 70t*+ 71834+ 171¢2 4831 +85¢0;
7t 4 8t* + 9t3 + 0t% + 1¢1 + 520,

Eliminate intermediate carries.
Outweighs cost of handling
slightly larger coefficients.

Important to carry between

multiplications (and squarings)
to reduce coefficient size;
out carries are usually a bad idea

hefore additions, subtractions, etc.

Using th
400 coef

\

Faster:

Fo = fo
F1 = fi
Similarly

Then f¢
+ (FoGo

rries

big ab + c?:
omials, carry,

y, add, carry.

271, ¢ = 839:
2+ 7t + 1Y) =

tl

+0.

0¢2 + ot + 449

!+ 9t9)2 =

2 4

tl 4

+0.

0t2 + 2¢1 1+ 140

10¢2 1111 4+ 5¢0-
0t2 + 1¢1 + 549,

Faster: multiply a, 6 polynomials,
square ¢ polynomial, add, carry.

(6t* + 23¢3 4 182 + 20t! 4 4¢9) +
(64¢* 4 4883 +153¢2 4 54¢L +31¢9)
—= 70t* 4+ 7183+ 171¢2 + 83t +85¢0,;
782 + 8t* + o3 4 0t° + 1¢! + 5¢0.

Eliminate intermediate carries.
Outweighs cost of handling
slightly larger coetficients.

Important to carry between

multiplications (and squarings)
to reduce coefficient size;
out carries are usually a bad idea

before additions, subtractions, etc.

Speedup: polynon

How much work t

f=1rlo+ fit+-
g=g0+g1t+ -

Using the obvious
400 coeff mults, 3

Faster: Write f ac
Fo = fo+ fit + -

F1=fi0+ fuat +
Similarly write g a

Then fg = (Fo+
+ (F()GO — FlGlt]

Faster: multiply a, 6 polynomials,
square ¢ polynomial, add, carry.

(6t* + 2383 4 182 + 29¢1 4 449) +
(64¢* 4 4883 + 153¢2 4 54¢L +81¢Y)
= 70t* 4+ 7183+ 171¢2 + 83t +85¢0;
7t + 8t* + o3 4 0t2 + 1¢! + 5¢°.

Eliminate intermediate carries.
Outweighs cost of handling
slightly larger coefficients.

Important to carry between

multiplications (and squarings)
to reduce coefficient size;
out carries are usually a bad idea

hefore additions, subtractions, etc.

Speedup: polynomial Karats

How much work to multiply

f=fo+ fit+-+ frot'?
g =90+ g1t + -+ grot'”

Using the obvious method:
400 coeff mults, 361 coeff a

Faster: Write f as Fg + Fit
Fo= fo+ fit+-- + fot’;

F1 = fio+ fuit + - + fio:
Similarly write g as Gg + Gy

Then fg = (Fo+ F1)(Go +
-+ (F()GO — FlGltlo)(l _ ¢1C

Faster: multiply a, 6 polynomials,
square ¢ polynomial, add, carry.

(6t* + 23¢3 4 182 + 20t! 4 4¢9) +
(64¢* 4 4883 +153¢2 4 54¢L +31¢9)
—= 70t* 4+ 7183+ 1712 + 83t +85¢0,;
780 + 8t* + o3 4 0t° + 1¢! + 5¢0.

Eliminate intermediate carries.
Outweighs cost of handling
slightly larger coetficients.

Important to carry between

multiplications (and squarings)
to reduce coefficient size;
out carries are usually a bad idea

before additions, subtractions, etc.

Speedup: polynomial Karatsuba

How much work to multiply polys

f=fo+ fit+--+ fot?,
g =9go+git+---+g1ot'’?

Using the obvious method:
400 coeff mults, 361 coeff adds.

Faster: Write f as Fy + Fqtt9;
Fo = fo+ fit +--- + fot”;

F1 :f10‘|‘f11t—|-"'—|-f19t9.
Similarly write g as Gg + G1t1Y.

Then fg = (Fo+ F1)(Gg + Gl)tlo
+ (FoGo — FlGltlo)(l — th)_

multiply a, b6 polynomials,
polynomial, add, carry.

t3 +18¢° + 20t 4 4¢9) +

£3 4+ 153¢% +54¢! +81¢0)
7183+ 17182 +83¢1 4-85¢°;
Y ot3 +0t? + 14 + 580,

e Intermediate carries.
hs cost of handling
arger coefficients.

1t to carry between

ations (and squarings)
e coefficient size;
es are usually a bad idea

dditions, subtractions, etc.

Speedup: polynomial Karatsuba

How much work to multiply polys

f=fo+ fit+--+ fiot??,
g=9go+git+---+ g19t77?

Using the obvious method:
400 coeff mults, 361 coeff adds.

Faster: Write f as Fy + FittY;
Fo = fo+ fit +--- + fot”:

F1 :f10+f11t+"'+f19t9.
Similarly write g as Gg + G1t1Y.

Then fg = (Fo+ F1)(Gg + Gl)tlo
+ (FoGg — FlGltlo)(l — th)_

20 adds
300 mul
FoGo, F
243 add
O adds f

with suk

and witl

19 ac

19 ac

C

C

S
S

Total 30
Larger c

still save

Can app

as poly «

, b polynomials,

al, add, carry.

+ 20t 4+ 4t%) +
t2 + 54t! 4 81t0)
t2+83t! +85¢0;
0t? + 1¢1 4 520,
liate carries.
handling
ficients.

