High-speed cryptography, part 1:
elliptic-curve formulas
Daniel J. Bernstein
University of Illinois at Chicago \&
Technische Universiteit Eindhoven

Crypto performance problems often lead users to reduce cryptographic security levels or give up on cryptography.

Example 1 (according to
Firefox on Linux, 2013.06.24): Google SSL uses RSA-1024.

Security note:
Analyses in 2003 concluded that RSA-1024 was breakable;
e.g., 2003 Shamir-Tromer estimated 1 year, $\approx 10^{7}$ USD.
RSA Labs and NIST response:
Move to RSA-2048 by 2010.
eed cryptography,
urve formulas
Bernstein
ty of Illinois at Chicago \& the Universiteit Eindhoven

Crypto performance problems often lead users to reduce cryptographic security levels or give up on cryptography.

Example 1 (according to
Firefox on Linux, 2013.06.24):
Google SSL uses RSA-1024.
Security note:
Analyses in 2003 concluded
that RSA-1024 was breakable;
e.g., 2003 Shamir-Tromer estimated 1 year, $\approx 10^{7}$ USD.
RSA Labs and NIST response:
Move to RSA-2048 by 2010.

Example
Example 1024:
risk of k perform

Example AES loa

Example https:/ is protec https:/ redirects http://
turning
graphy, ulas
is at Chicago \& siteit Eindhoven

Crypto performance problems often lead users to reduce cryptographic security levels or give up on cryptography.

Example 1 (according to
Firefox on Linux, 2013.06.24):
Google SSL uses RSA-1024.
Security note:
Analyses in 2003 concluded that RSA-1024 was breakable;
e.g., 2003 Shamir-Tromer estimated 1 year, $\approx 10^{7}$ USD.
RSA Labs and NIST response:
Move to RSA-2048 by 2010.

Example 2: Tor us
Example 3: DNSS 1024: "tradeoff b risk of key compro performance..."

Example 4: Open AES load address

Example 5:
https://sourcefo is protected by SS
https://sourcefo redirects browser t
http://sourcefor turning off the cry

Crypto performance problems often lead users to reduce cryptographic security levels or give up on cryptography.

Example 1 (according to
Firefox on Linux, 2013.06.24):
Google SSL uses RSA-1024.
Security note:
Analyses in 2003 concluded that RSA-1024 was breakable;
e.g., 2003 Shamir-Tromer
estimated 1 year, $\approx 10^{7}$ USD.
RSA Labs and NIST response:
Move to RSA-2048 by 2010.

Example 2: Tor uses RSA-1
Example 3: DNSSEC uses F 1024: "tradeoff between the risk of key compromise and performance. . ."

Example 4: OpenSSL uses s AES load addresses; danger

Example 5:
https://sourceforge.net/a is protected by SSL but https://sourceforge.net/d redirects browser to
http://sourceforge.net/de turning off the cryptography

Crypto performance problems often lead users to reduce cryptographic security levels or give up on cryptography.

Example 1 (according to
Firefox on Linux, 2013.06.24):
Google SSL uses RSA-1024.
Security note:
Analyses in 2003 concluded that RSA-1024 was breakable;
e.g., 2003 Shamir-Tromer estimated 1 year, $\approx 10^{7}$ USD. RSA Labs and NIST response: Move to RSA-2048 by 2010.

Example 2: Tor uses RSA-1024.
Example 3: DNSSEC uses RSA1024: "tradeoff between the risk of key compromise and performance..."

Example 4: OpenSSL uses secret AES load addresses; dangerous!

Example 5: https://sourceforge.net/account is protected by SSL but https://sourceforge.net/develop redirects browser to http://sourceforge.net/develop, turning off the cryptography.
erformance problems d users to reduce aphic security levels p on cryptography.

1 (according to on Linux, 2013.06.24):
SSL uses RSA-1024. note:
in 2003 concluded
A-1024 was breakable;
3 Shamir-Tromer
d 1 year, $\approx 10^{7}$ USD.
os and NIST response:
RSA-2048 by 2010.

Example 2: Tor uses RSA-1024.
Example 3: DNSSEC uses RSA1024: "tradeoff between the risk of key compromise and performance..."

Example 4: OpenSSL uses secret AES load addresses; dangerous!

Example 5:
https://sourceforge.net/account is protected by SSL but
https://sourceforge.net/develop redirects browser to
http://sourceforge.net/develop, turning off the cryptography.

Extensiv
\Rightarrow fast
Example 460200 332304 182632

Requires and opti Not just not just

My topi decomp operatio
ce problems reduce rity levels tography.
ling to
2013.06.24):

RSA-1024.
concluded
s breakable;
-Tromer
$\approx 10^{7}$ USD.
的 response:
8 by 2010.

Example 2: Tor uses RSA-1024.
Example 3: DNSSEC uses RSA-
1024: "tradeoff between the risk of key compromise and performance..."

Example 4: OpenSSL uses secret AES load addresses; dangerous!

Example 5:
https://sourceforge.net/account is protected by SSL but
https://sourceforge.net/develop redirects browser to
http://sourceforge.net/develop, turning off the cryptography.

Extensive work on \Rightarrow fast high-secur Example: Curve25 460200 Cortex A8 332304 Snapdragc 182632 Ivy Bridge

Requires serious a and optimization Not just "polynom not just "quadrati My topic today: decomposing ellipt operations into fie

Example 2: Tor uses RSA-1024.
Example 3: DNSSEC uses RSA1024: "tradeoff between the risk of key compromise and performance..."

Example 4: OpenSSL uses secret AES load addresses; dangerous!

Example 5:

https://sourceforge.net/account is protected by SSL but https://sourceforge.net/develop redirects browser to
http://sourceforge.net/develop, turning off the cryptography.

Extensive work on ECC spee \Rightarrow fast high-security ECC.
Example: Curve25519 ECDI 460200 Cortex A8 cycles; 332304 Snapdragon S4 cycl 182632 Ivy Bridge cycles.

Requires serious analysis and optimization of algorith Not just "polynomial time"; not just "quadratic time".

My topic today:
decomposing elliptic-curve operations into field operati

Example 2: Tor uses RSA-1024.
Example 3: DNSSEC uses RSA1024: "tradeoff between the risk of key compromise and performance. . ."

Example 4: OpenSSL uses secret AES load addresses; dangerous!

Example 5:
https://sourceforge.net/account is protected by SSL but https://sourceforge.net/develop redirects browser to
http://sourceforge.net/develop, turning off the cryptography.

Extensive work on ECC speed \Rightarrow fast high-security ECC.
Example: Curve25519 ECDH in 460200 Cortex A8 cycles; 332304 Snapdragon S4 cycles; 182632 Ivy Bridge cycles.

Requires serious analysis and optimization of algorithms. Not just "polynomial time"; not just "quadratic time".

My topic today: decomposing elliptic-curve operations into field operations.

2: Tor uses RSA-1024.
3: DNSSEC uses RSAtradeoff between the ey compromise and ance. . ."

4: OpenSSL uses secret d addresses; dangerous!

5:
/sourceforge.net/account ted by SSL but
/sourceforge.net/develop browser to
sourceforge.net/develop, off the cryptography.

Extensive work on ECC speed
\Rightarrow fast high-security ECC.
Example: Curve25519 ECDH in 460200 Cortex A8 cycles; 332304 Snapdragon S4 cycles; 182632 Ivy Bridge cycles.

Requires serious analysis and optimization of algorithms. Not just "polynomial time"; not just "quadratic time".

My topic today: decomposing elliptic-curve operations into field operations.

Eliminat
Typical
$P \mapsto n F$
Decomp $P, Q \mapsto$

Addition ($\left(x_{1} y_{2}\right.$
$\left(y_{1} y_{2}\right.$
uses exp
Better: and wor
Represer
$(X: Y$
$y=Y / Z$
ses RSA-1024.
EC uses RSAetween the mise and

SSL uses secret
s; dangerous!
rge.net/account
L but
rge.net/develop
ge.net/develop, ptography.

Extensive work on ECC speed
\Rightarrow fast high-security ECC.
Example: Curve25519 ECDH in
460200 Cortex A8 cycles;
332304 Snapdragon S4 cycles;
182632 Ivy Bridge cycles.
Requires serious analysis and optimization of algorithms. Not just "polynomial time"; not just "quadratic time".

My topic today:
decomposing elliptic-curve operations into field operations.

Eliminating divisio
Typical computati $P \mapsto n P$.

Decompose into a $P, Q \mapsto P+Q$.

Addition $\left(x_{1}, y_{1}\right)$ $\left(\left(x_{1} y_{2}+y_{1} x_{2}\right) /(1\right.$
$\left(y_{1} y_{2}-x_{1} x_{2}\right) /(1$ uses expensive div

Better: postpone and work with fra Represent (x, y) a $(X: Y: Z)$ with $y=Y / Z$ for $Z \neq$

Extensive work on ECC speed
\Rightarrow fast high-security ECC.
Example: Curve25519 ECDH in 460200 Cortex A8 cycles; 332304 Snapdragon S4 cycles; 182632 Ivy Bridge cycles.

Requires serious analysis and optimization of algorithms. Not just "polynomial time"; not just "quadratic time".

My topic today:
decomposing elliptic-curve operations into field operations.

Eliminating divisions

Typical computation:
$P \mapsto n P$.
Decompose into additions:
$P, Q \mapsto P+Q$.
Addition $\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)$ $\left(\left(x_{1} y_{2}+y_{1} x_{2}\right) /\left(1+d x_{1} x_{2}\right.\right.$?
$\left(y_{1} y_{2}-x_{1} x_{2}\right) /\left(1-d x_{1} x_{2}\right.$? uses expensive divisions.

Better: postpone divisions and work with fractions.
Represent (x, y) as

$$
\begin{aligned}
& (X: Y: Z) \text { with } x=X / Z \\
& y=Y / Z \text { for } Z \neq 0 .
\end{aligned}
$$

Extensive work on ECC speed
\Rightarrow fast high-security ECC.
Example: Curve25519 ECDH in 460200 Cortex A8 cycles; 332304 Snapdragon S4 cycles; 182632 Ivy Bridge cycles.

Requires serious analysis and optimization of algorithms. Not just "polynomial time"; not just "quadratic time".

My topic today:
decomposing elliptic-curve operations into field operations.

Eliminating divisions

Typical computation:
$P \mapsto n P$.
Decompose into additions:
$P, Q \mapsto P+Q$.
Addition $\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=$ $\left(\left(x_{1} y_{2}+y_{1} x_{2}\right) /\left(1+d x_{1} x_{2} y_{1} y_{2}\right)\right.$,
$\left.\left(y_{1} y_{2}-x_{1} x_{2}\right) /\left(1-d x_{1} x_{2} y_{1} y_{2}\right)\right)$
uses expensive divisions.
Better: postpone divisions and work with fractions.
Represent (x, y) as
$(X: Y: Z)$ with $x=X / Z$ and
$y=Y / Z$ for $Z \neq 0$.
e work on ECC speed igh-security ECC. Curve25519 ECDH in Cortex A8 cycles; Snapdragon S4 cycles; Ivy Bridge cycles. serious analysis mization of algorithms. "polynomial time"; "quadratic time". c today:
osing elliptic-curve ns into field operations.

Eliminating divisions

Typical computation:
$P \mapsto n P$.
Decompose into additions:
$P, Q \mapsto P+Q$.
Addition $\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=$ $\left(\left(x_{1} y_{2}+y_{1} x_{2}\right) /\left(1+d x_{1} x_{2} y_{1} y_{2}\right)\right.$, $\left.\left(y_{1} y_{2}-x_{1} x_{2}\right) /\left(1-d x_{1} x_{2} y_{1} y_{2}\right)\right)$ uses expensive divisions.

Better: postpone divisions and work with fractions.
Represent (x, y) as
$(X: Y: Z)$ with $x=X / Z$ and
$y=Y / Z$ for $Z \neq 0$.

Addition handle f
$\left(\frac{X_{1}}{Z_{1}}, \frac{Y}{Z}\right.$ $\left(\frac{\frac{X_{1}}{Z_{1}} \frac{Y_{2}}{Z_{2}}}{1+d}\right.$
$\frac{\frac{Y_{1}}{Z_{1}} \frac{Y_{2}}{Z_{2}}}{1-d}$
$\left(\frac{Z_{1} Z_{2}}{Z_{1}^{2} Z_{2}^{2}}\right.$
$\frac{Z_{1} Z_{2}}{Z_{1}^{2} Z_{2}^{2}}$

ECC speed

 ty ECC.519 ECDH in cycles;
on S4 cycles; cycles.
nalysis
of algorithms.
iial time";
c time".
ic-curve
Id operations.

Eliminating divisions

Typical computation:
$P \mapsto n P$.
Decompose into additions:
$P, Q \mapsto P+Q$.
Addition $\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=$ $\left(\left(x_{1} y_{2}+y_{1} x_{2}\right) /\left(1+d x_{1} x_{2} y_{1} y_{2}\right)\right.$,
$\left.\left(y_{1} y_{2}-x_{1} x_{2}\right) /\left(1-d x_{1} x_{2} y_{1} y_{2}\right)\right)$ uses expensive divisions.

Better: postpone divisions and work with fractions.
Represent (x, y) as
$(X: Y: Z)$ with $x=X / Z$ and
$y=Y / Z$ for $Z \neq 0$.

Addition now has handle fractions a:

$$
\begin{aligned}
& \left(\frac{X_{1}}{Z_{1}}, \frac{Y_{1}}{Z_{1}}\right)+\left(\frac{X}{Z}\right. \\
& \left(\frac{X_{1}}{Z_{1}} \frac{Y_{2}}{Z_{2}}+\frac{Y_{1}}{Z_{1}} \frac{X_{2}}{Z_{2}}+d \frac{X_{1}}{Z_{1}} \frac{X_{2}}{Z_{1}} Z_{1}\right. \\
& Y_{2}
\end{aligned}
$$

Eliminating divisions

Typical computation:
$P \mapsto n P$.
Decompose into additions:
$P, Q \mapsto P+Q$.
Addition $\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=$ $\left(\left(x_{1} y_{2}+y_{1} x_{2}\right) /\left(1+d x_{1} x_{2} y_{1} y_{2}\right)\right.$,
$\left.\left(y_{1} y_{2}-x_{1} x_{2}\right) /\left(1-d x_{1} x_{2} y_{1} y_{2}\right)\right)$
uses expensive divisions.
Better: postpone divisions and work with fractions.
Represent (x, y) as
$(X: Y: Z)$ with $x=X / Z$ and
$y=Y / Z$ for $Z \neq 0$.

Addition now has to
handle fractions as input:

$$
\begin{aligned}
& \left(\frac{X_{1}}{Z_{1}}, \frac{Y_{1}}{Z_{1}}\right)+\left(\frac{X_{2}}{Z_{2}}, \frac{Y_{2}}{Z_{2}}\right)= \\
& \left(\frac{\frac{X_{1}}{Z_{1}} \frac{Y_{2}}{Z_{2}}+\frac{Y_{1}}{Z_{1}} \frac{x_{2}}{Z_{2}}}{1+d \frac{X_{1}}{Z_{1}} \frac{X_{2}}{Z_{2}} \frac{Y_{1}}{Z_{1}} \frac{Y_{2}}{Z_{2}}}\right. \\
& \left.\frac{\frac{Y_{1}}{Z_{1}} \frac{Y_{2}}{Z_{2}}-\frac{X_{1}}{Z_{1}} \frac{X_{2}}{Z_{2}}}{1-d \frac{X_{1}}{Z_{1}} \frac{X_{2}}{Z_{2}} \frac{Y_{1}}{Z_{1}} \frac{Y_{2}}{Z_{2}}}\right)= \\
& \left(\frac{Z_{1} Z_{2}\left(X_{1} Y_{2}+Y_{1} X_{2}\right)}{Z_{1}^{2} Z_{2}^{2}+d X_{1} X_{2} Y_{1} Y_{2}}\right. \\
& \left.\frac{Z_{1} Z_{2}\left(Y_{1} Y_{2}-X_{1} X_{2}\right)}{Z_{1}^{2} Z_{2}^{2}-d X_{1} X_{2} Y_{1} Y_{2}}\right)
\end{aligned}
$$

Eliminating divisions

Typical computation:
$P \mapsto n P$.
Decompose into additions:
$P, Q \mapsto P+Q$.
Addition $\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=$ $\left(\left(x_{1} y_{2}+y_{1} x_{2}\right) /\left(1+d x_{1} x_{2} y_{1} y_{2}\right)\right.$, $\left.\left(y_{1} y_{2}-x_{1} x_{2}\right) /\left(1-d x_{1} x_{2} y_{1} y_{2}\right)\right)$ uses expensive divisions.

Better: postpone divisions and work with fractions.
Represent (x, y) as
$(X: Y: Z)$ with $x=X / Z$ and
$y=Y / Z$ for $Z \neq 0$.

