The DNS security mess

D. J. Bernstein
University of lllinois at Chicago &
Technische Universiteit Eindhoven

Paul Vixie, 1995 on DNSSEC:

This sounds simple but it has deep reaching
consequences in both the protocol and the
implementation—which is why it's taken more
than a year to choose a security model and
design a solution. We expect it to be another
year before DNSSEC is in wide use on the
leading edge, and at least a year after that
before its use is commonplace on the Internet.

Before | start my talk,
some comments on HT TPSEC.
Warning: HTTPSEC # HTTPS.

The DNS security mess

D. J. Bernstein
University of lllinois at Chicago &
Technische Universiteit Eindhoven

Paul Vixie, 1995 on DNSSEC:

This sounds simple but it has deep reaching
consequences in both the protocol and the
implementation—which is why it's taken more
than a year to choose a security model and
design a solution. We expect it to be another
year before DNSSEC is in wide use on the
leading edge, and at least a year after that
before its use is commonplace on the Internet.

Before | start my talk,
some comments on HT TPSEC.
Warning: HTTPSEC # HTTPS.

HTTPSEC motivation

You use HT TP all the time:
e.g., http://nu.nl.

Your computer requests a web
page from the nu.nl server.
The server sends a web page.

The DNS security mess

D. J. Bernstein
University of lllinois at Chicago &
Technische Universiteit Eindhoven

Paul Vixie, 1995 on DNSSEC:

This sounds simple but it has deep reaching
consequences in both the protocol and the
implementation—which is why it's taken more
than a year to choose a security model and
design a solution. We expect it to be another
year before DNSSEC is in wide use on the
leading edge, and at least a year after that
before its use is commonplace on the Internet.

Before | start my talk,
some comments on HT TPSEC.
Warning: HTTPSEC # HTTPS.

HTTPSEC motivation

You use HT TP all the time:
e.g., http://nu.nl.

Your computer requests a web
page from the nu.nl server.

The server sends a web page.

Your computer Is using
a wireless network that
also has many other computers.
Some of those computers are
controlled by attackers.

The DNS security mess

D. J. Bernstein
University of lllinois at Chicago &
Technische Universiteit Eindhoven

Paul Vixie, 1995 on DNSSEC:

This sounds simple but it has deep reaching
consequences in both the protocol and the
implementation—which is why it's taken more
than a year to choose a security model and
design a solution. We expect it to be another
year before DNSSEC is in wide use on the
leading edge, and at least a year after that
before its use is commonplace on the Internet.

Before | start my talk,
some comments on HT TPSEC.
Warning: HTTPSEC # HTTPS.

HTTPSEC motivation

You use HT TP all the time:
e.g., http://nu.nl.

Your computer requests a web
page from the nu.nl server.
The server sends a web page.

Your computer Is using
a wireless network that
also has many other computers.
Some of those computers are
controlled by attackers.

Or maybe you're in lran, and
the network is the attacker.

S security mess

rnstein
ty of lllinois at Chicago &
he Universiteit Eindhoven

HTTPSEC motivation

ie, 1995 on DNSSEC:

5 simple but it has deep reaching
s in both the protocol and the
tion—which is why it's taken more
~ to choose a security model and
lution. We expect it to be another
DNSSEC is in wide use on the

e, and at least a year after that
se Is commonplace on the Internet.

start my talk,
mments on HT TPSEC.

- HTTPSEC # HTTPS.

You use HT TP all the time:
e.g., http://nu.nl.

Your computer requests a web
page from the nu.nl server.
The server sends a web page.

Your computer Is using
a wireless network that

also has many other computers.

Some of those computers are
controlled by attackers.

Or maybe you're in Iran, and
the network is the attacker.

Standarce

Confide
despite
Integrit
despite «
Availab

IMESS

is at Chicago &
siteit Eindhoven

on DNSSEC:

t has deep reaching

» protocol and the

, why it's taken more
security model and
(pect it to be another
n wide use on the

t a year after that
place on the Internet.

falk,
n HTTPSEC.
EC £ HTTPS.

HTTPSEC motivation

You use HT TP all the time:
e.g., http://nu.nl.

Your computer requests a web
page from the nu.nl server.
The server sends a web page.

Your computer Is using
a wireless network that

also has many other computers.

Some of those computers are
controlled by attackers.

Or maybe you're in lran, and
the network is the attacker.

Standard security

Confidentiality (|
despite espionage.
Integrity (authent
despite corruption
Availability despit

go &
hoven

-C:

aching

- the

N more

| and
another

' the

-~ that
Internet.