' between

\d squarings)

nt size:
ally a bad idea
ubtractions, etc.

Speedup: polynomial Karatsuba

How much work to multiply polys

f=fo+ fit+--+ fiot?,
g =9go+git+---+g1ot'’?

Using the obvious method:
400 coeff mults, 361 coeff adds.

Faster: Write f as Fy + Ftt9;
Fo = fo+ fit +--- + fot”;

F1 :f10‘|‘f11t—|-"'—|-f19t9.
Similarly write g as Gg + G1t1Y.

Then fg = (Fo+ F1)(Gg + Gl)tlo
+ (FoGo — FlGltlo)(l — th)_

20 adds for Fg + /
300 mults for thre
FoGo, F1G1, (Fo -
243 adds for those

O adds for FoGg —
with subs counted

and with

delayed 1

19 adds for --- (1
19 adds to finish.

Total 300 mults, -
Larger coefficients

still saves time.

Can app

y idea rec

as poly ¢

egree gro

mials,

Idea
1S, etcC.

Speedup: polynomial Karatsuba

How much work to multiply polys

f=fo+ fit+--+ fiot,
g=9go+git+---+ g19t77?

Using the obvious method:
400 coeff mults, 361 coeff

adds.

Faster: Write f as Fy + FittY;
Fo = fo+ fit +--- + fot”:

F1 :f10+f11t+"'+f19t9.
Similarly write g as Gg + G1t1Y.

Then fg = (Fo+ F1)(Gg + Gl)tlo
+ (FoGg — FlGltlo)(l — th).

20 adds for Fg + F1, Gg + C
300 mults for three product:
FoGo, F1G1, (Fo + F1)(Go -
243 adds for those products
O adds for FpGp — FlGltlo
with subs counted as adds

and with delayed negations.

19 ac

19 ac

C

C

(1 —¢10).
s to finish.

s for - -

Total 300 mults, 310 adds.
Larger coefficients, slight ex

still saves time.

Can apply idea recursively

as poly degree grows.

Speedup: polynomial Karatsuba

How much work to multiply polys

f=fo+ fit+--+ frot?,
g =9go+git+---+g1ot'’?

Using the obvious method:
400 coeff mults, 361 coeff adds.

Faster: Write f as Fy + Ftt9;
Fo = fo+ fit +--- + fot”;

F1 :f10‘|‘f11t—|-"'—|-f19t9.
Similarly write g as Gg + G1t1Y.

Then fg = (Fo+ F1)(Gg + Gl)tlo
+ (FoGo — FlGltlo)(l — th)_

20 adds for Fo + F1, Gg + G1.
300 mults for three products
FoGo, F1G1, (Fo + F1)(Go + G1).
243 adds for those products.

O adds for FoGg — F1G1t10

with subs counted as adds

and with delayed negations.
19 adds for - -- (1 — ¢t19).
19 adds to finish.

Total 300 mults, 310 adds.

Larger coefficients, slight expense;
still saves time.

Can apply idea recursively

as poly degree grows.

. _polynomial Karatsuba

ch work to multiply polys
- fit+ -+ frott?,
g1t + - + g1t1?

e obvious method:
f mults, 361 coeff adds.

Write f as Fo + Fpti0;

+ fit + -+ fot?;

)+ fuit + -+ fiot?.

write g as Gg + G110,

= (Fo + F1)(Go + G1)t°
) — FlGltlo)(l — th).

20 adds for Fo + F1, Gg + G1.
300 mults for three products

FoGo, F1G1, (Fo + F1)(Go + G1).

243 adds for those products.
O adds for FopGp — FlGltlo
with subs counted as adds

and with

19 adds for - -

delayed negations.
(1 —¢10).

19 adds to finish.

Total 300 mults, 310 adds.

Larger coefficients, slight expense;

still saves time.

Can app

y Idea recursively

as poly ¢

egree grows.

Many ot
in polyn.
“Toom,

Increasir
polynom
O(nlgn
to comp

Useful fe
that occ

In some
But Kar
for prim
on most

11al Karatsuba

o multiply polys
-+ frot!?,
. 197
+ g19t77

method:
61 coeff adds.

s Fo + Fltlo;

F1)(Go + Gl)tlo
'O)(l o th)_

20 adds for Fo + F1, Gg + G1.
300 mults for three products

FoGo, F1G1, (Fo + F1)(Ggo + G1).

243 adds for those products.
O adds for FoGg — F1G1t10
with subs counted as adds

and with delayed negations.
19 adds for - -- (1 — t19).
19 adds to finish.

Total 300 mults, 310 adds.

Larger coefficients, slight expense;

still saves time.

Can apply idea recursively

as poly degree grows.

Many other algebr

in polynomial mul
lchom,ll llFFT,11 ‘

Increasingly impor
polynomial degree
O(nlgnlglgn) cc
to compute n-coe

Useful for sizes of

that occur In cryp
In some cases, yes
But Karatsuba is 1
for prime-field ECH
on most current C

suba

polys

dds.

20 adds for Fo + F1, Gg + G1.
300 mults for three products

FoGo, F1G1, (Fo + F1)(Go + G1).

243 adds for those products.
O adds for FopGp — FlGltlo
with subs counted as adds

and with delayed negations.
19 adds for - - - (1 — t10).
19 adds to finish.

Total 300 mults, 310 adds.

Larger coefficients, slight expense;

still saves time.

Can apply idea recursively

as poly degree grows.