Addition now has to handle fractions as input:

$$
\left(\frac{X_{1}}{Z_{1}}, \frac{Y_{1}}{Z_{1}}\right)+\left(\frac{X_{2}}{Z_{2}}, \frac{Y_{2}}{Z_{2}}\right)=
$$

$$
\left(\frac{\frac{X_{1}}{Z_{1}} \frac{Y_{2}}{Z_{2}}+\frac{Y_{1}}{Z_{1}} \frac{X_{2}}{Z_{2}}}{1+d \frac{X_{1}}{Z_{1}} \frac{X_{2}}{Z_{2}} \frac{Y_{1}}{Z_{1}} \frac{Y_{2}}{Z_{2}}},\right.
$$

$$
\left.\frac{\frac{Y_{1}}{Z_{1}} \frac{Y_{2}}{Z_{2}}-\frac{X_{1}}{Z_{1}} \frac{X_{2}}{Z_{2}}}{1-d \frac{X_{1}}{Z_{1}} \frac{X_{2}}{Z_{2}} \frac{Y_{1}}{Z_{1}} \frac{Y_{2}}{Z_{2}}}\right)=
$$

$$
\left(\frac{Z_{1} Z_{2}\left(X_{1} Y_{2}+Y_{1} X_{2}\right)}{Z_{1}^{2} Z_{2}^{2}+d X_{1} X_{2} Y_{1} Y_{2}}\right.
$$

$$
\left.\frac{Z_{1} Z_{2}\left(Y_{1} Y_{2}-X_{1} X_{2}\right)}{Z_{1}^{2} Z_{2}^{2}-d X_{1} X_{2} Y_{1} Y_{2}}\right)
$$

ing divisions

computation:
ose into additions:
$P+Q$.

$$
\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=
$$

$$
\left.-y_{1} x_{2}\right) /\left(1+d x_{1} x_{2} y_{1} y_{2}\right)
$$

$$
\left.\left.-x_{1} x_{2}\right) /\left(1-d x_{1} x_{2} y_{1} y_{2}\right)\right)
$$

ensive divisions.
postpone divisions
k with fractions.
tt (x, y) as
$Z)$ with $x=X / Z$ and for $Z \neq 0$.

Addition now has to
handle fractions as input:

$$
\begin{aligned}
& \left(\frac{X_{1}}{Z_{1}}, \frac{Y_{1}}{Z_{1}}\right)+\left(\frac{X_{2}}{Z_{2}}, \frac{Y_{2}}{Z_{2}}\right)= \\
& \left(\frac{\frac{X_{1}}{Z_{1}} \frac{Y_{2}}{Z_{2}}+\frac{Y_{1}}{Z_{1}} \frac{X_{2}}{Z_{2}}}{1+d \frac{X_{1}}{Z_{1}} \frac{X_{2}}{Z_{2}} \frac{Y_{1}}{Z_{1}} \frac{Y_{2}}{Z_{2}}},\right. \\
& \left.\frac{\frac{Y_{1}}{Z_{1}} \frac{Y_{2}}{Z_{2}}-\frac{X_{1}}{Z_{1}} \frac{X_{2}}{Z_{2}}}{1-d \frac{X_{1}}{Z_{1}} \frac{X_{2}}{Z_{2}} \frac{Y_{1}}{Z_{1}} \frac{Y_{2}}{Z_{2}}}\right)= \\
& \left(\frac{Z_{1} Z_{2}\left(X_{1} Y_{2}+Y_{1} X_{2}\right)}{Z_{1}^{2} Z_{2}^{2}+d X_{1} X_{2} Y_{1} Y_{2}},\right. \\
& \left.\frac{Z_{1} Z_{2}\left(Y_{1} Y_{2}-X_{1} X_{2}\right)}{Z_{1}^{2} Z_{2}^{2}-d X_{1} X_{2} Y_{1} Y_{2}}\right)
\end{aligned}
$$

i.e. $\left(\frac{X_{1}}{Z_{1}}\right.$
$=\left(\frac{X_{3}}{Z_{3}}\right.$,
where $F=Z_{1}^{2}$ $G=Z_{1}^{2}$
$X_{3}=Z$
$Y_{3}=Z_{1}$
$Z_{3}=F$
Input to $X_{1}, Y_{1}, 2$
Output $X_{3}, Y_{3}, 2$

Addition now has to
handle fractions as input:

$$
\begin{aligned}
& \left(\frac{X_{1}}{Z_{1}}, \frac{Y_{1}}{Z_{1}}\right)+\left(\frac{X_{2}}{Z_{2}}, \frac{Y_{2}}{Z_{2}}\right)= \\
& \left(\frac{\frac{x_{1}}{Z_{1}} \frac{Y_{2}}{Z_{2}}+\frac{Y_{1}}{Z_{1}} \frac{X_{2}}{Z_{2}}}{1+d \frac{X_{1}}{Z_{1}} \frac{X_{2}}{Z_{2}} \frac{Y_{1}}{Z_{1}} \frac{Y_{2}}{Z_{2}}}{ }^{\frac{Y_{1}}{Z_{1}} \frac{Y_{2}}{Z_{2}}-\frac{X_{1}}{Z_{1}} \frac{X_{2}}{Z_{2}}}\right. \\
& 1-d \frac{X_{1}}{Z_{1}} \frac{X_{2}}{Z_{2}} \frac{Y_{1}}{Z_{1}} \frac{Y_{2}}{Z_{2}}
\end{aligned}=, ~\left(\frac{Z_{1} Z_{2}\left(X_{1} Y_{2}+Y_{1} X_{2}\right)}{Z_{1}^{2} Z_{2}^{2}+d X_{1} X_{2} Y_{1} Y_{2}}, Z_{1}^{\left.Z_{1}^{2} Z_{2}^{2}-d Y_{1}-X_{1} X_{2}\right)}\right)
$$

i.e. $\left(\frac{X_{1}}{Z_{1}}, \frac{Y_{1}}{Z_{1}}\right)+$
$=\left(\frac{X_{3}}{Z_{3}}, \frac{Y_{3}}{Z_{3}}\right)$
where
$F=Z_{1}^{2} Z_{2}^{2}-d X_{1}$
$G=Z_{1}^{2} Z_{2}^{2}+d X_{1}$
$X_{3}=Z_{1} Z_{2}\left(X_{1} Y_{2}\right.$
$Y_{3}=Z_{1} Z_{2}\left(Y_{1} Y_{2}\right.$
$Z_{3}=F G$.
Input to addition $X_{1}, Y_{1}, Z_{1}, X_{2}, Y_{2}$,
Output from addit X_{3}, Y_{3}, Z_{3}. No div

Addition now has to
handle fractions as input:

$$
\begin{aligned}
& \left(\frac{X_{1}}{Z_{1}}, \frac{Y_{1}}{Z_{1}}\right)+\left(\frac{X_{2}}{Z_{2}}, \frac{Y_{2}}{Z_{2}}\right)= \\
& \left(\frac{\frac{X_{1}}{Z_{1}} \frac{Y_{2}}{Z_{2}}+\frac{Y_{1}}{Z_{1}} \frac{X_{2}}{Z_{2}}}{1+d \frac{X_{1}}{Z_{1}} \frac{X_{2}}{Z_{2}} \frac{Y_{1}}{Z_{1}} \frac{Y_{2}}{Z_{2}}},\right.
\end{aligned}
$$

$$
\left.\frac{\frac{Y_{1}}{Z_{1}} \frac{Y_{2}}{Z_{2}}-\frac{X_{1}}{Z_{1}} \frac{X_{2}}{Z_{2}}}{1-d \frac{X_{1}}{Z_{1}} \frac{X_{2}}{Z_{2}} \frac{Y_{1}}{Z_{1}} \frac{Y_{2}}{Z_{2}}}\right)=
$$

$$
\left(\frac{Z_{1} Z_{2}\left(X_{1} Y_{2}+Y_{1} X_{2}\right)}{Z_{1}^{2} Z_{2}^{2}+d X_{1} X_{2} Y_{1} Y_{2}}\right.
$$

$$
\left.\frac{Z_{1} Z_{2}\left(Y_{1} Y_{2}-X_{1} X_{2}\right)}{Z_{1}^{2} Z_{2}^{2}-d X_{1} X_{2} Y_{1} Y_{2}}\right)
$$

i.e. $\left(\frac{X_{1}}{Z_{1}}, \frac{Y_{1}}{Z_{1}}\right)+\left(\frac{X_{2}}{Z_{2}}, \frac{Y_{2}}{Z_{2}}\right.$
$=\left(\frac{X_{3}}{Z_{3}}, \frac{Y_{3}}{Z_{3}}\right)$
where
$F=Z_{1}^{2} Z_{2}^{2}-d X_{1} X_{2} Y_{1} Y_{2}$,
$G=Z_{1}^{2} Z_{2}^{2}+d X_{1} X_{2} Y_{1} Y_{2}$,
$X_{3}=Z_{1} Z_{2}\left(X_{1} Y_{2}+Y_{1} X_{2}\right) F$
$Y_{3}=Z_{1} Z_{2}\left(Y_{1} Y_{2}-X_{1} X_{2}\right) G$,
$Z_{3}=F G$.
Input to addition algorithm: $X_{1}, Y_{1}, Z_{1}, X_{2}, Y_{2}, Z_{2}$.
Output from addition algori X_{3}, Y_{3}, Z_{3}. No divisions nee

Addition now has to
handle fractions as input:
i.e. $\left(\frac{X_{1}}{Z_{1}}, \frac{Y_{1}}{Z_{1}}\right)+\left(\frac{X_{2}}{Z_{2}}, \frac{Y_{2}}{Z_{2}}\right)$
$=\left(\frac{X_{3}}{Z_{3}}, \frac{Y_{3}}{Z_{3}}\right)$
where

$$
F=Z_{1}^{2} Z_{2}^{2}-d X_{1} X_{2} Y_{1} Y_{2}
$$

$$
G=Z_{1}^{2} Z_{2}^{2}+d X_{1} X_{2} Y_{1} Y_{2}
$$

$$
X_{3}=Z_{1} Z_{2}\left(X_{1} Y_{2}+Y_{1} X_{2}\right) F
$$

$$
Y_{3}=Z_{1} Z_{2}\left(Y_{1} Y_{2}-X_{1} X_{2}\right) G
$$

$$
Z_{3}=F G .
$$

Input to addition algorithm:
$X_{1}, Y_{1}, Z_{1}, X_{2}, Y_{2}, Z_{2}$.
Output from addition algorithm:
X_{3}, Y_{3}, Z_{3}. No divisions needed!

$$
\begin{aligned}
& \left(\frac{X_{1}}{Z_{1}}, \frac{Y_{1}}{Z_{1}}\right)+\left(\frac{X_{2}}{Z_{2}}, \frac{Y_{2}}{Z_{2}}\right)= \\
& \left(\frac{\frac{X_{1}}{Z_{1}} \frac{Y_{2}}{Z_{2}}+\frac{Y_{1}}{Z_{1}} \frac{X_{2}}{Z_{2}}}{1+d \frac{X_{1}}{Z_{1}} \frac{X_{2}}{Z_{2}} \frac{Y_{1}}{Z_{1}} \frac{Y_{2}}{Z_{2}}},\right. \\
& \left.\frac{\frac{Y_{1}}{Z_{1}} \frac{Y_{2}}{Z_{2}}-\frac{X_{1}}{Z_{1}} \frac{X_{2}}{Z_{2}}}{1-d \frac{X_{1}}{Z_{1}} \frac{X_{2}}{Z_{2}} \frac{Y_{1}}{Z_{1}} \frac{Y_{2}}{Z_{2}}}\right)= \\
& \left(\frac{Z_{1} Z_{2}\left(X_{1} Y_{2}+Y_{1} X_{2}\right)}{Z_{1}^{2} Z_{2}^{2}+d X_{1} X_{2} Y_{1} Y_{2}},\right. \\
& \left.\frac{Z_{1} Z_{2}\left(Y_{1} Y_{2}-X_{1} X_{2}\right)}{Z_{1}^{2} Z_{2}^{2}-d X_{1} X_{2} Y_{1} Y_{2}}\right)
\end{aligned}
$$

now has to
ractions as input:
$\left.\frac{1}{1}\right)+\left(\frac{X_{2}}{Z_{2}}, \frac{Y_{2}}{Z_{2}}\right)=$

$$
\frac{Y_{1}}{Z_{1}} \frac{X_{2}}{Z_{2}}
$$

$$
\frac{X_{1}}{Z_{1}} \frac{X_{2}}{Z_{2}} \frac{Y_{1}}{Z_{1}} \frac{Y_{2}}{Z_{2}}
$$

$$
\left.\frac{-\frac{X_{1}}{Z_{1}} \frac{X_{2}}{Z_{2}}}{\frac{X_{1}}{Z_{1}} \frac{X_{2}}{Z_{2}} \frac{Y_{1}}{Z_{1}} \frac{Y_{2}}{Z_{2}}}\right)=
$$

$$
\left.X_{1} Y_{2}+Y_{1} X_{2}\right)
$$

$+d X_{1} X_{2} Y_{1} Y_{2}$
$\left.\frac{\left.Y_{1} Y_{2}-X_{1} X_{2}\right)}{-d X_{1} X_{2} Y_{1} Y_{2}}\right)$
i.e. $\left(\frac{X_{1}}{Z_{1}}, \frac{Y_{1}}{Z_{1}}\right)+\left(\frac{X_{2}}{Z_{2}}, \frac{Y_{2}}{Z_{2}}\right)$
$=\left(\frac{X_{3}}{Z_{3}}, \frac{Y_{3}}{Z_{3}}\right)$
where
$F=Z_{1}^{2} Z_{2}^{2}-d X_{1} X_{2} Y_{1} Y_{2}$,
$G=Z_{1}^{2} Z_{2}^{2}+d X_{1} X_{2} Y_{1} Y_{2}$,
$X_{3}=Z_{1} Z_{2}\left(X_{1} Y_{2}+Y_{1} X_{2}\right) F$,
$Y_{3}=Z_{1} Z_{2}\left(Y_{1} Y_{2}-X_{1} X_{2}\right) G$,
$Z_{3}=F G$.
Input to addition algorithm:
$X_{1}, Y_{1}, Z_{1}, X_{2}, Y_{2}, Z_{2}$.
Output from addition algorithm:
X_{3}, Y_{3}, Z_{3}. No divisions needed!

Save mı eliminat subexpre
$A=Z_{1}$
$C=X_{1}$
$D=Y_{1}$
$E=d$.
$F=B$
$X_{3}=A$
$Y_{3}=A$
$Z_{3}=F$
Cost: 11
Can do
i.e. $\left(\frac{X_{1}}{Z_{1}}, \frac{Y_{1}}{Z_{1}}\right)+\left(\frac{X_{2}}{Z_{2}}, \frac{Y_{2}}{Z_{2}}\right)$
$=\left(\frac{X_{3}}{Z_{3}}, \frac{Y_{3}}{Z_{3}}\right)$
where
$F=Z_{1}^{2} Z_{2}^{2}-d X_{1} X_{2} Y_{1} Y_{2}$,
$G=Z_{1}^{2} Z_{2}^{2}+d X_{1} X_{2} Y_{1} Y_{2}$,
$X_{3}=Z_{1} Z_{2}\left(X_{1} Y_{2}+Y_{1} X_{2}\right) F$,
$Y_{3}=Z_{1} Z_{2}\left(Y_{1} Y_{2}-X_{1} X_{2}\right) G$,
$Z_{3}=F G$.
Input to addition algorithm:
$X_{1}, Y_{1}, Z_{1}, X_{2}, Y_{2}, Z_{2}$.
Output from addition algorithm:
X_{3}, Y_{3}, Z_{3}. No divisions needed!

Save multiplicatio eliminating comm subexpressions:
$A=Z_{1} \cdot Z_{2} ; B=$
$C=X_{1} \cdot X_{2}$;
$D=Y_{1} \cdot Y_{2}$;
$E=d \cdot C \cdot D$;
$F=B-E ; G=$
$X_{3}=A \cdot F \cdot\left(X_{1}\right.$.
$Y_{3}=A \cdot G \cdot(D-$
$Z_{3}=F \cdot G$.
Cost: $11 \mathrm{M}+1 \mathbf{S}$
Can do better: 10
i.e. $\left(\frac{X_{1}}{Z_{1}}, \frac{Y_{1}}{Z_{1}}\right)+\left(\frac{X_{2}}{Z_{2}}, \frac{Y_{2}}{Z_{2}}\right)$
$=\left(\frac{X_{3}}{Z_{3}}, \frac{Y_{3}}{Z_{3}}\right)$
where

$$
F=Z_{1}^{2} Z_{2}^{2}-d X_{1} X_{2} Y_{1} Y_{2},
$$

$$
G=Z_{1}^{2} Z_{2}^{2}+d X_{1} X_{2} Y_{1} Y_{2},
$$

$$
X_{3}=Z_{1} Z_{2}\left(X_{1} Y_{2}+Y_{1} X_{2}\right) F
$$

$$
Y_{3}=Z_{1} Z_{2}\left(Y_{1} Y_{2}-X_{1} X_{2}\right) G
$$

$$
Z_{3}=F G
$$

Input to addition algorithm:
$X_{1}, Y_{1}, Z_{1}, X_{2}, Y_{2}, Z_{2}$.
Output from addition algorithm:
X_{3}, Y_{3}, Z_{3}. No divisions needed!

Save multiplications by eliminating common subexpressions:

$$
\begin{aligned}
& A=Z_{1} \cdot Z_{2} ; B=A^{2} ; \\
& C=X_{1} \cdot X_{2} ; \\
& D=Y_{1} \cdot Y_{2} ; \\
& E=d \cdot C \cdot D ; \\
& F=B-E ; G=B+E ; \\
& X_{3}=A \cdot F \cdot\left(X_{1} \cdot Y_{2}+Y_{1} .\right. \\
& Y_{3}=A \cdot G \cdot(D-C) \\
& Z_{3}=F \cdot G .
\end{aligned}
$$

Cost: $11 \mathbf{M}+1 \mathbf{S}+1 \mathbf{D}$.
Can do better: $10 \mathrm{M}+1 \mathbf{S}+$
i.e. $\left(\frac{X_{1}}{Z_{1}}, \frac{Y_{1}}{Z_{1}}\right)+\left(\frac{X_{2}}{Z_{2}}, \frac{Y_{2}}{Z_{2}}\right)$
$=\left(\frac{X_{3}}{Z_{3}}, \frac{Y_{3}}{Z_{3}}\right)$
where

$$
\begin{aligned}
& F=Z_{1}^{2} Z_{2}^{2}-d X_{1} X_{2} Y_{1} Y_{2}, \\
& G=Z_{1}^{2} Z_{2}^{2}+d X_{1} X_{2} Y_{1} Y_{2}, \\
& X_{3}=Z_{1} Z_{2}\left(X_{1} Y_{2}+Y_{1} X_{2}\right) F, \\
& Y_{3}=Z_{1} Z_{2}\left(Y_{1} Y_{2}-X_{1} X_{2}\right) G, \\
& Z_{3}=F G .
\end{aligned}
$$

Input to addition algorithm:
$X_{1}, Y_{1}, Z_{1}, X_{2}, Y_{2}, Z_{2}$.
Output from addition algorithm: X_{3}, Y_{3}, Z_{3}. No divisions needed!