EC.
TPS.

HTTPSEC motivation

You use HT TP all the time:
e.g., http://nu.nl.

Your computer requests a web
page from the nu.nl server.
The server sends a web page.

Your computer Is using
a wireless network that

also has many other computers.

Some of those computers are
controlled by attackers.

Or maybe you're in Iran, and
the network is the attacker.

Standard security goals:

Confidentiality (privacy etc
despite espionage.
Integrity (authenticity etc.)
despite corruption.
Availability despite sabotag

HTTPSEC motivation

You use HT TP all the time:
e.g., http://nu.nl.

Your computer requests a web
page from the nu.nl server.
The server sends a web page.

Your computer Is using
a wireless network that

also has many other computers.

Some of those computers are
controlled by attackers.

Or maybe you're in lIran, and
the network is the attacker.

Standard security goals:

Confidentiality (privacy etc.)
despite espionage.

Integrity (authenticity etc.)
despite corruption.
Availability despite sabotage.

HTTPSEC motivation

You use HT TP all the time:
e.g., http://nu.nl.

Your computer requests a web
page from the nu.nl server.
The server sends a web page.

Your computer Is using
a wireless network that

also has many other computers.

Some of those computers are
controlled by attackers.

Or maybe you're in lIran, and
the network is the attacker.

Standard security goals:

Confidentiality (privacy etc.)
despite espionage.

Integrity (authenticity etc.)
despite corruption.
Availability despite sabotage.

HT TP provides none of this.

By watching the network,
attacker easily acquires data:

the HT TP request, the web page.
Attacker easily changes data.
Attacker easily destroys data.

= C motivation

HTTP all the time:
p://nu.nl.

nputer requests a web
m the nu.nl server.

rer sends a web page.

nputer Is using
s network that

many other computers.

those computers are
d by attackers.

)e you re In lran, and
jork Is the attacker.

Standard security goals:

Confidentiality (privacy etc.)
despite espionage.

Integrity (authenticity etc.)
despite corruption.
Availability despite sabotage.

HT TP provides none of this.

By watching the network,
attacker easily acquires data:

the HT TP request, the web page.

Attacker easily changes data.
Attacker easily destroys data.

HTTPSI

HTTPSI
to “bols

HTTPS
for the 1
to attac
to the n

These si
“verifica
authenti
data” ot

tion

the time:
1],

juests a web
nl server.
) web page.

using
that

er computers.

nputers are
ckers.

n lran, and
attacker.

Standard security goals:

Confidentiality (privacy etc.)
despite espionage.

Integrity (authenticity etc.)
despite corruption.
Availability despite sabotage.

HT TP provides none of this.

By watching the network,
attacker easily acquires data:

the HT TP request, the web page.

Attacker easily changes data.
Attacker easily destroys data.

HTTPSEC: "HTT

HTTPSEC modifi
to “bolster online

HTTPSEC provide
for the nu.nl serv
to attach PGP sig
to thenu.nl HT

These signatures :
“verification of th
authenticity, and i
data” obtained th

eb

v

€rS.

Standard security goals:

Confidentiality (privacy etc.)
despite espionage.

Integrity (authenticity etc.)
despite corruption.
Availability despite sabotage.

HT TP provides none of this.

By watching the network,
attacker easily acquires data:

the HT TP request, the web page.

Attacker easily changes data.
Attacker easily destroys data.

HTTPSEC: "HTTP Securit

HTTPSEC modifies HT TP
to “bolster online security” .

HTTPSEC provides a way
for the nu.nl server admin
to attach PGP signatures
to the nu.nl HT TP respon:

These signatures allow
“verification of the origin,
authenticity, and integrity of
data” obtained through HT

Standard security goals:

Confidentiality (privacy etc.)
despite espionage.

Integrity (authenticity etc.)
despite corruption.
Availability despite sabotage.

HT TP provides none of this.

By watching the network,
attacker easily acquires data:

the HT TP request, the web page.

Attacker easily changes data.
Attacker easily destroys data.

HTTPSEC: "HTTP Security”

HTTPSEC modifies HT TP
to “bolster online security” .

HTTPSEC provides a way
for the nu.nl server admin
to attach PGP signatures
to the nu.nl HT TP responses.

These signatures allow
“verification of the origin,

authenticity, and integrity of
data” obtained through HT TP.

