High-speed cryptography,
part 1:
elliptic-curve formulas

Daniel J. Bernstein
University of lllinois at Chicago &
Technische Universiteit Eindhoven



Crypto performance problems
often lead users to reduce
cryptographic security levels
or give up on cryptography.

Example 1 (according to
Firefox on Linux, 2013.06.24):
Google SSL uses RSA-1024.

Security note:

Analyses in 2003 concludec
that RSA-1024 was breakable;
e.g., 2003 Shamir—Tromer
estimated 1 year, ~107" USD.
RSA Labs and NIST response:
Move to RSA-2048 by 2010.




Example 2: Tor uses RSA-1024.

Example 3: DNSSEC uses RSA-
1024: "tradeoff between the
risk of key compromise and
performance...”

Example 4: OpenSSL uses secret
AES load addresses; dangerous!

Example 5:
https://sourceforge.net/account
is protected by SSL but
https://sourceforge.net/develop
redirects browser to
http://sourceforge.net/develop,
turning off the cryptography.


https://sourceforge.net/account
https://sourceforge.net/develop
http://sourceforge.net/develop

Extensive work on ECC speed
= fast high-security ECC.
Example: Curve25519 ECDH in
460200 Cortex A8 cycles;
332304 Snapdragon S4 cycles;
182632 lvy Bridge cycles.

Requires serious analysis

and optimization of algorithms.
Not just “polynomial time”;
not just “quadratic time".

My topic today:
decomposing elliptic-curve
operations into field operations.



Eliminating divisions

Typical computation:
P—=nP.

Decompose into additions:
PQ—P+Q.

Addition (z1,y1) + (22, ¥2) =
((z1y2 + y122)/(1 + dz1229192),

(y192 — z122)/(1 — dz122912))
uses expensive divisions.

Better: postpone divisions

and work with fractions.
Represent (z,y) as

(X :Y : Z)withz = X/Z and
y=Y/Z for Z # 0.



Addition now has to
handle fractions as input:

X1 1M N X2 Yo\
71 Zq 75" 2> )

X1Y2 | 1 X0
1 4y L1 2
1|dX1X2Y1Y2'
L Ly £y 24

Z1Zy 7y Zp
1 Xm XoY1 Yo
/1 Ly L1 £)

Y1 Y X1 Xo )

Z12Z>(X1Y2 + Y1 X2)
212222 + dX1XoY1Y5 |

Z1Z5(Y1Y2 — X1X2)
7275 — dX1X2"1Ys



. X1 Y Xo Yo
l.e. , -+ :
1 21 Ly 2o

(X3 73
-\ Z3' Z3

where

F=Z727% —dX1XoN1Ya,

G = Z7Z5 + dX1X2Y1Y2,
X3 = Z1Z2(X1Y2 + Y1 .X2)F,
Y3 = Z1Z2(1Ya2 — X1X2)G,
Z3 = FG.

Input to addition algorithm:
X1,Y1,. 21, X2,Y>, £>.

Output from addition algorithm:
X3,Y3, Z3. No divisions needed!



Save multiplications by
eliminating common

subexpressions:

A=271 -2y B= A%

C = X1 - Xo;
D =YY
E=d-C-D:

F=B—-E,G=B-+E;
X3:A-F-(X1-YQ—|—Y1-X2);
Y3=A-G-(D—-C);
Z:=F-G.

Cost: 11M + 1S + 1D.
Can do better: 10M + 1S + 1D.




Faster doubling

(z1,91) + (21, ¥1) =
(z1y1t+yiz1)/(1+dz121Y191),
(y1y1—2z121)/(1-dz1Z19191)) =
((2z1y1)/(1 + dziyg).
(yi—23)/(1 — dzfy7)).

a:% + y% =1+ dm%y% SO

(21, 91) + (21, 91) =

((2z1y1)/ (21 + y%),
(yi—2%)/(2 — 2% — 7).

Again eliminate divisions

using P2: only 3M + 4S.

Much faster than addition.
Useful: many doublings in ECC.



