
The DNS security mess

D. J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Paul Vixie, 1995, on DNSSEC:
This sounds simple but it has deep reaching

consequences in both the protocol and the

implementation—which is why it’s taken more

than a year to choose a security model and

design a solution. We expect it to be another

year before DNSSEC is in wide use on the

leading edge, and at least a year after that

before its use is commonplace on the Internet.

Before I start my talk,

some comments on HTTPSEC.

Warning: HTTPSEC 6= HTTPS.



The DNS security mess

D. J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Paul Vixie, 1995, on DNSSEC:
This sounds simple but it has deep reaching

consequences in both the protocol and the

implementation—which is why it’s taken more

than a year to choose a security model and

design a solution. We expect it to be another

year before DNSSEC is in wide use on the

leading edge, and at least a year after that

before its use is commonplace on the Internet.

Before I start my talk,

some comments on HTTPSEC.

Warning: HTTPSEC 6= HTTPS.

HTTPSEC motivation

You use HTTP all the time:

e.g., http://nu.nl.

Your computer requests a web

page from the nu.nl server.

The server sends a web page.



The DNS security mess

D. J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Paul Vixie, 1995, on DNSSEC:
This sounds simple but it has deep reaching

consequences in both the protocol and the

implementation—which is why it’s taken more

than a year to choose a security model and

design a solution. We expect it to be another

year before DNSSEC is in wide use on the

leading edge, and at least a year after that

before its use is commonplace on the Internet.

Before I start my talk,

some comments on HTTPSEC.

Warning: HTTPSEC 6= HTTPS.

HTTPSEC motivation

You use HTTP all the time:

e.g., http://nu.nl.

Your computer requests a web

page from the nu.nl server.

The server sends a web page.

Your computer is using

a wireless network that

also has many other computers.

Some of those computers are

controlled by attackers.



The DNS security mess

D. J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Paul Vixie, 1995, on DNSSEC:
This sounds simple but it has deep reaching

consequences in both the protocol and the

implementation—which is why it’s taken more

than a year to choose a security model and

design a solution. We expect it to be another

year before DNSSEC is in wide use on the

leading edge, and at least a year after that

before its use is commonplace on the Internet.

Before I start my talk,

some comments on HTTPSEC.

Warning: HTTPSEC 6= HTTPS.

HTTPSEC motivation

You use HTTP all the time:

e.g., http://nu.nl.

Your computer requests a web

page from the nu.nl server.

The server sends a web page.

Your computer is using

a wireless network that

also has many other computers.

Some of those computers are

controlled by attackers.

Or maybe you’re in Iran, and

the network is the attacker.



The DNS security mess

D. J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Paul Vixie, 1995, on DNSSEC:
This sounds simple but it has deep reaching

consequences in both the protocol and the

implementation—which is why it’s taken more

than a year to choose a security model and

design a solution. We expect it to be another

year before DNSSEC is in wide use on the

leading edge, and at least a year after that

before its use is commonplace on the Internet.

Before I start my talk,

some comments on HTTPSEC.

Warning: HTTPSEC 6= HTTPS.

HTTPSEC motivation

You use HTTP all the time:

e.g., http://nu.nl.

Your computer requests a web

page from the nu.nl server.

The server sends a web page.

Your computer is using

a wireless network that

also has many other computers.

Some of those computers are

controlled by attackers.

Or maybe you’re in Iran, and

the network is the attacker.

Standard security goals:

Confidentiality (privacy etc.)

despite espionage.

Integrity (authenticity etc.)

despite corruption.

Availability despite sabotage.



The DNS security mess

D. J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Paul Vixie, 1995, on DNSSEC:
This sounds simple but it has deep reaching

consequences in both the protocol and the

implementation—which is why it’s taken more

than a year to choose a security model and

design a solution. We expect it to be another

year before DNSSEC is in wide use on the

leading edge, and at least a year after that

before its use is commonplace on the Internet.

Before I start my talk,

some comments on HTTPSEC.

Warning: HTTPSEC 6= HTTPS.

HTTPSEC motivation

You use HTTP all the time:

e.g., http://nu.nl.

Your computer requests a web

page from the nu.nl server.

The server sends a web page.

Your computer is using

a wireless network that

also has many other computers.

Some of those computers are

controlled by attackers.

Or maybe you’re in Iran, and

the network is the attacker.

Standard security goals:

Confidentiality (privacy etc.)

despite espionage.

Integrity (authenticity etc.)

despite corruption.

Availability despite sabotage.



The DNS security mess

D. J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Paul Vixie, 1995, on DNSSEC:
This sounds simple but it has deep reaching

consequences in both the protocol and the

implementation—which is why it’s taken more

than a year to choose a security model and

design a solution. We expect it to be another

year before DNSSEC is in wide use on the

leading edge, and at least a year after that

before its use is commonplace on the Internet.

Before I start my talk,

some comments on HTTPSEC.

Warning: HTTPSEC 6= HTTPS.

HTTPSEC motivation

You use HTTP all the time:

e.g., http://nu.nl.

Your computer requests a web

page from the nu.nl server.

The server sends a web page.

Your computer is using

a wireless network that

also has many other computers.

Some of those computers are

controlled by attackers.

Or maybe you’re in Iran, and

the network is the attacker.

Standard security goals:

Confidentiality (privacy etc.)

despite espionage.

Integrity (authenticity etc.)

despite corruption.

Availability despite sabotage.



HTTPSEC motivation

You use HTTP all the time:

e.g., http://nu.nl.

Your computer requests a web

page from the nu.nl server.

The server sends a web page.

Your computer is using

a wireless network that

also has many other computers.

Some of those computers are

controlled by attackers.

Or maybe you’re in Iran, and

the network is the attacker.

Standard security goals:

Confidentiality (privacy etc.)

despite espionage.

Integrity (authenticity etc.)

despite corruption.

Availability despite sabotage.



HTTPSEC motivation

You use HTTP all the time:

e.g., http://nu.nl.

Your computer requests a web

page from the nu.nl server.

The server sends a web page.

Your computer is using

a wireless network that

also has many other computers.

Some of those computers are

controlled by attackers.

Or maybe you’re in Iran, and

the network is the attacker.

Standard security goals:

Confidentiality (privacy etc.)

despite espionage.

Integrity (authenticity etc.)

despite corruption.

Availability despite sabotage.

HTTP provides none of this.

By watching the network,

attacker easily acquires data:

the HTTP request, the web page.

Attacker easily changes data.

Attacker easily destroys data.



HTTPSEC motivation

You use HTTP all the time:

e.g., http://nu.nl.

Your computer requests a web

page from the nu.nl server.

The server sends a web page.

Your computer is using

a wireless network that

also has many other computers.

Some of those computers are

controlled by attackers.

Or maybe you’re in Iran, and

the network is the attacker.

Standard security goals:

Confidentiality (privacy etc.)

despite espionage.

Integrity (authenticity etc.)

despite corruption.

Availability despite sabotage.

HTTP provides none of this.

By watching the network,

attacker easily acquires data:

the HTTP request, the web page.

Attacker easily changes data.

Attacker easily destroys data.

HTTPSEC: “HTTP Security”

HTTPSEC modifies HTTP

to “bolster online security”.

HTTPSEC provides a way

for the nu.nl server admin

to attach PGP signatures

to the nu.nl HTTP responses.

These signatures allow

“verification of the origin,

authenticity, and integrity of

data” obtained through HTTP.



HTTPSEC motivation

You use HTTP all the time:

e.g., http://nu.nl.

Your computer requests a web

page from the nu.nl server.

The server sends a web page.

Your computer is using

a wireless network that

also has many other computers.

Some of those computers are

controlled by attackers.

Or maybe you’re in Iran, and

the network is the attacker.

Standard security goals:

Confidentiality (privacy etc.)

despite espionage.

Integrity (authenticity etc.)

despite corruption.

Availability despite sabotage.

HTTP provides none of this.

By watching the network,

attacker easily acquires data:

the HTTP request, the web page.

Attacker easily changes data.

Attacker easily destroys data.

HTTPSEC: “HTTP Security”

HTTPSEC modifies HTTP

to “bolster online security”.

HTTPSEC provides a way

for the nu.nl server admin

to attach PGP signatures

to the nu.nl HTTP responses.

These signatures allow

“verification of the origin,

authenticity, and integrity of

data” obtained through HTTP.



HTTPSEC motivation

You use HTTP all the time:

e.g., http://nu.nl.

Your computer requests a web

page from the nu.nl server.

The server sends a web page.

Your computer is using

a wireless network that

also has many other computers.

Some of those computers are

controlled by attackers.

Or maybe you’re in Iran, and

the network is the attacker.

Standard security goals:

Confidentiality (privacy etc.)

despite espionage.

Integrity (authenticity etc.)

despite corruption.

Availability despite sabotage.

HTTP provides none of this.

By watching the network,

attacker easily acquires data:

the HTTP request, the web page.

Attacker easily changes data.

Attacker easily destroys data.

HTTPSEC: “HTTP Security”

HTTPSEC modifies HTTP

to “bolster online security”.

HTTPSEC provides a way

for the nu.nl server admin

to attach PGP signatures

to the nu.nl HTTP responses.

These signatures allow

“verification of the origin,

authenticity, and integrity of

data” obtained through HTTP.



Standard security goals:

Confidentiality (privacy etc.)

despite espionage.

Integrity (authenticity etc.)

despite corruption.

Availability despite sabotage.

HTTP provides none of this.

By watching the network,

attacker easily acquires data:

the HTTP request, the web page.

Attacker easily changes data.

Attacker easily destroys data.

HTTPSEC: “HTTP Security”

HTTPSEC modifies HTTP

to “bolster online security”.

HTTPSEC provides a way

for the nu.nl server admin

to attach PGP signatures

to the nu.nl HTTP responses.

These signatures allow

“verification of the origin,

authenticity, and integrity of

data” obtained through HTTP.



Standard security goals:

Confidentiality (privacy etc.)

despite espionage.

Integrity (authenticity etc.)

despite corruption.

Availability despite sabotage.

HTTP provides none of this.

By watching the network,

attacker easily acquires data:

the HTTP request, the web page.

Attacker easily changes data.

Attacker easily destroys data.

HTTPSEC: “HTTP Security”

HTTPSEC modifies HTTP

to “bolster online security”.

HTTPSEC provides a way

for the nu.nl server admin

to attach PGP signatures

to the nu.nl HTTP responses.

These signatures allow

“verification of the origin,

authenticity, and integrity of

data” obtained through HTTP.

To verify these signatures,

your computer needs to

retrieve the PGP public key

from the nu.nl admin.



Standard security goals:

Confidentiality (privacy etc.)

despite espionage.

Integrity (authenticity etc.)

despite corruption.

Availability despite sabotage.

HTTP provides none of this.

By watching the network,

attacker easily acquires data:

the HTTP request, the web page.

Attacker easily changes data.

Attacker easily destroys data.

HTTPSEC: “HTTP Security”

HTTPSEC modifies HTTP

to “bolster online security”.

HTTPSEC provides a way

for the nu.nl server admin

to attach PGP signatures

to the nu.nl HTTP responses.

These signatures allow

“verification of the origin,

authenticity, and integrity of

data” obtained through HTTP.

To verify these signatures,

your computer needs to

retrieve the PGP public key

from the nu.nl admin.



Standard security goals:

Confidentiality (privacy etc.)

despite espionage.

Integrity (authenticity etc.)

despite corruption.

Availability despite sabotage.

HTTP provides none of this.

By watching the network,

attacker easily acquires data:

the HTTP request, the web page.

Attacker easily changes data.

Attacker easily destroys data.

HTTPSEC: “HTTP Security”

HTTPSEC modifies HTTP

to “bolster online security”.

HTTPSEC provides a way

for the nu.nl server admin

to attach PGP signatures

to the nu.nl HTTP responses.

These signatures allow

“verification of the origin,

authenticity, and integrity of

data” obtained through HTTP.

To verify these signatures,

your computer needs to

retrieve the PGP public key

from the nu.nl admin.



HTTPSEC: “HTTP Security”

HTTPSEC modifies HTTP

to “bolster online security”.

HTTPSEC provides a way

for the nu.nl server admin

to attach PGP signatures

to the nu.nl HTTP responses.

These signatures allow

“verification of the origin,

authenticity, and integrity of

data” obtained through HTTP.

To verify these signatures,

your computer needs to

retrieve the PGP public key

from the nu.nl admin.



HTTPSEC: “HTTP Security”

HTTPSEC modifies HTTP

to “bolster online security”.

HTTPSEC provides a way

for the nu.nl server admin

to attach PGP signatures

to the nu.nl HTTP responses.

These signatures allow

“verification of the origin,

authenticity, and integrity of

data” obtained through HTTP.

To verify these signatures,

your computer needs to

retrieve the PGP public key

from the nu.nl admin.

What if the key is forged?



HTTPSEC: “HTTP Security”

HTTPSEC modifies HTTP

to “bolster online security”.

HTTPSEC provides a way

for the nu.nl server admin

to attach PGP signatures

to the nu.nl HTTP responses.

These signatures allow

“verification of the origin,

authenticity, and integrity of

data” obtained through HTTP.

To verify these signatures,

your computer needs to

retrieve the PGP public key

from the nu.nl admin.

What if the key is forged?

Answer: HTTPSEC provides a

way for a trusted Netherlands

government representative to

PGP-sign the nu.nl public key.



HTTPSEC: “HTTP Security”

HTTPSEC modifies HTTP

to “bolster online security”.

HTTPSEC provides a way

for the nu.nl server admin

to attach PGP signatures

to the nu.nl HTTP responses.

These signatures allow

“verification of the origin,

authenticity, and integrity of

data” obtained through HTTP.

To verify these signatures,

your computer needs to

retrieve the PGP public key

from the nu.nl admin.

What if the key is forged?

Answer: HTTPSEC provides a

way for a trusted Netherlands

government representative to

PGP-sign the nu.nl public key.

What if that key is forged?

Answer: Internet Central

Headquarters signed the

Netherlands public key.



HTTPSEC: “HTTP Security”

HTTPSEC modifies HTTP

to “bolster online security”.

HTTPSEC provides a way

for the nu.nl server admin

to attach PGP signatures

to the nu.nl HTTP responses.

These signatures allow

“verification of the origin,

authenticity, and integrity of

data” obtained through HTTP.

To verify these signatures,

your computer needs to

retrieve the PGP public key

from the nu.nl admin.

What if the key is forged?

Answer: HTTPSEC provides a

way for a trusted Netherlands

government representative to

PGP-sign the nu.nl public key.

What if that key is forged?

Answer: Internet Central

Headquarters signed the

Netherlands public key.

Internet Central HQ key

was generated by an expensive

Hardware Security Module

owned by VeriSign,

a well-known American company.

Hardware Security Module

signs data if authorized

by 3 out of 16 smart cards

held by VeriSign Trust Managers.

3 VeriSign Trust Managers

meet every week in case

they have to sign new data.



HTTPSEC: “HTTP Security”

HTTPSEC modifies HTTP

to “bolster online security”.

HTTPSEC provides a way

for the nu.nl server admin

to attach PGP signatures

to the nu.nl HTTP responses.

These signatures allow

“verification of the origin,

authenticity, and integrity of

data” obtained through HTTP.

To verify these signatures,

your computer needs to

retrieve the PGP public key

from the nu.nl admin.

What if the key is forged?

Answer: HTTPSEC provides a

way for a trusted Netherlands

government representative to

PGP-sign the nu.nl public key.

What if that key is forged?

Answer: Internet Central

Headquarters signed the

Netherlands public key.

Internet Central HQ key

was generated by an expensive

Hardware Security Module

owned by VeriSign,

a well-known American company.

Hardware Security Module

signs data if authorized

by 3 out of 16 smart cards

held by VeriSign Trust Managers.

3 VeriSign Trust Managers

meet every week in case

they have to sign new data.



HTTPSEC: “HTTP Security”

HTTPSEC modifies HTTP

to “bolster online security”.

HTTPSEC provides a way

for the nu.nl server admin

to attach PGP signatures

to the nu.nl HTTP responses.

These signatures allow

“verification of the origin,

authenticity, and integrity of

data” obtained through HTTP.

To verify these signatures,

your computer needs to

retrieve the PGP public key

from the nu.nl admin.

What if the key is forged?

Answer: HTTPSEC provides a

way for a trusted Netherlands

government representative to

PGP-sign the nu.nl public key.

What if that key is forged?

Answer: Internet Central

Headquarters signed the

Netherlands public key.

Internet Central HQ key

was generated by an expensive

Hardware Security Module

owned by VeriSign,

a well-known American company.

Hardware Security Module

signs data if authorized

by 3 out of 16 smart cards

held by VeriSign Trust Managers.

3 VeriSign Trust Managers

meet every week in case

they have to sign new data.



To verify these signatures,

your computer needs to

retrieve the PGP public key

from the nu.nl admin.

What if the key is forged?

Answer: HTTPSEC provides a

way for a trusted Netherlands

government representative to

PGP-sign the nu.nl public key.