1 security goals:

ntiality (privacy etc.)
>splonage.

y (authenticity etc.)
“orruption.

lity despite sabotage.

rovides none of this.

hing the network,
easily acquires data:

P request, the web page.

- easlly changes data.
- easlly destroys data.

HTTPSEC: "HTTP Security”

HTTPSEC modifies HT TP
to “bolster online security” .

HTTPSEC provides a way
for the nu.nl server admin

to attach PGP signatures

to the nu.nl HT TP responses.

These signatures allow
“verification of the origin,
authenticity, and integrity of

data” obtained through HT TP.

To verify
your cor
retrieve
from the

goals:

rivacy etc.)
icity etc.)

e sabotage.
)ne of this.

etwork,
juires data:

, the web page.

anges data.
stroys data.

HTTPSEC: "HTTP Security”

HTTPSEC modifies HT TP
to “bolster online security” .

HTTPSEC provides a way
for the nu.nl server admin

to attach PGP signatures

to the nu.nl HT TP responses.

These signatures allow
“verification of the origin,
authenticity, and integrity of

data” obtained through HT TP.

To verify these sig
your computer nee
retrieve the PGP |
from the nu.nl ac

page.

HTTPSEC: “HTTP Security”

HTTPSEC modifies HT TP
to “bolster online security” .

HTTPSEC provides a way
for the nu.nl server admin

to attach PGP signatures

to the nu.nl HT TP responses.

These signatures allow
“verification of the origin,
authenticity, and integrity of

data” obtained through HT TP.

To verify these signatures,
your computer needs to
retrieve the PGP public key
from the nu.nl admin.

HTTPSEC: “HTTP Security”

HTTPSEC modifies HT TP
to “bolster online security” .

HTTPSEC provides a way

for the nu.nl server admin
to attach PGP signatures

to the nu.nl HT TP responses.

These signatures allow
“verification of the origin,
authenticity, and integrity of

data” obtained through HT TP.

To verify these signatures,
your computer needs to
retrieve the PGP public key
from the nu.nl admin.

HTTPSEC: “HTTP Security”

HTTPSEC modifies HT TP
to “bolster online security” .

HTTPSEC provides a way
for the nu.nl server admin

to attach PGP signatures

to the nu.nl HT TP responses.

These signatures allow
“verification of the origin,
authenticity, and integrity of

data” obtained through HT TP.

To verify these signatures,
your computer needs to
retrieve the PGP public key
from the nu.nl admin.

What if the key is forged?

HTTPSEC: "HTTP Security”

HTTPSEC modifies HT TP
to “bolster online security” .

HTTPSEC provides a way
for the nu.nl server admin

to attach PGP signatures

to the nu.nl HT TP responses.

These signatures allow
“verification of the origin,
authenticity, and integrity of

data” obtained through HT TP.

To verify these signatures,
your computer needs to
retrieve the PGP public key
from the nu.nl admin.

What if the key is forged?

Answer: HTTPSEC provides a
way for a trusted Netherlands
government representative to
PGP-sign the nu.nl public key.

HTTPSEC: "HTTP Security”

HTTPSEC modifies HT TP
to “bolster online security” .

HTTPSEC provides a way
for the nu.nl server admin

to attach PGP signatures

to the nu.nl HT TP responses.

These signatures allow
“verification of the origin,
authenticity, and integrity of

data” obtained through HT TP.

To verify these signatures,
your computer needs to
retrieve the PGP public key
from the nu.nl admin.

What if the key is forged?

Answer: HTTPSEC provides a
way for a trusted Netherlands
government representative to
PGP-sign the nu.nl public key.

What if that key is forged?
Answer: Internet Central
Headquarters signed the
Netherlands public key.

—C: "HTTP Security”

=C modifies HT TP
ter online security .

—C provides a way
u.nl server admin

h PGP signatures

u.nl HT TP responses.

gnatures allow
tion of the origin,
city, and integrity of

ytained through HT TP.

To verify these signatures,
your computer needs to
retrieve the PGP public key
from the nu.nl admin.

What if the key is forged?

Answer: HTTPSEC provides a
way for a trusted Netherlands
government representative to

PGP-sign the nu.nl public key.

What if that key is forged?
Answer: Internet Central
Headquarters signed the
Netherlands public key.

Internet
was gen
Hardwar
owned b
a well-kr

Hardwar
signs da
oy 3 out
neld by

3 VeriSi
meet eve
they hay

P Security”

s HT TP
security” .

S 2 way
er admin
rnatures
P responses.

