
McBits:

fast constant-time

code-based cryptography

(to appear at CHES 2013)

D. J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Joint work with:

Tung Chou

Technische Universiteit Eindhoven

Peter Schwabe

Radboud University Nijmegen



Objectives

Set new speed records

for public-key cryptography.



Objectives

Set new speed records

for public-key cryptography.

: : : at a high security level.



Objectives

Set new speed records

for public-key cryptography.

: : : at a high security level.

: : : including protection

against quantum computers.



Objectives

Set new speed records

for public-key cryptography.

: : : at a high security level.

: : : including protection

against quantum computers.

: : : including full protection

against cache-timing attacks,

branch-prediction attacks, etc.



Objectives

Set new speed records

for public-key cryptography.

: : : at a high security level.

: : : including protection

against quantum computers.

: : : including full protection

against cache-timing attacks,

branch-prediction attacks, etc.

: : : using code-based crypto

with a solid track record.



Objectives

Set new speed records

for public-key cryptography.

: : : at a high security level.

: : : including protection

against quantum computers.

: : : including full protection

against cache-timing attacks,

branch-prediction attacks, etc.

: : : using code-based crypto

with a solid track record.

: : : all of the above at once.



The competition

bench.cr.yp.to:

CPU cycles on h9ivy

(Intel Core i5-3210M, Ivy Bridge)

to encrypt 59 bytes:

46940 ronald1024 (RSA-1024)

61440 mceliece

94464 ronald2048

398912 ntruees787ep1

mceliece:

(n; t) = (2048; 32) software

from Biswas and Sendrier.

See paper at PQCrypto 2008.

http://bench.cr.yp.to


Sounds reasonably fast.

What’s the problem?



Sounds reasonably fast.

What’s the problem?

Decryption is much slower:

700512 ntruees787ep1

1219344 mceliece

1340040 ronald1024

5766752 ronald2048



Sounds reasonably fast.

What’s the problem?

Decryption is much slower:

700512 ntruees787ep1

1219344 mceliece

1340040 ronald1024

5766752 ronald2048

But Biswas and Sendrier

say they’re faster now,

even beating NTRU.

What’s the problem?



The serious competition

Some Diffie–Hellman speeds from

bench.cr.yp.to:

77468 gls254

(binary elliptic curve; CHES 2013)

116944 kumfp127g

(hyperelliptic; Eurocrypt 2013)

182632 curve25519

(conservative elliptic curve)

Use DH for public-key encryption.

Decryption time � DH time.

Encryption time � DH time

+ key-generation time.

http://bench.cr.yp.to


Elliptic/hyperelliptic curves offer

fast encryption and decryption.

(Also signatures, non-interactive

key exchange, more; but

let’s focus on encrypt/decrypt.

Also short keys etc.; but

let’s focus on speed.)

kumfp127g and curve25519

protect against timing attacks,

branch-prediction attacks, etc.

Broken by quantum computers,

but high security level

for the short term.



New decoding speeds

(n; t) = (4096; 41); 2128 security:



New decoding speeds

(n; t) = (4096; 41); 2128 security:

60493 Ivy Bridge cycles.

Talk will focus on this case.

(Decryption is slightly slower:

includes hash, cipher, MAC.)



New decoding speeds

(n; t) = (4096; 41); 2128 security:

60493 Ivy Bridge cycles.

Talk will focus on this case.

(Decryption is slightly slower:

includes hash, cipher, MAC.)

(n; t) = (2048; 32); 280 security:

26544 Ivy Bridge cycles.



New decoding speeds

(n; t) = (4096; 41); 2128 security:

60493 Ivy Bridge cycles.

Talk will focus on this case.

(Decryption is slightly slower:

includes hash, cipher, MAC.)

(n; t) = (2048; 32); 280 security:

26544 Ivy Bridge cycles.

All load/store addresses

and all branch conditions

are public. Eliminates

cache-timing attacks etc.

Similar improvements for CFS.



Constant-time fanaticism

The extremist’s approach

to eliminate timing attacks:

Handle all secret data

using only bit operations—

XOR (^), AND (&), etc.