More addition strategies

Dual addition formula:

(1, 91) + (22, 92) =
((z1y1 + z2y2) /(2122 + Y192),

(Z1y1 — z292)/(Z192 — Z291)).
Low degree, no need for d.

Warning: fails for doubling!
Is this really “addition”?
Most EC formulas have failures.



More addition strategies

Dual addition formula:
(z1,91) + (22, 92) =
((z1y1 + z292)/(T1Z2 + Y192),

(Z1y1 — z292)/(Z192 — Z291)).
Low degree, no need for d.

Warning: fails for doubling!
Is this really “addition”?
Most EC formulas have failures.

More coordinate systems:

Inverted: ¢ =2/ X, y=72/Y.
Extended: ¢ = X/Z, y=Y/T.
Completed: z = X/Z,y =Y/Z,
zy =1/Z.



More elliptic curves

Edwards curves are elliptic.
Easiest way to understand
elliptic curves 1s Edwards.

Geometrically, all elliptic curves
are Edwards curves.

Algebraically,
more elliptic curves exist.

Every odd-char curve can be
expressed as Weierstrass curve

v? = 3 -+ a2u2 + Q44U + Q.

Warning: “Welerstrass’ has
different meaning in char 2.



Addition on Welerstrass curve

vV =uwd+ul+u+1

PL+ P

—(P1+ P)

Slope A = (v2 — v1)/(u2 — u1).
Note that u1 # u».



Doubling on Welerstrass curve

ve =ud —u

=
\P1

Slope A = (3uf — 1)/(2v1).




In most cases

(u1,v1) + (u2,v2) =
(u3,v3) where (u3,v3) =
(A% —u1—uo, Mur—u3)—v1).

u1 # up, “addition” (alert!):

A= (v2 —v1)/(u2 — u1).
Total cost 11 +2M + 18S.

(u1,v1) = (u2,v2) and v1 # 0,
“doubling” (alert!):

A= (3?1,% + 2aru1 + a4)/(2’01).
Total cost 11 + 2M + 2S.

Also handle some exceptions:

(u1,v1) = (w2, —v2);
Inputs at oo.



Birational equivalence

Starting from point (z, y)

on z° + y2 = 1 + dz’y?:
Define A=2(1+d)/(1 — d),
B =4/(1-d);
u=(1+y)/(B(1-1v)),

v = ufz = (1+)/(Ba(l - y))
(Skip a few exceptional points.)

v? =u3 + (A/B)u’ + (1/B?)u.

Maps Edwards to Welerstrass.
Compatible with point addition!

Easily invert this map:
t=u/v,y=(Bu—1)/(Bu+1).



Some history

There are many perspectives on

elliptic-curve computations.

1984 (published 1987) Lenstra:
ECM, the elliptic-curve method
of factoring integers.

1984 (published 1985) Miller,
and independently

1984 (published 1987) Koblitz:
Elliptic-curve cryptography.

Bosma, Goldwasser—Kilian,
Chudnovsky—Chudnovsky, Atkin:

elliptic-curve primality proving.



The Edwards perspective is new!

1761 Euler, 1866 Gauss
Introduced an addition law

for 2 + y° = 1 — z%y?,

the “lemniscatic elliptic curve.”

2007 Edwards generalized to
many curves z°+1y? = 1+c*z’y?.
Theorem: have now obtained

all elliptic curves over Q.

2007 Bernstein—Lange:

Edwards addition law is complete
for £° + y? = 1 + dz’y? if d #m;
and gives new ECC speed records.



Representing curve points

Crypto 1985, Miller, “Use of
elliptic curves In cryptography’:

Givenn € Z, P € E(F),
division-polynomial recurrence
computes nP € E(F,)

“In 26 log, n multiplications”;
but can do better!

“It appears to be best to
represent the points on the curve
in the following form:

Each point is represented by the

triple (z, v, 2z) which corresponds
to the point (z/22,y/23)."



1986 Chudnovsky—Chudnovsky,
“Sequences of numbers
generated by addition

in formal groups

and new primality

and factorization tests" :

“The crucial problem becomes
the choice of the model

of an algebraic group variety,
where computations mod p
are the least time consuming.”