) [low

2 origin,
ntegrity of
rough HT TP.

To verify these signatures,
your computer needs to
retrieve the PGP public key
from the nu.nl admin.

What if the key is forged?

Answer: HTTPSEC provides a
way for a trusted Netherlands
government representative to

PGP-sign the nu.nl public key.

What if that key is forged?
Answer: Internet Central
Headquarters signed the
Netherlands public key.

Internet Central H
was generated by
Hardware Security
owned by VeriSigr
a well-known Ame

Hardware Security
signs data if authc

oy 3 out of 16 sm
neld by VeriSign 1

3 VeriSign Trust N
meet every week |
they have to sign

>€S.

TP

To verify these signatures,
your computer needs to
retrieve the PGP public key
from the nu.nl admin.

What if the key is forged?

Answer: HTTPSEC provides a
way for a trusted Netherlands

government representative to

PGP-sign the nu.nl public key.

What if that key is forged?
Answer: Internet Central
Headquarters signed the
Netherlands public key.

Internet Central HQ key
was generated by an expens
Hardware Security Module
owned by VeriSign,

a well-known American com

Hardware Security Module
signs data if authorized

oy 3 out of 16 smart cards
neld by VeriSign Trust Man:

3 VeriSign Trust Managers
meet every week In case
they have to sign new data.

To verify these signatures,
your computer needs to
retrieve the PGP public key
from the nu.nl admin.

What if the key is forged?

Answer: HT TPSEC provides a
way for a trusted Netherlands
government representative to

PGP-sign the nu.nl public key.

What if that key is forged?
Answer: Internet Central
Headquarters signed the
Netherlands public key.

Internet Central HQ key

was generated by an expensive
Hardware Security Module
owned by VeriSign,

a well-known American company.

Hardware Security Module
signs data if authorized
oy 3 out of 16 smart cards

neld by VeriSign Trust Managers.

3 VeriSign Trust Managers
meet every week In case
they have to sign new data.

/ these signatures,

nputer needs to
the PGP public key

» nu.nl admin.

the key is forged?

HTTPSEC provides a
a trusted Netherlands
ent representative to

n the nu.nl public key.

that key Is forged?
Internet Central

irters signed the

nds public key.

Internet Central HQ key

was generated by an expensive
Hardware Security Module
owned by VeriSign,

a well-known American company.

Hardware Security Module
signs data if authorized
oy 3 out of 16 smart cards

3 VeriSign Trust Managers
meet every week In case
they have to sign new data.

neld by VeriSign Trust Managers.

If your ¢
software
Internet

Your col
the Netl
and the

signatur
PGP-ver

Next ste
the nu.:?
and the

Finally F
HTTPS!

natures,
ds to
ublic key

Imin.
forged?

C provides a
Netherlands
entative to

nl public key.

s forged?
_entral
od the

- key.

Internet Central HQ key

was generated by an expensive
Hardware Security Module
owned by VeriSign,

a well-known American company.

Hardware Security Module
signs data if authorized
oy 3 out of 16 smart cards

3 VeriSign Trust Managers
meet every week In case
they have to sign new data.

neld by VeriSign Trust Managers.

If your computer |

software then it a
Internet Central H

Your computer ret
the Netherlands p!
and the Internet C

signature of that |
PGP-verities this s

Next step: retrieve
the nu.nl admin’
and the Netherlan

Finally PGP-verity
HTTPSEC-signed

Internet Central HQ key

was generated by an expensive
Hardware Security Module
owned by VeriSign,

a well-known American company.

Hardware Security Module
signs data if authorized
oy 3 out of 16 smart cards

3 VeriSign Trust Managers
meet every week In case
they have to sign new data.

neld by VeriSign Trust Managers.

If your computer has HT TP

software then it already kno
Internet Central HQ public |

Your computer retrieves

the Netherlands public key
and the Internet Central HQ
signature of that public key:;
PGP-verifies this signature.

Next step: retrieve and veri
the nu.nl admin’s public ke
and the Netherlands signatu

Finally PGP-verify nu.nl's
HTTPSEC-signed responses

Internet Central HQ key

was generated by an expensive
Hardware Security Module
owned by VeriSign,

a well-known American company.

Hardware Security Module
signs data if authorized
oy 3 out of 16 smart cards

3 VeriSign Trust Managers
meet every week In case
they have to sign new data.

neld by VeriSign Trust Managers.

If your computer has HT TPSEC

software then it already knows the
Internet Central HQ public key.