What if that key is forged?

Answer: Internet Central

Headquarters signed the

Netherlands public key.

Internet Central HQ key

was generated by an expensive

Hardware Security Module

owned by VeriSign,

a well-known American company.

Hardware Security Module

signs data if authorized

by 3 out of 16 smart cards

held by VeriSign Trust Managers.

3 VeriSign Trust Managers

meet every week in case

they have to sign new data.



To verify these signatures,

your computer needs to

retrieve the PGP public key

from the nu.nl admin.

What if the key is forged?

Answer: HTTPSEC provides a

way for a trusted Netherlands

government representative to

PGP-sign the nu.nl public key.

What if that key is forged?

Answer: Internet Central

Headquarters signed the

Netherlands public key.

Internet Central HQ key

was generated by an expensive

Hardware Security Module

owned by VeriSign,

a well-known American company.

Hardware Security Module

signs data if authorized

by 3 out of 16 smart cards

held by VeriSign Trust Managers.

3 VeriSign Trust Managers

meet every week in case

they have to sign new data.

If your computer has HTTPSEC

software then it already knows the

Internet Central HQ public key.

Your computer retrieves

the Netherlands public key

and the Internet Central HQ

signature of that public key;

PGP-verifies this signature.

Next step: retrieve and verify

the nu.nl admin’s public key

and the Netherlands signature.

Finally PGP-verify nu.nl’s

HTTPSEC-signed responses.



To verify these signatures,

your computer needs to

retrieve the PGP public key

from the nu.nl admin.

What if the key is forged?

Answer: HTTPSEC provides a

way for a trusted Netherlands

government representative to

PGP-sign the nu.nl public key.

What if that key is forged?

Answer: Internet Central

Headquarters signed the

Netherlands public key.

Internet Central HQ key

was generated by an expensive

Hardware Security Module

owned by VeriSign,

a well-known American company.

Hardware Security Module

signs data if authorized

by 3 out of 16 smart cards

held by VeriSign Trust Managers.

3 VeriSign Trust Managers

meet every week in case

they have to sign new data.

If your computer has HTTPSEC

software then it already knows the

Internet Central HQ public key.

Your computer retrieves

the Netherlands public key

and the Internet Central HQ

signature of that public key;

PGP-verifies this signature.

Next step: retrieve and verify

the nu.nl admin’s public key

and the Netherlands signature.

Finally PGP-verify nu.nl’s

HTTPSEC-signed responses.



To verify these signatures,

your computer needs to

retrieve the PGP public key

from the nu.nl admin.

What if the key is forged?

Answer: HTTPSEC provides a

way for a trusted Netherlands

government representative to

PGP-sign the nu.nl public key.

What if that key is forged?

Answer: Internet Central

Headquarters signed the

Netherlands public key.

Internet Central HQ key

was generated by an expensive

Hardware Security Module

owned by VeriSign,

a well-known American company.

Hardware Security Module

signs data if authorized

by 3 out of 16 smart cards

held by VeriSign Trust Managers.

3 VeriSign Trust Managers

meet every week in case

they have to sign new data.

If your computer has HTTPSEC

software then it already knows the

Internet Central HQ public key.

Your computer retrieves

the Netherlands public key

and the Internet Central HQ

signature of that public key;

PGP-verifies this signature.

Next step: retrieve and verify

the nu.nl admin’s public key

and the Netherlands signature.

Finally PGP-verify nu.nl’s

HTTPSEC-signed responses.



Internet Central HQ key

was generated by an expensive

Hardware Security Module

owned by VeriSign,

a well-known American company.

Hardware Security Module

signs data if authorized

by 3 out of 16 smart cards

held by VeriSign Trust Managers.

3 VeriSign Trust Managers

meet every week in case

they have to sign new data.

If your computer has HTTPSEC

software then it already knows the

Internet Central HQ public key.

Your computer retrieves

the Netherlands public key

and the Internet Central HQ

signature of that public key;

PGP-verifies this signature.

Next step: retrieve and verify

the nu.nl admin’s public key

and the Netherlands signature.

Finally PGP-verify nu.nl’s

HTTPSEC-signed responses.



Internet Central HQ key

was generated by an expensive

Hardware Security Module

owned by VeriSign,

a well-known American company.

Hardware Security Module

signs data if authorized

by 3 out of 16 smart cards

held by VeriSign Trust Managers.

3 VeriSign Trust Managers

meet every week in case

they have to sign new data.

If your computer has HTTPSEC

software then it already knows the

Internet Central HQ public key.

Your computer retrieves

the Netherlands public key

and the Internet Central HQ

signature of that public key;

PGP-verifies this signature.

Next step: retrieve and verify

the nu.nl admin’s public key

and the Netherlands signature.

Finally PGP-verify nu.nl’s

HTTPSEC-signed responses.

HTTPSEC performance

Many Internet servers

are extremely busy.

Can they afford crypto?

The critical design decision

in HTTPSEC: precompute

PGP signatures of all data.

“Per-query crypto is bad.”

Signature is computed once;

saved; sent to many clients.

Hopefully the admin can afford to

sign each HTTP response once.



Internet Central HQ key

was generated by an expensive

Hardware Security Module

owned by VeriSign,

a well-known American company.

Hardware Security Module

signs data if authorized

by 3 out of 16 smart cards

held by VeriSign Trust Managers.

3 VeriSign Trust Managers

meet every week in case

they have to sign new data.

If your computer has HTTPSEC

software then it already knows the

Internet Central HQ public key.

Your computer retrieves

the Netherlands public key

and the Internet Central HQ

signature of that public key;

PGP-verifies this signature.

Next step: retrieve and verify

the nu.nl admin’s public key

and the Netherlands signature.

Finally PGP-verify nu.nl’s

HTTPSEC-signed responses.

HTTPSEC performance

Many Internet servers

are extremely busy.

Can they afford crypto?

The critical design decision

in HTTPSEC: precompute

PGP signatures of all data.

“Per-query crypto is bad.”

Signature is computed once;

saved; sent to many clients.

Hopefully the admin can afford to

sign each HTTP response once.



Internet Central HQ key

was generated by an expensive

Hardware Security Module

owned by VeriSign,

a well-known American company.

Hardware Security Module

signs data if authorized

by 3 out of 16 smart cards

held by VeriSign Trust Managers.

3 VeriSign Trust Managers

meet every week in case

they have to sign new data.

If your computer has HTTPSEC

software then it already knows the

Internet Central HQ public key.

Your computer retrieves

the Netherlands public key

and the Internet Central HQ

signature of that public key;

PGP-verifies this signature.

Next step: retrieve and verify

the nu.nl admin’s public key

and the Netherlands signature.

Finally PGP-verify nu.nl’s

HTTPSEC-signed responses.

HTTPSEC performance

Many Internet servers

are extremely busy.

Can they afford crypto?

The critical design decision

in HTTPSEC: precompute

PGP signatures of all data.

“Per-query crypto is bad.”

Signature is computed once;

saved; sent to many clients.

Hopefully the admin can afford to

sign each HTTP response once.



If your computer has HTTPSEC

software then it already knows the

Internet Central HQ public key.

Your computer retrieves

the Netherlands public key

and the Internet Central HQ

signature of that public key;

PGP-verifies this signature.

Next step: retrieve and verify

the nu.nl admin’s public key

and the Netherlands signature.

Finally PGP-verify nu.nl’s

HTTPSEC-signed responses.

HTTPSEC performance

Many Internet servers

are extremely busy.

Can they afford crypto?

The critical design decision

in HTTPSEC: precompute

PGP signatures of all data.

“Per-query crypto is bad.”

Signature is computed once;

saved; sent to many clients.

Hopefully the admin can afford to

sign each HTTP response once.



If your computer has HTTPSEC

software then it already knows the

Internet Central HQ public key.

Your computer retrieves

the Netherlands public key

and the Internet Central HQ

signature of that public key;

PGP-verifies this signature.

Next step: retrieve and verify

the nu.nl admin’s public key

and the Netherlands signature.

Finally PGP-verify nu.nl’s

HTTPSEC-signed responses.

HTTPSEC performance

Many Internet servers

are extremely busy.

Can they afford crypto?

The critical design decision

in HTTPSEC: precompute

PGP signatures of all data.

“Per-query crypto is bad.”

Signature is computed once;

saved; sent to many clients.

Hopefully the admin can afford to

sign each HTTP response once.

Clients don’t share the work

of verifying a signature.

HTTPSEC tries to reduce

client-side costs (and

precomputation costs) through

choice of crypto primitive.

Many HTTPSEC crypto options:

640-bit RSA, original specs;

768-bit RSA, many docs;

1024-bit RSA, current

signatures from VeriSign etc.;

DSA, “10 to 40 times as slow for

verification” but faster for signing.



If your computer has HTTPSEC

software then it already knows the

Internet Central HQ public key.

Your computer retrieves

the Netherlands public key

and the Internet Central HQ

signature of that public key;

PGP-verifies this signature.

Next step: retrieve and verify

the nu.nl admin’s public key

and the Netherlands signature.

Finally PGP-verify nu.nl’s

HTTPSEC-signed responses.

HTTPSEC performance

Many Internet servers

are extremely busy.

Can they afford crypto?

The critical design decision

in HTTPSEC: precompute

PGP signatures of all data.

“Per-query crypto is bad.”

Signature is computed once;

saved; sent to many clients.

Hopefully the admin can afford to

sign each HTTP response once.

Clients don’t share the work

of verifying a signature.

HTTPSEC tries to reduce

client-side costs (and

precomputation costs) through

choice of crypto primitive.

Many HTTPSEC crypto options:

640-bit RSA, original specs;

768-bit RSA, many docs;

1024-bit RSA, current

signatures from VeriSign etc.;

DSA, “10 to 40 times as slow for

verification” but faster for signing.



If your computer has HTTPSEC

software then it already knows the

Internet Central HQ public key.

Your computer retrieves

the Netherlands public key

and the Internet Central HQ

signature of that public key;

PGP-verifies this signature.

Next step: retrieve and verify

the nu.nl admin’s public key

and the Netherlands signature.

Finally PGP-verify nu.nl’s

HTTPSEC-signed responses.

HTTPSEC performance

Many Internet servers

are extremely busy.

Can they afford crypto?

The critical design decision

in HTTPSEC: precompute

PGP signatures of all data.

“Per-query crypto is bad.”

Signature is computed once;

saved; sent to many clients.

Hopefully the admin can afford to

sign each HTTP response once.

Clients don’t share the work

of verifying a signature.

HTTPSEC tries to reduce

client-side costs (and

precomputation costs) through

choice of crypto primitive.

Many HTTPSEC crypto options:

640-bit RSA, original specs;

768-bit RSA, many docs;

1024-bit RSA, current

signatures from VeriSign etc.;

DSA, “10 to 40 times as slow for

verification” but faster for signing.



HTTPSEC performance

Many Internet servers

are extremely busy.

Can they afford crypto?

The critical design decision

in HTTPSEC: precompute

PGP signatures of all data.

“Per-query crypto is bad.”

Signature is computed once;

saved; sent to many clients.

Hopefully the admin can afford to

sign each HTTP response once.

Clients don’t share the work

of verifying a signature.

HTTPSEC tries to reduce

client-side costs (and

precomputation costs) through

choice of crypto primitive.

Many HTTPSEC crypto options:

640-bit RSA, original specs;

768-bit RSA, many docs;

1024-bit RSA, current

signatures from VeriSign etc.;

DSA, “10 to 40 times as slow for

verification” but faster for signing.



HTTPSEC performance

Many Internet servers

are extremely busy.

Can they afford crypto?

The critical design decision

in HTTPSEC: precompute

PGP signatures of all data.

“Per-query crypto is bad.”

Signature is computed once;

saved; sent to many clients.

Hopefully the admin can afford to

sign each HTTP response once.

Clients don’t share the work

of verifying a signature.

HTTPSEC tries to reduce

client-side costs (and

precomputation costs) through

choice of crypto primitive.

Many HTTPSEC crypto options:

640-bit RSA, original specs;

768-bit RSA, many docs;

1024-bit RSA, current

signatures from VeriSign etc.;

DSA, “10 to 40 times as slow for

verification” but faster for signing.

HTTPSEC made breakable

choices such as 640-bit RSA

for no reason other than

fear of overload.

HTTPSEC needed more options

to survive the inevitable breaks;

and even more complexity

for reasons I’ll explain.

More complexity ) more bugs,

including security holes.

Author of one very popular

HTTP server: “The effort of

implementing everything correctly

is just staggering.”



HTTPSEC performance

Many Internet servers

are extremely busy.

Can they afford crypto?

The critical design decision

in HTTPSEC: precompute

PGP signatures of all data.

“Per-query crypto is bad.”

Signature is computed once;

saved; sent to many clients.

Hopefully the admin can afford to

sign each HTTP response once.

Clients don’t share the work

of verifying a signature.

HTTPSEC tries to reduce

client-side costs (and

precomputation costs) through

choice of crypto primitive.

Many HTTPSEC crypto options:

640-bit RSA, original specs;

768-bit RSA, many docs;

1024-bit RSA, current

signatures from VeriSign etc.;

DSA, “10 to 40 times as slow for

verification” but faster for signing.

HTTPSEC made breakable

choices such as 640-bit RSA

for no reason other than

fear of overload.

HTTPSEC needed more options

to survive the inevitable breaks;

and even more complexity

for reasons I’ll explain.

More complexity ) more bugs,

including security holes.

Author of one very popular

HTTP server: “The effort of

implementing everything correctly

is just staggering.”



HTTPSEC performance

Many Internet servers

are extremely busy.

Can they afford crypto?

The critical design decision

in HTTPSEC: precompute

PGP signatures of all data.

“Per-query crypto is bad.”

Signature is computed once;

saved; sent to many clients.

Hopefully the admin can afford to

sign each HTTP response once.

Clients don’t share the work

of verifying a signature.

HTTPSEC tries to reduce

client-side costs (and

precomputation costs) through

choice of crypto primitive.

Many HTTPSEC crypto options:

640-bit RSA, original specs;

768-bit RSA, many docs;

1024-bit RSA, current

signatures from VeriSign etc.;

DSA, “10 to 40 times as slow for

verification” but faster for signing.

HTTPSEC made breakable

choices such as 640-bit RSA

for no reason other than

fear of overload.

HTTPSEC needed more options

to survive the inevitable breaks;

and even more complexity

for reasons I’ll explain.

More complexity ) more bugs,

including security holes.

Author of one very popular

HTTP server: “The effort of

implementing everything correctly

is just staggering.”



Clients don’t share the work

of verifying a signature.

HTTPSEC tries to reduce

client-side costs (and

precomputation costs) through

choice of crypto primitive.

Many HTTPSEC crypto options:

640-bit RSA, original specs;

768-bit RSA, many docs;

1024-bit RSA, current

signatures from VeriSign etc.;

DSA, “10 to 40 times as slow for

verification” but faster for signing.

HTTPSEC made breakable

choices such as 640-bit RSA

for no reason other than

fear of overload.

HTTPSEC needed more options

to survive the inevitable breaks;

and even more complexity

for reasons I’ll explain.

More complexity ) more bugs,

including security holes.

Author of one very popular

HTTP server: “The effort of

implementing everything correctly

is just staggering.”



Clients don’t share the work

of verifying a signature.

HTTPSEC tries to reduce

client-side costs (and

precomputation costs) through

choice of crypto primitive.

Many HTTPSEC crypto options:

640-bit RSA, original specs;

768-bit RSA, many docs;

1024-bit RSA, current

signatures from VeriSign etc.;

DSA, “10 to 40 times as slow for

verification” but faster for signing.

HTTPSEC made breakable

choices such as 640-bit RSA

for no reason other than

fear of overload.

HTTPSEC needed more options

to survive the inevitable breaks;

and even more complexity

for reasons I’ll explain.

More complexity ) more bugs,

including security holes.

Author of one very popular

HTTP server: “The effort of

implementing everything correctly

is just staggering.”

HTTPSEC confidentiality

How do you encrypt

requests and responses

without per-client crypto?



Clients don’t share the work

of verifying a signature.

HTTPSEC tries to reduce

client-side costs (and

precomputation costs) through

choice of crypto primitive.

Many HTTPSEC crypto options:

640-bit RSA, original specs;

768-bit RSA, many docs;

1024-bit RSA, current

signatures from VeriSign etc.;

DSA, “10 to 40 times as slow for

verification” but faster for signing.

HTTPSEC made breakable

choices such as 640-bit RSA

for no reason other than

fear of overload.

HTTPSEC needed more options

to survive the inevitable breaks;

and even more complexity

for reasons I’ll explain.

More complexity ) more bugs,

including security holes.

Author of one very popular

HTTP server: “The effort of

implementing everything correctly

is just staggering.”

HTTPSEC confidentiality

How do you encrypt

requests and responses

without per-client crypto?



Clients don’t share the work

of verifying a signature.

HTTPSEC tries to reduce

client-side costs (and

precomputation costs) through

choice of crypto primitive.