Save multiplications by eliminating common subexpressions:
$A=Z_{1} \cdot Z_{2} ; B=A^{2} ;$
$C=X_{1} \cdot X_{2}$;
$D=Y_{1} \cdot Y_{2} ;$
$E=d \cdot C \cdot D$;
$F=B-E ; G=B+E ;$
$X_{3}=A \cdot F \cdot\left(X_{1} \cdot Y_{2}+Y_{1} \cdot X_{2}\right)$;
$Y_{3}=A \cdot G \cdot(D-C)$;
$Z_{3}=F \cdot G$.
Cost: $11 \mathbf{M}+1 \mathbf{S}+1 \mathbf{D}$.
Can do better: $10 \mathrm{M}+1 \mathbf{S}+1 \mathbf{D}$.

$$
\begin{aligned}
& \left.=\frac{Y_{1}}{Z_{1}}\right)+\left(\frac{X_{2}}{Z_{2}}, \frac{Y_{2}}{Z_{2}}\right) \\
& \left.\frac{Y_{3}}{Z_{3}}\right)
\end{aligned}
$$

Save multiplications by eliminating common
subexpressions:
$A=Z_{1} \cdot Z_{2} ; B=A^{2} ;$
$C=X_{1} \cdot X_{2} ;$
$D=Y_{1} \cdot Y_{2}$;
$E=d \cdot C \cdot D$;
$F=B-E ; G=B+E ;$
$X_{3}=A \cdot F \cdot\left(X_{1} \cdot Y_{2}+Y_{1} \cdot X_{2}\right)$;
$Y_{3}=A \cdot G \cdot(D-C)$;
$Z_{3}=F \cdot G$.
Cost: $11 \mathbf{M}+1 \mathbf{S}+1 \mathbf{D}$.
Can do better: $10 \mathrm{M}+1 \mathbf{S}+1 \mathbf{D}$.

Faster d
$\left(x_{1}, y_{1}\right)$ $\left(\left(x_{1} y_{1}+\right.\right.$
$\left(y_{1} y_{1}-\right.$ ($\left(2 x_{1} y_{1}\right)$
$\left(y_{1}^{2}-x_{1}^{2}\right.$
$x_{1}^{2}+y_{1}^{2}$
$\left(x_{1}, y_{1}\right)$
$\left(\left(2 x_{1} y_{1}\right)\right.$
$\left(y_{1}^{2}-x_{1}^{2}\right.$
Again el using \mathbf{P}^{2} Much fa Useful:

$$
\begin{aligned}
& \left(\frac{X_{2}}{Z_{2}}, \frac{Y_{2}}{Z_{2}}\right) \\
& X_{2} Y_{1} Y_{2}, \\
& X_{2} Y_{1} Y_{2}, \\
& \left.+Y_{1} X_{2}\right) F, \\
& \left.-X_{1} X_{2}\right) G,
\end{aligned}
$$

algorithm:
Z_{2}.
ion algorithm:
isions needed!

Save multiplications by eliminating common subexpressions:

$$
\begin{aligned}
& A=Z_{1} \cdot Z_{2} ; B=A^{2} ; \\
& C=X_{1} \cdot X_{2} ; \\
& D=Y_{1} \cdot Y_{2} ; \\
& E=d \cdot C \cdot D ; \\
& F=B-E ; G=B+E ; \\
& X_{3}=A \cdot F \cdot\left(X_{1} \cdot Y_{2}+Y_{1} \cdot X_{2}\right) ; \\
& Y_{3}=A \cdot G \cdot(D-C) ; \\
& Z_{3}=F \cdot G
\end{aligned}
$$

Cost: $11 \mathbf{M}+1 \mathbf{S}+1 \mathbf{D}$.
Can do better: $10 \mathrm{M}+1 \mathbf{S}+1 \mathbf{D}$.

Faster doubling

$$
\begin{gathered}
\left(x_{1}, y_{1}\right)+\left(x_{1}, y_{1}\right) \\
\left(\left(x_{1} y_{1}+y_{1} x_{1}\right) /(1-\right. \\
\left(y_{1} y_{1}-x_{1} x_{1}\right) /(1- \\
\left(\left(2 x_{1} y_{1}\right) /\left(1+d x_{1}^{2}\right.\right. \\
\left(y_{1}^{2}-x_{1}^{2}\right) /(1-d x \\
x_{1}^{2}+y_{1}^{2}=1+d x^{2} \\
\left(x_{1}, y_{1}\right)+\left(x_{1}, y_{1}\right) \\
\left(\left(2 x_{1} y_{1}\right) /\left(x_{1}^{2}+y_{1}^{2}\right.\right. \\
\left(y_{1}^{2}-x_{1}^{2}\right) /\left(2-x_{1}^{2}\right.
\end{gathered}
$$

Again eliminate di using \mathbf{P}^{2} : only 3 N Much faster than Useful: many dou

Save multiplications by eliminating common subexpressions:

$$
\begin{aligned}
& A=Z_{1} \cdot Z_{2} ; B=A^{2} ; \\
& C=X_{1} \cdot X_{2} ; \\
& D=Y_{1} \cdot Y_{2} ; \\
& E=d \cdot C \cdot D ; \\
& F=B-E ; G=B+E ; \\
& X_{3}=A \cdot F \cdot\left(X_{1} \cdot Y_{2}+Y_{1} \cdot X_{2}\right) ; \\
& Y_{3}=A \cdot G \cdot(D-C) ; \\
& Z_{3}=F \cdot G .
\end{aligned}
$$

Cost: $11 \mathrm{M}+1 \mathbf{S}+1 \mathrm{D}$.
Can do better: $10 M+1 S+1 D$.

Faster doubling

$$
\begin{aligned}
& \left(x_{1}, y_{1}\right)+\left(x_{1}, y_{1}\right)= \\
& \left(\left(x_{1} y_{1}+y_{1} x_{1}\right) /\left(1+d x_{1} x_{1} y_{1}\right)\right. \\
& \left(y_{1} y_{1}-x_{1} x_{1}\right) /\left(1-d x_{1} x_{1} y_{1}\right) \\
& \left(\left(2 x_{1} y_{1}\right) /\left(1+d x_{1}^{2} y_{1}^{2}\right),\right. \\
& \left.\left(y_{1}^{2}-x_{1}^{2}\right) /\left(1-d x_{1}^{2} y_{1}^{2}\right)\right) . \\
& x_{1}^{2}+y_{1}^{2}=1+d x_{1}^{2} y_{1}^{2} \text { so } \\
& \left(x_{1}, y_{1}\right)+\left(x_{1}, y_{1}\right)= \\
& \left(\left(2 x_{1} y_{1}\right) /\left(x_{1}^{2}+y_{1}^{2}\right),\right. \\
& \left.\left(y_{1}^{2}-x_{1}^{2}\right) /\left(2-x_{1}^{2}-y_{1}^{2}\right)\right) .
\end{aligned}
$$

Again eliminate divisions using \mathbf{P}^{2} : only $3 \mathbf{M}+4 \mathbf{S}$.
Much faster than addition. Useful: many doublings in E

Save multiplications by eliminating common subexpressions:
$A=Z_{1} \cdot Z_{2} ; B=A^{2} ;$
$C=X_{1} \cdot X_{2}$;
$D=Y_{1} \cdot Y_{2}$;
$E=d \cdot C \cdot D$;
$F=B-E ; G=B+E$;
$X_{3}=A \cdot F \cdot\left(X_{1} \cdot Y_{2}+Y_{1} \cdot X_{2}\right)$;
$Y_{3}=A \cdot G \cdot(D-C)$;
$Z_{3}=F \cdot G$.
Cost: $11 \mathbf{M}+\mathbf{1 S}+1 \mathbf{D}$.
Can do better: $10 \mathrm{M}+1 \mathbf{S}+1 \mathbf{D}$.

Faster doubling

$$
\begin{aligned}
& \left(x_{1}, y_{1}\right)+\left(x_{1}, y_{1}\right)= \\
& \left(\left(x_{1} y_{1}+y_{1} x_{1}\right) /\left(1+d x_{1} x_{1} y_{1} y_{1}\right),\right. \\
& \left.\left(y_{1} y_{1}-x_{1} x_{1}\right) /\left(1-d x_{1} x_{1} y_{1} y_{1}\right)\right)= \\
& \left(\left(2 x_{1} y_{1}\right) /\left(1+d x_{1}^{2} y_{1}^{2}\right),\right. \\
& \left.\left(y_{1}^{2}-x_{1}^{2}\right) /\left(1-d x_{1}^{2} y_{1}^{2}\right)\right) . \\
& x_{1}^{2}+y_{1}^{2}=1+d x_{1}^{2} y_{1}^{2} \text { so } \\
& \left(x_{1}, y_{1}\right)+\left(x_{1}, y_{1}\right)= \\
& \left(\left(2 x_{1} y_{1}\right) /\left(x_{1}^{2}+y_{1}^{2}\right),\right. \\
& \left.\left(y_{1}^{2}-x_{1}^{2}\right) /\left(2-x_{1}^{2}-y_{1}^{2}\right)\right) .
\end{aligned}
$$

Again eliminate divisions using \mathbf{P}^{2} : only $3 \mathbf{M}+4 \mathbf{S}$.
Much faster than addition.
Useful: many doublings in ECC.

Itiplications by ing common essions:

$$
\begin{aligned}
& Z_{2} ; B=A^{2} ; \\
& X_{2} ; \\
& Y_{2} ; \\
& C \cdot D ; \\
& -E ; G=B+E ; \\
& \cdot F \cdot\left(X_{1} \cdot Y_{2}+Y_{1} \cdot X_{2}\right) ; \\
& G \cdot(D-C) ; \\
& \cdot G
\end{aligned}
$$

$\mathbf{M}+1 \mathbf{S}+1 \mathbf{D}$
better: $10 \mathrm{M}+1 \mathbf{S}+1 \mathrm{D}$.

Faster doubling

$$
\begin{aligned}
& \left(x_{1}, y_{1}\right)+\left(x_{1}, y_{1}\right)= \\
& \left(\left(x_{1} y_{1}+y_{1} x_{1}\right) /\left(1+d x_{1} x_{1} y_{1} y_{1}\right),\right. \\
& \left.\left(y_{1} y_{1}-x_{1} x_{1}\right) /\left(1-d x_{1} x_{1} y_{1} y_{1}\right)\right)= \\
& \left(\left(2 x_{1} y_{1}\right) /\left(1+d x_{1}^{2} y_{1}^{2}\right),\right. \\
& \left.\left(y_{1}^{2}-x_{1}^{2}\right) /\left(1-d x_{1}^{2} y_{1}^{2}\right)\right) . \\
& x_{1}^{2}+y_{1}^{2}=1+d x_{1}^{2} y_{1}^{2} \text { so } \\
& \left(x_{1}, y_{1}\right)+\left(x_{1}, y_{1}\right)= \\
& \left(\left(2 x_{1} y_{1}\right) /\left(x_{1}^{2}+y_{1}^{2}\right),\right. \\
& \left.\left(y_{1}^{2}-x_{1}^{2}\right) /\left(2-x_{1}^{2}-y_{1}^{2}\right)\right) .
\end{aligned}
$$

More ad
Dual ad $\left(x_{1}, y_{1}\right)$ $\left(\left(x_{1} y_{1}\right)\right.$ $\left(x_{1} y_{1}\right.$
Low deg
Warning Is this re Most EC

Again eliminate divisions using \mathbf{P}^{2} : only $3 \mathbf{M}+4 \mathbf{S}$.
Much faster than addition.
Useful: many doublings in ECC.
ns by

1D.
$\mathbf{M}+1 \mathbf{S}+1 \mathbf{D}$.
$B+E$;
$\left.Y_{2}+Y_{1} \cdot X_{2}\right) ;$
C);

Faster doubling

$$
\begin{aligned}
& \left(x_{1}, y_{1}\right)+\left(x_{1}, y_{1}\right)= \\
& \left(\left(x_{1} y_{1}+y_{1} x_{1}\right) /\left(1+d x_{1} x_{1} y_{1} y_{1}\right),\right. \\
& \left.\left(y_{1} y_{1}-x_{1} x_{1}\right) /\left(1-d x_{1} x_{1} y_{1} y_{1}\right)\right)= \\
& \left(\left(2 x_{1} y_{1}\right) /\left(1+d x_{1}^{2} y_{1}^{2}\right),\right. \\
& \left.\left(y_{1}^{2}-x_{1}^{2}\right) /\left(1-d x_{1}^{2} y_{1}^{2}\right)\right) . \\
& x_{1}^{2}+y_{1}^{2}=1+d x_{1}^{2} y_{1}^{2} \text { so } \\
& \left(x_{1}, y_{1}\right)+\left(x_{1}, y_{1}\right)= \\
& \left(\left(2 x_{1} y_{1}\right) /\left(x_{1}^{2}+y_{1}^{2}\right),\right. \\
& \left.\left(y_{1}^{2}-x_{1}^{2}\right) /\left(2-x_{1}^{2}-y_{1}^{2}\right)\right) .
\end{aligned}
$$

Again eliminate divisions using \mathbf{P}^{2} : only $3 \mathbf{M}+4 \mathbf{S}$.
Much faster than addition.
Useful: many doublings in ECC.

More addition stra
Dual addition forn

$$
\begin{array}{r}
\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right) \\
\left(\left(x_{1} y_{1}+x_{2} y_{2}\right) /(x\right. \\
\left(x_{1} y_{1}-x_{2} y_{2}\right) /(x \\
\text { Low degree, no ne }
\end{array}
$$

Warning: fails for Is this really "addi Most EC formulas

Faster doubling

$$
\begin{aligned}
& \left(x_{1}, y_{1}\right)+\left(x_{1}, y_{1}\right)= \\
& \left(\left(x_{1} y_{1}+y_{1} x_{1}\right) /\left(1+d x_{1} x_{1} y_{1} y_{1}\right),\right. \\
& \left.\left(y_{1} y_{1}-x_{1} x_{1}\right) /\left(1-d x_{1} x_{1} y_{1} y_{1}\right)\right)= \\
& \left(\left(2 x_{1} y_{1}\right) /\left(1+d x_{1}^{2} y_{1}^{2}\right),\right. \\
& \left.\left(y_{1}^{2}-x_{1}^{2}\right) /\left(1-d x_{1}^{2} y_{1}^{2}\right)\right) . \\
& x_{1}^{2}+y_{1}^{2}=1+d x_{1}^{2} y_{1}^{2} \text { so } \\
& \left(x_{1}, y_{1}\right)+\left(x_{1}, y_{1}\right)= \\
& \left(\left(2 x_{1} y_{1}\right) /\left(x_{1}^{2}+y_{1}^{2}\right),\right. \\
& \left.\left(y_{1}^{2}-x_{1}^{2}\right) /\left(2-x_{1}^{2}-y_{1}^{2}\right)\right) .
\end{aligned}
$$

Again eliminate divisions using \mathbf{P}^{2} : only $3 \mathbf{M}+4 \mathbf{S}$.

Much faster than addition.
Useful: many doublings in ECC.

More addition strategies

Dual addition formula:

$$
\begin{aligned}
& \left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)= \\
& \left(\left(x_{1} y_{1}+x_{2} y_{2}\right) /\left(x_{1} x_{2}+y_{1} ?\right.\right. \\
& \left(x_{1} y_{1}-x_{2} y_{2}\right) /\left(x_{1} y_{2}-x_{2} ?\right.
\end{aligned}
$$

Low degree, no need for d.
Warning: fails for doubling! Is this really "addition"?
Most EC formulas have failu

Faster doubling

$$
\begin{aligned}
& \left(x_{1}, y_{1}\right)+\left(x_{1}, y_{1}\right)= \\
& \left(\left(x_{1} y_{1}+y_{1} x_{1}\right) /\left(1+d x_{1} x_{1} y_{1} y_{1}\right),\right. \\
& \left.\left(y_{1} y_{1}-x_{1} x_{1}\right) /\left(1-d x_{1} x_{1} y_{1} y_{1}\right)\right)= \\
& \left(\left(2 x_{1} y_{1}\right) /\left(1+d x_{1}^{2} y_{1}^{2}\right),\right. \\
& \left.\left(y_{1}^{2}-x_{1}^{2}\right) /\left(1-d x_{1}^{2} y_{1}^{2}\right)\right) . \\
& x_{1}^{2}+y_{1}^{2}=1+d x_{1}^{2} y_{1}^{2} \text { so } \\
& \left(x_{1}, y_{1}\right)+\left(x_{1}, y_{1}\right)= \\
& \left(\left(2 x_{1} y_{1}\right) /\left(x_{1}^{2}+y_{1}^{2}\right),\right. \\
& \left.\left(y_{1}^{2}-x_{1}^{2}\right) /\left(2-x_{1}^{2}-y_{1}^{2}\right)\right) .
\end{aligned}
$$

Again eliminate divisions using \mathbf{P}^{2} : only $3 \mathbf{M}+4 \mathbf{S}$.
Much faster than addition.
Useful: many doublings in ECC.