Many other algebraic speed:
in polynomial multiplication
“Toom,” "FFT," etc

Increasingly important as
polynomial degree grows.
O(nlgnlglgn) coeff operat
to compute n-coeff product

Useful for sizes of n

that occur in cryptography?
In some cases, yes!

But Karatsuba is the limit
for prime-field ECC/ECDLP

on most current CPUs.

20 adds for Fo + F1, Gg + G1.
300 mults for three products

FoGo, F1G1, (Fo + F1)(Go + G1).

243 adds for those products.
O adds for FoGg — F1G1t10
with subs counted as adds

and with delayed negations.
19 adds for - -- (1 — ¢t19).
19 adds to finish.

Total 300 mults, 310 adds.

Larger coefficients, slight expense;

still saves time.

Can apply idea recursively

as poly degree grows.

Many other algebraic speedups
in polynomial multiplication:
“Toom,” "FFT,” etc

Increasingly important as
polynomial degree grows.
O(nlgnlglgn) coeff operations
to compute n-coeff product.

Useful for sizes of n

that occur in cryptography?
In some cases, yes!
But Karatsuba is the limit

for prime-field ECC/ECDLP
on most current CPUs.

for Fo + F1, Gg + G7.

ts for three products

1G1, (Fo + F1)(Go + G1).
s for those products.

or FoGp — FlGltlo

s counted as adds

1 delayed negations.

for --- (1 — t19).

to finish.

0 mults, 310 adds.
oefficients, slight expense;
S time.

ly idea recursively

legree grows.

Many other algebraic speedups
in polynomial multiplication:
“Toom,” "FFT," etc.

Increasingly important as
polynomial degree grows.
O(nlgnlglgn) coeff operations
to compute n-coeff product.

Useful for sizes of n

that occur in cryptography?
In some cases, yes!

But Karatsuba is the limit
for prime-field ECC/ECDLP

on most current CPUs.

Modular

How to

Can use
f mod ¢
Can mul
precomg
easily ac

Slight sy
“Montg:

-1, Go + G7.
e products
- Fl)(Go —+ Gl).
 products.
FlGltlo
as adds

1egations.
— ¢19).

10 adds.
, slight expense;

ursively

WS.

Many other algebraic speedups
in polynomial multiplication:
“Toom,” "FFT," etc.

Increasingly important as
polynomial degree grows.
O(nlgnlglgn) coeff operations
to compute n-coeff product.

Useful for sizes of n

that occur in cryptography?
In some cases, yes!

But Karatsuba is the limit
for prime-field ECC/ECDLP

on most current CPUs.

Modular reduction

How to compute |

Can use definition
fmodp=f—p]
Can multiply f by
precomputed 1/p
easily adjust to ob

(¥ ¥,

Slight speedup:
“Montgomery red

DENSE;

Many other algebraic speedups
in polynomial multiplication:
“Toom,” "FFT,” etc.

Increasingly important as
polynomial degree grows.
O(nlgnlglgn) coeff operations
to compute n-coeff product.

Useful for sizes of n

that occur in cryptography?
In some cases, yes!

But Karatsuba is the limit
for prime-field ECC/ECDLP

on most current CPUs.

Modular reduction

How to compute f mod »?

Can use definition:
fmodp=f—plf/p].
Can multiply f by a
precomputed 1/p approxima
easily adjust to obtain | f/p

Slight speedup: “2-adic inve
“Montgomery reduction.”

Many other algebraic speedups
in polynomial multiplication:
“Toom,” "FFT," etc.

Increasingly important as
polynomial degree grows.
O(nlgnlglgn) coeff operations
to compute n-coeff product.

Useful for sizes of n

that occur in cryptography?
In some cases, yes!

But Karatsuba is the limit
for prime-field ECC/ECDLP

on most current CPUs.

Modular reduction

How to compute f mod p?

Can use definition:
fmodp=f-—pl[f/p]

Can multiply f by a
precomputed 1/p approximation;
easily adjust to obtain | f/p].

Slight speedup: “2-adic inverse”;
“Montgomery reduction.”

her algebraic speedups

omial multiplication:
- "FFT,” etc.

1gly important as

1al degree grows.
lIglgn) coeff operations
ute n-coeff product.

r sizes of n

ur in cryptography?
cases, yes!

atsuba iIs the limit
e-field ECC/ECDLP
current CPUs.

Modular reduction

How to compute f mod »?

Can use definition:

fmodp=f—pl|f/p]
Can multiply f by a

precomputed 1/p approximation;

easily adjust to obtain | f/p].

Slight speedup: “2-adic inverse”;

“Montgomery reduction.”

e.g. 314

Precomy

1100000
— 36787

Comput

314159 -
= 11557

Comput
3141592
= 57827
Oops, tc
578230 -
306402 -

alc speedups
tiplication:
otc.

tant as

grows.

eff operations
ff product.

n
tography?
|

he limit
C/ECDLP
PUs.

Modular reduction

How to compute f mod p?

Can use definition:

fmodp=f-plf/p]
Can multiply f by a

precomputed 1/p approximation;

easily adjust to obtain | f/p].

Slight speedup: “2-adic inverse”;

“Montgomery reduction.”

e.g. 31415926535

Precompute

1 1000000000000/
= 3678796.

Compute
314159 - 3678796
— 1155726872564

Compute

314159265358 — 1
= 578230.

Oops, too big:
578230 — 271828
306402 — 271828

1pS

IONS

Modular reduction

How to compute f mod »?