Many HTTPSEC crypto options:

640-bit RSA, original specs;

768-bit RSA, many docs;

1024-bit RSA, current

signatures from VeriSign etc.;

DSA, “10 to 40 times as slow for

verification” but faster for signing.

HTTPSEC made breakable

choices such as 640-bit RSA

for no reason other than

fear of overload.

HTTPSEC needed more options

to survive the inevitable breaks;

and even more complexity

for reasons I’ll explain.

More complexity ) more bugs,

including security holes.

Author of one very popular

HTTP server: “The effort of

implementing everything correctly

is just staggering.”

HTTPSEC confidentiality

How do you encrypt

requests and responses

without per-client crypto?



HTTPSEC made breakable

choices such as 640-bit RSA

for no reason other than

fear of overload.

HTTPSEC needed more options

to survive the inevitable breaks;

and even more complexity

for reasons I’ll explain.

More complexity ) more bugs,

including security holes.

Author of one very popular

HTTP server: “The effort of

implementing everything correctly

is just staggering.”

HTTPSEC confidentiality

How do you encrypt

requests and responses

without per-client crypto?



HTTPSEC made breakable

choices such as 640-bit RSA

for no reason other than

fear of overload.

HTTPSEC needed more options

to survive the inevitable breaks;

and even more complexity

for reasons I’ll explain.

More complexity ) more bugs,

including security holes.

Author of one very popular

HTTP server: “The effort of

implementing everything correctly

is just staggering.”

HTTPSEC confidentiality

How do you encrypt

requests and responses

without per-client crypto?

Answer: You can’t,

and HTTPSEC doesn’t even try.

The HTTPSEC RFC says

“Due to a deliberate design

choice, HTTPSEC does not

provide confidentiality.”



HTTPSEC made breakable

choices such as 640-bit RSA

for no reason other than

fear of overload.

HTTPSEC needed more options

to survive the inevitable breaks;

and even more complexity

for reasons I’ll explain.

More complexity ) more bugs,

including security holes.

Author of one very popular

HTTP server: “The effort of

implementing everything correctly

is just staggering.”

HTTPSEC confidentiality

How do you encrypt

requests and responses

without per-client crypto?

Answer: You can’t,

and HTTPSEC doesn’t even try.

The HTTPSEC RFC says

“Due to a deliberate design

choice, HTTPSEC does not

provide confidentiality.”

This is very strange, but

not the worst part of HTTPSEC.



HTTPSEC made breakable

choices such as 640-bit RSA

for no reason other than

fear of overload.

HTTPSEC needed more options

to survive the inevitable breaks;

and even more complexity

for reasons I’ll explain.

More complexity ) more bugs,

including security holes.

Author of one very popular

HTTP server: “The effort of

implementing everything correctly

is just staggering.”

HTTPSEC confidentiality

How do you encrypt

requests and responses

without per-client crypto?

Answer: You can’t,

and HTTPSEC doesn’t even try.

The HTTPSEC RFC says

“Due to a deliberate design

choice, HTTPSEC does not

provide confidentiality.”

This is very strange, but

not the worst part of HTTPSEC.

The HTTPSEC data model

When nu.nl HTTP server

receives a request for

http://nu.nl/economie/,

it looks for a file

/var/www/economie/index.html

on its local disk.

An HTTPSEC client also asks for

http://nu.nl/economie/

index.html.httpsec-pgp.

Server admin has created

index.html.httpsec-pgp

with a signature of index.html.



HTTPSEC made breakable

choices such as 640-bit RSA

for no reason other than

fear of overload.

HTTPSEC needed more options

to survive the inevitable breaks;

and even more complexity

for reasons I’ll explain.

More complexity ) more bugs,

including security holes.

Author of one very popular

HTTP server: “The effort of

implementing everything correctly

is just staggering.”

HTTPSEC confidentiality

How do you encrypt

requests and responses

without per-client crypto?

Answer: You can’t,

and HTTPSEC doesn’t even try.

The HTTPSEC RFC says

“Due to a deliberate design

choice, HTTPSEC does not

provide confidentiality.”

This is very strange, but

not the worst part of HTTPSEC.

The HTTPSEC data model

When nu.nl HTTP server

receives a request for

http://nu.nl/economie/,

it looks for a file

/var/www/economie/index.html

on its local disk.

An HTTPSEC client also asks for

http://nu.nl/economie/

index.html.httpsec-pgp.

Server admin has created

index.html.httpsec-pgp

with a signature of index.html.



HTTPSEC made breakable

choices such as 640-bit RSA

for no reason other than

fear of overload.

HTTPSEC needed more options

to survive the inevitable breaks;

and even more complexity

for reasons I’ll explain.

More complexity ) more bugs,

including security holes.

Author of one very popular

HTTP server: “The effort of

implementing everything correctly

is just staggering.”

HTTPSEC confidentiality

How do you encrypt

requests and responses

without per-client crypto?

Answer: You can’t,

and HTTPSEC doesn’t even try.

The HTTPSEC RFC says

“Due to a deliberate design

choice, HTTPSEC does not

provide confidentiality.”

This is very strange, but

not the worst part of HTTPSEC.

The HTTPSEC data model

When nu.nl HTTP server

receives a request for

http://nu.nl/economie/,

it looks for a file

/var/www/economie/index.html

on its local disk.

An HTTPSEC client also asks for

http://nu.nl/economie/

index.html.httpsec-pgp.

Server admin has created

index.html.httpsec-pgp

with a signature of index.html.



HTTPSEC confidentiality

How do you encrypt

requests and responses

without per-client crypto?

Answer: You can’t,

and HTTPSEC doesn’t even try.

The HTTPSEC RFC says

“Due to a deliberate design

choice, HTTPSEC does not

provide confidentiality.”

This is very strange, but

not the worst part of HTTPSEC.

The HTTPSEC data model

When nu.nl HTTP server

receives a request for

http://nu.nl/economie/,

it looks for a file

/var/www/economie/index.html

on its local disk.

An HTTPSEC client also asks for

http://nu.nl/economie/

index.html.httpsec-pgp.

Server admin has created

index.html.httpsec-pgp

with a signature of index.html.



HTTPSEC confidentiality

How do you encrypt

requests and responses

without per-client crypto?

Answer: You can’t,

and HTTPSEC doesn’t even try.

The HTTPSEC RFC says

“Due to a deliberate design

choice, HTTPSEC does not

provide confidentiality.”

This is very strange, but

not the worst part of HTTPSEC.

The HTTPSEC data model

When nu.nl HTTP server

receives a request for

http://nu.nl/economie/,

it looks for a file

/var/www/economie/index.html

on its local disk.

An HTTPSEC client also asks for

http://nu.nl/economie/

index.html.httpsec-pgp.

Server admin has created

index.html.httpsec-pgp

with a signature of index.html.

There are hundreds (thousands?)

of software tools to help

admins manage web sites:

e.g., wiki-creation tools.



HTTPSEC confidentiality

How do you encrypt

requests and responses

without per-client crypto?

Answer: You can’t,

and HTTPSEC doesn’t even try.

The HTTPSEC RFC says

“Due to a deliberate design

choice, HTTPSEC does not

provide confidentiality.”

This is very strange, but

not the worst part of HTTPSEC.

The HTTPSEC data model

When nu.nl HTTP server

receives a request for

http://nu.nl/economie/,

it looks for a file

/var/www/economie/index.html

on its local disk.

An HTTPSEC client also asks for

http://nu.nl/economie/

index.html.httpsec-pgp.

Server admin has created

index.html.httpsec-pgp

with a signature of index.html.

There are hundreds (thousands?)

of software tools to help

admins manage web sites:

e.g., wiki-creation tools.



HTTPSEC confidentiality

How do you encrypt

requests and responses

without per-client crypto?

Answer: You can’t,

and HTTPSEC doesn’t even try.

The HTTPSEC RFC says

“Due to a deliberate design

choice, HTTPSEC does not

provide confidentiality.”

This is very strange, but

not the worst part of HTTPSEC.

The HTTPSEC data model

When nu.nl HTTP server

receives a request for

http://nu.nl/economie/,

it looks for a file

/var/www/economie/index.html

on its local disk.

An HTTPSEC client also asks for

http://nu.nl/economie/

index.html.httpsec-pgp.

Server admin has created

index.html.httpsec-pgp

with a signature of index.html.

There are hundreds (thousands?)

of software tools to help

admins manage web sites:

e.g., wiki-creation tools.



The HTTPSEC data model

When nu.nl HTTP server

receives a request for

http://nu.nl/economie/,

it looks for a file

/var/www/economie/index.html

on its local disk.

An HTTPSEC client also asks for

http://nu.nl/economie/

index.html.httpsec-pgp.

Server admin has created

index.html.httpsec-pgp

with a signature of index.html.

There are hundreds (thousands?)

of software tools to help

admins manage web sites:

e.g., wiki-creation tools.



The HTTPSEC data model

When nu.nl HTTP server

receives a request for

http://nu.nl/economie/,

it looks for a file

/var/www/economie/index.html

on its local disk.

An HTTPSEC client also asks for

http://nu.nl/economie/

index.html.httpsec-pgp.

Server admin has created

index.html.httpsec-pgp

with a signature of index.html.

There are hundreds (thousands?)

of software tools to help

admins manage web sites:

e.g., wiki-creation tools.

When these tools create

index.html,

do they also create

index.html.httpsec-pgp?



The HTTPSEC data model

When nu.nl HTTP server

receives a request for

http://nu.nl/economie/,

it looks for a file

/var/www/economie/index.html

on its local disk.

An HTTPSEC client also asks for

http://nu.nl/economie/

index.html.httpsec-pgp.

Server admin has created

index.html.httpsec-pgp

with a signature of index.html.

There are hundreds (thousands?)

of software tools to help

admins manage web sites:

e.g., wiki-creation tools.

When these tools create

index.html,

do they also create

index.html.httpsec-pgp?

What about dynamic data?



The HTTPSEC data model

When nu.nl HTTP server

receives a request for

http://nu.nl/economie/,

it looks for a file

/var/www/economie/index.html

on its local disk.

An HTTPSEC client also asks for

http://nu.nl/economie/

index.html.httpsec-pgp.

Server admin has created

index.html.httpsec-pgp

with a signature of index.html.

There are hundreds (thousands?)

of software tools to help

admins manage web sites:

e.g., wiki-creation tools.

When these tools create

index.html,

do they also create

index.html.httpsec-pgp?

What about dynamic data?

HTTPSEC purists say “Answers

should always be static”.



The HTTPSEC data model

When nu.nl HTTP server

receives a request for

http://nu.nl/economie/,

it looks for a file

/var/www/economie/index.html

on its local disk.

An HTTPSEC client also asks for

http://nu.nl/economie/

index.html.httpsec-pgp.

Server admin has created

index.html.httpsec-pgp

with a signature of index.html.

There are hundreds (thousands?)

of software tools to help

admins manage web sites:

e.g., wiki-creation tools.

When these tools create

index.html,

do they also create

index.html.httpsec-pgp?

What about dynamic data?

HTTPSEC purists say “Answers

should always be static”.

What about old data?

Are the signatures still valid?

Can an attacker replay

obsolete signed data?

If clocks are synchronized

then signatures can

include expiration times.

But frequent re-signing

is an administrative disaster.

HTTPSEC suicide:

admin screws up; signatures

expire; every HTTPSEC client

refuses to load the page.



The HTTPSEC data model

When nu.nl HTTP server

receives a request for

http://nu.nl/economie/,

it looks for a file

/var/www/economie/index.html

on its local disk.

An HTTPSEC client also asks for

http://nu.nl/economie/

index.html.httpsec-pgp.

Server admin has created

index.html.httpsec-pgp

with a signature of index.html.

There are hundreds (thousands?)

of software tools to help

admins manage web sites:

e.g., wiki-creation tools.

When these tools create

index.html,

do they also create

index.html.httpsec-pgp?

What about dynamic data?

HTTPSEC purists say “Answers

should always be static”.

What about old data?

Are the signatures still valid?

Can an attacker replay

obsolete signed data?

If clocks are synchronized

then signatures can

include expiration times.

But frequent re-signing

is an administrative disaster.

HTTPSEC suicide:

admin screws up; signatures

expire; every HTTPSEC client

refuses to load the page.



The HTTPSEC data model

When nu.nl HTTP server

receives a request for

http://nu.nl/economie/,

it looks for a file

/var/www/economie/index.html

on its local disk.

An HTTPSEC client also asks for

http://nu.nl/economie/

index.html.httpsec-pgp.

Server admin has created

index.html.httpsec-pgp

with a signature of index.html.

There are hundreds (thousands?)

of software tools to help

admins manage web sites:

e.g., wiki-creation tools.

When these tools create

index.html,

do they also create

index.html.httpsec-pgp?

What about dynamic data?

HTTPSEC purists say “Answers

should always be static”.

What about old data?

Are the signatures still valid?

Can an attacker replay

obsolete signed data?

If clocks are synchronized

then signatures can

include expiration times.

But frequent re-signing

is an administrative disaster.

HTTPSEC suicide:

admin screws up; signatures

expire; every HTTPSEC client

refuses to load the page.



There are hundreds (thousands?)

of software tools to help

admins manage web sites:

e.g., wiki-creation tools.

When these tools create

index.html,

do they also create

index.html.httpsec-pgp?

What about dynamic data?

HTTPSEC purists say “Answers

should always be static”.

What about old data?

Are the signatures still valid?

Can an attacker replay

obsolete signed data?

If clocks are synchronized

then signatures can

include expiration times.

But frequent re-signing

is an administrative disaster.

HTTPSEC suicide:

admin screws up; signatures

expire; every HTTPSEC client

refuses to load the page.



There are hundreds (thousands?)

of software tools to help

admins manage web sites:

e.g., wiki-creation tools.

When these tools create

index.html,

do they also create

index.html.httpsec-pgp?

What about dynamic data?

HTTPSEC purists say “Answers

should always be static”.

What about old data?

Are the signatures still valid?

Can an attacker replay

obsolete signed data?

If clocks are synchronized

then signatures can

include expiration times.

But frequent re-signing

is an administrative disaster.

HTTPSEC suicide:

admin screws up; signatures

expire; every HTTPSEC client

refuses to load the page.

HTTPSEC suicide examples:

2010.09.02: US government.

2010.10.07: Belgian government.



There are hundreds (thousands?)

of software tools to help

admins manage web sites:

e.g., wiki-creation tools.

When these tools create

index.html,

do they also create

index.html.httpsec-pgp?

What about dynamic data?

HTTPSEC purists say “Answers

should always be static”.

What about old data?

Are the signatures still valid?

Can an attacker replay

obsolete signed data?

If clocks are synchronized

then signatures can

include expiration times.

But frequent re-signing

is an administrative disaster.

HTTPSEC suicide:

admin screws up; signatures

expire; every HTTPSEC client

refuses to load the page.

HTTPSEC suicide examples:

2010.09.02: US government.

2010.10.07: Belgian government.



There are hundreds (thousands?)

of software tools to help

admins manage web sites:

e.g., wiki-creation tools.

When these tools create

index.html,

do they also create

index.html.httpsec-pgp?

What about dynamic data?

HTTPSEC purists say “Answers

should always be static”.

What about old data?

Are the signatures still valid?

Can an attacker replay

obsolete signed data?

If clocks are synchronized

then signatures can

include expiration times.

But frequent re-signing

is an administrative disaster.

HTTPSEC suicide:

admin screws up; signatures

expire; every HTTPSEC client

refuses to load the page.

HTTPSEC suicide examples:

2010.09.02: US government.

2010.10.07: Belgian government.



What about old data?

Are the signatures still valid?

Can an attacker replay

obsolete signed data?

If clocks are synchronized

then signatures can

include expiration times.

But frequent re-signing

is an administrative disaster.

HTTPSEC suicide:

admin screws up; signatures

expire; every HTTPSEC client

refuses to load the page.

HTTPSEC suicide examples:

2010.09.02: US government.

2010.10.07: Belgian government.



What about old data?

Are the signatures still valid?

Can an attacker replay

obsolete signed data?

If clocks are synchronized

then signatures can

include expiration times.

But frequent re-signing

is an administrative disaster.

HTTPSEC suicide:

admin screws up; signatures

expire; every HTTPSEC client

refuses to load the page.

HTTPSEC suicide examples:

2010.09.02: US government.

2010.10.07: Belgian government.

2012.02.23: httpsec-ref.org.



What about old data?

Are the signatures still valid?

Can an attacker replay

obsolete signed data?

If clocks are synchronized

then signatures can

include expiration times.

But frequent re-signing

is an administrative disaster.

HTTPSEC suicide:

admin screws up; signatures

expire; every HTTPSEC client

refuses to load the page.

HTTPSEC suicide examples:

2010.09.02: US government.

2010.10.07: Belgian government.

2012.02.23: httpsec-ref.org.

2012.02.28: “Last night I

was unable to check the

weather forecast, because

the fine folks at NOAA.gov

/ weather.gov broke their

HTTPSEC.”



What about old data?