More addition strategies

Dual addition formula:

$$
\begin{aligned}
& \left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)= \\
& \left(\left(x_{1} y_{1}+x_{2} y_{2}\right) /\left(x_{1} x_{2}+y_{1} y_{2}\right),\right. \\
& \left.\left(x_{1} y_{1}-x_{2} y_{2}\right) /\left(x_{1} y_{2}-x_{2} y_{1}\right)\right) . \\
& \text { Low degree, no need for } d \text {. }
\end{aligned}
$$

Warning: fails for doubling! Is this really "addition"?
Most EC formulas have failures.

Faster doubling

$$
\begin{aligned}
& \left(x_{1}, y_{1}\right)+\left(x_{1}, y_{1}\right)= \\
& \left(\left(x_{1} y_{1}+y_{1} x_{1}\right) /\left(1+d x_{1} x_{1} y_{1} y_{1}\right),\right. \\
& \left.\left(y_{1} y_{1}-x_{1} x_{1}\right) /\left(1-d x_{1} x_{1} y_{1} y_{1}\right)\right)= \\
& \left(\left(2 x_{1} y_{1}\right) /\left(1+d x_{1}^{2} y_{1}^{2}\right),\right. \\
& \left.\left(y_{1}^{2}-x_{1}^{2}\right) /\left(1-d x_{1}^{2} y_{1}^{2}\right)\right) . \\
& x_{1}^{2}+y_{1}^{2}=1+d x_{1}^{2} y_{1}^{2} \text { so } \\
& \left(x_{1}, y_{1}\right)+\left(x_{1}, y_{1}\right)= \\
& \left(\left(2 x_{1} y_{1}\right) /\left(x_{1}^{2}+y_{1}^{2}\right),\right. \\
& \left.\left(y_{1}^{2}-x_{1}^{2}\right) /\left(2-x_{1}^{2}-y_{1}^{2}\right)\right) .
\end{aligned}
$$

Again eliminate divisions using \mathbf{P}^{2} : only $3 \mathbf{M}+4 \mathbf{S}$.
Much faster than addition.
Useful: many doublings in ECC.

More addition strategies

Dual addition formula:

$$
\begin{aligned}
& \left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)= \\
& \left(\left(x_{1} y_{1}+x_{2} y_{2}\right) /\left(x_{1} x_{2}+y_{1} y_{2}\right),\right. \\
& \left.\left(x_{1} y_{1}-x_{2} y_{2}\right) /\left(x_{1} y_{2}-x_{2} y_{1}\right)\right) \text {. } \\
& \text { Low degree, no need for } d \text {. }
\end{aligned}
$$

Warning: fails for doubling! Is this really "addition"?
Most EC formulas have failures.
More coordinate systems:
Inverted: $x=Z / X, y=Z / Y$.
Extended: $x=X / Z, y=Y / T$.
Completed: $x=X / Z, y=Y / Z$,
$x y=T / Z$.

oubling

$+\left(x_{1}, y_{1}\right)=$
$\left.y_{1} x_{1}\right) /\left(1+d x_{1} x_{1} y_{1} y_{1}\right)$,
$\left.\left.x_{1} x_{1}\right) /\left(1-d x_{1} x_{1} y_{1} y_{1}\right)\right)=$ $/\left(1+d x_{1}^{2} y_{1}^{2}\right)$
$\left.) /\left(1-d x_{1}^{2} y_{1}^{2}\right)\right)$
$=1+d x_{1}^{2} y_{1}^{2}$ so
$+\left(x_{1}, y_{1}\right)=$
$/\left(x_{1}^{2}+y_{1}^{2}\right)$
$\left.) /\left(2-x_{1}^{2}-y_{1}^{2}\right)\right)$
iminate divisions
: only $3 \mathrm{M}+4 \mathrm{~S}$
ster than addition.
many doublings in ECC.

More addition strategies

Dual addition formula:

$$
\begin{aligned}
& \left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)= \\
& \left(\left(x_{1} y_{1}+x_{2} y_{2}\right) /\left(x_{1} x_{2}+y_{1} y_{2}\right),\right. \\
& \left.\left(x_{1} y_{1}-x_{2} y_{2}\right) /\left(x_{1} y_{2}-x_{2} y_{1}\right)\right) \text {. } \\
& \text { Low degree, no need for } d \text {. }
\end{aligned}
$$

Warning: fails for doubling!
Is this really "addition"?
Most EC formulas have failures.
More coordinate systems:
Inverted: $x=Z / X, y=Z / Y$.
Extended: $x=X / Z, y=Y / T$.
Completed: $x=X / Z, y=Y / Z$,
$x y=T / Z$.

More ell
Edwards

Easiest

 elliptic cGeometı are Edw

Algebrai more ell

Every oc
expresse
$v^{2}=u^{3}$
Warning different

More addition strategies

Dual addition formula:

$$
\begin{aligned}
& \left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)= \\
& \left(\left(x_{1} y_{1}+x_{2} y_{2}\right) /\left(x_{1} x_{2}+y_{1} y_{2}\right)\right. \\
& \left.\left(x_{1} y_{1}-x_{2} y_{2}\right) /\left(x_{1} y_{2}-x_{2} y_{1}\right)\right)
\end{aligned}
$$

Low degree, no need for d.
Warning: fails for doubling!
Is this really "addition"?
Most EC formulas have failures.
More coordinate systems:
Inverted: $x=Z / X, y=Z / Y$.
Extended: $x=X / Z, y=Y / T$.
Completed: $x=X / Z, y=Y / Z$,
$x y=T / Z$.

More elliptic curve
Edwards curves ar Easiest way to unc elliptic curves is E

Geometrically, all are Edwards curve

Algebraically, more elliptic curve Every odd-char cu expressed as Weie $v^{2}=u^{3}+a_{2} u^{2}+$

Warning: "Weiers different meaning

More addition strategies

Dual addition formula:

$$
\begin{aligned}
& \left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)= \\
& \left(\left(x_{1} y_{1}+x_{2} y_{2}\right) /\left(x_{1} x_{2}+y_{1} y_{2}\right)\right. \\
& \left.\left(x_{1} y_{1}-x_{2} y_{2}\right) /\left(x_{1} y_{2}-x_{2} y_{1}\right)\right)
\end{aligned}
$$

Low degree, no need for d.
Warning: fails for doubling!
Is this really "addition"?
Most EC formulas have failures.
More coordinate systems:
Inverted: $x=Z / X, y=Z / Y$.
Extended: $x=X / Z, y=Y / T$.
Completed: $x=X / Z, y=Y / Z$,
$x y=T / Z$.

More elliptic curves

Edwards curves are elliptic. Easiest way to understand elliptic curves is Edwards.

Geometrically, all elliptic cur are Edwards curves.

Algebraically, more elliptic curves exist.

Every odd-char curve can be expressed as Weierstrass cur $v^{2}=u^{3}+a_{2} u^{2}+a_{4} u+a_{6}$

Warning: "Weierstrass" has different meaning in char 2.

More addition strategies

Dual addition formula:

$$
\begin{aligned}
& \left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)= \\
& \left(\left(x_{1} y_{1}+x_{2} y_{2}\right) /\left(x_{1} x_{2}+y_{1} y_{2}\right)\right. \\
& \left.\left(x_{1} y_{1}-x_{2} y_{2}\right) /\left(x_{1} y_{2}-x_{2} y_{1}\right)\right)
\end{aligned}
$$

Low degree, no need for d.
Warning: fails for doubling! Is this really "addition"?
Most EC formulas have failures.
More coordinate systems: Inverted: $x=Z / X, y=Z / Y$.
Extended: $x=X / Z, y=Y / T$.
Completed: $x=X / Z, y=Y / Z$,
$x y=T / Z$.

More elliptic curves

Edwards curves are elliptic.
Easiest way to understand elliptic curves is Edwards.

Geometrically, all elliptic curves are Edwards curves.

Algebraically, more elliptic curves exist.

Every odd-char curve can be expressed as Weierstrass curve $v^{2}=u^{3}+a_{2} u^{2}+a_{4} u+a_{6}$.

Warning: "Weierstrass" has different meaning in char 2.

dition strategies

dition formula:
$+\left(x_{2}, y_{2}\right)=$ $\left.-x_{2} y_{2}\right) /\left(x_{1} x_{2}+y_{1} y_{2}\right)$, $\left.\left.-x_{2} y_{2}\right) /\left(x_{1} y_{2}-x_{2} y_{1}\right)\right)$. ree, no need for d.
fails for doubling!
eally "addition"?
formulas have failures.
ordinate systems:

$$
x=Z / X, y=Z / Y
$$

$\mathrm{d}: x=X / Z, y=Y / T$.
ed: $x=X / Z, y=Y / Z$,
Z

More elliptic curves

Edwards curves are elliptic. Easiest way to understand elliptic curves is Edwards.

Geometrically, all elliptic curves are Edwards curves.

Algebraically, more elliptic curves exist.

Every odd-char curve can be expressed as Weierstrass curve $v^{2}=u^{3}+a_{2} u^{2}+a_{4} u+a_{6}$.

Warning: "Weierstrass" has different meaning in char 2.

Addition
$v^{2}=u^{3}$

Slope λ
Note th
tegies

qula:

$=$
$\left.{ }_{1} x_{2}+y_{1} y_{2}\right)$
$\left.\left.{ }_{1} y_{2}-x_{2} y_{1}\right)\right)$
ed for d.
doubling!
tion"?
have failures.
ystems:
$X, y=Z / Y$.
$Z, y=Y / T$.
$X / Z, y=Y / Z$,

More elliptic curves

Edwards curves are elliptic.
Easiest way to understand elliptic curves is Edwards.

Geometrically, all elliptic curves are Edwards curves.

Algebraically,
more elliptic curves exist.
Every odd-char curve can be expressed as Weierstrass curve $v^{2}=u^{3}+a_{2} u^{2}+a_{4} u+a_{6}$.

Warning: "Weierstrass" has different meaning in char 2.

Addition on Weier
$v^{2}=u^{3}+u^{2}+u$

Slope $\lambda=\left(v_{2}-v\right.$ Note that $u_{1} \neq u$

More elliptic curves

Edwards curves are elliptic.
Easiest way to understand elliptic curves is Edwards.

Geometrically, all elliptic curves are Edwards curves.

Algebraically, more elliptic curves exist.

Every odd-char curve can be expressed as Weierstrass curve $v^{2}=u^{3}+a_{2} u^{2}+a_{4} u+a_{6}$.

Warning: "Weierstrass" has different meaning in char 2.

Addition on Weierstrass cur
$v^{2}=u^{3}+u^{2}+u+1$

Slope $\lambda=\left(v_{2}-v_{1}\right) /\left(u_{2}-\right.$ Note that $u_{1} \neq u_{2}$.

More elliptic curves

Edwards curves are elliptic.
Easiest way to understand elliptic curves is Edwards.

Geometrically, all elliptic curves are Edwards curves.

Algebraically, more elliptic curves exist.

Every odd-char curve can be expressed as Weierstrass curve $v^{2}=u^{3}+a_{2} u^{2}+a_{4} u+a_{6}$.

Warning: "Weierstrass" has different meaning in char 2.

Addition on Weierstrass curve
$v^{2}=u^{3}+u^{2}+u+1$

Slope $\lambda=\left(v_{2}-v_{1}\right) /\left(u_{2}-u_{1}\right)$. Note that $u_{1} \neq u_{2}$.

iptic curves

curves are elliptic. way to understand urves is Edwards.
ically, all elliptic curves ards curves.
cally,
ptic curves exist.
Id-char curve can be d as Weierstrass curve
$+a_{2} u^{2}+a_{4} u+a_{6}$.
"Weierstrass" has meaning in char 2.

Addition on Weierstrass curve
$v^{2}=u^{3}+u^{2}+u+1$

Slope $\lambda=\left(v_{2}-v_{1}\right) /\left(u_{2}-u_{1}\right)$.
Note that $u_{1} \neq u_{2}$.

Doublin
$v^{2}=u^{3}$

Slope λ

Addition on Weierstrass curve

$v^{2}=u^{3}+u^{2}+u+1$

Slope $\lambda=\left(v_{2}-v_{1}\right) /\left(u_{2}-u_{1}\right)$. Note that $u_{1} \neq u_{2}$.

Doubling on Weie
$v^{2}=u^{3}-u$

Slope $\lambda=\left(3 u_{1}^{2}-\right.$

Addition on Weierstrass curve $v^{2}=u^{3}+u^{2}+u+1$

Slope $\lambda=\left(v_{2}-v_{1}\right) /\left(u_{2}-u_{1}\right)$.
Note that $u_{1} \neq u_{2}$.

Doubling on Weierstrass cur
$v^{2}=u^{3}-u$

Slope $\lambda=\left(3 u_{1}^{2}-1\right) /\left(2 v_{1}\right)$.

Addition on Weierstrass curve

$$
v^{2}=u^{3}+u^{2}+u+1
$$

Slope $\lambda=\left(v_{2}-v_{1}\right) /\left(u_{2}-u_{1}\right)$. Note that $u_{1} \neq u_{2}$.

Doubling on Weierstrass curve
$v^{2}=u^{3}-u$

Slope $\lambda=\left(3 u_{1}^{2}-1\right) /\left(2 v_{1}\right)$.
on Weierstrass curve
$+u^{2}+u+1$

$=\left(v_{2}-v_{1}\right) /\left(u_{2}-u_{1}\right)$.
at $u_{1} \neq u_{2}$.

Doubling on Weierstrass curve
$v^{2}=u^{3}-u$

Slope $\lambda=\left(3 u_{1}^{2}-1\right) /\left(2 v_{1}\right)$.

In most
$\left(u_{1}, v_{1}\right)$
$\left(u_{3}, v_{3}\right)$
$\left(\lambda^{2}-u_{1}\right.$
$u_{1} \neq u_{2}$
$\lambda=\left(v_{2}\right.$
Total co
$\left(u_{1}, v_{1}\right)$
"doublin
$\lambda=(3 u$
Total co
Also har
$\left(u_{1}, v_{1}\right)$ inputs a

- $P_{1}+P_{2}$
1)/($\left.u_{2}-u_{1}\right)$.

Doubling on Weierstrass curve

$v^{2}=u^{3}-u$

Slope $\lambda=\left(3 u_{1}^{2}-1\right) /\left(2 v_{1}\right)$.

In most cases
$\left(u_{1}, v_{1}\right)+\left(u_{2}, v_{2}\right)$ $\left(u_{3}, v_{3}\right)$ where $(u$ $\left(\lambda^{2}-u_{1}-u_{2}, \lambda\left(u_{1}\right.\right.$
$u_{1} \neq u_{2}$, "additio
$\lambda=\left(v_{2}-v_{1}\right) /\left(u_{2}\right.$
Total cost $\mathbf{I I}+2 \mathbf{N}$
$\left(u_{1}, v_{1}\right)=\left(u_{2}, v_{2}\right.$ "doubling" (alert!
$\lambda=\left(3 u_{1}^{2}+2 a_{2} u_{1}\right.$
Total cost $\mathbf{I} \mathbf{I}+2 \mathbf{\Omega}$
Also handle some
$\left(u_{1}, v_{1}\right)=\left(u_{2},-\imath\right.$ inputs at ∞.

Doubling on Weierstrass curve

$v^{2}=u^{3}-u$

Slope $\lambda=\left(3 u_{1}^{2}-1\right) /\left(2 v_{1}\right)$.

In most cases
$\left(u_{1}, v_{1}\right)+\left(u_{2}, v_{2}\right)=$
$\left(u_{3}, v_{3}\right)$ where $\left(u_{3}, v_{3}\right)=$
$\left(\lambda^{2}-u_{1}-u_{2}, \lambda\left(u_{1}-u_{3}\right)-v_{1}\right.$
$u_{1} \neq u_{2}$, "addition" (alert!)
$\lambda=\left(v_{2}-v_{1}\right) /\left(u_{2}-u_{1}\right)$.
Total cost $\mathbf{1 I}+2 \mathbf{M}+1 \mathbf{S}$.
$\left(u_{1}, v_{1}\right)=\left(u_{2}, v_{2}\right)$ and $v_{1} \neq$ "doubling" (alert!):
$\lambda=\left(3 u_{1}^{2}+2 a_{2} u_{1}+a_{4}\right) /(2$
Total cost $\mathbf{I I}+2 \mathbf{M}+2 \mathbf{S}$.
Also handle some exception $\left(u_{1}, v_{1}\right)=\left(u_{2},-v_{2}\right)$;
inputs at ∞.

Doubling on Weierstrass curve

$v^{2}=u^{3}-u$

Slope $\lambda=\left(3 u_{1}^{2}-1\right) /\left(2 v_{1}\right)$.

In most cases
$\left(u_{1}, v_{1}\right)+\left(u_{2}, v_{2}\right)=$
$\left(u_{3}, v_{3}\right)$ where $\left(u_{3}, v_{3}\right)=$ $\left(\lambda^{2}-u_{1}-u_{2}, \lambda\left(u_{1}-u_{3}\right)-v_{1}\right)$.
$u_{1} \neq u_{2}$, "addition" (alert!):
$\lambda=\left(v_{2}-v_{1}\right) /\left(u_{2}-u_{1}\right)$.
Total cost $\mathbf{1 I}+2 \mathbf{M}+\mathbf{1 S}$.
$\left(u_{1}, v_{1}\right)=\left(u_{2}, v_{2}\right)$ and $v_{1} \neq 0$, "doubling" (alert!):
$\lambda=\left(3 u_{1}^{2}+2 a_{2} u_{1}+a_{4}\right) /\left(2 v_{1}\right)$.
Total cost $\mathbf{I I}+2 \mathbf{M}+2 \mathbf{S}$.
Also handle some exceptions:
$\left(u_{1}, v_{1}\right)=\left(u_{2},-v_{2}\right)$;
inputs at ∞.

on Weierstrass curve

$-u$

$=\left(3 u_{1}^{2}-1\right) /\left(2 v_{1}\right)$.