Can use definition:

fmodp=f—pl|f/p]
Can multiply f by a

precomputed 1/p approximation;

easily adjust to obtain | f/p].

Slight speedup: “2-adic inverse”;

“Montgomery reduction.”

e.g. 314159265358 mod 271

Precompute

11000000000000/271828|
— 3678796.

Compute

314159 - 3673796
= 11557263872564.

Compute
314159265358 — 1155726 - -

= 578230.

Oops, too big:

578230 — 271828 = 306402.
306402 — 271828 = 34574

Modular reduction

How to compute f mod p?

Can use definition:

fmodp=f—plf/p]
Can multiply f by a

precomputed 1/p approximation;

easily adjust to obtain | f/p].

Slight speedup: “2-adic inverse”;

“Montgomery reduction.”

e.g. 314159265358 mod 271328:

Precompute
1 1000000000000/271828

= 3678796.

Compute

314159 - 3678796
= 11557263872564.

Compute

314159265358 — 1155726 - 271828
= 578230.

Oops, too big:

578230 — 271828 = 306402.
306402 — 271828 = 34574

reduction

compute f mod p?

definition:

=f-plf/p]
tiply f by a

uted 1/p approximation;

just to obtain | f/p].

yeedup: “2-adic inverse”;

omery reduction.”

e.g. 314159265358 mod 271828:

Precompute

| 1000000000000/271828 |
= 3678796.

Compute

314159 - 3673796
= 11557263872564.

Compute

314159265358 — 1155726 - 271828
= 578230.

Oops, too big:

578230 — 271828 = 306402.
306402 — 271828 = 34574,

We can
D IS cho:
to make

Special |
for F;';, (
but not

gls1271:
with deg

Curve2b
NIST P-

secpll2
Divides

f mod p?

:f/;vJ-

d

approximation;

tain | f/p].

2-adic inverse’ ;

iction.”

e.g. 314159265358 mod 271328:

Precompute
1 1000000000000/271828
= 3673796.

Compute

314159 - 3678796
= 11557263872564.

Compute

314159265358 — 1155726 - 271828
= 578230.

Oops, too big:

578230 — 271828 = 306402.
306402 — 271828 = 34574

We can do better:
» Is chosen with a

to make f mod p

Special primes hut
for F7,, Clock(Fp),
but not for elliptic

gls1271: p = 2127
with degree-2 exte

Curve25519: p =
NIST P-224: p =

secpll2rl: p = (2
Divides special for

tion;

rse’ ;

e.g. 314159265358 mod 271828:

Precompute

11000000000000/271828|
— 3678796.

Compute
314159 - 3678796
— 1155726872564.

Compute

314159265358 — 1155726 - 271828
= 578230.

Oops, too big:

578230 — 271828 = 306402.
306402 — 271828 = 34574

We can do better: normally

» IS chosen wit

n a special fc

to make f moc

Special primes

» much fast

hurt security

for F;';, Clock(Fy), etc.,
but not for elliptic curves!

gls1271: p =227 _ 1,
with degree-2 extension.

Curve25519: p
NIST P-224: p

= 22%° — 19,

_ 5224 _ 59!

secpl12rl: p = (2128 — 3)/]

Divides special

form.

e.g. 314159265358 mod 271328:

Precompute
1 1000000000000/271828
= 3673796.

Compute

314159 - 3678796
= 11557263872564.

Compute

314159265358 — 1155726 - 271828
= 578230.

Oops, too big:

578230 — 271828 = 306402.
306402 — 271828 = 34574

We can do better: normally

» Is chosen wit
to make f moc

Special primes

n a special form

v much faster.

hurt security

for F;';, Clock(Fy), etc.,
but not for elliptic curves!

gls1271: p =227 _ 1,
with degree-2 extension.

Curve25519: p

= 22%° — 19,

NIST P-224: p = 2224 _ 296 4 1

secpl12rl: p = (21%% — 3)/76439.

Divides special

form.

159265358 mod 271828:

yute
0000000/271828
90.

S
3673796
26872564.

s

65358 — 1155726 - 271828
0.

0 big:

— 271828 = 306402.

— 271828 = 34574.

We can do better: normally
p Is chosen with a special form

to make f mod p much faster.

Special primes hurt security
for F;';, Clock(Fy), etc.,
but not for elliptic curves!

gls1271: p =227 _ 1,
with degree-2 extension.

Curve25519: p = 22°° — 19,
NIST P-224: p = 2224 _ 296 4 1

secpl12rl: p = (21%% — 3)/76439.
Divides special form.

Small ex
Then 10

e.g. 314
314159 -
314159(
—04247
—6/7711

Easily ac
to the r:
by addir
e.g. —67

3 mod 2/71828:

271828

155726 - 271323

— 306402.
— 34574.

We can do better: normally
p Is chosen with a special form

to make f mod » much faster.

Special primes hurt security
for F;';, Clock(Fy), etc.,
but not for elliptic curves!

gls1271: p =227 _ 1,

with degree-2 extension.
Curve25519: p = 22°° — 19,
NIST P-224: p = 2224 _ 296 4 1

secpl12rl: p = (2128 — 3)/76439.
Divides special form.

Small example: p
Then 1000000a +

e.g. 31415926535¢
314159 - 1000000
314159(—3) + 26°
— 942477 + 26535
—677119.

Easily adjust 6 —
to the range {0, 1.
by adding/subtrac
e.g. —677119 = 3.