Are the signatures still valid?

Can an attacker replay

obsolete signed data?

If clocks are synchronized

then signatures can

include expiration times.

But frequent re-signing

is an administrative disaster.

HTTPSEC suicide:

admin screws up; signatures

expire; every HTTPSEC client

refuses to load the page.

HTTPSEC suicide examples:

2010.09.02: US government.

2010.10.07: Belgian government.

2012.02.23: httpsec-ref.org.

2012.02.28: “Last night I

was unable to check the

weather forecast, because

the fine folks at NOAA.gov

/ weather.gov broke their

HTTPSEC.”

2012.02.28, HTTPSEC-REF

tech-support rep: “httpsec-

accept-expired yes”



What about old data?

Are the signatures still valid?

Can an attacker replay

obsolete signed data?

If clocks are synchronized

then signatures can

include expiration times.

But frequent re-signing

is an administrative disaster.

HTTPSEC suicide:

admin screws up; signatures

expire; every HTTPSEC client

refuses to load the page.

HTTPSEC suicide examples:

2010.09.02: US government.

2010.10.07: Belgian government.

2012.02.23: httpsec-ref.org.

2012.02.28: “Last night I

was unable to check the

weather forecast, because

the fine folks at NOAA.gov

/ weather.gov broke their

HTTPSEC.”

2012.02.28, HTTPSEC-REF

tech-support rep: “httpsec-

accept-expired yes”

What about nonexistent files?



What about old data?

Are the signatures still valid?

Can an attacker replay

obsolete signed data?

If clocks are synchronized

then signatures can

include expiration times.

But frequent re-signing

is an administrative disaster.

HTTPSEC suicide:

admin screws up; signatures

expire; every HTTPSEC client

refuses to load the page.

HTTPSEC suicide examples:

2010.09.02: US government.

2010.10.07: Belgian government.

2012.02.23: httpsec-ref.org.

2012.02.28: “Last night I

was unable to check the

weather forecast, because

the fine folks at NOAA.gov

/ weather.gov broke their

HTTPSEC.”

2012.02.28, HTTPSEC-REF

tech-support rep: “httpsec-

accept-expired yes”

What about nonexistent files?



What about old data?

Are the signatures still valid?

Can an attacker replay

obsolete signed data?

If clocks are synchronized

then signatures can

include expiration times.

But frequent re-signing

is an administrative disaster.

HTTPSEC suicide:

admin screws up; signatures

expire; every HTTPSEC client

refuses to load the page.

HTTPSEC suicide examples:

2010.09.02: US government.

2010.10.07: Belgian government.

2012.02.23: httpsec-ref.org.

2012.02.28: “Last night I

was unable to check the

weather forecast, because

the fine folks at NOAA.gov

/ weather.gov broke their

HTTPSEC.”

2012.02.28, HTTPSEC-REF

tech-support rep: “httpsec-

accept-expired yes”

What about nonexistent files?



HTTPSEC suicide examples:

2010.09.02: US government.

2010.10.07: Belgian government.

2012.02.23: httpsec-ref.org.

2012.02.28: “Last night I

was unable to check the

weather forecast, because

the fine folks at NOAA.gov

/ weather.gov broke their

HTTPSEC.”

2012.02.28, HTTPSEC-REF

tech-support rep: “httpsec-

accept-expired yes”

What about nonexistent files?



HTTPSEC suicide examples:

2010.09.02: US government.

2010.10.07: Belgian government.

2012.02.23: httpsec-ref.org.

2012.02.28: “Last night I

was unable to check the

weather forecast, because

the fine folks at NOAA.gov

/ weather.gov broke their

HTTPSEC.”

2012.02.28, HTTPSEC-REF

tech-support rep: “httpsec-

accept-expired yes”

What about nonexistent files?

Does the server admin

precompute PGP signatures on

“aaaaa does not exist”,

“aaaab does not exist”, etc.?



HTTPSEC suicide examples:

2010.09.02: US government.

2010.10.07: Belgian government.

2012.02.23: httpsec-ref.org.

2012.02.28: “Last night I

was unable to check the

weather forecast, because

the fine folks at NOAA.gov

/ weather.gov broke their

HTTPSEC.”

2012.02.28, HTTPSEC-REF

tech-support rep: “httpsec-

accept-expired yes”

What about nonexistent files?

Does the server admin

precompute PGP signatures on

“aaaaa does not exist”,

“aaaab does not exist”, etc.?

Crazy! Obvious approach:

“We sign each page that exists,

and don’t sign anything else.”



HTTPSEC suicide examples:

2010.09.02: US government.

2010.10.07: Belgian government.

2012.02.23: httpsec-ref.org.

2012.02.28: “Last night I

was unable to check the

weather forecast, because

the fine folks at NOAA.gov

/ weather.gov broke their

HTTPSEC.”

2012.02.28, HTTPSEC-REF

tech-support rep: “httpsec-

accept-expired yes”

What about nonexistent files?

Does the server admin

precompute PGP signatures on

“aaaaa does not exist”,

“aaaab does not exist”, etc.?

Crazy! Obvious approach:

“We sign each page that exists,

and don’t sign anything else.”

User asks for nonexistent page.

Receives unsigned answer

saying the page doesn’t exist.

Has no choice but to trust it.



HTTPSEC suicide examples:

2010.09.02: US government.

2010.10.07: Belgian government.

2012.02.23: httpsec-ref.org.

2012.02.28: “Last night I

was unable to check the

weather forecast, because

the fine folks at NOAA.gov

/ weather.gov broke their

HTTPSEC.”

2012.02.28, HTTPSEC-REF

tech-support rep: “httpsec-

accept-expired yes”

What about nonexistent files?

Does the server admin

precompute PGP signatures on

“aaaaa does not exist”,

“aaaab does not exist”, etc.?

Crazy! Obvious approach:

“We sign each page that exists,

and don’t sign anything else.”

User asks for nonexistent page.

Receives unsigned answer

saying the page doesn’t exist.

Has no choice but to trust it.

User asks for nu.nl/economie.

Receives unsigned answer,

a response forged by attacker,

saying the page doesn’t exist.

Has no choice but to trust it.

Clearly a violation of availability.

Sometimes a violation of integrity.

This is not a good approach.



HTTPSEC suicide examples:

2010.09.02: US government.

2010.10.07: Belgian government.

2012.02.23: httpsec-ref.org.

2012.02.28: “Last night I

was unable to check the

weather forecast, because

the fine folks at NOAA.gov

/ weather.gov broke their

HTTPSEC.”

2012.02.28, HTTPSEC-REF

tech-support rep: “httpsec-

accept-expired yes”

What about nonexistent files?

Does the server admin

precompute PGP signatures on

“aaaaa does not exist”,

“aaaab does not exist”, etc.?

Crazy! Obvious approach:

“We sign each page that exists,

and don’t sign anything else.”

User asks for nonexistent page.

Receives unsigned answer

saying the page doesn’t exist.

Has no choice but to trust it.

User asks for nu.nl/economie.

Receives unsigned answer,

a response forged by attacker,

saying the page doesn’t exist.

Has no choice but to trust it.

Clearly a violation of availability.

Sometimes a violation of integrity.

This is not a good approach.



HTTPSEC suicide examples:

2010.09.02: US government.

2010.10.07: Belgian government.

2012.02.23: httpsec-ref.org.

2012.02.28: “Last night I

was unable to check the

weather forecast, because

the fine folks at NOAA.gov

/ weather.gov broke their

HTTPSEC.”

2012.02.28, HTTPSEC-REF

tech-support rep: “httpsec-

accept-expired yes”

What about nonexistent files?

Does the server admin

precompute PGP signatures on

“aaaaa does not exist”,

“aaaab does not exist”, etc.?

Crazy! Obvious approach:

“We sign each page that exists,

and don’t sign anything else.”

User asks for nonexistent page.

Receives unsigned answer

saying the page doesn’t exist.

Has no choice but to trust it.

User asks for nu.nl/economie.

Receives unsigned answer,

a response forged by attacker,

saying the page doesn’t exist.

Has no choice but to trust it.

Clearly a violation of availability.

Sometimes a violation of integrity.

This is not a good approach.



What about nonexistent files?

Does the server admin

precompute PGP signatures on

“aaaaa does not exist”,

“aaaab does not exist”, etc.?

Crazy! Obvious approach:

“We sign each page that exists,

and don’t sign anything else.”

User asks for nonexistent page.

Receives unsigned answer

saying the page doesn’t exist.

Has no choice but to trust it.

User asks for nu.nl/economie.

Receives unsigned answer,

a response forged by attacker,

saying the page doesn’t exist.

Has no choice but to trust it.

Clearly a violation of availability.

Sometimes a violation of integrity.

This is not a good approach.



What about nonexistent files?

Does the server admin

precompute PGP signatures on

“aaaaa does not exist”,

“aaaab does not exist”, etc.?

Crazy! Obvious approach:

“We sign each page that exists,

and don’t sign anything else.”

User asks for nonexistent page.

Receives unsigned answer

saying the page doesn’t exist.

Has no choice but to trust it.

User asks for nu.nl/economie.

Receives unsigned answer,

a response forged by attacker,

saying the page doesn’t exist.

Has no choice but to trust it.

Clearly a violation of availability.

Sometimes a violation of integrity.

This is not a good approach.

Alternative: “NHTTPSEC”. e.g.

clegg.com/nonex query returns

“There are no pages between

clegg.com/nick and

clegg.com/start” + signature.



What about nonexistent files?

Does the server admin

precompute PGP signatures on

“aaaaa does not exist”,

“aaaab does not exist”, etc.?

Crazy! Obvious approach:

“We sign each page that exists,

and don’t sign anything else.”

User asks for nonexistent page.

Receives unsigned answer

saying the page doesn’t exist.

Has no choice but to trust it.

User asks for nu.nl/economie.

Receives unsigned answer,

a response forged by attacker,

saying the page doesn’t exist.

Has no choice but to trust it.

Clearly a violation of availability.

Sometimes a violation of integrity.

This is not a good approach.

Alternative: “NHTTPSEC”. e.g.

clegg.com/nonex query returns

“There are no pages between

clegg.com/nick and

clegg.com/start” + signature.

Try clegg.com/foo etc.

After several queries have

all clegg.com names:

alan, alvis, andrew, brian,

calendar, home, imogene,

jennifer, mail, nick, start,

wiki.



What about nonexistent files?

Does the server admin

precompute PGP signatures on

“aaaaa does not exist”,

“aaaab does not exist”, etc.?

Crazy! Obvious approach:

“We sign each page that exists,

and don’t sign anything else.”

User asks for nonexistent page.

Receives unsigned answer

saying the page doesn’t exist.

Has no choice but to trust it.

User asks for nu.nl/economie.

Receives unsigned answer,

a response forged by attacker,

saying the page doesn’t exist.

Has no choice but to trust it.

Clearly a violation of availability.

Sometimes a violation of integrity.

This is not a good approach.

Alternative: “NHTTPSEC”. e.g.

clegg.com/nonex query returns

“There are no pages between

clegg.com/nick and

clegg.com/start” + signature.

Try clegg.com/foo etc.

After several queries have

all clegg.com names:

alan, alvis, andrew, brian,

calendar, home, imogene,

jennifer, mail, nick, start,

wiki.



What about nonexistent files?

Does the server admin

precompute PGP signatures on

“aaaaa does not exist”,

“aaaab does not exist”, etc.?

Crazy! Obvious approach:

“We sign each page that exists,

and don’t sign anything else.”

User asks for nonexistent page.

Receives unsigned answer

saying the page doesn’t exist.

Has no choice but to trust it.

User asks for nu.nl/economie.

Receives unsigned answer,

a response forged by attacker,

saying the page doesn’t exist.

Has no choice but to trust it.

Clearly a violation of availability.

Sometimes a violation of integrity.

This is not a good approach.

Alternative: “NHTTPSEC”. e.g.

clegg.com/nonex query returns

“There are no pages between

clegg.com/nick and

clegg.com/start” + signature.

Try clegg.com/foo etc.

After several queries have

all clegg.com names:

alan, alvis, andrew, brian,

calendar, home, imogene,

jennifer, mail, nick, start,

wiki.



User asks for nu.nl/economie.

Receives unsigned answer,

a response forged by attacker,

saying the page doesn’t exist.

Has no choice but to trust it.

Clearly a violation of availability.

Sometimes a violation of integrity.

This is not a good approach.

Alternative: “NHTTPSEC”. e.g.

clegg.com/nonex query returns

“There are no pages between

clegg.com/nick and

clegg.com/start” + signature.

Try clegg.com/foo etc.

After several queries have

all clegg.com names:

alan, alvis, andrew, brian,

calendar, home, imogene,

jennifer, mail, nick, start,

wiki.



User asks for nu.nl/economie.

Receives unsigned answer,

a response forged by attacker,

saying the page doesn’t exist.

Has no choice but to trust it.

Clearly a violation of availability.

Sometimes a violation of integrity.

This is not a good approach.

Alternative: “NHTTPSEC”. e.g.

clegg.com/nonex query returns

“There are no pages between

clegg.com/nick and

clegg.com/start” + signature.

Try clegg.com/foo etc.

After several queries have

all clegg.com names:

alan, alvis, andrew, brian,

calendar, home, imogene,

jennifer, mail, nick, start,

wiki.

The clegg.com administrator

disabled HTTP directory indexing

— but then leaked the same data

by installing HTTPSEC

with the default NHTTPSEC.



User asks for nu.nl/economie.

Receives unsigned answer,

a response forged by attacker,

saying the page doesn’t exist.

Has no choice but to trust it.

Clearly a violation of availability.

Sometimes a violation of integrity.

This is not a good approach.

Alternative: “NHTTPSEC”. e.g.

clegg.com/nonex query returns

“There are no pages between

clegg.com/nick and

clegg.com/start” + signature.

Try clegg.com/foo etc.

After several queries have

all clegg.com names:

alan, alvis, andrew, brian,

calendar, home, imogene,

jennifer, mail, nick, start,

wiki.

The clegg.com administrator

disabled HTTP directory indexing

— but then leaked the same data

by installing HTTPSEC

with the default NHTTPSEC.

Summary: Attacker learns

all n names of pages

on an NHTTPSEC server

(with signatures guaranteeing

that there are no more)

using n HTTPSEC queries.



User asks for nu.nl/economie.

Receives unsigned answer,

a response forged by attacker,

saying the page doesn’t exist.

Has no choice but to trust it.

Clearly a violation of availability.

Sometimes a violation of integrity.

This is not a good approach.

Alternative: “NHTTPSEC”. e.g.

clegg.com/nonex query returns

“There are no pages between

clegg.com/nick and

clegg.com/start” + signature.

Try clegg.com/foo etc.

After several queries have

all clegg.com names:

alan, alvis, andrew, brian,

calendar, home, imogene,

jennifer, mail, nick, start,

wiki.

The clegg.com administrator

disabled HTTP directory indexing

— but then leaked the same data

by installing HTTPSEC

with the default NHTTPSEC.

Summary: Attacker learns

all n names of pages

on an NHTTPSEC server

(with signatures guaranteeing

that there are no more)

using n HTTPSEC queries.



User asks for nu.nl/economie.

Receives unsigned answer,

a response forged by attacker,

saying the page doesn’t exist.

Has no choice but to trust it.

Clearly a violation of availability.

Sometimes a violation of integrity.

This is not a good approach.

Alternative: “NHTTPSEC”. e.g.

clegg.com/nonex query returns

“There are no pages between

clegg.com/nick and

clegg.com/start” + signature.

Try clegg.com/foo etc.

After several queries have

all clegg.com names:

alan, alvis, andrew, brian,

calendar, home, imogene,

jennifer, mail, nick, start,

wiki.

The clegg.com administrator

disabled HTTP directory indexing

— but then leaked the same data

by installing HTTPSEC

with the default NHTTPSEC.

Summary: Attacker learns

all n names of pages

on an NHTTPSEC server

(with signatures guaranteeing

that there are no more)

using n HTTPSEC queries.



Try clegg.com/foo etc.

After several queries have

all clegg.com names:

alan, alvis, andrew, brian,

calendar, home, imogene,

jennifer, mail, nick, start,

wiki.

The clegg.com administrator

disabled HTTP directory indexing

— but then leaked the same data

by installing HTTPSEC

with the default NHTTPSEC.

Summary: Attacker learns

all n names of pages

on an NHTTPSEC server

(with signatures guaranteeing

that there are no more)

using n HTTPSEC queries.



Try clegg.com/foo etc.

After several queries have

all clegg.com names:

alan, alvis, andrew, brian,

calendar, home, imogene,

jennifer, mail, nick, start,

wiki.

The clegg.com administrator

disabled HTTP directory indexing

— but then leaked the same data

by installing HTTPSEC

with the default NHTTPSEC.

Summary: Attacker learns

all n names of pages

on an NHTTPSEC server

(with signatures guaranteeing

that there are no more)

using n HTTPSEC queries.

This is not a good approach.



Try clegg.com/foo etc.