Constant-time fanaticism

The extremist’s approach

to eliminate timing attacks:

Handle all secret data

using only bit operations—

XOR (^), AND (&), etc.

We take this approach.



Constant-time fanaticism

The extremist’s approach

to eliminate timing attacks:

Handle all secret data

using only bit operations—

XOR (^), AND (&), etc.

We take this approach.

“How can this be

competitive in speed?

Are you really simulating

field multiplication with

hundreds of bit operations

instead of simple log tables?”



Yes, we are.

Not as slow as it sounds!

On a typical 32-bit CPU,

the XOR instruction

is actually 32-bit XOR,

operating in parallel

on vectors of 32 bits.



Yes, we are.

Not as slow as it sounds!

On a typical 32-bit CPU,

the XOR instruction

is actually 32-bit XOR,

operating in parallel

on vectors of 32 bits.

Low-end smartphone CPU:

128-bit XOR every cycle.

Ivy Bridge:

256-bit XOR every cycle,

or three 128-bit XORs.



Not immediately obvious

that this “bitslicing”

saves time for, e.g.,

multiplication in F212 .



Not immediately obvious

that this “bitslicing”

saves time for, e.g.,

multiplication in F212 .

But quite obvious that it

saves time for addition in F212 .



Not immediately obvious

that this “bitslicing”

saves time for, e.g.,

multiplication in F212 .

But quite obvious that it

saves time for addition in F212 .

Typical decoding algorithms

have add, mult roughly balanced.

Coming next: how to save

many adds and most mults.

Nice synergy with bitslicing.



The additive FFT

Fix n = 4096 = 212, t = 41.

Big final decoding step

is to find all roots in F212

of f = c41x
41 + � � � + c0x

0.

For each � 2 F212 ,

compute f(�) by Horner’s rule:

41 adds, 41 mults.



The additive FFT

Fix n = 4096 = 212, t = 41.

Big final decoding step

is to find all roots in F212

of f = c41x
41 + � � � + c0x

0.

For each � 2 F212 ,

compute f(�) by Horner’s rule:

41 adds, 41 mults.

Or use Chien search: compute

cig
i, cig

2i, cig
3i, etc. Cost per

point: again 41 adds, 41 mults.



The additive FFT

Fix n = 4096 = 212, t = 41.

Big final decoding step

is to find all roots in F212

of f = c41x
41 + � � � + c0x

0.

For each � 2 F212 ,

compute f(�) by Horner’s rule:

41 adds, 41 mults.

Or use Chien search: compute

cig
i, cig

2i, cig
3i, etc. Cost per

point: again 41 adds, 41 mults.

Our cost: 6.01 adds, 2.09 mults.



Asymptotics:

normally t 2 Θ(n= lgn),

so Horner’s rule costs

Θ(nt) = Θ(n2= lgn).



Asymptotics:

normally t 2 Θ(n= lgn),

so Horner’s rule costs

Θ(nt) = Θ(n2= lgn).

Wait a minute.

Didn’t we learn in school

that FFT evaluates

an n-coeff polynomial

at n points

using n1+o(1) operations?

Isn’t this better than n2= lgn?



Standard radix-2 FFT:

Want to evaluate

f = c0 + c1x + � � � + cn�1x
n�1

at all the nth roots of 1.

Write f as f0(x2) + xf1(x2).

Observe big overlap between

f(�) = f0(�2) + �f1(�2),

f(��) = f0(�2) � �f1(�2).

f0 has n=2 coeffs;

evaluate at (n=2)nd roots of 1

by same idea recursively.

Similarly f1.



Useless in char 2: � = ��.

Standard workarounds are painful.

FFT considered impractical.

1988 Wang–Zhu,

independently 1989 Cantor:

“additive FFT” in char 2.

Still quite expensive.

1996 von zur Gathen–Gerhard:

some improvements.

2010 Gao–Mateer:

much better additive FFT.

We use Gao–Mateer,

plus some new improvements.



Gao and Mateer evaluate

f = c0 + c1x + � � � + cn�1x
n�1

on a size-n F2-linear space.

Main idea: Write f as

f0(x2 + x) + xf1(x2 + x).