828: We can do better: normally Small example: » = 100000

p Is chosen with a special form Then 1000000a +6=06—3
to make f mod p much faster.

e.g. 314159265358 —

Special primes hurt security 314159 - 1000000 + 265358

for F3,, Clock(Fp), etc., 314159(—3) 4 265358 =

but not for elliptic curves! —0942477 + 265358 =
—6/771109.

gls1271: p =227 _ 1,
with degree-2 extension. Easily adjust 6 — 3a
to the range {0,1,..., p — 1

by adding/subtracting a few
NIST P-224: p =222 — 2% 41 e.g. —677119 = 322884

71828 Curve25519: p = 22°° — 19,

secpl12rl: p = (21%% — 3)/76439.
Divides special form.

We can do better: normally
p Is chosen with a special form

to make f mod » much faster.

Special primes hurt security
for F;';, Clock(Fy), etc.,
but not for elliptic curves!

gls1271: p =227 _ 1,
with degree-2 extension.

Curve25519: p = 22°° — 19,
NIST P-224: p = 2224 _ 296 4 1

secpl12rl: p = (21%% — 3)/76439.
Divides special form.

Small example: p = 1000003.
Then 1000000a + 6 = b — 3a.

e.g. 314159265358 =

314159 - 1000000 + 265358 =
314159(—3) + 265358 =

— 942477 + 265358 =
—677119.

Easily adjust 6 — 3a

to the range {0, 1, ..., p—1}
by adding/subtracting a few p's:
e.g. —677119 = 322884.

do better: normally
sen with a special form

f mod » much faster.

orimes hurt security
_lock(Fy), etc.,
for elliptic curves!

p:2127_1,

ree-2 extension.
519: p = 22°° — 19
224: p=2224 _ 2% 4 1

1: p = (2128 — 3)/76439.
special form.

Small example: p = 1000003.
Then 1000000a + 6 = b — 3a.

e.g. 314159265358 =
314159 - 1000000 + 265358 =
314159(—3) + 265358 =

— 942477 + 265358 =
—677119.

Easily adjust 6 — 3a

to the range {0, 1, ..., p—1}
by adding/subtracting a few p's:
e.g. —677119 = 322884.

Hmmm,

Conditio
(Also da
branch t

Can e

1

but ac

ju

Speedur

for inter

“Lazy

re

Adjust c

b — 3a I

to con

tI

normally
special form
much faster.

t security
etc.,
curves!

1

nsion.
2295 _ 10
2224 290 4 1

128 _ 3)/76439.

m.

Small example: » = 1000003.
Then 1000000a + 6 = b — 3a.

e.g. 314159265358 =
314159 - 1000000 + 265358 =
314159(—3) + 265358 =

— 942477 + 265358 =
—677119.

Easily adjust 6 — 3a

to the range {0, 1, ..., p—1}
by adding/subtracting a few p's:
e.g. —677119 = 322884.

Hmmm, Is adjustn

Conditional brancl

(Also dangerous fc

branch timing leak

Can e

Iminate the

but ac

justment isr

Speedup: Skip the
for intermediate re

“Lazy

reduction.”

Adjust only for ou

b — 3a 1s small enc

to con

tinue compt

er.

16439.

Small example: p = 1000003.
Then 1000000a + 6 = b — 3a.

e.g. 314159265358 =
314159 - 1000000 + 265358 =
314159(—3) + 265358 =

— 942477 + 265358 =
—677119.

Easily adjust 6 — 3a

to the range {0, 1, ..., p—1}
by adding/subtracting a few p's:
e.g. —677119 = 322884.

Hmmm, Is adjustment so ea

Conditional branches are slo
(Also dangerous for defende

branch timing leaks secrets.

Can e

Iminate the branches,

but ac

justment isn't free.

Speedup: Skip the adjustme

for iIntermediate results.

“Lazy

reduction.”

Adjust only for output.

b — 3a is small enough

to con

tinue computations.

Small example: p = 1000003.
Then 1000000a + 6 = b — 3a.

e.g. 314159265358 =
314159 - 1000000 + 265358 =
314159(—3) + 265358 =

— 942477 + 265358 =
—677119.

Easily adjust 6 — 3a
to the range {0, 1, ..., p—1}

by adding/subtracting a few p's:

e.g. —677119 = 322884

Hmmm, is adjustment so easy?

Conditional branches are slow.

(Also dangerous for defenders:
branch timing leaks secrets.)
Can eliminate the branches,

but adjustment isn't free.

Speedup: Skip the adjustment
for intermediate results.

“Lazy reduction.”

Adjust only for output.

b — 3a is small enough
to continue computations.

ample: p = 1000003.
00000a + 6 = b — 3a.

159265358 =
1000000 + 265358 =
—3) + 265358 =

7 + 265358 =

).

ljust b — 3a

inge {0,1,..., p—1}
g /subtracting a few p's:

7119 = 3223884.

Hmmm, is adjustment so easy?

Conditional branches are slow.

(Also dangerous for defenders:

branch timing leaks secrets.)

Can e

Iminate the branches,

but ac

justment isn't free.

Speedup: Skip the adjustment

for iIntermediate results.

“Lazy

reduction.”

Adjust only for output.

b — 3a is small enough

to con

tinue computations.

Can del:
multiplic

e.g. To:
in Z/10(
3t> + 1t

obtainin
tl +

t3 +

Reduce:
(—3c;)t
6413 — ?

Carry: 8
13 + 2t

= 1000003.

b = b — 3a.