After several queries have

all clegg.com names:

alan, alvis, andrew, brian,

calendar, home, imogene,

jennifer, mail, nick, start,

wiki.

The clegg.com administrator

disabled HTTP directory indexing

— but then leaked the same data

by installing HTTPSEC

with the default NHTTPSEC.

Summary: Attacker learns

all n names of pages

on an NHTTPSEC server

(with signatures guaranteeing

that there are no more)

using n HTTPSEC queries.

This is not a good approach.

HTTPSEC purists disagree:

“It is part of the design

philosophy of the Web

that the data in it is public.”

But this notion is so extreme

that it became an HTTPSEC

public-relations problem.



Try clegg.com/foo etc.

After several queries have

all clegg.com names:

alan, alvis, andrew, brian,

calendar, home, imogene,

jennifer, mail, nick, start,

wiki.

The clegg.com administrator

disabled HTTP directory indexing

— but then leaked the same data

by installing HTTPSEC

with the default NHTTPSEC.

Summary: Attacker learns

all n names of pages

on an NHTTPSEC server

(with signatures guaranteeing

that there are no more)

using n HTTPSEC queries.

This is not a good approach.

HTTPSEC purists disagree:

“It is part of the design

philosophy of the Web

that the data in it is public.”

But this notion is so extreme

that it became an HTTPSEC

public-relations problem.

New HTTPSEC approach:

1. “NHTTPSEC3” technology:

Use a “one-way hash function”

such as (iterated salted) SHA-1.

Reveal hashes of names

instead of revealing names.

“There are no names with

hashes between : : : and : : : ”



Try clegg.com/foo etc.

After several queries have

all clegg.com names:

alan, alvis, andrew, brian,

calendar, home, imogene,

jennifer, mail, nick, start,

wiki.

The clegg.com administrator

disabled HTTP directory indexing

— but then leaked the same data

by installing HTTPSEC

with the default NHTTPSEC.

Summary: Attacker learns

all n names of pages

on an NHTTPSEC server

(with signatures guaranteeing

that there are no more)

using n HTTPSEC queries.

This is not a good approach.

HTTPSEC purists disagree:

“It is part of the design

philosophy of the Web

that the data in it is public.”

But this notion is so extreme

that it became an HTTPSEC

public-relations problem.

New HTTPSEC approach:

1. “NHTTPSEC3” technology:

Use a “one-way hash function”

such as (iterated salted) SHA-1.

Reveal hashes of names

instead of revealing names.

“There are no names with

hashes between : : : and : : : ”



Try clegg.com/foo etc.

After several queries have

all clegg.com names:

alan, alvis, andrew, brian,

calendar, home, imogene,

jennifer, mail, nick, start,

wiki.

The clegg.com administrator

disabled HTTP directory indexing

— but then leaked the same data

by installing HTTPSEC

with the default NHTTPSEC.

Summary: Attacker learns

all n names of pages

on an NHTTPSEC server

(with signatures guaranteeing

that there are no more)

using n HTTPSEC queries.

This is not a good approach.

HTTPSEC purists disagree:

“It is part of the design

philosophy of the Web

that the data in it is public.”

But this notion is so extreme

that it became an HTTPSEC

public-relations problem.

New HTTPSEC approach:

1. “NHTTPSEC3” technology:

Use a “one-way hash function”

such as (iterated salted) SHA-1.

Reveal hashes of names

instead of revealing names.

“There are no names with

hashes between : : : and : : : ”



Summary: Attacker learns

all n names of pages

on an NHTTPSEC server

(with signatures guaranteeing

that there are no more)

using n HTTPSEC queries.

This is not a good approach.

HTTPSEC purists disagree:

“It is part of the design

philosophy of the Web

that the data in it is public.”

But this notion is so extreme

that it became an HTTPSEC

public-relations problem.

New HTTPSEC approach:

1. “NHTTPSEC3” technology:

Use a “one-way hash function”

such as (iterated salted) SHA-1.

Reveal hashes of names

instead of revealing names.

“There are no names with

hashes between : : : and : : : ”



Summary: Attacker learns

all n names of pages

on an NHTTPSEC server

(with signatures guaranteeing

that there are no more)

using n HTTPSEC queries.

This is not a good approach.

HTTPSEC purists disagree:

“It is part of the design

philosophy of the Web

that the data in it is public.”

But this notion is so extreme

that it became an HTTPSEC

public-relations problem.

New HTTPSEC approach:

1. “NHTTPSEC3” technology:

Use a “one-way hash function”

such as (iterated salted) SHA-1.

Reveal hashes of names

instead of revealing names.

“There are no names with

hashes between : : : and : : : ”

2. Marketing:

Pretend that NHTTPSEC3 is

less damaging than NSEC.

“NHTTPSEC3 does not allow

enumeration of the site.”



Summary: Attacker learns

all n names of pages

on an NHTTPSEC server

(with signatures guaranteeing

that there are no more)

using n HTTPSEC queries.

This is not a good approach.

HTTPSEC purists disagree:

“It is part of the design

philosophy of the Web

that the data in it is public.”

But this notion is so extreme

that it became an HTTPSEC

public-relations problem.

New HTTPSEC approach:

1. “NHTTPSEC3” technology:

Use a “one-way hash function”

such as (iterated salted) SHA-1.

Reveal hashes of names

instead of revealing names.

“There are no names with

hashes between : : : and : : : ”

2. Marketing:

Pretend that NHTTPSEC3 is

less damaging than NSEC.

“NHTTPSEC3 does not allow

enumeration of the site.”

Reality: Attacker grabs the hashes

by abusing NHTTPSEC3;

computes the same hash function

for many different name guesses;

quickly discovers almost all names

(and knows # missing names).



Summary: Attacker learns

all n names of pages

on an NHTTPSEC server

(with signatures guaranteeing

that there are no more)

using n HTTPSEC queries.

This is not a good approach.

HTTPSEC purists disagree:

“It is part of the design

philosophy of the Web

that the data in it is public.”

But this notion is so extreme

that it became an HTTPSEC

public-relations problem.

New HTTPSEC approach:

1. “NHTTPSEC3” technology:

Use a “one-way hash function”

such as (iterated salted) SHA-1.

Reveal hashes of names

instead of revealing names.

“There are no names with

hashes between : : : and : : : ”

2. Marketing:

Pretend that NHTTPSEC3 is

less damaging than NSEC.

“NHTTPSEC3 does not allow

enumeration of the site.”

Reality: Attacker grabs the hashes

by abusing NHTTPSEC3;

computes the same hash function

for many different name guesses;

quickly discovers almost all names

(and knows # missing names).



Summary: Attacker learns

all n names of pages

on an NHTTPSEC server

(with signatures guaranteeing

that there are no more)

using n HTTPSEC queries.

This is not a good approach.

HTTPSEC purists disagree:

“It is part of the design

philosophy of the Web

that the data in it is public.”

But this notion is so extreme

that it became an HTTPSEC

public-relations problem.

New HTTPSEC approach:

1. “NHTTPSEC3” technology:

Use a “one-way hash function”

such as (iterated salted) SHA-1.

Reveal hashes of names

instead of revealing names.

“There are no names with

hashes between : : : and : : : ”

2. Marketing:

Pretend that NHTTPSEC3 is

less damaging than NSEC.

“NHTTPSEC3 does not allow

enumeration of the site.”

Reality: Attacker grabs the hashes

by abusing NHTTPSEC3;

computes the same hash function

for many different name guesses;

quickly discovers almost all names

(and knows # missing names).



New HTTPSEC approach:

1. “NHTTPSEC3” technology:

Use a “one-way hash function”

such as (iterated salted) SHA-1.

Reveal hashes of names

instead of revealing names.

“There are no names with

hashes between : : : and : : : ”

2. Marketing:

Pretend that NHTTPSEC3 is

less damaging than NSEC.

“NHTTPSEC3 does not allow

enumeration of the site.”

Reality: Attacker grabs the hashes

by abusing NHTTPSEC3;

computes the same hash function

for many different name guesses;

quickly discovers almost all names

(and knows # missing names).



New HTTPSEC approach:

1. “NHTTPSEC3” technology:

Use a “one-way hash function”

such as (iterated salted) SHA-1.

Reveal hashes of names

instead of revealing names.

“There are no names with

hashes between : : : and : : : ”

2. Marketing:

Pretend that NHTTPSEC3 is

less damaging than NSEC.

“NHTTPSEC3 does not allow

enumeration of the site.”

Reality: Attacker grabs the hashes

by abusing NHTTPSEC3;

computes the same hash function

for many different name guesses;

quickly discovers almost all names

(and knows # missing names).

HTTPSEC purists: “You could

have sent all the same guesses

as queries to the server.”



New HTTPSEC approach:

1. “NHTTPSEC3” technology:

Use a “one-way hash function”

such as (iterated salted) SHA-1.

Reveal hashes of names

instead of revealing names.

“There are no names with

hashes between : : : and : : : ”

2. Marketing:

Pretend that NHTTPSEC3 is

less damaging than NSEC.

“NHTTPSEC3 does not allow

enumeration of the site.”

Reality: Attacker grabs the hashes

by abusing NHTTPSEC3;

computes the same hash function

for many different name guesses;

quickly discovers almost all names

(and knows # missing names).

HTTPSEC purists: “You could

have sent all the same guesses

as queries to the server.”

4Mbps flood of queries is

under 5000 noisy guesses/sec.

NHTTPSEC3 allows typical

attackers 10000000 to

10000000000 silent guesses/sec.



New HTTPSEC approach:

1. “NHTTPSEC3” technology:

Use a “one-way hash function”

such as (iterated salted) SHA-1.

Reveal hashes of names

instead of revealing names.

“There are no names with

hashes between : : : and : : : ”

2. Marketing:

Pretend that NHTTPSEC3 is

less damaging than NSEC.

“NHTTPSEC3 does not allow

enumeration of the site.”

Reality: Attacker grabs the hashes

by abusing NHTTPSEC3;

computes the same hash function

for many different name guesses;

quickly discovers almost all names

(and knows # missing names).

HTTPSEC purists: “You could

have sent all the same guesses

as queries to the server.”

4Mbps flood of queries is

under 5000 noisy guesses/sec.

NHTTPSEC3 allows typical

attackers 10000000 to

10000000000 silent guesses/sec.

Another HTTPSEC optimization

Each HTTPSEC key/signature

is another file to retrieve.

Often your browser needs a chain

of keys from several servers.

Could be a serious slowdown.

HTTPSEC speeds this up

by accepting requests

and sending responses

through UDP packets.

Much lower overhead than TCP.



New HTTPSEC approach:

1. “NHTTPSEC3” technology:

Use a “one-way hash function”

such as (iterated salted) SHA-1.

Reveal hashes of names

instead of revealing names.

“There are no names with

hashes between : : : and : : : ”

2. Marketing:

Pretend that NHTTPSEC3 is

less damaging than NSEC.

“NHTTPSEC3 does not allow

enumeration of the site.”

Reality: Attacker grabs the hashes

by abusing NHTTPSEC3;

computes the same hash function

for many different name guesses;

quickly discovers almost all names

(and knows # missing names).

HTTPSEC purists: “You could

have sent all the same guesses

as queries to the server.”

4Mbps flood of queries is

under 5000 noisy guesses/sec.

NHTTPSEC3 allows typical

attackers 10000000 to

10000000000 silent guesses/sec.

Another HTTPSEC optimization

Each HTTPSEC key/signature

is another file to retrieve.

Often your browser needs a chain

of keys from several servers.

Could be a serious slowdown.

HTTPSEC speeds this up

by accepting requests

and sending responses

through UDP packets.

Much lower overhead than TCP.



New HTTPSEC approach:

1. “NHTTPSEC3” technology:

Use a “one-way hash function”

such as (iterated salted) SHA-1.

Reveal hashes of names

instead of revealing names.

“There are no names with

hashes between : : : and : : : ”

2. Marketing:

Pretend that NHTTPSEC3 is

less damaging than NSEC.

“NHTTPSEC3 does not allow

enumeration of the site.”

Reality: Attacker grabs the hashes

by abusing NHTTPSEC3;

computes the same hash function

for many different name guesses;

quickly discovers almost all names

(and knows # missing names).

HTTPSEC purists: “You could

have sent all the same guesses

as queries to the server.”

4Mbps flood of queries is

under 5000 noisy guesses/sec.

NHTTPSEC3 allows typical

attackers 10000000 to

10000000000 silent guesses/sec.

Another HTTPSEC optimization

Each HTTPSEC key/signature

is another file to retrieve.

Often your browser needs a chain

of keys from several servers.

Could be a serious slowdown.

HTTPSEC speeds this up

by accepting requests

and sending responses

through UDP packets.

Much lower overhead than TCP.



Reality: Attacker grabs the hashes

by abusing NHTTPSEC3;

computes the same hash function

for many different name guesses;

quickly discovers almost all names

(and knows # missing names).

HTTPSEC purists: “You could

have sent all the same guesses

as queries to the server.”

4Mbps flood of queries is

under 5000 noisy guesses/sec.

NHTTPSEC3 allows typical

attackers 10000000 to

10000000000 silent guesses/sec.

Another HTTPSEC optimization

Each HTTPSEC key/signature

is another file to retrieve.

Often your browser needs a chain

of keys from several servers.

Could be a serious slowdown.

HTTPSEC speeds this up

by accepting requests

and sending responses

through UDP packets.

Much lower overhead than TCP.



Reality: Attacker grabs the hashes

by abusing NHTTPSEC3;

computes the same hash function

for many different name guesses;

quickly discovers almost all names

(and knows # missing names).

HTTPSEC purists: “You could

have sent all the same guesses

as queries to the server.”

4Mbps flood of queries is

under 5000 noisy guesses/sec.

NHTTPSEC3 allows typical

attackers 10000000 to

10000000000 silent guesses/sec.

Another HTTPSEC optimization

Each HTTPSEC key/signature

is another file to retrieve.

Often your browser needs a chain

of keys from several servers.

Could be a serious slowdown.

HTTPSEC speeds this up

by accepting requests

and sending responses

through UDP packets.

Much lower overhead than TCP.

The bad news:

HTTPSEC responses are

much, much, much larger

than HTTPSEC requests.

Attacker forges many

UDP request packets from

victim’s IP address

to many HTTPSEC servers.

The HTTPSEC servers

blast the victim with

much larger volume of data,

taking victim off the Internet.



Reality: Attacker grabs the hashes

by abusing NHTTPSEC3;

computes the same hash function

for many different name guesses;

quickly discovers almost all names

(and knows # missing names).

HTTPSEC purists: “You could

have sent all the same guesses

as queries to the server.”

4Mbps flood of queries is

under 5000 noisy guesses/sec.

NHTTPSEC3 allows typical

attackers 10000000 to

10000000000 silent guesses/sec.

Another HTTPSEC optimization

Each HTTPSEC key/signature

is another file to retrieve.

Often your browser needs a chain

of keys from several servers.

Could be a serious slowdown.

HTTPSEC speeds this up

by accepting requests

and sending responses

through UDP packets.

Much lower overhead than TCP.

The bad news:

HTTPSEC responses are

much, much, much larger

than HTTPSEC requests.

Attacker forges many

UDP request packets from

victim’s IP address

to many HTTPSEC servers.

The HTTPSEC servers

blast the victim with

much larger volume of data,

taking victim off the Internet.



Reality: Attacker grabs the hashes

by abusing NHTTPSEC3;

computes the same hash function

for many different name guesses;

quickly discovers almost all names

(and knows # missing names).

HTTPSEC purists: “You could

have sent all the same guesses

as queries to the server.”

4Mbps flood of queries is

under 5000 noisy guesses/sec.

NHTTPSEC3 allows typical

attackers 10000000 to

10000000000 silent guesses/sec.

Another HTTPSEC optimization

Each HTTPSEC key/signature

is another file to retrieve.

Often your browser needs a chain

of keys from several servers.

Could be a serious slowdown.

HTTPSEC speeds this up

by accepting requests

and sending responses

through UDP packets.

Much lower overhead than TCP.

The bad news:

HTTPSEC responses are

much, much, much larger

than HTTPSEC requests.

Attacker forges many

UDP request packets from

victim’s IP address

to many HTTPSEC servers.

The HTTPSEC servers

blast the victim with

much larger volume of data,

taking victim off the Internet.



Another HTTPSEC optimization

Each HTTPSEC key/signature

is another file to retrieve.

Often your browser needs a chain

of keys from several servers.

Could be a serious slowdown.

HTTPSEC speeds this up

by accepting requests

and sending responses

through UDP packets.

Much lower overhead than TCP.

The bad news:

HTTPSEC responses are

much, much, much larger

than HTTPSEC requests.

Attacker forges many

UDP request packets from

victim’s IP address

to many HTTPSEC servers.

The HTTPSEC servers

blast the victim with

much larger volume of data,

taking victim off the Internet.



Another HTTPSEC optimization

Each HTTPSEC key/signature

is another file to retrieve.

Often your browser needs a chain

of keys from several servers.

Could be a serious slowdown.