In most cases
$\left(u_{1}, v_{1}\right)+\left(u_{2}, v_{2}\right)=$
$\left(u_{3}, v_{3}\right)$ where $\left(u_{3}, v_{3}\right)=$
$\left(\lambda^{2}-u_{1}-u_{2}, \lambda\left(u_{1}-u_{3}\right)-v_{1}\right)$.
$u_{1} \neq u_{2}$, "addition" (alert!):
$\lambda=\left(v_{2}-v_{1}\right) /\left(u_{2}-u_{1}\right)$.
Total cost $\mathbf{1} \mathbf{I}+2 \mathbf{M}+\mathbf{1 S}$.
$\left(u_{1}, v_{1}\right)=\left(u_{2}, v_{2}\right)$ and $v_{1} \neq 0$, "doubling" (alert!):
$\lambda=\left(3 u_{1}^{2}+2 a_{2} u_{1}+a_{4}\right) /\left(2 v_{1}\right)$.
Total cost $\mathbf{1 I}+2 \mathbf{M}+2 \mathbf{S}$.
Also handle some exceptions:
$\left(u_{1}, v_{1}\right)=\left(u_{2},-v_{2}\right)$;
inputs at ∞.

Biration
Starting on $x^{2}+$

Define
$B=4 /($
$u=(1$
$v=u / x$
(Skip a
$v^{2}=u^{3}$
Maps Ec
Compat
Easily in $x=u / \imath$
1)/($\left.2 v_{1}\right)$.

In most cases
$\left(u_{1}, v_{1}\right)+\left(u_{2}, v_{2}\right)=$
$\left(u_{3}, v_{3}\right)$ where $\left(u_{3}, v_{3}\right)=$
$\left(\lambda^{2}-u_{1}-u_{2}, \lambda\left(u_{1}-u_{3}\right)-v_{1}\right)$.
$u_{1} \neq u_{2}$, "addition" (alert!):
$\lambda=\left(v_{2}-v_{1}\right) /\left(u_{2}-u_{1}\right)$.
Total cost $\mathbf{1 I}+2 \mathbf{M}+\mathbf{1 S}$.
$\left(u_{1}, v_{1}\right)=\left(u_{2}, v_{2}\right)$ and $v_{1} \neq 0$, "doubling" (alert!):
$\lambda=\left(3 u_{1}^{2}+2 a_{2} u_{1}+a_{4}\right) /\left(2 v_{1}\right)$.
Total cost $\mathbf{1 I}+2 \mathbf{M}+2 \mathbf{S}$.
Also handle some exceptions:
$\left(u_{1}, v_{1}\right)=\left(u_{2},-v_{2}\right)$;
inputs at ∞.

Birational equivale
Starting from poir on $x^{2}+y^{2}=1+$

Define $A=2(1+$ $B=4 /(1-d)$;
$u=(1+y) /(B(1$
$v=u / x=(1+y$
(Skip a few excep
$v^{2}=u^{3}+(A / B) ?$
Maps Edwards to
Compatible with
Easily invert this r
$x=u / v, y=(B \imath$

In most cases
$\left(u_{1}, v_{1}\right)+\left(u_{2}, v_{2}\right)=$
$\left(u_{3}, v_{3}\right)$ where $\left(u_{3}, v_{3}\right)=$
$\left(\lambda^{2}-u_{1}-u_{2}, \lambda\left(u_{1}-u_{3}\right)-v_{1}\right)$.
$u_{1} \neq u_{2}$, "addition" (alert!):
$\lambda=\left(v_{2}-v_{1}\right) /\left(u_{2}-u_{1}\right)$.
Total cost $\mathbf{1 I}+2 \mathbf{M}+\mathbf{1 S}$.
$\left(u_{1}, v_{1}\right)=\left(u_{2}, v_{2}\right)$ and $v_{1} \neq 0$,
"doubling" (alert!):
$\lambda=\left(3 u_{1}^{2}+2 a_{2} u_{1}+a_{4}\right) /\left(2 v_{1}\right)$.
Total cost $\mathbf{1 I}+2 \mathbf{M}+2 \mathbf{S}$.
Also handle some exceptions:
$\left(u_{1}, v_{1}\right)=\left(u_{2},-v_{2}\right)$;
inputs at ∞.

Birational equivalence

Starting from point (x, y) on $x^{2}+y^{2}=1+d x^{2} y^{2}$:

Define $A=2(1+d) /(1-d$ $B=4 /(1-d)$;
$u=(1+y) /(B(1-y))$,
$v=u / x=(1+y) /(B x(1-$
(Skip a few exceptional poir
$v^{2}=u^{3}+(A / B) u^{2}+(1 / B$
Maps Edwards to Weierstras
Compatible with point addit
Easily invert this map:
$x=u / v, y=(B u-1) /(B$

In most cases
$\left(u_{1}, v_{1}\right)+\left(u_{2}, v_{2}\right)=$
$\left(u_{3}, v_{3}\right)$ where $\left(u_{3}, v_{3}\right)=$
$\left(\lambda^{2}-u_{1}-u_{2}, \lambda\left(u_{1}-u_{3}\right)-v_{1}\right)$.
$u_{1} \neq u_{2}$, "addition" (alert!):
$\lambda=\left(v_{2}-v_{1}\right) /\left(u_{2}-u_{1}\right)$.
Total cost $\mathbf{I I}+2 \mathbf{M}+1 \mathbf{S}$.
$\left(u_{1}, v_{1}\right)=\left(u_{2}, v_{2}\right)$ and $v_{1} \neq 0$, "doubling" (alert!):
$\lambda=\left(3 u_{1}^{2}+2 a_{2} u_{1}+a_{4}\right) /\left(2 v_{1}\right)$.
Total cost $\mathbf{I I}+2 \mathbf{M}+2 \mathbf{S}$.
Also handle some exceptions:
$\left(u_{1}, v_{1}\right)=\left(u_{2},-v_{2}\right)$;
inputs at ∞.

Birational equivalence

Starting from point (x, y)
on $x^{2}+y^{2}=1+d x^{2} y^{2}$:
Define $A=2(1+d) /(1-d)$,
$B=4 /(1-d)$;
$u=(1+y) /(B(1-y))$,
$v=u / x=(1+y) /(B x(1-y))$.
(Skip a few exceptional points.)
$v^{2}=u^{3}+(A / B) u^{2}+\left(1 / B^{2}\right) u$.
Maps Edwards to Weierstrass.
Compatible with point addition!
Easily invert this map:
$x=u / v, y=(B u-1) /(B u+1)$.
cases
$+\left(u_{2}, v_{2}\right)=$
where $\left(u_{3}, v_{3}\right)=$
$\left.-u_{2}, \lambda\left(u_{1}-u_{3}\right)-v_{1}\right)$.
"addition" (alert!):
$\left.-v_{1}\right) /\left(u_{2}-u_{1}\right)$
st $1 \mathbf{I}+2 \mathbf{M}+1 S$.
$=\left(u_{2}, v_{2}\right)$ and $v_{1} \neq 0$, g" (alert!):
$\left.{ }_{1}^{2}+2 a_{2} u_{1}+a_{4}\right) /\left(2 v_{1}\right)$.
st $1 \mathbf{I}+2 \mathbf{M}+2 \mathbf{S}$.
dle some exceptions:
$=\left(u_{2},-v_{2}\right)$;

Birational equivalence

Starting from point (x, y)
on $x^{2}+y^{2}=1+d x^{2} y^{2}$:
Define $A=2(1+d) /(1-d)$,
$B=4 /(1-d)$;
$u=(1+y) /(B(1-y))$,
$v=u / x=(1+y) /(B x(1-y))$.
(Skip a few exceptional points.)
$v^{2}=u^{3}+(A / B) u^{2}+\left(1 / B^{2}\right) u$.
Maps Edwards to Weierstrass.
Compatible with point addition!
Easily invert this map:
$x=u / v, y=(B u-1) /(B u+1)$.

Some hi
There ar elliptic-c 1984 (p ECM, th of factor 1984 (p) and ind 1984 (p Elliptic-c

Bosma,
Chudno elliptic-c

Birational equivalence

Starting from point (x, y)
on $x^{2}+y^{2}=1+d x^{2} y^{2}$:
Define $A=2(1+d) /(1-d)$,
$B=4 /(1-d)$;
$u=(1+y) /(B(1-y))$,
$v=u / x=(1+y) /(B x(1-y))$.
(Skip a few exceptional points.)
$v^{2}=u^{3}+(A / B) u^{2}+\left(1 / B^{2}\right) u$.
Maps Edwards to Weierstrass.
Compatible with point addition!
Easily invert this map:
$x=u / v, y=(B u-1) /(B u+1)$.

Some history
There are many p elliptic-curve com

1984 (published 1 ECM, the ellipticof factoring intege

1984 (published 1 and independently 1984 (published 1 Elliptic-curve cryp

Bosma, Goldwasse Chudnovsky-Chud elliptic-curve prim

Birational equivalence

Starting from point (x, y)
on $x^{2}+y^{2}=1+d x^{2} y^{2}$:
Define $A=2(1+d) /(1-d)$,
$B=4 /(1-d)$;
$u=(1+y) /(B(1-y))$,
$v=u / x=(1+y) /(B x(1-y))$.
(Skip a few exceptional points.)
$v^{2}=u^{3}+(A / B) u^{2}+\left(1 / B^{2}\right) u$.
Maps Edwards to Weierstrass.
Compatible with point addition!
Easily invert this map:
$x=u / v, y=(B u-1) /(B u+1)$.

Some history

There are many perspective elliptic-curve computations.

1984 (published 1987) Lenst ECM, the elliptic-curve met of factoring integers.

1984 (published 1985) Mille and independently
1984 (published 1987) Kobl Elliptic-curve cryptography. Bosma, Goldwasser-Kilian, Chudnovsky-Chudnovsky, A elliptic-curve primality provi

Birational equivalence

Starting from point (x, y)
on $x^{2}+y^{2}=1+d x^{2} y^{2}$:
Define $A=2(1+d) /(1-d)$,
$B=4 /(1-d)$;
$u=(1+y) /(B(1-y))$,
$v=u / x=(1+y) /(B x(1-y))$.
(Skip a few exceptional points.)
$v^{2}=u^{3}+(A / B) u^{2}+\left(1 / B^{2}\right) u$.
Maps Edwards to Weierstrass.
Compatible with point addition!
Easily invert this map:
$x=u / v, y=(B u-1) /(B u+1)$.

Some history

There are many perspectives on elliptic-curve computations.

1984 (published 1987) Lenstra:
ECM, the elliptic-curve method of factoring integers.

1984 (published 1985) Miller, and independently 1984 (published 1987) Koblitz:
Elliptic-curve cryptography.
Bosma, Goldwasser-Kilian, Chudnovsky-Chudnovsky, Atkin: elliptic-curve primality proving.

al equivalence

from point (x, y)
$y^{2}=1+d x^{2} y^{2}$:
$A=2(1+d) /(1-d)$,
$1-d)$;
$y) /(B(1-y))$,
$=(1+y) /(B x(1-y))$.
few exceptional points.)
$+(A / B) u^{2}+\left(1 / B^{2}\right) u$.
dwards to Weierstrass.
ble with point addition!
vert this map:
$y=(B u-1) /(B u+1)$.

Some history

There are many perspectives on elliptic-curve computations.

1984 (published 1987) Lenstra:
ECM, the elliptic-curve method of factoring integers.

1984 (published 1985) Miller, and independently
1984 (published 1987) Koblitz:
Elliptic-curve cryptography.
Bosma, Goldwasser-Kilian,
Chudnovsky-Chudnovsky, Atkin: elliptic-curve primality proving.

The Edv
1761 Eu introduc for $x^{2}+$ the "lem

2007 Ed many Cu
Theoren all ellipt

2007 Be Edwards for $x^{2}+$ and give
ence
t (x, y)
$d x^{2} y^{2}$
d)/($1-d$),
$-y)$),
)/(Bx(1-y)). tional points.)
$u^{2}+\left(1 / B^{2}\right) u$.
Weierstrass.
oint addition!
nap:
(-1)/(Bu+1).

Some history

There are many perspectives on elliptic-curve computations.

1984 (published 1987) Lenstra:
ECM, the elliptic-curve method of factoring integers.

1984 (published 1985) Miller, and independently
1984 (published 1987) Koblitz:
Elliptic-curve cryptography.
Bosma, Goldwasser-Kilian, Chudnovsky-Chudnovsky, Atkin: elliptic-curve primality proving.

The Edwards pers
1761 Euler, 1866 introduced an add for $x^{2}+y^{2}=1-$ the "lemniscatic e

2007 Edwards gen many curves $x^{2}+$
Theorem: have nc all elliptic curves c

2007 Bernstein-La Edwards addition for $x^{2}+y^{2}=1+$ and gives new EC

Some history

There are many perspectives on elliptic-curve computations.

1984 (published 1987) Lenstra: ECM, the elliptic-curve method of factoring integers.

1984 (published 1985) Miller, and independently
1984 (published 1987) Koblitz: Elliptic-curve cryptography.

Bosma, Goldwasser-Kilian, Chudnovsky-Chudnovsky, Atkin: elliptic-curve primality proving.

The Edwards perspective is
1761 Euler, 1866 Gauss introduced an addition law for $x^{2}+y^{2}=1-x^{2} y^{2}$, the "lemniscatic elliptic curv

2007 Edwards generalized tc many curves $x^{2}+y^{2}=1+c$ Theorem: have now obtaine all elliptic curves over $\overline{\mathbf{Q}}$.

2007 Bernstein-Lange:
Edwards addition law is com for $x^{2}+y^{2}=1+d x^{2} y^{2}$ if and gives new ECC speed re

Some history

There are many perspectives on elliptic-curve computations.

1984 (published 1987) Lenstra:
ECM, the elliptic-curve method of factoring integers.

1984 (published 1985) Miller, and independently 1984 (published 1987) Koblitz: Elliptic-curve cryptography.

Bosma, Goldwasser-Kilian, Chudnovsky-Chudnovsky, Atkin: elliptic-curve primality proving.

The Edwards perspective is new!
1761 Euler, 1866 Gauss introduced an addition law for $x^{2}+y^{2}=1-x^{2} y^{2}$, the "lemniscatic elliptic curve."

2007 Edwards generalized to many curves $x^{2}+y^{2}=1+c^{4} x^{2} y^{2}$.
Theorem: have now obtained all elliptic curves over $\overline{\mathbf{Q}}$.

2007 Bernstein-Lange:
Edwards addition law is complete for $x^{2}+y^{2}=1+d x^{2} y^{2}$ if $d \neq ■$; and gives new ECC speed records.
e many perspectives on urve computations.
ublished 1987) Lenstra:
e elliptic-curve method ing integers.
ublished 1985) Miller, pendently ablished 1987) Koblitz: zurve cryptography. Goldwasser-Kilian, sky-Chudnovsky, Atkin: urve primality proving.

The Edwards perspective is new!
1761 Euler, 1866 Gauss
introduced an addition law
for $x^{2}+y^{2}=1-x^{2} y^{2}$,
the "lemniscatic elliptic curve."
2007 Edwards generalized to many curves $x^{2}+y^{2}=1+c^{4} x^{2} y^{2}$.
Theorem: have now obtained all elliptic curves over $\overline{\mathbf{Q}}$.

2007 Bernstein-Lange:
Edwards addition law is complete for $x^{2}+y^{2}=1+d x^{2} y^{2}$ if $d \neq ■$; and gives new ECC speed records.

Represer
Crypto elliptic c

Given n divisioncomput "in 26 lo but can
"It appe represen in the fo Each po triple (x to the p

The Edwards perspective is new!
1761 Euler, 1866 Gauss
introduced an addition law
for $x^{2}+y^{2}=1-x^{2} y^{2}$,
the "lemniscatic elliptic curve."
2007 Edwards generalized to many curves $x^{2}+y^{2}=1+c^{4} x^{2} y^{2}$.
Theorem: have now obtained all elliptic curves over $\overline{\mathbf{Q}}$.

2007 Bernstein-Lange:
Edwards addition law is complete for $x^{2}+y^{2}=1+d x^{2} y^{2}$ if $d \neq \boldsymbol{\square}$; and gives new ECC speed records.

Representing curv
Crypto 1985, Mille elliptic curves in c

Given $n \in \mathbf{Z}, P \in$ division-polynomia computes $n P \in E$ "in $26 \log _{2} n$ mult but can do better! "It appears to be represent the poin in the following fo Each point is repr triple (x, y, z) whi to the point $\left(x / z^{2}\right.$

The Edwards perspective is new!
1761 Euler, 1866 Gauss
introduced an addition law
for $x^{2}+y^{2}=1-x^{2} y^{2}$,
the "lemniscatic elliptic curve."
2007 Edwards generalized to many curves $x^{2}+y^{2}=1+c^{4} x^{2} y^{2}$.
Theorem: have now obtained all elliptic curves over $\overline{\mathbf{Q}}$.

2007 Bernstein-Lange:
Edwards addition law is complete for $x^{2}+y^{2}=1+d x^{2} y^{2}$ if $d \neq \boldsymbol{\square}$; and gives new ECC speed records.