Your computer retrieves

the Netherlands public key
and the Internet Central HQ
signature of that public key:;
PGP-verifies this signature.

Next step: retrieve and verify
the nu.nl admin’s public key
and the Netherlands signature.

Finally PGP-verify nu.nl's
HTTPSEC-signed responses.

Central HQ key
crated by an expensive
e Security Module

y VeriSign,

1own American company.

e Security Module
ta if authorized
~of 16 smart cards

VeriSign Trust Managers.

on Trust Managers
ery week In case
e to sign new data.

If your computer has HT TPSEC
software then it already knows the

Internet Central HQ public key.

Your computer retrieves

the Netherlands public key
and the Internet Central HQ
signature of that public key:;
PGP-verifies this signature.

Next step: retrieve and verify
the nu.nl admin’s public key
and the Netherlands signature.

Finally PGP-verify nu.nl's
HTTPSEC-signed responses.

HTTPSI

Many In
are extre
Can the

The crit
in HT T}
PGP sig
"Per-qus

Signatur
saved: s
Hopefull
sign eac

Q key
an expensive

Module

rican company.

Module

rized
art cards

rust Managers.

Nanagers
n case
new data.

If your computer
software then it a

nas HT TPSEC

Internet Central HQ public key.

Your computer retrieves

the Netherlands public key
and the Internet Central HQ
signature of that public key:;

PGP-verifies this signature.

Next step: retrieve and verify

the nu.nl admin’

s public key

and the Netherlands signature.

Finally PGP-verify nu.nl's
HTTPSEC-signed responses.

HTTPSEC perforr

ready knows the

Many Internet sen
are extremely busy
Can they afford cr

The critical design
in HTTPSEC: pre
PGP signatures of
"Per-query crypto

Signature is comp
saved; sent to mai

Hopefully the admr
sign each HT TP r

ve

pany.

1gers.

If your computer has HT TPSEC

software then it already knows the
Internet Central HQ public key.

Your computer retrieves

the Netherlands public key
and the Internet Central HQ
signature of that public key:;
PGP-verifies this signature.

Next step: retrieve and verify
the nu.nl admin’s public key
and the Netherlands signature.

Finally PGP-verify nu.nl's
HTTPSEC-signed responses.

HTTPSEC performance

Many Internet servers
are extremely busy.
Can they afford crypto?

The critical design decision
in HT TPSEC: precompute
PGP signatures of all data.

“Per-query crypto Is bad.”

Signature is computed once;

saved; sent to many clients.
Hopefully the admin can aff
sign each HT TP response o

If your computer has HT TPSEC HTTPSEC performance

software then it already knows the
Internet Central HQ public key.

Many Internet servers
are extremely busy.
Your computer retrieves Can they afford crypto?
the Netherlands public key
and the Internet Central HQ
signature of that public key:;

The critical design decision
in HT TPSEC: precompute

PGP signatures of all data.

PGP-verifies this signature. “Per-query crypto is bad.”

Next step: retrieve and verify Signature is computed once:

the nu.nl admin’s public key

saved; sent to many clients.

and the Netherlands signature. Hopefully the admin can afford to

Finally PGP-verify nu.nl's sign each HT TP response once.
HTTPSEC-signed responses.

omputer

then It a

nas HT TPSEC

ready knows the

Central HQ public key.

nputer retrieves

1erlands public key
Internet Central HQ
e of that public key:;

ifies this signature.

p: retrieve and verity

11 admin’s public key

Netherlands signature.

>GP-verify nu.nl's

—C-signed responses.

HTTPSEC performance

Many Internet servers
are extremely busy.
Can they afford crypto?

The critical design decision
in HT TPSEC: precompute
PGP signatures of all data.
“Per-query crypto Is bad.”

Signature is computed once;

saved; sent to many clients.
Hopefully the admin can afford to
sign each HT TP response once.

Clients ¢
of verify

HTTPS
client-sic
precomg
choice o

Many H
640-bit
763-bit
1024-bit
signatur,
DSA, “1

verificat

1as HT TPSEC
ready knows the
Q public key.

rieves
ublic key
entral HQ
ublic key;
ignature.

= and verify
s public key
ds signature.

‘nu.nl's

responses.

HTTPSEC performance

Many Internet servers
are extremely busy.
Can they afford crypto?

The critical design decision
in HT TPSEC: precompute
PGP signatures of all data.
“"Per-query crypto Is bad.”