HTTPSEC speeds this up

by accepting requests

and sending responses

through UDP packets.

Much lower overhead than TCP.

The bad news:

HTTPSEC responses are

much, much, much larger

than HTTPSEC requests.

Attacker forges many

UDP request packets from

victim’s IP address

to many HTTPSEC servers.

The HTTPSEC servers

blast the victim with

much larger volume of data,

taking victim off the Internet.

The RFC says “HTTPSEC

provides no protection

against denial of service attacks.”



Another HTTPSEC optimization

Each HTTPSEC key/signature

is another file to retrieve.

Often your browser needs a chain

of keys from several servers.

Could be a serious slowdown.

HTTPSEC speeds this up

by accepting requests

and sending responses

through UDP packets.

Much lower overhead than TCP.

The bad news:

HTTPSEC responses are

much, much, much larger

than HTTPSEC requests.

Attacker forges many

UDP request packets from

victim’s IP address

to many HTTPSEC servers.

The HTTPSEC servers

blast the victim with

much larger volume of data,

taking victim off the Internet.

The RFC says “HTTPSEC

provides no protection

against denial of service attacks.”



Another HTTPSEC optimization

Each HTTPSEC key/signature

is another file to retrieve.

Often your browser needs a chain

of keys from several servers.

Could be a serious slowdown.

HTTPSEC speeds this up

by accepting requests

and sending responses

through UDP packets.

Much lower overhead than TCP.

The bad news:

HTTPSEC responses are

much, much, much larger

than HTTPSEC requests.

Attacker forges many

UDP request packets from

victim’s IP address

to many HTTPSEC servers.

The HTTPSEC servers

blast the victim with

much larger volume of data,

taking victim off the Internet.

The RFC says “HTTPSEC

provides no protection

against denial of service attacks.”



The bad news:

HTTPSEC responses are

much, much, much larger

than HTTPSEC requests.

Attacker forges many

UDP request packets from

victim’s IP address

to many HTTPSEC servers.

The HTTPSEC servers

blast the victim with

much larger volume of data,

taking victim off the Internet.

The RFC says “HTTPSEC

provides no protection

against denial of service attacks.”



The bad news:

HTTPSEC responses are

much, much, much larger

than HTTPSEC requests.

Attacker forges many

UDP request packets from

victim’s IP address

to many HTTPSEC servers.

The HTTPSEC servers

blast the victim with

much larger volume of data,

taking victim off the Internet.

The RFC says “HTTPSEC

provides no protection

against denial of service attacks.”

The RFC doesn’t say

“HTTPSEC is a pool of

remote-controlled attack drones,

the worst DDoS amplifier

on the Internet.”



The bad news:

HTTPSEC responses are

much, much, much larger

than HTTPSEC requests.

Attacker forges many

UDP request packets from

victim’s IP address

to many HTTPSEC servers.

The HTTPSEC servers

blast the victim with

much larger volume of data,

taking victim off the Internet.

The RFC says “HTTPSEC

provides no protection

against denial of service attacks.”

The RFC doesn’t say

“HTTPSEC is a pool of

remote-controlled attack drones,

the worst DDoS amplifier

on the Internet.”

Exericse: investigate

other types of DoS attacks.

e.g. HTTPSEC advertising says

zero server-CPU-time cost.

How much server CPU time

can attackers actually consume?



The bad news:

HTTPSEC responses are

much, much, much larger

than HTTPSEC requests.

Attacker forges many

UDP request packets from

victim’s IP address

to many HTTPSEC servers.

The HTTPSEC servers

blast the victim with

much larger volume of data,

taking victim off the Internet.

The RFC says “HTTPSEC

provides no protection

against denial of service attacks.”

The RFC doesn’t say

“HTTPSEC is a pool of

remote-controlled attack drones,

the worst DDoS amplifier

on the Internet.”

Exericse: investigate

other types of DoS attacks.

e.g. HTTPSEC advertising says

zero server-CPU-time cost.

How much server CPU time

can attackers actually consume?

The worst part of HTTPSEC



The bad news:

HTTPSEC responses are

much, much, much larger

than HTTPSEC requests.

Attacker forges many

UDP request packets from

victim’s IP address

to many HTTPSEC servers.

The HTTPSEC servers

blast the victim with

much larger volume of data,

taking victim off the Internet.

The RFC says “HTTPSEC

provides no protection

against denial of service attacks.”

The RFC doesn’t say

“HTTPSEC is a pool of

remote-controlled attack drones,

the worst DDoS amplifier

on the Internet.”

Exericse: investigate

other types of DoS attacks.

e.g. HTTPSEC advertising says

zero server-CPU-time cost.

How much server CPU time

can attackers actually consume?

The worst part of HTTPSEC



The bad news:

HTTPSEC responses are

much, much, much larger

than HTTPSEC requests.

Attacker forges many

UDP request packets from

victim’s IP address

to many HTTPSEC servers.

The HTTPSEC servers

blast the victim with

much larger volume of data,

taking victim off the Internet.

The RFC says “HTTPSEC

provides no protection

against denial of service attacks.”

The RFC doesn’t say

“HTTPSEC is a pool of

remote-controlled attack drones,

the worst DDoS amplifier

on the Internet.”

Exericse: investigate

other types of DoS attacks.

e.g. HTTPSEC advertising says

zero server-CPU-time cost.

How much server CPU time

can attackers actually consume?

The worst part of HTTPSEC



The RFC says “HTTPSEC

provides no protection

against denial of service attacks.”

The RFC doesn’t say

“HTTPSEC is a pool of

remote-controlled attack drones,

the worst DDoS amplifier

on the Internet.”

Exericse: investigate

other types of DoS attacks.

e.g. HTTPSEC advertising says

zero server-CPU-time cost.

How much server CPU time

can attackers actually consume?

The worst part of HTTPSEC



The RFC says “HTTPSEC

provides no protection

against denial of service attacks.”

The RFC doesn’t say

“HTTPSEC is a pool of

remote-controlled attack drones,

the worst DDoS amplifier

on the Internet.”

Exericse: investigate

other types of DoS attacks.

e.g. HTTPSEC advertising says

zero server-CPU-time cost.

How much server CPU time

can attackers actually consume?

The worst part of HTTPSEC

The data signed by HTTPSEC

doesn’t actually include

the web pages that

the browser shows to the user.



The RFC says “HTTPSEC

provides no protection

against denial of service attacks.”

The RFC doesn’t say

“HTTPSEC is a pool of

remote-controlled attack drones,

the worst DDoS amplifier

on the Internet.”

Exericse: investigate

other types of DoS attacks.

e.g. HTTPSEC advertising says

zero server-CPU-time cost.

How much server CPU time

can attackers actually consume?

The worst part of HTTPSEC

The data signed by HTTPSEC

doesn’t actually include

the web pages that

the browser shows to the user.

HTTPSEC signs only

routing information:

specifically, 30x HTTP redirects.



The RFC says “HTTPSEC

provides no protection

against denial of service attacks.”

The RFC doesn’t say

“HTTPSEC is a pool of

remote-controlled attack drones,

the worst DDoS amplifier

on the Internet.”

Exericse: investigate

other types of DoS attacks.

e.g. HTTPSEC advertising says

zero server-CPU-time cost.

How much server CPU time

can attackers actually consume?

The worst part of HTTPSEC

The data signed by HTTPSEC

doesn’t actually include

the web pages that

the browser shows to the user.

HTTPSEC signs only

routing information:

specifically, 30x HTTP redirects.

The HTTPSEC excuse for this:

signing redirects

is simpler than

signing the final web page.



The RFC says “HTTPSEC

provides no protection

against denial of service attacks.”

The RFC doesn’t say

“HTTPSEC is a pool of

remote-controlled attack drones,

the worst DDoS amplifier

on the Internet.”

Exericse: investigate

other types of DoS attacks.

e.g. HTTPSEC advertising says

zero server-CPU-time cost.

How much server CPU time

can attackers actually consume?

The worst part of HTTPSEC

The data signed by HTTPSEC

doesn’t actually include

the web pages that

the browser shows to the user.

HTTPSEC signs only

routing information:

specifically, 30x HTTP redirects.

The HTTPSEC excuse for this:

signing redirects

is simpler than

signing the final web page.

$ telnet google.com 80

Trying 173.194.66.102...

Connected to google.com.

Escape character is ’^]’.

GET / HTTP/1.1

Host: google.com

HTTP/1.1 301 Moved Permanently

Location: http://www.google.com/

...

HTTPSEC allows a signature

on the “google.com !

www.google.com” redirect.



The RFC says “HTTPSEC

provides no protection

against denial of service attacks.”

The RFC doesn’t say

“HTTPSEC is a pool of

remote-controlled attack drones,

the worst DDoS amplifier

on the Internet.”

Exericse: investigate

other types of DoS attacks.

e.g. HTTPSEC advertising says

zero server-CPU-time cost.

How much server CPU time

can attackers actually consume?

The worst part of HTTPSEC

The data signed by HTTPSEC

doesn’t actually include

the web pages that

the browser shows to the user.

HTTPSEC signs only

routing information:

specifically, 30x HTTP redirects.

The HTTPSEC excuse for this:

signing redirects

is simpler than

signing the final web page.

$ telnet google.com 80

Trying 173.194.66.102...

Connected to google.com.

Escape character is ’^]’.

GET / HTTP/1.1

Host: google.com

HTTP/1.1 301 Moved Permanently

Location: http://www.google.com/

...

HTTPSEC allows a signature

on the “google.com !

www.google.com” redirect.



The RFC says “HTTPSEC

provides no protection

against denial of service attacks.”

The RFC doesn’t say

“HTTPSEC is a pool of

remote-controlled attack drones,

the worst DDoS amplifier

on the Internet.”

Exericse: investigate

other types of DoS attacks.

e.g. HTTPSEC advertising says

zero server-CPU-time cost.

How much server CPU time

can attackers actually consume?

The worst part of HTTPSEC

The data signed by HTTPSEC

doesn’t actually include

the web pages that

the browser shows to the user.

HTTPSEC signs only

routing information:

specifically, 30x HTTP redirects.

The HTTPSEC excuse for this:

signing redirects

is simpler than

signing the final web page.

$ telnet google.com 80

Trying 173.194.66.102...

Connected to google.com.

Escape character is ’^]’.

GET / HTTP/1.1

Host: google.com

HTTP/1.1 301 Moved Permanently

Location: http://www.google.com/

...

HTTPSEC allows a signature

on the “google.com !

www.google.com” redirect.



The worst part of HTTPSEC

The data signed by HTTPSEC

doesn’t actually include

the web pages that

the browser shows to the user.

HTTPSEC signs only

routing information:

specifically, 30x HTTP redirects.

The HTTPSEC excuse for this:

signing redirects

is simpler than

signing the final web page.

$ telnet google.com 80

Trying 173.194.66.102...

Connected to google.com.

Escape character is ’^]’.

GET / HTTP/1.1

Host: google.com

HTTP/1.1 301 Moved Permanently

Location: http://www.google.com/

...

HTTPSEC allows a signature

on the “google.com !

www.google.com” redirect.



The worst part of HTTPSEC

The data signed by HTTPSEC

doesn’t actually include

the web pages that

the browser shows to the user.

HTTPSEC signs only

routing information:

specifically, 30x HTTP redirects.

The HTTPSEC excuse for this:

signing redirects

is simpler than

signing the final web page.

$ telnet google.com 80

Trying 173.194.66.102...

Connected to google.com.

Escape character is ’^]’.

GET / HTTP/1.1

Host: google.com

HTTP/1.1 301 Moved Permanently

Location: http://www.google.com/

...

HTTPSEC allows a signature

on the “google.com !

www.google.com” redirect.

$ telnet www.google.com 80

Trying 173.194.67.104...

Connected to www.google.com.

Escape character is ’^]’.

GET / HTTP/1.1

Host: www.google.com

HTTP/1.1 302 Found

Location: http://www.google.nl/

...

HTTPSEC allows a signature

on the “www.google.com !

www.google.nl” redirect.



The worst part of HTTPSEC

The data signed by HTTPSEC

doesn’t actually include

the web pages that

the browser shows to the user.

HTTPSEC signs only

routing information:

specifically, 30x HTTP redirects.

The HTTPSEC excuse for this:

signing redirects

is simpler than

signing the final web page.

$ telnet google.com 80

Trying 173.194.66.102...

Connected to google.com.

Escape character is ’^]’.

GET / HTTP/1.1

Host: google.com

HTTP/1.1 301 Moved Permanently

Location: http://www.google.com/

...

HTTPSEC allows a signature

on the “google.com !

www.google.com” redirect.

$ telnet www.google.com 80

Trying 173.194.67.104...

Connected to www.google.com.

Escape character is ’^]’.

GET / HTTP/1.1

Host: www.google.com

HTTP/1.1 302 Found

Location: http://www.google.nl/

...

HTTPSEC allows a signature

on the “www.google.com !

www.google.nl” redirect.



The worst part of HTTPSEC

The data signed by HTTPSEC

doesn’t actually include

the web pages that

the browser shows to the user.

HTTPSEC signs only

routing information:

specifically, 30x HTTP redirects.

The HTTPSEC excuse for this:

signing redirects

is simpler than

signing the final web page.

$ telnet google.com 80

Trying 173.194.66.102...

Connected to google.com.

Escape character is ’^]’.

GET / HTTP/1.1

Host: google.com

HTTP/1.1 301 Moved Permanently

Location: http://www.google.com/

...

HTTPSEC allows a signature

on the “google.com !

www.google.com” redirect.

$ telnet www.google.com 80

Trying 173.194.67.104...

Connected to www.google.com.

Escape character is ’^]’.

GET / HTTP/1.1

Host: www.google.com

HTTP/1.1 302 Found

Location: http://www.google.nl/

...

HTTPSEC allows a signature

on the “www.google.com !

www.google.nl” redirect.



$ telnet google.com 80

Trying 173.194.66.102...

Connected to google.com.

Escape character is ’^]’.

GET / HTTP/1.1

Host: google.com

HTTP/1.1 301 Moved Permanently

Location: http://www.google.com/

...

HTTPSEC allows a signature

on the “google.com !

www.google.com” redirect.

$ telnet www.google.com 80

Trying 173.194.67.104...

Connected to www.google.com.

Escape character is ’^]’.

GET / HTTP/1.1

Host: www.google.com

HTTP/1.1 302 Found

Location: http://www.google.nl/

...

HTTPSEC allows a signature

on the “www.google.com !

www.google.nl” redirect.



$ telnet google.com 80

Trying 173.194.66.102...

Connected to google.com.

Escape character is ’^]’.

GET / HTTP/1.1

Host: google.com

HTTP/1.1 301 Moved Permanently

Location: http://www.google.com/

...

HTTPSEC allows a signature

on the “google.com !

www.google.com” redirect.

$ telnet www.google.com 80

Trying 173.194.67.104...

Connected to www.google.com.

Escape character is ’^]’.

GET / HTTP/1.1

Host: www.google.com

HTTP/1.1 302 Found

Location: http://www.google.nl/

...

HTTPSEC allows a signature

on the “www.google.com !

www.google.nl” redirect.

$ telnet www.google.nl 80

Trying 173.194.66.94...

Connected to www.google.nl.

Escape character is ’^]’.

GET / HTTP/1.1

Host: www.google.nl

HTTP/1.1 200 OK

...

The response contains the actual

Google web page.

HTTPSEC does not sign this.

HTTPSEC signs only redirects.



$ telnet google.com 80

Trying 173.194.66.102...

Connected to google.com.

Escape character is ’^]’.

GET / HTTP/1.1

Host: google.com

HTTP/1.1 301 Moved Permanently

Location: http://www.google.com/

...

HTTPSEC allows a signature

on the “google.com !

www.google.com” redirect.

$ telnet www.google.com 80

Trying 173.194.67.104...

Connected to www.google.com.

Escape character is ’^]’.

GET / HTTP/1.1

Host: www.google.com

HTTP/1.1 302 Found

Location: http://www.google.nl/

...

HTTPSEC allows a signature

on the “www.google.com !

www.google.nl” redirect.

$ telnet www.google.nl 80

Trying 173.194.66.94...

Connected to www.google.nl.

Escape character is ’^]’.

GET / HTTP/1.1

Host: www.google.nl

HTTP/1.1 200 OK

...

The response contains the actual

Google web page.

HTTPSEC does not sign this.

HTTPSEC signs only redirects.



$ telnet google.com 80

Trying 173.194.66.102...

Connected to google.com.

Escape character is ’^]’.

GET / HTTP/1.1

Host: google.com

HTTP/1.1 301 Moved Permanently

Location: http://www.google.com/

...

HTTPSEC allows a signature

on the “google.com !

www.google.com” redirect.

$ telnet www.google.com 80

Trying 173.194.67.104...

Connected to www.google.com.

Escape character is ’^]’.

GET / HTTP/1.1

Host: www.google.com

HTTP/1.1 302 Found

Location: http://www.google.nl/

...

HTTPSEC allows a signature

on the “www.google.com !

www.google.nl” redirect.