Representing curve points

Crypto 1985, Miller, "Use o elliptic curves in cryptograpl

Given $n \in \mathbf{Z}, P \in E\left(\mathbf{F}_{q}\right)$, division-polynomial recurren computes $n P \in E\left(\mathbf{F}_{q}\right)$
"in $26 \log _{2} n$ multiplications but can do better!
"It appears to be best to represent the points on the in the following form:
Each point is represented by triple (x, y, z) which corresp to the point $\left(x / z^{2}, y / z^{3}\right)$."

The Edwards perspective is new!
1761 Euler, 1866 Gauss
introduced an addition law
for $x^{2}+y^{2}=1-x^{2} y^{2}$,
the "lemniscatic elliptic curve."
2007 Edwards generalized to many curves $x^{2}+y^{2}=1+c^{4} x^{2} y^{2}$.
Theorem: have now obtained all elliptic curves over $\overline{\mathbf{Q}}$.

2007 Bernstein-Lange:
Edwards addition law is complete for $x^{2}+y^{2}=1+d x^{2} y^{2}$ if $d \neq \boldsymbol{\square}$; and gives new ECC speed records.

Representing curve points

Crypto 1985, Miller, "Use of elliptic curves in cryptography":

Given $n \in \mathbf{Z}, P \in E\left(\mathbf{F}_{q}\right)$, division-polynomial recurrence computes $n P \in E\left(\mathbf{F}_{q}\right)$ "in $26 \log _{2} n$ multiplications"; but can do better!
"It appears to be best to represent the points on the curve in the following form:
Each point is represented by the triple (x, y, z) which corresponds to the point $\left(x / z^{2}, y / z^{3}\right)$."
vards perspective is new!
ler, 1866 Gauss
ed an addition law
$y^{2}=1-x^{2} y^{2}$,
niscatic elliptic curve."
wards generalized to
rves $x^{2}+y^{2}=1+c^{4} x^{2} y^{2}$.
?: have now obtained
ic curves over $\overline{\mathbf{Q}}$.
rnstein-Lange:
addition law is complete $y^{2}=1+d x^{2} y^{2}$ if $d \neq \square$;
s new ECC speed records.

Representing curve points

Crypto 1985, Miller, "Use of elliptic curves in cryptography":

Given $n \in \mathbf{Z}, P \in E\left(\mathbf{F}_{q}\right)$, division-polynomial recurrence computes $n P \in E\left(\mathbf{F}_{q}\right)$ "in $26 \log _{2} n$ multiplications";
but can do better!
"It appears to be best to represent the points on the curve in the following form:
Each point is represented by the triple (x, y, z) which corresponds to the point $\left(x / z^{2}, y / z^{3}\right)$."

1986 Ch
"Sequen generate
in forma and new and fact
"The crı the choi of an al where cc are the

Most im ADD is DBL is
pective is new!
Gauss
ition law
$x^{2} y^{2}$,
lliptic curve."
eralized to
$y^{2}=1+c^{4} x^{2} y^{2}$.
w obtained
ver $\overline{\mathbf{Q}}$.
nge:
law is complete
$d x^{2} y^{2}$ if $d \neq \square ;$
C speed records.

Representing curve points

Crypto 1985, Miller, "Use of elliptic curves in cryptography":

Given $n \in \mathbf{Z}, P \in E\left(\mathbf{F}_{q}\right)$,
division-polynomial recurrence
computes $n P \in E\left(\mathbf{F}_{q}\right)$
"in $26 \log _{2} n$ multiplications";
but can do better!
"It appears to be best to represent the points on the curve in the following form:
Each point is represented by the triple (x, y, z) which corresponds to the point $\left(x / z^{2}, y / z^{3}\right)$."

1986 Chudnovsky "Sequences of nur generated by addi in formal groups and new primality and factorization
"The crucial probl the choice of the of an algebraic grc where computatio are the least time

Most important cc ADD is $P, Q \mapsto P$ DBL is $P \mapsto 2 P$.

Representing curve points

Crypto 1985, Miller, "Use of elliptic curves in cryptography":

Given $n \in \mathbf{Z}, P \in E\left(\mathbf{F}_{q}\right)$, division-polynomial recurrence computes $n P \in E\left(\mathbf{F}_{q}\right)$
"in $26 \log _{2} n$ multiplications";
but can do better!
"It appears to be best to represent the points on the curve in the following form:
Each point is represented by the triple (x, y, z) which corresponds to the point $\left(x / z^{2}, y / z^{3}\right)$."

1986 Chudnovsky-Chudnovs
"Sequences of numbers
generated by addition
in formal groups
and new primality and factorization tests":
"The crucial problem becom the choice of the model of an algebraic group variety where computations $\bmod p$ are the least time consumin

Most important computatio ADD is $P, Q \mapsto P+Q$. DBL is $P \mapsto 2 P$.

Representing curve points

Crypto 1985, Miller, "Use of elliptic curves in cryptography":

Given $n \in \mathbf{Z}, P \in E\left(\mathbf{F}_{q}\right)$, division-polynomial recurrence computes $n P \in E\left(\mathbf{F}_{q}\right)$ "in $26 \log _{2} n$ multiplications"; but can do better!
"It appears to be best to represent the points on the curve in the following form:
Each point is represented by the triple (x, y, z) which corresponds to the point $\left(x / z^{2}, y / z^{3}\right)$."

1986 Chudnovsky-Chudnovsky, "Sequences of numbers
generated by addition
in formal groups
and new primality and factorization tests":
"The crucial problem becomes the choice of the model of an algebraic group variety, where computations $\bmod p$ are the least time consuming."

Most important computations:
ADD is $P, Q \mapsto P+Q$.
DBL is $P \mapsto 2 P$.

ting curve points

985, Miller, "Use of urves in cryptography":
$\in \mathbf{Z}, P \in E\left(\mathbf{F}_{q}\right)$,
polynomial recurrence
$n P \in E\left(\mathbf{F}_{q}\right)$
$g_{2} n$ multiplications";
do better!
ars to be best to
t the points on the curve llowing form:
int is represented by the
y, z) which corresponds oint $\left(x / z^{2}, y / z^{3}\right)$."

1986 Chudnovsky-Chudnovsky,
"Sequences of numbers
generated by addition
in formal groups
and new primality
and factorization tests":
"The crucial problem becomes the choice of the model of an algebraic group variety, where computations mod p are the least time consuming."

Most important computations:
ADD is $P, Q \mapsto P+Q$.
DBL is $P \mapsto 2 P$.
"It is pr models lying in for othe coordina increasir 4 basic

Short W
$y^{2}=x^{3}$
Jacobi i
$s^{2}+c^{2}$
Jacobi
Hessian:

er, "Use of

ryptography":
$E\left(\mathbf{F}_{q}\right)$,
I recurrence
$\left(\mathbf{F}_{q}\right)$
iplications";
best to
ts on the curve rm:
esented by the
ch corresponds
, $\left.y / z^{3}\right)$."

1986 Chudnovsky-Chudnovsky, "Sequences of numbers
generated by addition
in formal groups
and new primality and factorization tests":
"The crucial problem becomes the choice of the model of an algebraic group variety, where computations mod p are the least time consuming."

Most important computations:
ADD is $P, Q \mapsto P+Q$.
DBL is $P \mapsto 2 P$.
"It is preferable to models of elliptic lying in low-dimen for otherwise the coordinates and ol increasing. This li 4 basic models of

Short Weierstrass:
$y^{2}=x^{3}+a x+b$.
Jacobi intersectior $s^{2}+c^{2}=1, a s^{2}$ Jacobi quartic: y^{2} Hessian: $x^{3}+y^{3}$

1986 Chudnovsky-Chudnovsky,
"Sequences of numbers
generated by addition
in formal groups
and new primality
and factorization tests":
"The crucial problem becomes the choice of the model of an algebraic group variety, where computations mod p are the least time consuming."

Most important computations:
ADD is $P, Q \mapsto P+Q$.
DBL is $P \mapsto 2 P$.
"It is preferable to use models of elliptic curves lying in low-dimensional spa for otherwise the number of coordinates and operations increasing. This limits us.. 4 basic models of elliptic cu

Short Weierstrass:
$y^{2}=x^{3}+a x+b$.
Jacobi intersection:
$s^{2}+c^{2}=1, a s^{2}+d^{2}=1$.
Jacobi quartic: $y^{2}=x^{4}+2 a$
Hessian: $x^{3}+y^{3}+1=3 d x$

1986 Chudnovsky-Chudnovsky, "Sequences of numbers generated by addition in formal groups and new primality and factorization tests":
"The crucial problem becomes the choice of the model of an algebraic group variety, where computations mod p are the least time consuming."

Most important computations:
ADD is $P, Q \mapsto P+Q$.
DBL is $P \mapsto 2 P$.
"It is preferable to use models of elliptic curves lying in low-dimensional spaces, for otherwise the number of coordinates and operations is increasing. This limits us ... to 4 basic models of elliptic curves."

Short Weierstrass:
$y^{2}=x^{3}+a x+b$.
Jacobi intersection:
$s^{2}+c^{2}=1, a s^{2}+d^{2}=1$.
Jacobi quartic: $y^{2}=x^{4}+2 a x^{2}+1$.
Hessian: $x^{3}+y^{3}+1=3 d x y$.
udnovsky-Chudnovsky, ces of numbers
d by addition
| groups
primality
orization tests" :
ucial problem becomes ce of the model zebraic group variety, mputations $\bmod p$ east time consuming."
portant computations:
$P, Q \mapsto P+Q$.
$P \mapsto 2 P$.
"It is preferable to use models of elliptic curves lying in low-dimensional spaces, for otherwise the number of coordinates and operations is increasing. This limits us ... to 4 basic models of elliptic curves."

Short Weierstrass:
$y^{2}=x^{3}+a x+b$.
Jacobi intersection:
$s^{2}+c^{2}=1, a s^{2}+d^{2}=1$.
Jacobi quartic: $y^{2}=x^{4}+2 a x^{2}+1$.
Hessian: $x^{3}+y^{3}+1=3 d x y$.

Optimiz

For "tra on $y^{2}=$ 1986 Ch state ex 10M for Consequ $\approx(10 \mid$ to comp using sli of scalar

Notatior
-Chudnovsky, nbers
tion
ests" :
em becomes nodel
up variety,
ns $\bmod p$
consuming."
omputations:
$+Q$.
"It is preferable to use models of elliptic curves
lying in low-dimensional spaces, for otherwise the number of coordinates and operations is increasing. This limits us ... to 4 basic models of elliptic curves."

Short Weierstrass:
$y^{2}=x^{3}+a x+b$.
Jacobi intersection:
$s^{2}+c^{2}=1, a s^{2}+d^{2}=1$.
Jacobi quartic: $y^{2}=x^{4}+2 a x^{2}+1$.
Hessian: $x^{3}+y^{3}+1=3 d x y$.

Optimizing Jacobi
For "traditional"
on $y^{2}=x^{3}+a x$ 1986 Chudnovskystate explicit form 10M for DBL; 16I

Consequence:
$\approx\left(10 \lg n+16 \frac{\mathrm{l}}{\lg }\right.$
to compute n, P using sliding-wind of scalar multiplic

Notation: $\lg =\log$
"It is preferable to use models of elliptic curves lying in low-dimensional spaces, for otherwise the number of coordinates and operations is increasing. This limits us ... to
4 basic models of elliptic curves."
Short Weierstrass:
$y^{2}=x^{3}+a x+b$.
Jacobi intersection:
$s^{2}+c^{2}=1, a s^{2}+d^{2}=1$.
Jacobi quartic: $y^{2}=x^{4}+2 a x^{2}+1$.
Hessian: $x^{3}+y^{3}+1=3 d x y$.

Optimizing Jacobian coordir
For "traditional" $\left(X / Z^{2}, Y /\right.$. on $y^{2}=x^{3}+a x+b$:
1986 Chudnovsky-Chudnovs state explicit formulas using 10M for DBL; 16M for AD

Consequence:
$\approx\left(10 \lg n+16 \frac{\lg n}{\lg \lg n}\right) \mathbf{M}$
to compute $n, P \mapsto n P$ using sliding-windows methc of scalar multiplication.

Notation: $\lg =\log _{2}$.
"It is preferable to use models of elliptic curves lying in low-dimensional spaces, for otherwise the number of coordinates and operations is increasing. This limits us ... to 4 basic models of elliptic curves."

Short Weierstrass:
$y^{2}=x^{3}+a x+b$.
Jacobi intersection:
$s^{2}+c^{2}=1, a s^{2}+d^{2}=1$.
Jacobi quartic: $y^{2}=x^{4}+2 a x^{2}+1$.
Hessian: $x^{3}+y^{3}+1=3 d x y$.

Optimizing Jacobian coordinates

For "traditional" $\left(X / Z^{2}, Y / Z^{3}\right)$
on $y^{2}=x^{3}+a x+b$:
1986 Chudnovsky-Chudnovsky
state explicit formulas using 10M for DBL; 16M for ADD.

Consequence:
$\approx\left(10 \lg n+16 \frac{\lg n}{\lg \lg n}\right) \mathbf{M}$
to compute $n, P \mapsto n P$ using sliding-windows method of scalar multiplication.

Notation: $\lg =\log _{2}$.
eferable to use of elliptic curves low-dimensional spaces, wise the number of tes and operations is
g. This limits us ... to nodels of elliptic curves."

eierstrass:

$+a x+b$.
tersection:
$=1, a s^{2}+d^{2}=1$.
uartic: $y^{2}=x^{4}+2 a x^{2}+1$.

$$
x^{3}+y^{3}+1=3 d x y
$$

Optimizing Jacobian coordinates

For "traditional" $\left(X / Z^{2}, Y / Z^{3}\right)$
on $y^{2}=x^{3}+a x+b$:
1986 Chudnovsky-Chudnovsky
state explicit formulas using
10M for DBL; 16M for ADD.
Consequence:
$\approx\left(10 \lg n+16 \frac{\lg n}{\lg \lg n}\right) \mathbf{M}$
to compute $n, P \mapsto n P$
using sliding-windows method of scalar multiplication.

Notation: $\mathrm{lg}=\log _{2}$.

Squaring
Here are
$S=4$
$M=$
$T=1$
$X_{3}=$
$Y_{3}=$
$Z_{3}=$
Total co
\mathbf{S} is the
D is the
The squ
X_{1}^{2}, Y_{1}^{2},

use

curves

sional spaces, number of
jerations is mits us . . . to elliptic curves."
$-d^{2}=1$
$=x^{4}+2 a x^{2}+1$
$+1=3 d x y$

Optimizing Jacobian coordinates

For "traditional" $\left(X / Z^{2}, Y / Z^{3}\right)$
on $y^{2}=x^{3}+a x+b$:
1986 Chudnovsky-Chudnovsky
state explicit formulas using 10M for DBL; 16M for ADD.

Consequence:
$\approx\left(10 \lg n+16 \frac{\lg n}{\lg \lg n}\right) \mathbf{M}$
to compute $n, P \mapsto n P$
using sliding-windows method of scalar multiplication.

Notation: $\lg =\log _{2}$.

Squaring is faster
Here are the DBL

$$
\begin{aligned}
& S=4 X_{1} \cdot Y_{1}^{2} \\
& M=3 X_{1}^{2}+a Z \\
& T=M^{2}-2 S \\
& X_{3}=T \\
& Y_{3}=M \cdot(S-7 \\
& Z_{3}=2 Y_{1} \cdot Z_{1}
\end{aligned}
$$

Total cost $3 \mathrm{M}+6$
\mathbf{S} is the cost of sq
D is the cost of m
The squarings pro $X_{1}^{2}, Y_{1}^{2}, Y_{1}^{4}, Z_{1}^{2}, Z_{1}^{2}$

Optimizing Jacobian coordinates

For "traditional" $\left(X / Z^{2}, Y / Z^{3}\right)$
on $y^{2}=x^{3}+a x+b$:
1986 Chudnovsky-Chudnovsky
state explicit formulas using 10M for DBL; 16M for ADD.

Consequence:
$\approx\left(10 \lg n+16 \frac{\lg n}{\lg \lg n}\right) \mathbf{M}$
to compute $n, P \mapsto n P$
using sliding-windows method of scalar multiplication.

Notation: $\lg =\log _{2}$.

Squaring is faster than \mathbf{M}.
Here are the DBL formulas:

$$
\begin{aligned}
& S=4 X_{1} \cdot Y_{1}^{2} \\
& M=3 X_{1}^{2}+a Z_{1}^{4} ; \\
& T=M^{2}-2 S \\
& X_{3}=T \\
& Y_{3}=M \cdot(S-T)-8 Y_{1}^{4} ; \\
& Z_{3}=2 Y_{1} \cdot Z_{1} .
\end{aligned}
$$

Total cost $3 \mathbf{M}+6 \mathbf{S}+1 \mathbf{D} n$ \mathbf{S} is the cost of squaring in
D is the cost of multiplying
The squarings produce $X_{1}^{2}, Y_{1}^{2}, Y_{1}^{4}, Z_{1}^{2}, Z_{1}^{4}, M^{2}$.

Optimizing Jacobian coordinates

For "traditional" $\left(X / Z^{2}, Y / Z^{3}\right)$
on $y^{2}=x^{3}+a x+b$:
1986 Chudnovsky-Chudnovsky
state explicit formulas using 10M for DBL; 16M for ADD.

Consequence:
$\approx\left(10 \lg n+16 \frac{\lg n}{\lg \lg n}\right) \mathbf{M}$
to compute $n, P \mapsto n P$ using sliding-windows method of scalar multiplication.

Notation: $\lg =\log _{2}$.