Signature is computed once;

saved; sent to many clients.
Hopefully the admin can afford to
sign each HT TP response once.

Clients don't share
of verifying a sign

HTTPSEC tries tc
client-side costs (z
precomputation cc
choice of crypto p

Many HTTPSEC
640-bit RSA, origi
768-bit RSA, man
1024-bit RSA, cur
signatures from Ve
DSA, “10 to 40 ti
verification” but f:

SEC
ws the
ey.

Y
re.

HTTPSEC performance

Many Internet servers
are extremely busy.
Can they afford crypto?

The critical design decision
in HT TPSEC: precompute
PGP signatures of all data.
“Per-query crypto Is bad.”

Signature is computed once;

saved; sent to many clients.
Hopefully the admin can afford to
sign each HT TP response once.

Clients don’t share the work
of verifying a signature.

HTTPSEC tries to reduce
client-side costs (and
precomputation costs) throt
choice of crypto primitive.

Many HTTPSEC crypto opt
640-bit RSA, original specs;
768-bit RSA, many docs;
1024-bit RSA, current
signatures from VeriSign etc
DSA, “10 to 40 times as slo
verification” but faster for s

HTTPSEC performance

Many Internet servers
are extremely busy.
Can they afford crypto?

The critical design decision
in HT TPSEC: precompute
PGP signatures of all data.
“Per-query crypto Is bad.”

Signature is computed once;

saved; sent to many clients.
Hopefully the admin can afford to
sign each HT TP response once.

Clients don’t share the work
of verifying a signature.

HTTPSEC tries to reduce
client-side costs (and
precomputation costs) through
choice of crypto primitive.

Many HTTPSEC crypto options:
640-bit RSA, original specs;
768-bit RSA, many docs;
1024-bit RSA, current

signatures from VeriSign etc.;
DSA, “10 to 40 times as slow for
verification” but faster for signing.

—C performance

ternet servers
mely busy.
v afford crypto?

ical design decision
’SEC: precompute
natures of all data.
2ry crypto Is bad.”

e IS computed once;

2nt to many clients.
y the admin can afford to
h HT TP response once.

Clients don’t share the work
of verifying a signature.

HTTPSEC tries to reduce
client-side costs (and
precomputation costs) through
choice of crypto primitive.

Many HT TPSEC crypto options:
640-bit RSA, original specs;
768-bit RSA, many docs;
1024-bit RSA, current

signatures from VeriSign etc.;
DSA, “10 to 40 times as slow for

verification” but faster for signing.

HTTPSI

choices
for no re
fear of c

HTTPSI

to survi\
and ever
for reasc
More co
including

Author ¢
HTTP s

impleme

IS just st

nance

VEIS
/.

ypto?

 decision
compute
“all data.
Is bad.”

uted once;

1y clients.
1n can afford to
esponse once.

Clients don’t share the work
of verifying a signature.

HTTPSEC tries to reduce

client-side costs (and
precomputation costs) through
choice of crypto primitive.

Many HTTPSEC crypto options:
640-bit RSA, original specs;
768-bit RSA, many docs;
1024-bit RSA, current

signatures from VeriSign etc.;
DSA, “10 to 40 times as slow for

verification” but faster for signing.

HTTPSEC made |

choices such as 64
for no reason othe
fear of overload.

HTTPSEC needec

to survive the iney
and even more cot
for reasons |'ll exp
More complexity -
including security

Author of one ven
HTTP server: “TI
implementing ever

IS just staggering.’

ord to
nce.

Clients don’t share the work
of verifying a signature.

HTTPSEC tries to reduce
client-side costs (and
precomputation costs) through
choice of crypto primitive.

Many HTTPSEC crypto options:
640-bit RSA, original specs;
768-bit RSA, many docs;
1024-bit RSA, current

signatures from VeriSign etc.;
DSA, “10 to 40 times as slow for

verification” but faster for signing.

HTTPSEC made breakable
choices such as 640-bit RSA
for no reason other than
fear of overload.

HTTPSEC needed more opt
to survive the inevitable bre:
and even more complexity
for reasons |'ll explain.
More complexity = more bt
including security holes.

Author of one very popular
HT TP server: “The effort o
implementing everything cor

IS just staggering.”

Clients don’t share the work
of verifying a signature.

HTTPSEC tries to reduce
client-side costs (and
precomputation costs) through
choice of crypto primitive.

Many HT TPSEC crypto options:
640-bit RSA, original specs;
768-bit RSA, many docs;
1024-bit RSA, current

signatures from VeriSign etc.;
DSA, “10 to 40 times as slow for

verification” but faster for signing.