$ telnet www.google.nl 80

Trying 173.194.66.94...

Connected to www.google.nl.

Escape character is ’^]’.

GET / HTTP/1.1

Host: www.google.nl

HTTP/1.1 200 OK

...

The response contains the actual

Google web page.

HTTPSEC does not sign this.

HTTPSEC signs only redirects.



$ telnet www.google.com 80

Trying 173.194.67.104...

Connected to www.google.com.

Escape character is ’^]’.

GET / HTTP/1.1

Host: www.google.com

HTTP/1.1 302 Found

Location: http://www.google.nl/

...

HTTPSEC allows a signature

on the “www.google.com !

www.google.nl” redirect.

$ telnet www.google.nl 80

Trying 173.194.66.94...

Connected to www.google.nl.

Escape character is ’^]’.

GET / HTTP/1.1

Host: www.google.nl

HTTP/1.1 200 OK

...

The response contains the actual

Google web page.

HTTPSEC does not sign this.

HTTPSEC signs only redirects.



$ telnet www.google.com 80

Trying 173.194.67.104...

Connected to www.google.com.

Escape character is ’^]’.

GET / HTTP/1.1

Host: www.google.com

HTTP/1.1 302 Found

Location: http://www.google.nl/

...

HTTPSEC allows a signature

on the “www.google.com !

www.google.nl” redirect.

$ telnet www.google.nl 80

Trying 173.194.66.94...

Connected to www.google.nl.

Escape character is ’^]’.

GET / HTTP/1.1

Host: www.google.nl

HTTP/1.1 200 OK

...

The response contains the actual

Google web page.

HTTPSEC does not sign this.

HTTPSEC signs only redirects.

“You may say this is stupid,

and you’re not the only one.”



$ telnet www.google.com 80

Trying 173.194.67.104...

Connected to www.google.com.

Escape character is ’^]’.

GET / HTTP/1.1

Host: www.google.com

HTTP/1.1 302 Found

Location: http://www.google.nl/

...

HTTPSEC allows a signature

on the “www.google.com !

www.google.nl” redirect.

$ telnet www.google.nl 80

Trying 173.194.66.94...

Connected to www.google.nl.

Escape character is ’^]’.

GET / HTTP/1.1

Host: www.google.nl

HTTP/1.1 200 OK

...

The response contains the actual

Google web page.

HTTPSEC does not sign this.

HTTPSEC signs only redirects.

“You may say this is stupid,

and you’re not the only one.”



$ telnet www.google.com 80

Trying 173.194.67.104...

Connected to www.google.com.

Escape character is ’^]’.

GET / HTTP/1.1

Host: www.google.com

HTTP/1.1 302 Found

Location: http://www.google.nl/

...

HTTPSEC allows a signature

on the “www.google.com !

www.google.nl” redirect.

$ telnet www.google.nl 80

Trying 173.194.66.94...

Connected to www.google.nl.

Escape character is ’^]’.

GET / HTTP/1.1

Host: www.google.nl

HTTP/1.1 200 OK

...

The response contains the actual

Google web page.

HTTPSEC does not sign this.

HTTPSEC signs only redirects.

“You may say this is stupid,

and you’re not the only one.”



$ telnet www.google.nl 80

Trying 173.194.66.94...

Connected to www.google.nl.

Escape character is ’^]’.

GET / HTTP/1.1

Host: www.google.nl

HTTP/1.1 200 OK

...

The response contains the actual

Google web page.

HTTPSEC does not sign this.

HTTPSEC signs only redirects.

“You may say this is stupid,

and you’re not the only one.”



$ telnet www.google.nl 80

Trying 173.194.66.94...

Connected to www.google.nl.

Escape character is ’^]’.

GET / HTTP/1.1

Host: www.google.nl

HTTP/1.1 200 OK

...

The response contains the actual

Google web page.

HTTPSEC does not sign this.

HTTPSEC signs only redirects.

“You may say this is stupid,

and you’re not the only one.”

If final web page isn’t signed,

what is the security benefit of

signing the redirects?

Attacker simply forges the page.



$ telnet www.google.nl 80

Trying 173.194.66.94...

Connected to www.google.nl.

Escape character is ’^]’.

GET / HTTP/1.1

Host: www.google.nl

HTTP/1.1 200 OK

...

The response contains the actual

Google web page.

HTTPSEC does not sign this.

HTTPSEC signs only redirects.

“You may say this is stupid,

and you’re not the only one.”

If final web page isn’t signed,

what is the security benefit of

signing the redirects?

Attacker simply forges the page.

If final web page is signed,

what is the security benefit of

signing the redirects?

Attacker can’t forge the page.



$ telnet www.google.nl 80

Trying 173.194.66.94...

Connected to www.google.nl.

Escape character is ’^]’.

GET / HTTP/1.1

Host: www.google.nl

HTTP/1.1 200 OK

...

The response contains the actual

Google web page.

HTTPSEC does not sign this.

HTTPSEC signs only redirects.

“You may say this is stupid,

and you’re not the only one.”

If final web page isn’t signed,

what is the security benefit of

signing the redirects?

Attacker simply forges the page.

If final web page is signed,

what is the security benefit of

signing the redirects?

Attacker can’t forge the page.

Redirects can benefit from

availability and confidentiality,

but HTTPSEC doesn’t provide

availability and confidentiality.



$ telnet www.google.nl 80

Trying 173.194.66.94...

Connected to www.google.nl.

Escape character is ’^]’.

GET / HTTP/1.1

Host: www.google.nl

HTTP/1.1 200 OK

...

The response contains the actual

Google web page.

HTTPSEC does not sign this.

HTTPSEC signs only redirects.

“You may say this is stupid,

and you’re not the only one.”

If final web page isn’t signed,

what is the security benefit of

signing the redirects?

Attacker simply forges the page.

If final web page is signed,

what is the security benefit of

signing the redirects?

Attacker can’t forge the page.

Redirects can benefit from

availability and confidentiality,

but HTTPSEC doesn’t provide

availability and confidentiality.

HTTPSEC vs. HTTPS

After years of development by

>100 people, grants totalling

tens of millions of EUR, U.S.

regulations requiring HTTPSEC

from government agencies, and

direct payments to admins to

please install HTTPSEC:



$ telnet www.google.nl 80

Trying 173.194.66.94...

Connected to www.google.nl.

Escape character is ’^]’.

GET / HTTP/1.1

Host: www.google.nl

HTTP/1.1 200 OK

...

The response contains the actual

Google web page.

HTTPSEC does not sign this.

HTTPSEC signs only redirects.

“You may say this is stupid,

and you’re not the only one.”

If final web page isn’t signed,

what is the security benefit of

signing the redirects?

Attacker simply forges the page.

If final web page is signed,

what is the security benefit of

signing the redirects?

Attacker can’t forge the page.

Redirects can benefit from

availability and confidentiality,

but HTTPSEC doesn’t provide

availability and confidentiality.

HTTPSEC vs. HTTPS

After years of development by

>100 people, grants totalling

tens of millions of EUR, U.S.

regulations requiring HTTPSEC

from government agencies, and

direct payments to admins to

please install HTTPSEC:



$ telnet www.google.nl 80

Trying 173.194.66.94...

Connected to www.google.nl.

Escape character is ’^]’.

GET / HTTP/1.1

Host: www.google.nl

HTTP/1.1 200 OK

...

The response contains the actual

Google web page.

HTTPSEC does not sign this.

HTTPSEC signs only redirects.

“You may say this is stupid,

and you’re not the only one.”

If final web page isn’t signed,

what is the security benefit of

signing the redirects?

Attacker simply forges the page.

If final web page is signed,

what is the security benefit of

signing the redirects?

Attacker can’t forge the page.

Redirects can benefit from

availability and confidentiality,

but HTTPSEC doesn’t provide

availability and confidentiality.

HTTPSEC vs. HTTPS

After years of development by

>100 people, grants totalling

tens of millions of EUR, U.S.

regulations requiring HTTPSEC

from government agencies, and

direct payments to admins to

please install HTTPSEC:



“You may say this is stupid,

and you’re not the only one.”

If final web page isn’t signed,

what is the security benefit of

signing the redirects?

Attacker simply forges the page.

If final web page is signed,

what is the security benefit of

signing the redirects?

Attacker can’t forge the page.

Redirects can benefit from

availability and confidentiality,

but HTTPSEC doesn’t provide

availability and confidentiality.

HTTPSEC vs. HTTPS

After years of development by

>100 people, grants totalling

tens of millions of EUR, U.S.

regulations requiring HTTPSEC

from government agencies, and

direct payments to admins to

please install HTTPSEC:



“You may say this is stupid,

and you’re not the only one.”

If final web page isn’t signed,

what is the security benefit of

signing the redirects?

Attacker simply forges the page.

If final web page is signed,

what is the security benefit of

signing the redirects?

Attacker can’t forge the page.

Redirects can benefit from

availability and confidentiality,

but HTTPSEC doesn’t provide

availability and confidentiality.

HTTPSEC vs. HTTPS

After years of development by

>100 people, grants totalling

tens of millions of EUR, U.S.

regulations requiring HTTPSEC

from government agencies, and

direct payments to admins to

please install HTTPSEC:

HTTPSEC is running on a few

thousand Internet servers.

Network World, 2013.01.29:

“HTTPSEC adoption stalls

outside of federal government”



“You may say this is stupid,

and you’re not the only one.”

If final web page isn’t signed,

what is the security benefit of

signing the redirects?

Attacker simply forges the page.

If final web page is signed,

what is the security benefit of

signing the redirects?

Attacker can’t forge the page.

Redirects can benefit from

availability and confidentiality,

but HTTPSEC doesn’t provide

availability and confidentiality.

HTTPSEC vs. HTTPS

After years of development by

>100 people, grants totalling

tens of millions of EUR, U.S.

regulations requiring HTTPSEC

from government agencies, and

direct payments to admins to

please install HTTPSEC:

HTTPSEC is running on a few

thousand Internet servers.

Network World, 2013.01.29:

“HTTPSEC adoption stalls

outside of federal government”

There’s competition: HTTPS!

HTTPS aims for integrity

and confidentiality

for the complete web pages.

HTTPS works with existing

web tools and dynamic data.

HTTPS doesn’t allow replays;

doesn’t have any problems

with nonexistent files;

tries to avoid leaking data;

isn’t a huge DDoS amplifier.



“You may say this is stupid,

and you’re not the only one.”

If final web page isn’t signed,

what is the security benefit of

signing the redirects?

Attacker simply forges the page.

If final web page is signed,

what is the security benefit of

signing the redirects?

Attacker can’t forge the page.

Redirects can benefit from

availability and confidentiality,

but HTTPSEC doesn’t provide

availability and confidentiality.

HTTPSEC vs. HTTPS

After years of development by

>100 people, grants totalling

tens of millions of EUR, U.S.

regulations requiring HTTPSEC

from government agencies, and

direct payments to admins to

please install HTTPSEC:

HTTPSEC is running on a few

thousand Internet servers.

Network World, 2013.01.29:

“HTTPSEC adoption stalls

outside of federal government”

There’s competition: HTTPS!

HTTPS aims for integrity

and confidentiality

for the complete web pages.

HTTPS works with existing

web tools and dynamic data.

HTTPS doesn’t allow replays;

doesn’t have any problems

with nonexistent files;

tries to avoid leaking data;

isn’t a huge DDoS amplifier.



“You may say this is stupid,

and you’re not the only one.”

If final web page isn’t signed,

what is the security benefit of

signing the redirects?

Attacker simply forges the page.

If final web page is signed,

what is the security benefit of

signing the redirects?

Attacker can’t forge the page.

Redirects can benefit from

availability and confidentiality,

but HTTPSEC doesn’t provide

availability and confidentiality.

HTTPSEC vs. HTTPS

After years of development by

>100 people, grants totalling

tens of millions of EUR, U.S.

regulations requiring HTTPSEC

from government agencies, and

direct payments to admins to

please install HTTPSEC:

HTTPSEC is running on a few

thousand Internet servers.

Network World, 2013.01.29:

“HTTPSEC adoption stalls

outside of federal government”

There’s competition: HTTPS!

HTTPS aims for integrity

and confidentiality

for the complete web pages.

HTTPS works with existing

web tools and dynamic data.

HTTPS doesn’t allow replays;

doesn’t have any problems

with nonexistent files;

tries to avoid leaking data;

isn’t a huge DDoS amplifier.



HTTPSEC vs. HTTPS

After years of development by

>100 people, grants totalling

tens of millions of EUR, U.S.

regulations requiring HTTPSEC

from government agencies, and

direct payments to admins to

please install HTTPSEC:

HTTPSEC is running on a few

thousand Internet servers.

Network World, 2013.01.29:

“HTTPSEC adoption stalls

outside of federal government”

There’s competition: HTTPS!

HTTPS aims for integrity

and confidentiality

for the complete web pages.

HTTPS works with existing

web tools and dynamic data.

HTTPS doesn’t allow replays;

doesn’t have any problems

with nonexistent files;

tries to avoid leaking data;

isn’t a huge DDoS amplifier.



HTTPSEC vs. HTTPS

After years of development by

>100 people, grants totalling

tens of millions of EUR, U.S.

regulations requiring HTTPSEC

from government agencies, and

direct payments to admins to

please install HTTPSEC:

HTTPSEC is running on a few

thousand Internet servers.

Network World, 2013.01.29:

“HTTPSEC adoption stalls

outside of federal government”

There’s competition: HTTPS!

HTTPS aims for integrity

and confidentiality

for the complete web pages.

HTTPS works with existing

web tools and dynamic data.

HTTPS doesn’t allow replays;

doesn’t have any problems

with nonexistent files;

tries to avoid leaking data;

isn’t a huge DDoS amplifier.

What the HTTPSEC proponents

say about HTTPS:

“HTTPS requires keys

to be constantly online.”



HTTPSEC vs. HTTPS

After years of development by

>100 people, grants totalling

tens of millions of EUR, U.S.

regulations requiring HTTPSEC

from government agencies, and

direct payments to admins to

please install HTTPSEC:

HTTPSEC is running on a few

thousand Internet servers.

Network World, 2013.01.29:

“HTTPSEC adoption stalls

outside of federal government”

There’s competition: HTTPS!

HTTPS aims for integrity

and confidentiality

for the complete web pages.

HTTPS works with existing

web tools and dynamic data.

HTTPS doesn’t allow replays;

doesn’t have any problems

with nonexistent files;

tries to avoid leaking data;

isn’t a huge DDoS amplifier.

What the HTTPSEC proponents

say about HTTPS:

“HTTPS requires keys

to be constantly online.”



HTTPSEC vs. HTTPS

After years of development by

>100 people, grants totalling

tens of millions of EUR, U.S.

regulations requiring HTTPSEC

from government agencies, and

direct payments to admins to

please install HTTPSEC:

HTTPSEC is running on a few

thousand Internet servers.

Network World, 2013.01.29:

“HTTPSEC adoption stalls

outside of federal government”

There’s competition: HTTPS!

HTTPS aims for integrity

and confidentiality

for the complete web pages.

HTTPS works with existing

web tools and dynamic data.

HTTPS doesn’t allow replays;

doesn’t have any problems

with nonexistent files;

tries to avoid leaking data;

isn’t a huge DDoS amplifier.

What the HTTPSEC proponents

say about HTTPS:

“HTTPS requires keys

to be constantly online.”



There’s competition: HTTPS!

HTTPS aims for integrity

and confidentiality

for the complete web pages.

HTTPS works with existing

web tools and dynamic data.

HTTPS doesn’t allow replays;

doesn’t have any problems

with nonexistent files;

tries to avoid leaking data;

isn’t a huge DDoS amplifier.

What the HTTPSEC proponents

say about HTTPS:

“HTTPS requires keys

to be constantly online.”



There’s competition: HTTPS!

HTTPS aims for integrity

and confidentiality

for the complete web pages.

HTTPS works with existing

web tools and dynamic data.

HTTPS doesn’t allow replays;

doesn’t have any problems

with nonexistent files;

tries to avoid leaking data;

isn’t a huge DDoS amplifier.

What the HTTPSEC proponents

say about HTTPS:

“HTTPS requires keys

to be constantly online.”

Yes, it does; so what?



There’s competition: HTTPS!

HTTPS aims for integrity

and confidentiality

for the complete web pages.

HTTPS works with existing

web tools and dynamic data.

HTTPS doesn’t allow replays;

doesn’t have any problems

with nonexistent files;

tries to avoid leaking data;

isn’t a huge DDoS amplifier.

What the HTTPSEC proponents

say about HTTPS:

“HTTPS requires keys

to be constantly online.”

Yes, it does; so what?

“HTTPS requires servers

to use per-query crypto.”



There’s competition: HTTPS!

HTTPS aims for integrity

and confidentiality

for the complete web pages.

HTTPS works with existing

web tools and dynamic data.

HTTPS doesn’t allow replays;

doesn’t have any problems

with nonexistent files;

tries to avoid leaking data;

isn’t a huge DDoS amplifier.