] —

+ 265358 =
3538 =

8 —

a

..... p— 1}
ting a few p's:
223884

Hmmm, is adjustment so easy?

Conditional branches are slow.

(Also dangerous for defenders:

branch timing leaks secrets.)

Can e

iIminate the branches,

but ac

justment isn't free.

Speedup: Skip the adjustment

for iIntermediate results.

“Lazy

reduction.”

Adjust only for output.

b — 3a is small enough

to con

tinue computations.

Can delay carries
multiplication by :

e.g. To square 314
in Z/1000003: Sq
3t° + 1t* + 483 +
obtaining 9¢10 +
7 4 1046 1 704
3 1 2342 1 00t

Reduce: replace (.
(—3ci)ti, obtainin
64t3 — 32t% + 48t

Carry: 8t — 4¢° -
143 + 2t2 + 2¢1 —

Hmmm, is adjustment so easy?

Conditional branches are slow.

(Also dangerous for defenders:

branch timing leaks secrets.)

Can e

Iminate the branches,

but ac

justment isn't free.

Speedup: Skip the adjustment

for iIntermediate results.

“Lazy

reduction.”

Adjust only for output.

b — 3a is small enough

to con

tinue computations.

Can delay carries until after
multiplication by 3.

e.g. To square 314159

in Z/1000003: Square poly

32 4 1t4 + 4¢3 + 1¢2 + 5¢!

obtaining 9t10 + 6¢7 4 25¢8
t7 4+ 48t0 4 728 + 50t% 4
t3 + 43t% + 90t! + 810,

Reduce: replace (¢;)t°T* by
(—3c¢;)t*, obtaining 72t + °
64t> — 32t + 48t1 — 63tV

Carry: 8t — 4¢> — 2% +
183 + 22 + 2t1 — 30,

Hmmm, is adjustment so easy?

Conditional branches are slow.

(Also dangerous for defenders:
branch timing leaks secrets.)
Can eliminate the branches,

but adjustment isn't free.

Speedup: Skip the adjustment
for intermediate results.

“Lazy reduction.”

Adjust only for output.

b — 3a is small enough
to continue computations.

Can delay carries until after
multiplication by 3.

e.g. To square 314159

in Z/1000003: Square poly

3t 4 1t* + 4¢3 + 12 + 5¢1 + 9ot

obtaining 9tV + 6t + 25¢8 +
t7 + 43¢0 t° + 50t* +
t3 4 43¢ t1 4+ 810,

Reduce: replace (¢;)t%T* by
(—3c¢;)t?, obtaining 72¢° + 32t* +
64> — 32t° + 48t! — 630,

Carry: 8t0 — 4> — 2¢% +
1#3 4+ 2¢2 + 21 — 3¢9,

is adjustment so easy”?

nal branches are slow.

ngerous for defenders:
iming leaks secrets.)
1inate the branches,
stment isn't free.

;. Skip the adjustment
mediate results.
duction.”

nly for output.

5 small enough
1ue computations.

Can delay carries until after
multiplication by 3.

e.g. To square 314159

in Z/1000003: Square poly

3t° + 1t* + 4¢3 + 1#2 + 5¢t + 9tY,

obtaining 9t19 + 67 + 25¢8 +
t7 4+ 48t0 4 72t + 50t* +
t3 + 43t% + 90t! + 810,

Reduce: replace (¢;)t°T* by
(—3c¢;)t*, obtaining 72¢° + 32t* +
64> — 32t° + 48t1 — 63t

Carry: 8t — 4¢> — 2% +
13 + 22 + 2t1 — 30,

To mini
mix redt

carrying

e.g. Star
t° +
t> +

Reduce
£ 3 ¢0;
5t 42t

Finish re
6413 — :
t0 — ¢!
-

nent so easy”?

1€S are SIOw.

or defenders:
s secrets.)
branches,
1't free.

> adjustment
sults.

tput.

ough
1tations.

Can delay carries until after
multiplication by 3.

e.g. To square 314159

in Z/1000003: Square poly

32 + 1t* 4 4¢3 + 12 + 5t + 9t

obtaining 9tV + 6t + 25¢8 +
t7 4+ 48t0 4 728> + 50t* +
t3 + 43t% + 90t! + 81¢0.

Reduce: replace (¢;)t°T* by
(—3c¢;)t?, obtaining 72¢° + 32t* +
64> — 32t° + 48t! — 630,

Carry: 8t0 — 4> — 2¢% +
1#3 4+ 22 + 2t1 — 3¢9,

To minimize poly
mix reduction and
carrying the top s

e.g. Start from sq\
t° + 148" + 48¢°
t> 4 43t% 4+ 90t

Reduce t10 — ¢+,
£ s 0. 69 105t
512 4+ 2t4 1803 +

Finish reduction:
643 — 32t2 + 48t
0 5 ¢l 542
482 — Dt + 183 4

Nt

Can delay carries until after
multiplication by 3.

e.g. To square 314159

in Z/1000003: Square poly

3t° + 1t* + 4¢3 + 1#2 + 5¢t + 9tY,

obtaining 9tV + 67 + 25¢8 +
t7 4 48t0 4 72t + 50t* +
t3 + 43t% + 90t! + 810,

Reduce: replace (¢;)t®T* by
(—3c;)t*, obtaining 72¢° + 32t* +
64> — 32t° + 48t1 — 63t

Carry: 8t — 4¢> — 2% +
13 + 22 + 2t1 — 30

To minimize poly degree,
mix reduction and carrying,
carrying the top sooner.