Most important computations:
ADDis PQ — P+ Q.
DBL s P — 2P.



“It is preferable to use
models of elliptic curves
ying in low-dimensional spaces,

for otherwise the number of
coordinates and operations Is
increasing. This limits us ... to

4 basic models of elliptic curves.”

Short Weierstrass:
y? =23 + az + b.

Jacobi intersection:
24+ c?=1 as?+d?°=1

Jacobi quartic: y? = z*+2az?+1.

Hessian: z3 + y3 + 1 = 3dzv.



Optimizing Jacobian coordinates

For “traditional” (X/Z2,Y/Z3)
on y2 = z3 4 az + b:
1986 Chudnovsky—Chudnovsky

state explicit formulas using
10M for DBL; 16M for ADD.

Consequence:

|
~ (10lgn + 16— |M
lglgn

to compute n, P — nP

using sliding-windows method
of scalar multiplication.

Notation: Ig = log,.



Squaring is faster than M.

Here are the DBL formulas:

S =4X1 Y7

M =3X? +aZ7;

T = M?-2S;

X3=1T;
Ys3=M-(S—T)-8YH
73 =2Y1 - Z1.

Total cost 3M + 6S + 1D where
S is the cost of squaring in Fg,
D is the cost of multiplying by a.

The squarings produce
X2,Y2, Y} 72, 7 M2,



Most ECC standards choose
curves that make formulas faster.

Curve-choice advice from
1986 Chudnovsky—Chudnovsky:

Can eliminate the 1D
by choosing curve with a = 1.

But “it i1s even smarter”
to choose curve with a = —3.

f a = —3 then M = 3(X? — Z7)
=3(X1 — Z2) - (X1 + Z3).
Replace 2S with 1M.

Now DBL costs 4M 4+ 4S.



2001 Bernstein:
3M 4+ 58 for DBL.
11M 4 5S for ADD.

How? Easy S — M tradeoff:
instead of computing 2Y7 - £7,
compute (Y1 + Z1)° — Y¢ — Z7.
DBL formulas were already
computing Y12 and 212.

Same idea for the ADD formulas,
but have to scale XY, Z
to eliminate divisions by 2.




ADD for y2 = z3 + az + b:
U = X125, Uy = XoZ%,
S1=Y1275, So =YaZ3,
many more computations.

1986 Chudnovsky—Chudnovsky:
“We suggest to write
addition formulas involving

(X,Y, Z, 2% Z3)."

Disadvantages:
Allocate space for 72 73
Pay 1S4+ 1M in ADD and in DBL.

Advantages:

Save 2S + 2M at start of ADD.
Save 1S at start of DBL.




1998 Cohen—Miyaji—Ono:

Store point as (X : Y : Z).

If point is input to ADD,

also cache Z2 and Z3.

No cost, aside from space.

If point is input to another ADD,

reuse Z2. 73, Save 1S + 1M!

Best Jacobian speeds today,
including S — M tradeoffs:
3M + 5S for DBL if a = —3.
11M + 5S for ADD.

10M + 4S for reADD.

M + 4S for mADD (i.e. Zp =1).




Compare to speeds for Edwards
curves z2 + y? = 1 4 dz?y?

In projective coordinates

(2007 Bernstein—Lange):

3M + 4S for DBL.

10M + 1S + 1D for ADD.

OM + 1S + 1D for mADD.

Inverted Edwards coordinates
(2007 Bernstein—Lange):

3M +4S + 1D for DBL.

OM + 1S + 1D for ADD.

8M + 1S + 1D for mADD.

Even better speeds from

extended /completed coordinates
(2008 Hisil-Wong—Carter—Dawson).



y? =23 — 0.4z +0.7



The Weierstrass
turtle old truste
and slow. War'ning:

(picture) incomplete!



22 + y2 =1 — 3002292



The Edwards

starfish new.,

fast and complete!



Start!



1985

4?@9!

Weierstrass sets off Edwards
left behind sieepmg




Weierstrass has made some progress -

'Finaﬂy Edwards wakes up.



Exc:iﬂng progress. Edwards

about to overtake!l




And the winner is. Edwardsl!