HTTPSEC made breakable
choices such as 640-bit RSA
for no reason other than
fear of overload.

HTTPSEC needed more options
to survive the inevitable breaks:
and even more complexity

for reasons |'ll explain.

More complexity = more bugs,
including security holes.

Author of one very popular
HT TP server: “The effort of
implementing everything correctly

IS just staggering.”

lon't share the work
Ing a signature.

=(C tries to reduce

le costs (and

utation costs) through
f crypto primitive.

TTPSEC crypto options:
RSA, original specs;

RSA, many docs;

RSA, current

es from VeriSign etc.;

0 to 40 times as slow for

on" but faster for signing.

HTTPSEC made breakable
choices such as 640-bit RSA
for no reason other than
fear of overload.

HTTPSEC needed more options
to survive the inevitable breaks:
and even more complexity

for reasons |'ll explain.

More complexity = more bugs,
including security holes.

Author of one very popular
HT TP server: “The effort of

implementing everything correctly

IS Just staggering.”

HTTPSI

How do
requests
without

> the work
ature.

) reduce

ind

sts) through
rimitive.

crypto options:
nal specs;

y docs;

rent

2riSign etc.;
mes as slow for

aster for signing.

HTTPSEC made breakable
choices such as 640-bit RSA
for no reason other than
fear of overload.

HTTPSEC needed more options
to survive the inevitable breaks:
and even more complexity

for reasons |'ll explain.

More complexity = more bugs,
including security holes.

Author of one very popular
HT TP server: “The effort of

implementing everything correctly

IS just staggering.”

HTTPSEC confide

How do you encry
requests and respc
without per-client

1oNns:

’l,

w for

gning.

HTTPSEC made breakable
choices such as 640-bit RSA
for no reason other than
fear of overload.

HTTPSEC needed more options
to survive the inevitable breaks:
and even more complexity

for reasons |'ll explain.

More complexity = more bugs,
including security holes.

Author of one very popular
HT TP server: “The effort of

implementing everything correctly

IS Just staggering.”

HTTPSEC confidentiality

How do you encrypt
requests and responses
without per-client crypto?

HTTPSEC made breakable
choices such as 640-bit RSA
for no reason other than
fear of overload.

HTTPSEC needed more options
to survive the inevitable breaks:
and even more complexity

for reasons |'ll explain.

More complexity = more bugs,
including security holes.

Author of one very popular
HT TP server: “The effort of

implementing everything correctly

IS Just staggering.”

HTTPSEC confidentiality

How do you encrypt
requests and responses
without per-client crypto?

HTTPSEC made breakable
choices such as 640-bit RSA
for no reason other than
fear of overload.

HTTPSEC needed more options
to survive the inevitable breaks:
and even more complexity

for reasons |'ll explain.

More complexity = more bugs,
including security holes.

Author of one very popular
HT TP server: “The effort of

implementing everything correctly

IS Just staggering.”

HTTPSEC confidentiality

How do you encrypt
requests and responses
without per-client crypto?

Answer: You can't,
and HTTPSEC doesn't even try.

The HTTPSEC RFC says
“Due to a deliberate design
choice, HT TPSEC does not

provide confidentiality.”

HTTPSEC made breakable
choices such as 640-bit RSA
for no reason other than
fear of overload.

HTTPSEC needed more options
to survive the inevitable breaks:
and even more complexity

for reasons |'ll explain.

More complexity = more bugs,
including security holes.

Author of one very popular
HT TP server: “The effort of

implementing everything correctly

IS Just staggering.”

HTTPSEC confidentiality

How do you encrypt
requests and responses
without per-client crypto?

Answer: You can't,
and HTTPSEC doesn't even try.

The HTTPSEC RFC says
“Due to a deliberate design
choice, HT TPSEC does not

provide confidentiality.”

This Is very strange, but
not the worst part of HT TPSEC.

~C made breakable
such as 640-bit RSA
ason other than
verload.

—C needed more options
e the Iinevitable breaks:
1 more complexity

ns I'll explain.

mplexity = more bugs,
r security holes.

f one very popular
erver: "The effort of

nting everything correctly

aggering.”

HTTPSEC confidentiality

How do you encrypt
requests and responses
without per-client crypto?

Answer: You can't,
and HTTPSEC doesn't even try.

The HTTPSEC RFC says
“Due to a deliberate design

choice, HT TPSEC does not
provide confidentiality.”