e.g. Start from square 9t10-
t8 + 14¢7 + 48t 4 72t +
t3 + 43t2 4+ 90¢! + 8149,

Reduce t10 — ¢* and carry
> — 5 667 +25¢5 4 14¢" +
5t° +2¢% 8243 4-43¢% +90¢ 1

Finish reduction: —5¢° + 2¢
64t3 — 32t + 48t1 — 87tY.

t0 5 ¢l o5 2 583 5 7 -
A0 — 2t 183 212 — 1

Can delay carries until after
multiplication by 3.

e.g. To square 314159

in Z/1000003: Square poly

32 + 1t* 4 4¢3 + 12 + 5t + 9t

obtaining 9tV + 6t + 25¢8 +
t7 4+ 48t0 4 728> + 50t* +
t3 + 43t% + 90t! + 81¢0.

Reduce: replace (¢;)t°T* by
(—3c¢;)t?, obtaining 72¢° + 32t* +
64> — 32t° + 48t! — 630,

Carry: 8t0 — 4> — 2¢% +
183 + 2¢2 4+ 2t1 — 3¢0.

To minimize poly degree,
mix reduction and carrying,
carrying the top sooner.

e.g. Start from square 0t19 4 6¢7 +
#8 1 1447 4+ 4880 4 7045 1 504 +
t3 + 432 + 90! + 810,

Reduce t10 — ¢* and carry t* —
t2 — 0 682 +25¢8 + 14¢7 +56¢° —
5t° 4+ 2t4 +82¢3 + 432+ 90t +31¢0.

Finish reduction: —5¢° + 2t* +
64t3 — 32t2 + 48t1 — 87t0. Carry
t0 s ¢l 52 5 3 5 ¢t 5 40
— 42 — 2t% 143 4 242 — 1t 43¢0,

)y carries until after
ation by 3.

square 314159

)0003: Square poly

Y43 + 1¢% + 5t 4 otY,

g 0t'0 + 617 4 25¢° +
t0 + 70t° 4+ 50t* +
t2 + 90t! + 81¢0.

replace (c;)t®T* by
. obtaining 72¢° + 32¢* +
2t2 + 48t — 63¢0.

t0 440 — ¢4 &
2 1ol 340

To minimize poly degree,
mix reduction and carrying,
carrying the top sooner.

e.g. Start from square 0t19 4 6¢7 +
£8 1 14¢7 + 480 4 725 1 5044 +

£3 1 43t2 1 00! + 8149,

Reduce t10 — ¢* and carry t* —
t2 — 9 6¢2 4258+ 14¢7 +56¢° —
5t° 424+ 823 + 432+ 90t +31¢0.

Finish reduction: —5¢° + 2t* +
64t3 — 322 + 48t1 — 87tY. Carry
(0 s ¢l 52 5 3 5 ¢t 5 40
— 42 — 2% 143 4 2¢% — 11 4 3¢V,

Five coe

fat* +
Most co

Square -
Coeff of

Reduce:

-4+ (2
Coeff co
Very litt
addition
on 32-bi

intil after
.

1159

uare poly

1t% 4 5t1 + 9¢Y,
t? + 25¢8 +
5 L 5044 1
| tO_

:i)t6—|—’i by
g 72t + 32t* +
L _ 63¢0.

- 2t% +
3tY.

To minimize poly degree,
mix reduction and carrying,
carrying the top sooner.

e.g. Start from square 0t19 4 6¢7 +
t8 1+ 1447 + 480 4 7285 + 504 +
t3 + 43t2 + 90t + 81¢0.

Reduce t10 — ¢* and carry t* —
t2 — 0 682 +25¢8 + 14¢7 +56¢° —
52 +2t4 +82¢3 + 432490t +31¢0.

Finish reduction: —5¢° + 2t* +
64t3 — 32t + 48t1 — 87t0. Carry
0 s ¢l 52 5 3 5 ¢t 5 40
— 42 — 2t% 143 4242 — 1t 43¢0,

Speedup: non-inte

p =201 1

Five coeffs in radi;
fat* + f3t° + fot*
Most coeffs could

Square - - -+2(f4f
Coeff of 2 could |

Reduce: 20° = 24
o (P(fafr +
Coeff could be >
Very little room fc
additions, delayed
on 32-bit platform

To minimize poly degree,
mix reduction and carrying,
carrying the top sooner.

e.g. Start from square 0t19 4 6¢7 +
t8 + 14¢7 + 480 4 7280 + 504 +
t3 + 43t2 + 90t + 81¢0.

Reduce t10 — ¢* and carry t* —
t2 — 9 6¢2 4258+ 14¢7 +56¢° —
5t° 424 +82t3 + 432+ 90t +31¢0.

Finish reduction: —5¢° + 2t* +
64t3 — 32t2 + 48t1 — 87tY. Carry
(0 s ¢l 52 5 3 5 ¢t 5 40
— 42 — 2% 143 4 2¢% — 1t 4 3¢V,

Speedup: non-integer radix

p =201 1

Five coeffs in radix 2137

fat" + f3t® + fot? + fit' +

Most coeffs could be 212

Square - -+2(faf1+ f3f2)t
Coeff of 2 could be > 22°.

Reduce: 22 = 2% in Z /(201

ot ((fahr + f3f2) +
Coeff could be > 229,

Very little room for
additions, delayed carries, et
on 32-bit platforms.