What the HTTPSEC proponents

say about HTTPS:

“HTTPS requires keys

to be constantly online.”

Yes, it does; so what?

“HTTPS requires servers

to use per-query crypto.”

Yes, it does; so what?



There’s competition: HTTPS!

HTTPS aims for integrity

and confidentiality

for the complete web pages.

HTTPS works with existing

web tools and dynamic data.

HTTPS doesn’t allow replays;

doesn’t have any problems

with nonexistent files;

tries to avoid leaking data;

isn’t a huge DDoS amplifier.

What the HTTPSEC proponents

say about HTTPS:

“HTTPS requires keys

to be constantly online.”

Yes, it does; so what?

“HTTPS requires servers

to use per-query crypto.”

Yes, it does; so what?

“HTTPS protects only the

channel, not the data. It doesn’t

provide end-to-end security.”



There’s competition: HTTPS!

HTTPS aims for integrity

and confidentiality

for the complete web pages.

HTTPS works with existing

web tools and dynamic data.

HTTPS doesn’t allow replays;

doesn’t have any problems

with nonexistent files;

tries to avoid leaking data;

isn’t a huge DDoS amplifier.

What the HTTPSEC proponents

say about HTTPS:

“HTTPS requires keys

to be constantly online.”

Yes, it does; so what?

“HTTPS requires servers

to use per-query crypto.”

Yes, it does; so what?

“HTTPS protects only the

channel, not the data. It doesn’t

provide end-to-end security.”

Huh? What does this mean?



There’s competition: HTTPS!

HTTPS aims for integrity

and confidentiality

for the complete web pages.

HTTPS works with existing

web tools and dynamic data.

HTTPS doesn’t allow replays;

doesn’t have any problems

with nonexistent files;

tries to avoid leaking data;

isn’t a huge DDoS amplifier.

What the HTTPSEC proponents

say about HTTPS:

“HTTPS requires keys

to be constantly online.”

Yes, it does; so what?

“HTTPS requires servers

to use per-query crypto.”

Yes, it does; so what?

“HTTPS protects only the

channel, not the data. It doesn’t

provide end-to-end security.”

Huh? What does this mean?

“If the site owner copies PGP-

signed data from his trusted

laptop to an untrusted server,

which gives it to your browser,

which verifies the signed data,

then the server can’t change it.

HTTPS lets the server change it.”



There’s competition: HTTPS!

HTTPS aims for integrity

and confidentiality

for the complete web pages.

HTTPS works with existing

web tools and dynamic data.

HTTPS doesn’t allow replays;

doesn’t have any problems

with nonexistent files;

tries to avoid leaking data;

isn’t a huge DDoS amplifier.

What the HTTPSEC proponents

say about HTTPS:

“HTTPS requires keys

to be constantly online.”

Yes, it does; so what?

“HTTPS requires servers

to use per-query crypto.”

Yes, it does; so what?

“HTTPS protects only the

channel, not the data. It doesn’t

provide end-to-end security.”

Huh? What does this mean?

“If the site owner copies PGP-

signed data from his trusted

laptop to an untrusted server,

which gives it to your browser,

which verifies the signed data,

then the server can’t change it.

HTTPS lets the server change it.”



There’s competition: HTTPS!

HTTPS aims for integrity

and confidentiality

for the complete web pages.

HTTPS works with existing

web tools and dynamic data.

HTTPS doesn’t allow replays;

doesn’t have any problems

with nonexistent files;

tries to avoid leaking data;

isn’t a huge DDoS amplifier.

What the HTTPSEC proponents

say about HTTPS:

“HTTPS requires keys

to be constantly online.”

Yes, it does; so what?

“HTTPS requires servers

to use per-query crypto.”

Yes, it does; so what?

“HTTPS protects only the

channel, not the data. It doesn’t

provide end-to-end security.”

Huh? What does this mean?

“If the site owner copies PGP-

signed data from his trusted

laptop to an untrusted server,

which gives it to your browser,

which verifies the signed data,

then the server can’t change it.

HTTPS lets the server change it.”



What the HTTPSEC proponents

say about HTTPS:

“HTTPS requires keys

to be constantly online.”

Yes, it does; so what?

“HTTPS requires servers

to use per-query crypto.”

Yes, it does; so what?

“HTTPS protects only the

channel, not the data. It doesn’t

provide end-to-end security.”

Huh? What does this mean?

“If the site owner copies PGP-

signed data from his trusted

laptop to an untrusted server,

which gives it to your browser,

which verifies the signed data,

then the server can’t change it.

HTTPS lets the server change it.”



What the HTTPSEC proponents

say about HTTPS:

“HTTPS requires keys

to be constantly online.”

Yes, it does; so what?

“HTTPS requires servers

to use per-query crypto.”

Yes, it does; so what?

“HTTPS protects only the

channel, not the data. It doesn’t

provide end-to-end security.”

Huh? What does this mean?

“If the site owner copies PGP-

signed data from his trusted

laptop to an untrusted server,

which gives it to your browser,

which verifies the signed data,

then the server can’t change it.

HTTPS lets the server change it.”

Yes, of course, but why is the

site owner putting his data on

an untrusted server?



What the HTTPSEC proponents

say about HTTPS:

“HTTPS requires keys

to be constantly online.”

Yes, it does; so what?

“HTTPS requires servers

to use per-query crypto.”

Yes, it does; so what?

“HTTPS protects only the

channel, not the data. It doesn’t

provide end-to-end security.”

Huh? What does this mean?

“If the site owner copies PGP-

signed data from his trusted

laptop to an untrusted server,

which gives it to your browser,

which verifies the signed data,

then the server can’t change it.

HTTPS lets the server change it.”

Yes, of course, but why is the

site owner putting his data on

an untrusted server?

“HTTPS destroys the caching

layer. This Matters.”



What the HTTPSEC proponents

say about HTTPS:

“HTTPS requires keys

to be constantly online.”

Yes, it does; so what?

“HTTPS requires servers

to use per-query crypto.”

Yes, it does; so what?

“HTTPS protects only the

channel, not the data. It doesn’t

provide end-to-end security.”

Huh? What does this mean?

“If the site owner copies PGP-

signed data from his trusted

laptop to an untrusted server,

which gives it to your browser,

which verifies the signed data,

then the server can’t change it.

HTTPS lets the server change it.”

Yes, of course, but why is the

site owner putting his data on

an untrusted server?

“HTTPS destroys the caching

layer. This Matters.”

Yeah, sure it does. Film at 11:

Internet Destroyed By HTTPS.



What the HTTPSEC proponents

say about HTTPS:

“HTTPS requires keys

to be constantly online.”

Yes, it does; so what?

“HTTPS requires servers

to use per-query crypto.”

Yes, it does; so what?

“HTTPS protects only the

channel, not the data. It doesn’t

provide end-to-end security.”

Huh? What does this mean?

“If the site owner copies PGP-

signed data from his trusted

laptop to an untrusted server,

which gives it to your browser,

which verifies the signed data,

then the server can’t change it.

HTTPS lets the server change it.”

Yes, of course, but why is the

site owner putting his data on

an untrusted server?

“HTTPS destroys the caching

layer. This Matters.”

Yeah, sure it does. Film at 11:

Internet Destroyed By HTTPS.

The DNS security mess

I’ve been describing

data sent to your browser,

including two HTTP redirects:

google.com ! www.google.com

www.google.com !

www.google.nl

www.google.nl web page

But there are actually

many more redirection steps:

Domain Name System lookups.



What the HTTPSEC proponents

say about HTTPS:

“HTTPS requires keys

to be constantly online.”

Yes, it does; so what?

“HTTPS requires servers

to use per-query crypto.”

Yes, it does; so what?

“HTTPS protects only the

channel, not the data. It doesn’t

provide end-to-end security.”

Huh? What does this mean?

“If the site owner copies PGP-

signed data from his trusted

laptop to an untrusted server,

which gives it to your browser,

which verifies the signed data,

then the server can’t change it.

HTTPS lets the server change it.”

Yes, of course, but why is the

site owner putting his data on

an untrusted server?

“HTTPS destroys the caching

layer. This Matters.”

Yeah, sure it does. Film at 11:

Internet Destroyed By HTTPS.

The DNS security mess

I’ve been describing

data sent to your browser,

including two HTTP redirects:

google.com ! www.google.com

www.google.com !

www.google.nl

www.google.nl web page

But there are actually

many more redirection steps:

Domain Name System lookups.



What the HTTPSEC proponents

say about HTTPS:

“HTTPS requires keys

to be constantly online.”

Yes, it does; so what?

“HTTPS requires servers

to use per-query crypto.”

Yes, it does; so what?

“HTTPS protects only the

channel, not the data. It doesn’t

provide end-to-end security.”

Huh? What does this mean?

“If the site owner copies PGP-

signed data from his trusted

laptop to an untrusted server,

which gives it to your browser,

which verifies the signed data,

then the server can’t change it.

HTTPS lets the server change it.”

Yes, of course, but why is the

site owner putting his data on

an untrusted server?

“HTTPS destroys the caching

layer. This Matters.”

Yeah, sure it does. Film at 11:

Internet Destroyed By HTTPS.

The DNS security mess

I’ve been describing

data sent to your browser,

including two HTTP redirects:

google.com ! www.google.com

www.google.com !

www.google.nl

www.google.nl web page

But there are actually

many more redirection steps:

Domain Name System lookups.



“If the site owner copies PGP-

signed data from his trusted

laptop to an untrusted server,

which gives it to your browser,

which verifies the signed data,

then the server can’t change it.

HTTPS lets the server change it.”

Yes, of course, but why is the

site owner putting his data on

an untrusted server?

“HTTPS destroys the caching

layer. This Matters.”

Yeah, sure it does. Film at 11:

Internet Destroyed By HTTPS.

The DNS security mess

I’ve been describing

data sent to your browser,

including two HTTP redirects:

google.com ! www.google.com

www.google.com !

www.google.nl

www.google.nl web page

But there are actually

many more redirection steps:

Domain Name System lookups.



“If the site owner copies PGP-

signed data from his trusted

laptop to an untrusted server,

which gives it to your browser,

which verifies the signed data,

then the server can’t change it.

HTTPS lets the server change it.”

Yes, of course, but why is the

site owner putting his data on

an untrusted server?

“HTTPS destroys the caching

layer. This Matters.”

Yeah, sure it does. Film at 11:

Internet Destroyed By HTTPS.

The DNS security mess

I’ve been describing

data sent to your browser,

including two HTTP redirects:

google.com ! www.google.com

www.google.com !

www.google.nl

www.google.nl web page

But there are actually

many more redirection steps:

Domain Name System lookups.

com NS 192.5.6.30

google.com NS 216.239.34.10

google.com A 74.125.136.100

google.com ! www.google.com

www.google.com A

173.194.66.99

www.google.com !

www.google.nl

nl NS 192.5.4.1

google.nl NS 216.239.34.10

www.google.nl A 74.125.132.94

www.google.nl web page



“If the site owner copies PGP-

signed data from his trusted

laptop to an untrusted server,

which gives it to your browser,

which verifies the signed data,

then the server can’t change it.

HTTPS lets the server change it.”

Yes, of course, but why is the

site owner putting his data on

an untrusted server?

“HTTPS destroys the caching

layer. This Matters.”

Yeah, sure it does. Film at 11:

Internet Destroyed By HTTPS.

The DNS security mess

I’ve been describing

data sent to your browser,

including two HTTP redirects:

google.com ! www.google.com

www.google.com !

www.google.nl

www.google.nl web page

But there are actually

many more redirection steps:

Domain Name System lookups.

com NS 192.5.6.30

google.com NS 216.239.34.10

google.com A 74.125.136.100

google.com ! www.google.com

www.google.com A

173.194.66.99

www.google.com !

www.google.nl

nl NS 192.5.4.1

google.nl NS 216.239.34.10

www.google.nl A 74.125.132.94

www.google.nl web page



“If the site owner copies PGP-

signed data from his trusted

laptop to an untrusted server,

which gives it to your browser,

which verifies the signed data,

then the server can’t change it.

HTTPS lets the server change it.”

Yes, of course, but why is the

site owner putting his data on

an untrusted server?

“HTTPS destroys the caching

layer. This Matters.”

Yeah, sure it does. Film at 11:

Internet Destroyed By HTTPS.

The DNS security mess

I’ve been describing

data sent to your browser,

including two HTTP redirects:

google.com ! www.google.com

www.google.com !

www.google.nl

www.google.nl web page

But there are actually

many more redirection steps:

Domain Name System lookups.

com NS 192.5.6.30

google.com NS 216.239.34.10

google.com A 74.125.136.100

google.com ! www.google.com

www.google.com A

173.194.66.99

www.google.com !

www.google.nl

nl NS 192.5.4.1

google.nl NS 216.239.34.10

www.google.nl A 74.125.132.94

www.google.nl web page



The DNS security mess

I’ve been describing

data sent to your browser,

including two HTTP redirects:

google.com ! www.google.com

www.google.com !

www.google.nl

www.google.nl web page

But there are actually

many more redirection steps:

Domain Name System lookups.

com NS 192.5.6.30

google.com NS 216.239.34.10

google.com A 74.125.136.100

google.com ! www.google.com

www.google.com A

173.194.66.99

www.google.com !

www.google.nl

nl NS 192.5.4.1

google.nl NS 216.239.34.10

www.google.nl A 74.125.132.94

www.google.nl web page



The DNS security mess

I’ve been describing

data sent to your browser,

including two HTTP redirects:

google.com ! www.google.com

www.google.com !

www.google.nl

www.google.nl web page

But there are actually

many more redirection steps:

Domain Name System lookups.

com NS 192.5.6.30

google.com NS 216.239.34.10

google.com A 74.125.136.100

google.com ! www.google.com

www.google.com A

173.194.66.99

www.google.com !

www.google.nl

nl NS 192.5.4.1

google.nl NS 216.239.34.10

www.google.nl A 74.125.132.94

www.google.nl web page

DNSSEC signs DNS redirects

in very much the same way that

HTTPSEC signs HTTP redirects.

All the problems of HTTPSEC

are shared by DNSSEC,

including lack of deployment:

almost all DNS packets are

cryptographically unprotected.



The DNS security mess

I’ve been describing

data sent to your browser,

including two HTTP redirects:

google.com ! www.google.com

www.google.com !

www.google.nl

www.google.nl web page

But there are actually

many more redirection steps:

Domain Name System lookups.

com NS 192.5.6.30

google.com NS 216.239.34.10

google.com A 74.125.136.100

google.com ! www.google.com

www.google.com A

173.194.66.99

www.google.com !

www.google.nl

nl NS 192.5.4.1

google.nl NS 216.239.34.10

www.google.nl A 74.125.132.94

www.google.nl web page

DNSSEC signs DNS redirects

in very much the same way that

HTTPSEC signs HTTP redirects.

All the problems of HTTPSEC

are shared by DNSSEC,

including lack of deployment:

almost all DNS packets are

cryptographically unprotected.



The DNS security mess

I’ve been describing

data sent to your browser,

including two HTTP redirects:

google.com ! www.google.com

www.google.com !

www.google.nl

www.google.nl web page

But there are actually

many more redirection steps:

Domain Name System lookups.

com NS 192.5.6.30

google.com NS 216.239.34.10

google.com A 74.125.136.100

google.com ! www.google.com

www.google.com A

173.194.66.99

www.google.com !

www.google.nl

nl NS 192.5.4.1

google.nl NS 216.239.34.10

www.google.nl A 74.125.132.94

www.google.nl web page

DNSSEC signs DNS redirects

in very much the same way that

HTTPSEC signs HTTP redirects.

All the problems of HTTPSEC

are shared by DNSSEC,

including lack of deployment:

almost all DNS packets are

cryptographically unprotected.



com NS 192.5.6.30

google.com NS 216.239.34.10

google.com A 74.125.136.100

google.com ! www.google.com

www.google.com A

173.194.66.99

www.google.com !

www.google.nl

nl NS 192.5.4.1

google.nl NS 216.239.34.10

www.google.nl A 74.125.132.94

www.google.nl web page

DNSSEC signs DNS redirects

in very much the same way that

HTTPSEC signs HTTP redirects.

All the problems of HTTPSEC

are shared by DNSSEC,

including lack of deployment:

almost all DNS packets are

cryptographically unprotected.



com NS 192.5.6.30

google.com NS 216.239.34.10

google.com A 74.125.136.100

google.com ! www.google.com

www.google.com A

173.194.66.99

www.google.com !

www.google.nl

nl NS 192.5.4.1

google.nl NS 216.239.34.10

www.google.nl A 74.125.132.94

www.google.nl web page

DNSSEC signs DNS redirects

in very much the same way that

HTTPSEC signs HTTP redirects.

All the problems of HTTPSEC

are shared by DNSSEC,

including lack of deployment:

almost all DNS packets are

cryptographically unprotected.

Actually, HTTPSEC is an

imaginary imitation of DNSSEC,

not a real proposal.

But DNSSEC is a real proposal,

and has all of these problems.