Squaring is faster than \mathbf{M}.
Here are the DBL formulas:

$$
\begin{aligned}
& S=4 X_{1} \cdot Y_{1}^{2} \\
& M=3 X_{1}^{2}+a Z_{1}^{4} \\
& T=M^{2}-2 S \\
& X_{3}=T \\
& Y_{3}=M \cdot(S-T)-8 Y_{1}^{4} \\
& Z_{3}=2 Y_{1} \cdot Z_{1}
\end{aligned}
$$

Total cost $3 \mathbf{M}+6 \mathbf{S}+1 \mathbf{D}$ where \mathbf{S} is the cost of squaring in \mathbf{F}_{q},
\mathbf{D} is the cost of multiplying by a.
The squarings produce $X_{1}^{2}, Y_{1}^{2}, Y_{1}^{4}, Z_{1}^{2}, Z_{1}^{4}, M^{2}$.

ing Jacobian coordinates

ditional" $\left(X / Z^{2}, Y / Z^{3}\right)$
$x^{3}+a x+b:$
udnovsky-Chudnovsky
olicit formulas using
DBL; 16M for ADD.
ence:
$\left.5 n+16 \frac{\lg n}{\lg \lg n}\right) \mathbf{M}$
ute $n, P \mapsto n P$
ding-windows method multiplication.
: $\lg =\log _{2}$

Squaring is faster than \mathbf{M}.
Here are the DBL formulas:

$$
\begin{aligned}
& S=4 X_{1} \cdot Y_{1}^{2} \\
& M=3 X_{1}^{2}+a Z_{1}^{4} \\
& T=M^{2}-2 S \\
& X_{3}=T \\
& Y_{3}=M \cdot(S-T)-8 Y_{1}^{4} \\
& Z_{3}=2 Y_{1} \cdot Z_{1}
\end{aligned}
$$

Total cost $3 \mathbf{M}+6 \mathbf{S}+1 \mathbf{D}$ where \mathbf{S} is the cost of squaring in \mathbf{F}_{q},
\mathbf{D} is the cost of multiplying by a.
The squarings produce $X_{1}^{2}, Y_{1}^{2}, Y_{1}^{4}, Z_{1}^{2}, Z_{1}^{4}, M^{2}$.

Most EC
curves t
Curve-cl 1986 Ch

Can elin by choo

But "it to choos If $a=$
$=3\left(X_{1}\right.$
Replace
Now DB
$\left.X / Z^{2}, Y / Z^{3}\right)$
$+b:$
-Chudnovsky
ulas using \checkmark for ADD.
ows method ation.

Squaring is faster than \mathbf{M}.
Here are the DBL formulas:

$$
\begin{aligned}
& S=4 X_{1} \cdot Y_{1}^{2} \\
& M=3 X_{1}^{2}+a Z_{1}^{4} \\
& T=M^{2}-2 S \\
& X_{3}=T \\
& Y_{3}=M \cdot(S-T)-8 Y_{1}^{4} \\
& Z_{3}=2 Y_{1} \cdot Z_{1} .
\end{aligned}
$$

Total cost $3 \mathbf{M}+6 \mathbf{S}+1 \mathbf{D}$ where
\mathbf{S} is the cost of squaring in \mathbf{F}_{q},
\mathbf{D} is the cost of multiplying by a.
The squarings produce $X_{1}^{2}, Y_{1}^{2}, Y_{1}^{4}, Z_{1}^{2}, Z_{1}^{4}, M^{2}$.

Most ECC standar curves that make

Curve-choice advic 1986 Chudnovsky-

Can eliminate the by choosing curve

But "it is even sm to choose curve w

If $a=-3$ then M
$=3\left(X_{1}-Z_{1}^{2}\right) \cdot(\lambda$
Replace 2 S with 1
Now DBL costs 4

Squaring is faster than \mathbf{M}.
Here are the DBL formulas:

$$
\begin{aligned}
& S=4 X_{1} \cdot Y_{1}^{2} \\
& M=3 X_{1}^{2}+a Z_{1}^{4} \\
& T=M^{2}-2 S \\
& X_{3}=T \\
& Y_{3}=M \cdot(S-T)-8 Y_{1}^{4} \\
& Z_{3}=2 Y_{1} \cdot Z_{1}
\end{aligned}
$$

Total cost $3 \mathbf{M}+6 \mathbf{S}+1 \mathbf{D}$ where \mathbf{S} is the cost of squaring in \mathbf{F}_{q},
\mathbf{D} is the cost of multiplying by a.
The squarings produce $X_{1}^{2}, Y_{1}^{2}, Y_{1}^{4}, Z_{1}^{2}, Z_{1}^{4}, M^{2}$.

Most ECC standards choose curves that make formulas f

Curve-choice advice from 1986 Chudnovsky-Chudnovs

Can eliminate the 1D
by choosing curve with $a=$
But "it is even smarter" to choose curve with $a=-$ If $a=-3$ then $M=3\left(X_{1}^{2}\right.$ $=3\left(X_{1}-Z_{1}^{2}\right) \cdot\left(X_{1}+Z_{1}^{2}\right)$. Replace $2 \mathbf{S}$ with 1 M .

Now DBL costs $4 \mathrm{M}+4 \mathrm{~S}$.

Squaring is faster than \mathbf{M}.
Here are the DBL formulas:

$$
\begin{aligned}
& S=4 X_{1} \cdot Y_{1}^{2} \\
& M=3 X_{1}^{2}+a Z_{1}^{4} \\
& T=M^{2}-2 S \\
& X_{3}=T \\
& Y_{3}=M \cdot(S-T)-8 Y_{1}^{4} \\
& Z_{3}=2 Y_{1} \cdot Z_{1}
\end{aligned}
$$

Total cost $3 \mathbf{M}+6 \mathbf{S}+1 \mathbf{D}$ where \mathbf{S} is the cost of squaring in \mathbf{F}_{q},
\mathbf{D} is the cost of multiplying by a.
The squarings produce $X_{1}^{2}, Y_{1}^{2}, Y_{1}^{4}, Z_{1}^{2}, Z_{1}^{4}, M^{2}$.

Most ECC standards choose curves that make formulas faster.

Curve-choice advice from 1986 Chudnovsky-Chudnovsky:

Can eliminate the 1D
by choosing curve with $a=1$.
But "it is even smarter" to choose curve with $a=-3$.

If $a=-3$ then $M=3\left(X_{1}^{2}-Z_{1}^{4}\right)$
$=3\left(X_{1}-Z_{1}^{2}\right) \cdot\left(X_{1}+Z_{1}^{2}\right)$.
Replace $2 \mathbf{S}$ with 1 M .
Now DBL costs $4 \mathrm{M}+4 \mathrm{~S}$.
$\%$ is faster than \mathbf{M}.
the DBL formulas:
$X_{1} \cdot Y_{1}^{2}$;
$3 X_{1}^{2}+a Z_{1}^{4}$;
$\Lambda^{2}-2 S$;
T;
$M \cdot(S-T)-8 Y_{1}^{4}$;
$2 Y_{1} \cdot Z_{1}$.
st $3 \mathbf{M}+6 \mathbf{S}+1 \mathbf{D}$ where cost of squaring in \mathbf{F}_{q}, cost of multiplying by a.
arings produce
$Y_{1}^{4}, Z_{1}^{2}, Z_{1}^{4}, M^{2}$.

Most ECC standards choose curves that make formulas faster.

Curve-choice advice from
1986 Chudnovsky-Chudnovsky:
Can eliminate the 1D
by choosing curve with $a=1$.
But "it is even smarter"
to choose curve with $a=-3$.
If $a=-3$ then $M=3\left(X_{1}^{2}-Z_{1}^{4}\right)$
$=3\left(X_{1}-Z_{1}^{2}\right) \cdot\left(X_{1}+Z_{1}^{2}\right)$.
Replace $2 \mathbf{S}$ with 1 M .
Now DBL costs $4 \mathrm{M}+4 \mathrm{~S}$.

2001 Be
$3 \mathrm{M}+5$
$11 \mathrm{M}+$
How? E instead compute DBL for computi

Same id but have to elimir

than \mathbf{M}.

formulas:

4 ;

г) $-8 Y_{1}^{4}$;

S + 1D where uaring in \mathbf{F}_{q}, ultiplying by a.
duce
M^{2}.

Most ECC standards choose
curves that make formulas faster.
Curve-choice advice from
1986 Chudnovsky-Chudnovsky:
Can eliminate the 1D
by choosing curve with $a=1$.
But "it is even smarter" to choose curve with $a=-3$.

If $a=-3$ then $M=3\left(X_{1}^{2}-Z_{1}^{4}\right)$
$=3\left(X_{1}-Z_{1}^{2}\right) \cdot\left(X_{1}+Z_{1}^{2}\right)$.
Replace $2 \mathbf{S}$ with 1 M .
Now DBL costs $4 \mathrm{M}+4 \mathrm{~S}$.

2001 Bernstein:
$3 \mathrm{M}+5 \mathrm{~S}$ for DBL
$11 M+5 S$ for $A D$
How? Easy S - N instead of comput compute $\left(Y_{1}+Z_{1}\right.$ DBL formulas wer computing Y_{1}^{2} anc

Same idea for the but have to scale to eliminate divisic
here F_{q}, by a.

Most ECC standards choose curves that make formulas faster.

Curve-choice advice from 1986 Chudnovsky-Chudnovsky:

Can eliminate the 1D
by choosing curve with $a=1$.
But "it is even smarter"
to choose curve with $a=-3$.
If $a=-3$ then $M=3\left(X_{1}^{2}-Z_{1}^{4}\right)$
$=3\left(X_{1}-Z_{1}^{2}\right) \cdot\left(X_{1}+Z_{1}^{2}\right)$.
Replace $2 \mathbf{S}$ with 1 M .
Now DBL costs $4 \mathrm{M}+4 \mathrm{~S}$.

2001 Bernstein:
$3 M+5 S$ for DBL.
$11 M+5 S$ for ADD.
How? Easy \mathbf{S} - \mathbf{M} tradeoff: instead of computing $2 Y_{1} \cdot \bar{Z}$ compute $\left(Y_{1}+Z_{1}\right)^{2}-Y_{1}^{2}-$ DBL formulas were already computing Y_{1}^{2} and Z_{1}^{2}.

Same idea for the ADD forn but have to scale X, Y, Z to eliminate divisions by 2 .

Most ECC standards choose curves that make formulas faster.

Curve-choice advice from 1986 Chudnovsky-Chudnovsky:

Can eliminate the 1D by choosing curve with $a=1$.

But "it is even smarter" to choose curve with $a=-3$.

If $a=-3$ then $M=3\left(X_{1}^{2}-Z_{1}^{4}\right)$
$=3\left(X_{1}-Z_{1}^{2}\right) \cdot\left(X_{1}+Z_{1}^{2}\right)$.
Replace $2 \mathbf{S}$ with 1 M .
Now DBL costs $4 \mathrm{M}+4 \mathrm{~S}$.

2001 Bernstein:
$3 \mathrm{M}+5 \mathbf{S}$ for DBL.
$11 M+5 S$ for ADD.
How? Easy S - M tradeoff: instead of computing $2 Y_{1} \cdot Z_{1}$, compute $\left(Y_{1}+Z_{1}\right)^{2}-Y_{1}^{2}-Z_{1}^{2}$.
DBL formulas were already computing Y_{1}^{2} and Z_{1}^{2}.

Same idea for the ADD formulas, but have to scale X, Y, Z to eliminate divisions by 2 .

C standards choose nat make formulas faster.
noice advice from
udnovsky-Chudnovsky:
inate the 1D
sing curve with $a=1$.
is even smarter"
e curve with $a=-3$.
3 then $M=3\left(X_{1}^{2}-Z_{1}^{4}\right)$
$\left.-Z_{1}^{2}\right) \cdot\left(X_{1}+Z_{1}^{2}\right)$
2 S with 1 M .
L costs $4 M+4 S$.

2001 Bernstein:
$3 \mathrm{M}+5 \mathrm{~S}$ for DBL.
$11 \mathrm{M}+5 \mathrm{~S}$ for ADD.
How? Easy S - M tradeoff: instead of computing $2 Y_{1} \cdot Z_{1}$,
compute $\left(Y_{1}+Z_{1}\right)^{2}-Y_{1}^{2}-Z_{1}^{2}$.
DBL formulas were already
computing Y_{1}^{2} and Z_{1}^{2}.
Same idea for the ADD formulas, but have to scale X, Y, Z to eliminate divisions by 2 .

ADD for
$U_{1}=X_{1}$
$S_{1}=Y_{1}$
many m
1986 Ch
"We sug addition $(X, Y, Z$

Disadva Allocate Pay 1S

Advanta Save 2S
Save 1S
ds choose formulas faster.
ce from
-Chudnovsky:
1D
with $a=1$.
arter"
ith $a=-3$.
$=3\left(X_{1}^{2}-Z_{1}^{4}\right)$
$\left.{ }_{1}+Z_{1}^{2}\right)$.
M.
$V+4 S$.

2001 Bernstein:
$3 \mathrm{M}+5 \mathrm{~S}$ for DBL.
$11 \mathrm{M}+5 \mathrm{~S}$ for ADD.
How? Easy S - M tradeoff:
instead of computing $2 Y_{1} \cdot Z_{1}$,
compute $\left(Y_{1}+Z_{1}\right)^{2}-Y_{1}^{2}-Z_{1}^{2}$.
DBL formulas were already
computing Y_{1}^{2} and Z_{1}^{2}.
Same idea for the ADD formulas, but have to scale X, Y, Z to eliminate divisions by 2 .

ADD for $y^{2}=x^{3}$
$U_{1}=X_{1} Z_{2}^{2}, U_{2}=$ $S_{1}=Y_{1} Z_{2}^{3}, S_{2}=$ many more compL

1986 Chudnovsky "We suggest to w addition formulas $\left(X, Y, Z, Z^{2}, Z^{3}\right)$.'

Disadvantages:
Allocate space for Pay $1 \mathbf{S}+1 \mathbf{M}$ in A

Advantages:
Save $2 \mathbf{S}+2 \mathbf{M}$ at
Save 1S at start o

2001 Bernstein:
aster.
ky:
1.
3.
$\left.-Z_{1}^{4}\right)$
$3 \mathrm{M}+5 \mathrm{~S}$ for DBL .
$11 \mathrm{M}+5 \mathrm{~S}$ for ADD. computing Y_{1}^{2} and Z_{1}^{2}.

How? Easy S - M tradeoff: instead of computing $2 Y_{1} \cdot Z_{1}$, compute $\left(Y_{1}+Z_{1}\right)^{2}-Y_{1}^{2}-Z_{1}^{2}$.
DBL formulas were already

Same idea for the ADD formulas, but have to scale X, Y, Z to eliminate divisions by 2 .

ADD for $y^{2}=x^{3}+a x+b:$ $U_{1}=X_{1} Z_{2}^{2}, U_{2}=X_{2} Z_{1}^{2}$,
$S_{1}=Y_{1} Z_{2}^{3}, S_{2}=Y_{2} Z_{1}^{3}$,
many more computations.
1986 Chudnovsky-Chudnovs
"We suggest to write
addition formulas involving $\left(X, Y, Z, Z^{2}, Z^{3}\right)$."

Disadvantages:
Allocate space for Z^{2}, Z^{3}.
Pay $\mathbf{1 S}+1 \mathbf{M}$ in ADD and ir
Advantages:
Save $2 \mathbf{S}+2 \mathbf{M}$ at start of A Save $1 \mathbf{S}$ at start of DBL.

2001 Bernstein:
$3 \mathrm{M}+5 \mathrm{~S}$ for DBL.
$11 M+5 S$ for ADD.
How? Easy S - M tradeoff: instead of computing $2 Y_{1} \cdot Z_{1}$, compute $\left(Y_{1}+Z_{1}\right)^{2}-Y_{1}^{2}-Z_{1}^{2}$.
DBL formulas were already computing Y_{1}^{2} and Z_{1}^{2}.

Same idea for the ADD formulas, but have to scale X, Y, Z to eliminate divisions by 2 .

ADD for $y^{2}=x^{3}+a x+b:$
$U_{1}=X_{1} Z_{2}^{2}, U_{2}=X_{2} Z_{1}^{2}$,
$S_{1}=Y_{1} Z_{2}^{3}, S_{2}=Y_{2} Z_{1}^{3}$,
many more computations.
1986 Chudnovsky-Chudnovsky:
"We suggest to write
addition formulas involving $\left(X, Y, Z, Z^{2}, Z^{3}\right)$."

Disadvantages:
Allocate space for Z^{2}, Z^{3}.
Pay $1 \mathbf{S}+1 \mathbf{M}$ in ADD and in DBL.
Advantages:
Save $2 \mathbf{S}+2 \mathrm{M}$ at start of ADD.
Save $1 \mathbf{S}$ at start of DBL.
rnstein:

5 for DBL.

SS for ADD.
asy $\mathbf{S}-\mathbf{M}$ tradeoff:
of computing $2 Y_{1} \cdot Z_{1}$,

$$
\left(Y_{1}+Z_{1}\right)^{2}-Y_{1}^{2}-Z_{1}^{2}
$$

mulas were already
ng Y_{1}^{2} and Z_{1}^{2}.
ea for the ADD formulas, to scale X, Y, Z
late divisions by 2 .