To minimize poly degree,
mix reduction and carrying,
carrying the top sooner.

e.g. Start from square 9t19 4 6¢7 +
t8 1+ 1447 + 480 4 7285 + 504 +

t> + 43t + 90t + 81¢°.

Reduce t10 — ¢* and carry t* —
t2 — 0 682 +25¢8 + 14¢7 +56¢° —
52 +2t4 +82¢3 + 432490t 4310,

Finish reduction: —5¢° + 2t* +
64t3 — 322 + 48t1 — 87t0. Carry
t0 s ¢l 52 5 3 5 ¢t 5 40
— 42 — 2t* 143 4242 — 1t 43¢0,

Speedup: non-integer radix

p=201_1

Five coeffs in radix 2137

fat* + f3t3 + fot® + f1tt + fot°.

Most coeffs could be 212

Square - - -+2(faf1+ f3f2)t>+ - -
Coeff of 2 could be > 2%°.

Reduce: 2°° =2%in Z/(2%! —1);

o+ (O(fafr + f3f2) + O
Coeff could be > 229,

Very little room for
additions, delayed carries, etc.
on 32-bit platforms.

nize poly degree,
Iction and carrying,
the top sooner.

t from square 9¢19 + 627 +
t7 480 + 7282 4+ 50t% +
t2 + 90t + 81¢0.

110

— t* and carry t* —
t? +25¢8 +14¢" +56¢° —
+82¢°+43t2 490t +81¢°.

duction: —5¢2 + 2% +
2t2 + 48t — 87tY. Carry
12 o 13t ot
4+ 183 + 2¢2 — 181 + 340,

Speedup: non-integer radix

p=201_1

Five coeffs in radix 2137

fat* + f3t3 + fot® + fitt + fot.

Most coeffs could be 212.

Square - - +2(fafi+ f3fo)>+- - -.

Coeff of 2 could be > 22°.

Reduce: 2%° =2%in Z/(2°1 — 1);

4 (O(fafr + f3f2) + fOE
Coeff could be > 229,

Very little room for
additions, delayed carries, etc.
on 32-bit platforms.

Scaled:

f4 IS mu

f3 I1s mu
f2 IS mu

fl IS ML

fo IS ML
-+ (2

Better:

fa 1s mu

f3 1s mu
fo i1s mu

f1 1s mu

fo IS mL
Saves a

degree, Speedup: non-integer radix Scaled: Evaluate :
carrying, p— 6l _ 1 fa 1s multiple of 2

oner. f3 is multiple of 2
are 0410 4 649 4 Fivi coeffs3in radi2x 2137 1 O f» is multiple of 2
L7945 4 5084 4 fat™ + f3t= + fot +f117; + fot”. f1 is multiple of 2
L4 5140, Most coeffs could be 2. o is mu 203 e of 2
ind carry £ — Square "'5+2(f4f1 +f3f225)t5+- o (@ (fadr -
8 1447 4 5646 _ Coeff of ¢° could be > 24°. Better: Non-integ
21 00#1 18140, Reduce: 205 = 24 in Z /(20! — 1), fa 1s multiple of 2

55+ ot C@Ush T SR)) ;3 e o
1 _ 870, Carry Coeff .could be > 2<7. f2 e
(3, 44 45 Ver3-/ .Ilttle room for | fl |) -
0i2 14l 30 additions, delayed carries, etc. 0 15 Mutipie ot -
L on 32-bit platforms. Saves a few bits ir

Speedup: non-integer radix

p=201_1

Five coeffs in radix 2137

fat* + f3t3 + fot® + fitt + fot.

Most coeffs could be 212.

Square -
Coeff of 2 could be > 22°.

Reduce: 2%° =2%in Z/(2°1 — 1);

+ (2°(fafr + f3£2) + f5)t°.
Coeff could be > 229,

Very little room for
additions, delayed carries, etc.
on 32-bit platforms.

+2(fafr+ f3f2)+ -

Scaled: Evaluate at t = 1.

f4 IS mu
f3 1s mu
f2 IS mu
fl IS mu
fo IS mu

ti
ti
ti
ti
tip

D

D
D
D

e of

e of 239;

e of 226;
213.

e of
e of 2U.

252.

Reduce

+ (270 faf1 + f3f2) +

Better: Non-integer radix 2

fa 1s mu
f3 1s mu

fo i1s mu
f1 1s mu
fo IS mu

ti
ti
ti
ti
ti

D
D
D
D

D

e of 249;
237.

e of

e of 225;
e of 213;

e of 2U.

Saves a few bits in coeffs.

Speedup: non-integer radix

p=201_1

Five coeffs in radix 2137

fat* + f3t3 + fot® + f1tt + fot°.

Most coeffs could be 212

Square - - +2(fafi+ f3fo)>+---.

Coeff of 2 could be > 2%°.

Reduce: 2°° =2%in Z/(2%! —1);

4 (O(fafr + f3f2) + fOE
Coeff could be > 229,

Very little room for
additions, delayed carries, etc.
on 32-bit platforms.

Scaled: Evaluate att =1.

fa is multiple of 292,

e of 239;

e of 226;
213.

f3 is multip
fo is multip
iple of
fo is multiple of 2°. Reduce:

4 (270 f1 + fafo) + £E)E.

Better: Non-integer radix 2122,

fa 1s multiple of 249,
237.

f1 1s multi

f3 is multiple of
fo is multiple of 22°;
f1 is multiple of 213;
fo is multiple of 20,

Saves a few bits in coeffs.