Big overlap between f(�) =

f0(�2 + �) + �f1(�2 + �)

and f(� + 1) =

f0(�2 + �) + (� + 1)f1(�2 + �).

“Twist” to ensure 1 2 space.

Then
�
�2 + �

	
is a

size-(n=2) F2-linear space.

Apply same idea recursively.



We generalize to

f = c0 + c1x + � � � + ctx
t

for any t < n.

) several optimizations,

not all of which are automated

by simply tracking zeros.

For t = 0: copy c0.

For t 2 f1; 2g:

f1 is a constant.

Instead of multiplying

this constant by each �,

multiply only by generators

and compute subset sums.



Syndrome computation

Initial decoding step: compute

s0 = r1 + r2 + � � � + rn,

s1 = r1�1 + r2�2 + � � � + rn�n,

s2 = r1�
2
1 + r2�

2
2 + � � � + rn�

2
n,

...,

st = r1�
t
1 + r2�

t
2 + � � � + rn�

t
n.

r1; r2; : : : ; rn are received bits

scaled by Goppa constants.

Typically precompute matrix

mapping bits to syndrome.

Not as slow as Chien search but

still n2+o(1) and huge secret key.



Compare to multipoint evaluation:

f(�1) = c0 + c1�1 + � � � + ct�
t
1,

f(�2) = c0 + c1�2 + � � � + ct�
t
2,

...,

f(�n) = c0 + c1�n + � � � + ct�
t
n.



Compare to multipoint evaluation:

f(�1) = c0 + c1�1 + � � � + ct�
t
1,

f(�2) = c0 + c1�2 + � � � + ct�
t
2,

...,

f(�n) = c0 + c1�n + � � � + ct�
t
n.

Matrix for syndrome computation

is transpose of

matrix for multipoint evaluation.



Compare to multipoint evaluation:

f(�1) = c0 + c1�1 + � � � + ct�
t
1,

f(�2) = c0 + c1�2 + � � � + ct�
t
2,

...,

f(�n) = c0 + c1�n + � � � + ct�
t
n.

Matrix for syndrome computation

is transpose of

matrix for multipoint evaluation.

Amazing consequence:

syndrome computation is as few

ops as multipoint evaluation.

Eliminate precomputed matrix.



Transposition principle:

If a linear algorithm

computes a matrix M

then reversing edges and

exchanging inputs/outputs

computes the transpose of M.

1956 Bordewijk;

independently 1957 Lupanov

for Boolean matrices.

1973 Fiduccia analysis:

preserves number of mults;

preserves number of adds plus

number of nontrivial outputs.



We built transposing compiler

producing C code.

Too many variables for m = 13;

gcc ran out of memory.



We built transposing compiler

producing C code.

Too many variables for m = 13;

gcc ran out of memory.

Used qhasm register allocator

to optimize the variables.

Worked, but not very quickly.



We built transposing compiler

producing C code.

Too many variables for m = 13;

gcc ran out of memory.

Used qhasm register allocator

to optimize the variables.

Worked, but not very quickly.

Wrote faster register allocator.

Still excessive code size.



We built transposing compiler

producing C code.

Too many variables for m = 13;

gcc ran out of memory.

Used qhasm register allocator

to optimize the variables.

Worked, but not very quickly.

Wrote faster register allocator.

Still excessive code size.

Built new interpreter,

allowing some code compression.

Still big; still some overhead.



Better solution:

stared at additive FFT,

wrote down transposition

with same loops etc.

Small code, no overhead.

Speedups of additive FFT

translate easily

to transposed algorithm.

Further savings:

merged first stage with

scaling by Goppa constants.



Secret permutation

Additive FFT ) f values at

field elements in a standard order.

This is not the order

needed in code-based crypto!

Must apply a secret permutation,

part of the secret key.

Same issue for syndrome.

Solution: Batcher sorting.

Almost done with faster solution:

Beneš network.



Results

60493 Ivy Bridge cycles:

8622 for permutation.

20846 for syndrome.

7714 for BM.

14794 for roots.

8520 for permutation.

Code will be public domain.

We’re still speeding it up.

More information:

paper online very soon.