ADD for $y^{2}=x^{3}+a x+b:$
$U_{1}=X_{1} Z_{2}^{2}, U_{2}=X_{2} Z_{1}^{2}$,
$S_{1}=Y_{1} Z_{2}^{3}, S_{2}=Y_{2} Z_{1}^{3}$,
many more computations.
1986 Chudnovsky-Chudnovsky:
"We suggest to write
addition formulas involving
$\left(X, Y, Z, Z^{2}, Z^{3}\right)$."
Disadvantages:
Allocate space for Z^{2}, Z^{3}.
Pay $1 \mathbf{S}+1 \mathbf{M}$ in ADD and in DBL.
Advantages:
Save $2 \mathbf{S}+2 \mathrm{M}$ at start of ADD.
Save $1 \mathbf{S}$ at start of DBL.

1998 Co
Store po
If point also cac No cost, If point reuse Z^{2}

Best Jac includin $3 \mathrm{M}+5$
$11 \mathrm{M}+$ $10 \mathrm{M}+$
$7 \mathrm{M}+4$

ADD for $y^{2}=x^{3}+a x+b:$
$U_{1}=X_{1} Z_{2}^{2}, U_{2}=X_{2} Z_{1}^{2}$,
$S_{1}=Y_{1} Z_{2}^{3}, S_{2}=Y_{2} Z_{1}^{3}$,
many more computations.
1986 Chudnovsky-Chudnovsky:
"We suggest to write
addition formulas involving
$\left(X, Y, Z, Z^{2}, Z^{3}\right)$."
Disadvantages:
Allocate space for Z^{2}, Z^{3}.
Pay $1 \mathbf{S}+1 \mathbf{M}$ in ADD and in DBL.
Advantages:
Save $2 \mathbf{S}+2 \mathrm{M}$ at start of ADD.
Save $1 \mathbf{S}$ at start of DBL.

1998 Cohen-Miya
Store point as (X
If point is input to also cache Z^{2} and No cost, aside fro If point is input to reuse Z^{2}, Z^{3}. Sav

Best Jacobian spe including $\mathbf{S}-\mathbf{M}$ t $3 \mathbf{M}+5 \mathbf{S}$ for DBL
$11 M+5 S$ for $A D$
$10 \mathrm{M}+4 \mathrm{~S}$ for reA
$7 \mathrm{M}+4 \mathrm{~S}$ for mAD

ADD for $y^{2}=x^{3}+a x+b:$
$U_{1}=X_{1} Z_{2}^{2}, U_{2}=X_{2} Z_{1}^{2}$,
$S_{1}=Y_{1} Z_{2}^{3}, S_{2}=Y_{2} Z_{1}^{3}$,
many more computations.
1986 Chudnovsky-Chudnovsky:
"We suggest to write
addition formulas involving
$\left(X, Y, Z, Z^{2}, Z^{3}\right)$."
uulas,
Disadvantages:
Allocate space for Z^{2}, Z^{3}.
Pay $1 \mathbf{S}+1 \mathbf{M}$ in ADD and in DBL.
Advantages:
Save $2 \mathbf{S}+2 \mathrm{M}$ at start of ADD.
Save $1 \mathbf{S}$ at start of DBL.

1998 Cohen-Miyaji-Ono:
Store point as $(X: Y: Z)$. If point is input to ADD, also cache Z^{2} and Z^{3}.
No cost, aside from space. If point is input to another reuse Z^{2}, Z^{3}. Save $1 \mathbf{S}+1 \mathbf{n}$

Best Jacobian speeds today, including S - M tradeoffs:
$3 \mathbf{M}+5 \mathbf{S}$ for DBL if $a=-3$ $11 M+5 S$ for ADD.
10M + 4S for reADD.
$7 \mathrm{M}+4 \mathrm{~S}$ for mADD (i.e. Z_{2}

ADD for $y^{2}=x^{3}+a x+b:$
$U_{1}=X_{1} Z_{2}^{2}, U_{2}=X_{2} Z_{1}^{2}$,
$S_{1}=Y_{1} Z_{2}^{3}, S_{2}=Y_{2} Z_{1}^{3}$,
many more computations.
1986 Chudnovsky-Chudnovsky:
"We suggest to write
addition formulas involving
$\left(X, Y, Z, Z^{2}, Z^{3}\right)$."
Disadvantages:
Allocate space for Z^{2}, Z^{3}.
Pay $1 \mathbf{S}+1 \mathbf{M}$ in ADD and in DBL.
Advantages:
Save $2 \mathbf{S}+2 \mathbf{M}$ at start of ADD.
Save $1 \mathbf{S}$ at start of DBL.

1998 Cohen-Miyaji-Ono:
Store point as $(X: Y: Z)$.
If point is input to ADD, also cache Z^{2} and Z^{3}.
No cost, aside from space.
If point is input to another ADD, reuse Z^{2}, Z^{3}. Save $1 \mathbf{S}+1 M$!

Best Jacobian speeds today, including $\mathbf{S}-\mathbf{M}$ tradeoffs:
$3 \mathbf{M}+5 \mathbf{S}$ for DBL if $a=-3$.
$11 M+5 S$ for ADD.
$10 \mathrm{M}+4 \mathrm{~S}$ for reADD.
$7 \mathrm{M}+4 \mathrm{~S}$ for mADD (i.e. $Z_{2}=1$).
$y^{2}=x^{3}+a x+b:$
$Z_{2}^{2}, U_{2}=X_{2} Z_{1}^{2}$,
$Z_{2}^{3}, S_{2}=Y_{2} Z_{1}^{3}$,
ore computations.
udnovsky-Chudnovsky:
gest to write
formulas involving
$\left.Z^{2}, Z^{3}\right) . "$
tages:
space for Z^{2}, Z^{3}.
1 M in ADD and in DBL.
ges:
+2 M at start of ADD.
at start of DBL.

1998 Cohen-Miyaji-Ono:
Store point as ($X: Y: Z$).
If point is input to ADD,
also cache Z^{2} and Z^{3}.
No cost, aside from space.
If point is input to another ADD, reuse Z^{2}, Z^{3}. Save $1 \mathbf{S}+1 \mathbf{M}$!

Best Jacobian speeds today, including S - M tradeoffs:
$3 M+5 S$ for DBL if $a=-3$.
$11 M+5 S$ for ADD.
$10 M+4 S$ for reADD.
$7 \mathrm{M}+4 \mathrm{~S}$ for mADD (i.e. $Z_{2}=1$).

Compar curves x in projec (2007 B
$3 \mathrm{M}+4$ $10 \mathrm{M}+$ $9 \mathrm{M}+1$ Inverted (2007 B $3 \mathrm{M}+4$
$9 \mathrm{M}+1!$
$8 \mathrm{M}+1!$
Even be extendec $(2008 \mathrm{Hi}$
$+a x+b:$
$X_{2} Z_{1}^{2}$
$Y_{2} Z_{1}^{3}$
tations.
-Chudnovsky:
rite
involving
Z^{2}, Z^{3}
DD and in $D B L$.
start of ADD.
f DBL.

1998 Cohen-Miyaji-Ono:
Store point as $(X: Y: Z)$.
If point is input to ADD, also cache Z^{2} and Z^{3}.
No cost, aside from space.
If point is input to another ADD, reuse Z^{2}, Z^{3}. Save $1 \mathbf{S}+1 \mathrm{M}$!

Best Jacobian speeds today, including $\mathbf{S}-\mathbf{M}$ tradeoffs:
$3 \mathbf{M}+5 \mathbf{S}$ for DBL if $a=-3$.
$11 M+5 S$ for ADD.
10M + 4S for reADD.
$7 \mathrm{M}+4 \mathrm{~S}$ for $\mathrm{mADD}\left(\mathrm{i} . \mathrm{e} . Z_{2}=1\right.$).

Compare to speed curves $x^{2}+y^{2}=$ in projective cooro (2007 Bernstein-L $3 \mathrm{M}+4 \mathrm{~S}$ for DBL $10 \mathrm{M}+1 \mathbf{S}+1 \mathbf{D}$ $9 M+1 S+1 \mathbf{f}$ fo Inverted Edwards (2007 Bernstein-L $3 \mathrm{M}+4 \mathrm{~S}+1 \mathrm{D}$ fo $9 M+1 S+1 D$ fo $8 \mathbf{M}+1 \mathbf{S}+1 \mathbf{D}$ fo

Even better speed extended/complet (2008 Hisil-Wong-

1998 Cohen-Miyaji-Ono:
Store point as $(X: Y: Z)$.
If point is input to ADD, also cache Z^{2} and Z^{3}.
No cost, aside from space.
If point is input to another ADD, reuse Z^{2}, Z^{3}. Save $1 \mathbf{S}+1 \mathrm{M}$!

Best Jacobian speeds today, including $\mathbf{S}-\mathbf{M}$ tradeoffs:
$3 \mathbf{M}+5 \mathbf{S}$ for DBL if $a=-3$.
$11 \mathrm{M}+5 \mathrm{~S}$ for ADD.
$10 \mathrm{M}+4 \mathrm{~S}$ for reADD.
$7 \mathrm{M}+4 \mathbf{S}$ for mADD (i.e. $Z_{2}=1$).

Compare to speeds for Edwa curves $x^{2}+y^{2}=1+d x^{2} y^{2}$ in projective coordinates (2007 Bernstein-Lange): $3 \mathrm{M}+4 \mathrm{~S}$ for DBL. $10 \mathrm{M}+1 \mathbf{S}+1 \mathbf{D}$ for ADD. $9 \mathbf{M}+1 \mathbf{S}+1 \mathbf{D}$ for mADD. Inverted Edwards coordinate (2007 Bernstein-Lange):
$3 \mathrm{M}+4 \mathrm{~S}+1 \mathrm{D}$ for DBL.
$9 \mathrm{M}+1 \mathbf{S}+1 \mathrm{D}$ for ADD.
$8 \mathbf{M}+1 \mathbf{S}+1 \mathbf{D}$ for mADD.
Even better speeds from extended/completed coordin (2008 Hisil-Wong-Carter-D

1998 Cohen-Miyaji-Ono:
Store point as $(X: Y: Z)$.
If point is input to ADD, also cache Z^{2} and Z^{3}.
No cost, aside from space.
If point is input to another ADD, reuse Z^{2}, Z^{3}. Save $1 \mathrm{~S}+1 \mathrm{M}$!

Best Jacobian speeds today, including $\mathbf{S}-\mathbf{M}$ tradeoffs:
$3 \mathbf{M}+5 \mathbf{S}$ for DBL if $a=-3$.
$11 \mathrm{M}+5 \mathrm{~S}$ for ADD.
$10 \mathrm{M}+4 \mathrm{~S}$ for reADD.
$7 \mathrm{M}+4 \mathrm{~S}$ for mADD (i.e. $Z_{2}=1$).

Compare to speeds for Edwards curves $x^{2}+y^{2}=1+d x^{2} y^{2}$
in projective coordinates
(2007 Bernstein-Lange):
$3 \mathrm{M}+4 \mathrm{~S}$ for DBL.
$10 M+1 S+1 \mathbf{D}$ for ADD.
$9 \mathbf{M}+1 \mathbf{S}+1 \mathbf{D}$ for mADD.
Inverted Edwards coordinates
(2007 Bernstein-Lange):
$3 M+4 S+1 D$ for DBL.
$9 M+1 S+1 D$ for ADD.
$8 \mathbf{M}+1 \mathbf{S}+1 \mathbf{D}$ for mADD.
Even better speeds from
extended/completed coordinates (2008 Hisil-Wong-Carter-Dawson).
hen-Miyaji-Ono:
int as $(X: Y: Z)$.
is input to ADD,
he Z^{2} and Z^{3}.
aside from space.
is input to another ADD,
Z^{3}. Save $1 \mathbf{S}+1 \mathrm{M}$!
obian speeds today,
; S M tradeoffs:
for DBL if $a=-3$.
5 for ADD.
S for reADD.
for mADD (i.e. $Z_{2}=1$).

Compare to speeds for Edwards
curves $x^{2}+y^{2}=1+d x^{2} y^{2}$
in projective coordinates
(2007 Bernstein-Lange):
$3 \mathrm{M}+4 \mathrm{~S}$ for DBL.
$10 M+1 S+1 D$ for ADD.
$9 \mathbf{M}+1 \mathbf{S}+1 \mathbf{D}$ for mADD.
Inverted Edwards coordinates
(2007 Bernstein-Lange):
$3 M+4 S+1 D$ for DBL.
$y^{2}=x^{3}$
$9 M+1 S+1 \mathbf{f o r}$ ADD.
$8 \mathbf{M}+1 \mathbf{S}+1 \mathbf{D}$ for mADD.
Even better speeds from
extended/completed coordinates
(2008 Hisil-Wong-Carter-Dawson).
ji-Ono:
$: Y: Z)$.
ADD,
z^{3}.
n space.
another ADD,
e $\mathbf{1 S}+1 \mathrm{M}$!
eds today, radeoffs:
if $a=-3$.
D.

DD.
D (i.e. $Z_{2}=1$).

Compare to speeds for Edwards
curves $x^{2}+y^{2}=1+d x^{2} y^{2}$
in projective coordinates
(2007 Bernstein-Lange):
$3 \mathrm{M}+4 \mathrm{~S}$ for DBL.
$10 M+1 S+1 \mathbf{D}$ for ADD.
$9 \mathbf{M}+1 \mathbf{S}+1 \mathbf{D}$ for mADD.
Inverted Edwards coordinates
(2007 Bernstein-Lange):
$3 \mathrm{M}+4 \mathrm{~S}+1 \mathrm{D}$ for DBL.
$9 \mathrm{M}+1 \mathbf{S}+1 \mathbf{D}$ for ADD.
$8 \mathbf{M}+1 \mathbf{S}+1 \mathbf{D}$ for mADD.
Even better speeds from
extended/completed coordinates (2008 Hisil-Wong-Carter-Dawson).
$y^{2}=x^{3}-0.4 x+$

Compare to speeds for Edwards curves $x^{2}+y^{2}=1+d x^{2} y^{2}$ in projective coordinates (2007 Bernstein-Lange): $3 \mathrm{M}+4 \mathrm{~S}$ for DBL.
$10 M+1 S+1 \mathbf{D}$ for ADD.
$9 M+1 S+1 \mathbf{D}$ for mADD.
Inverted Edwards coordinates
(2007 Bernstein-Lange):
$3 M+4 S+1 D$ for DBL.
$9 M+1 S+1 D$ for ADD.
$8 \mathbf{M}+1 \mathbf{S}+1 \mathbf{D}$ for mADD.
$=1) . \quad$ Even better speeds from
extended/completed coordinates (2008 Hisil-Wong-Carter-Dawson).

$$
y^{2}=x^{3}-0.4 x+0.7
$$

Compare to speeds for Edwards
curves $x^{2}+y^{2}=1+d x^{2} y^{2}$
in projective coordinates
(2007 Bernstein-Lange):
$3 \mathrm{M}+4 \mathrm{~S}$ for DBL .
$10 M+1 \mathbf{S}+1 \mathbf{D}$ for ADD.
$9 M+1 S+1 \mathbf{D}$ for $m A D D$.
Inverted Edwards coordinates
(2007 Bernstein-Lange):
$3 \mathrm{M}+4 \mathrm{~S}+1 \mathrm{D}$ for DBL.
$9 M+1 S+1 D$ for ADD.
$8 \mathbf{M}+1 \mathbf{S}+1 \mathbf{D}$ for mADD.
Even better speeds from
extended/completed coordinates (2008 Hisil-Wong-Carter-Dawson).

$$
y^{2}=x^{3}-0.4 x+0.7
$$

to speeds for Edwards
${ }^{2}+y^{2}=1+d x^{2} y^{2}$
five coordinates
ernstein-Lange):
f for DBL.
LS +1D for ADD.
$5+1 \mathbf{D}$ for mADD .
Edwards coordinates
ernstein-Lange):
$5+1 \mathbf{D}$ for DBL .
$5+1 D$ for ADD.
$5+1 \mathbf{D}$ for mADD .
ter speeds from
/completed coordinates sil-Wong-Carter-Dawson).

The We turtle: o and slow (picture)
s for Edwards
$1+d x^{2} y^{2}$
inates
ange):
or ADD.
mADD.
coordinates
ange):
DBL.
ADD.
mADD.
s from
ed coordinates
-Carter-Dawson).

$$
y^{2}=x^{3}-0.4 x+0.7
$$

The Weierstrass turtle: old, trusted and slow. Warning (picture) incomplet
ards
ates
awson).

$$
y^{2}=x^{3}-0.4 x+0.7
$$

The Weierstrass
turtle: old, trusted and slow. Warning: (picture) incomplete!

$$
\begin{aligned}
& \text { x } \\
& x^{2}+y^{2}=1-300
\end{aligned}
$$

$$
x^{2}+y^{2}=1-300 x^{2} y^{2}
$$

$$
x^{2}+y^{2}=1-300 x^{2} y^{2}
$$

$$
x^{2}+y^{2}=1-300 x^{2} y^{2}
$$

The Edwards starfish: new, fast and complete:

兆

$x^{2}+y^{2}=1-300 x^{2} y^{2}$

The Edwards starfish: new, fast and complete!

$$
x^{2}+y^{2}=1-300 x^{2} y^{2}
$$

Start!

Start!

Start!

Weierstras left behind

Weierstrass sets off, Ed left behind sleeping

Start!

1985

Weierstrass sets off. Edwards
 left behind sleeping

Weierstrass has made some progress finally Edwards wakes up.

2007-Jan

Weierstrass has made some progress finally Edwards wakes up.

s has made some progress ards wakes up.
$\left\lvert\, \begin{gathered}\text { Feb } \\ 0\end{gathered}\right.$
Exciting progress: Edwards about to overtake!!

And the w

And the winner is: Edw

IFeb

Exciting progress: Edwards about to overtake!!

And the winner is: Edwards!

Exciting progress: Edwards
about to overtake!!

And the winner is: Edwards!