This Is very strange, but

not the worst part of HT TPSEC.

The HT

When n
receives
http://
it looks
/var/wi

on iIts lo

An HTT
http:/,
index.!
Server a
index.!

with a s

sreakable
0-bit RSA
r than

| more options
1table breaks:;
nplexity

lain.

> more bugs,
holes.

/ popular
e effort of
ything correctly

HTTPSEC confidentiality

How do you encrypt
requests and responses
without per-client crypto?

Answer: You can't,

and HTTPSEC doesn't even try.

The HTTPSEC RFC says
“Due to a deliberate design
choice, HT TPSEC does not
provide confidentiality.”

This Is very strange, but

not the worst part of HT TPSEC.

The HTTPSEC d:

When nu.nl HT1
receives a request
http://nu.nl/ec
it looks for a file

/var/www/econor

on its local disk.

An HT TPSEC clie
http://nu.nl/e
index.html.httj
Server admin has
index.html.httj
with a signature o

10NS
1ks:

1gs,

rectly

HTTPSEC confidentiality

How do you encrypt
requests and responses
without per-client crypto?

Answer: You can't,

and HTTPSEC doesn't even try.

The HTTPSEC RFC says
“Due to a deliberate design
choice, HT TPSEC does not
provide confidentiality.”

This Is very strange, but

not the worst part of HT TPSEC.

The HTTPSEC data model

When nu.nl HT TP server
receives a request for
http://nu.nl/economie/,
it looks for a file
/var/www/economie/inde:

on its local disk.

An HTTPSEC client also as

http://nu.nl/economie/
index.html.httpsec—-pgp.
Server admin has created

index.html.httpsec—-pgp
with a signature of index.k

HTTPSEC confidentiality

How do you encrypt
requests and responses
without per-client crypto?

Answer: You can't,

and HTTPSEC doesn't even try.

The HTTPSEC RFC says
“Due to a deliberate design
choice, HT TPSEC does not
provide confidentiality.”

This Is very strange, but

not the worst part of HT TPSEC.

The HTTPSEC data model

When nu.nl HT TP server
receives a request for
http://nu.nl/economie/,

it looks for a file
/var/www/economie/index.html

on its local disk.

An HTTPSEC client also asks for

http://nu.nl/economie/
index.html.httpsec—-pgp.
Server admin has created
index.html.httpsec—-pgp
with a signature of index.html.

—C confidentiality

you encrypt
and responses
per-client crypto?

You can't,
PSEC doesn’t even try.

TPSEC RFC says
a deliberate design

HTTPSEC does not
confidentiality.”

ery strange, but

worst part of HTTPSEC.

The HTTPSEC data model

When nu.nl HT TP server
receives a request for
http://nu.nl/economie/,

it looks for a file
/var/www/economie/index.html

on its local disk.

An HTTPSEC client also asks for

http://nu.nl/economie/
index.html.httpsec—-pgp.
Server admin has created
index.html.httpsec—-pgp
with a signature of index.html.

There ar
of softw.
admins |
e.g., wik

ntiality

pt
nses
crypto?

L,
esn't even try.

FC says
ite design
- does not
ality.”

e, but

of HTTPSEC.

The HTTPSEC data model

When nu.nl HT TP server

receives a request for
http://nu.nl/economie/,

it looks for a file
/var/www/economie/index.html

on its local disk.

An HTTPSEC client also asks for

http://nu.nl/economie/
index.html.httpsec—-pgp.
Server admin has created
index.html.httpsec—-pgp
with a signature of index.html.

There are hundrec
of software tools t
admins manage w
e.g., wiki-creation

| Try.

SEC.

The HTTPSEC data model

When nu.nl HT TP server
receives a request for
http://nu.nl/economie/,

it looks for a file
/var/www/economie/index.html

on its local disk.

An HTTPSEC client also asks for
http://nu.nl/economie/
index.html.httpsec-pgp.
Server admin has created
index.html.httpsec—-pgp

with a signature of index.html.

There are hundreds (thousa
of software tools to help
admins manage web sites:
e.g., wiki-creation tools.

The HTTPSEC data model

When nu.nl HT TP server

receives a request for
http://nu.nl/economie/,

it looks for a file
/var/www/economie/index.html

on its local disk.

An HTTPSEC client also asks for
http://nu.nl/economie/
index.html.httpsec—-pgp.
Server admin has created
index.html.httpsec—-pgp

with a signature of index.html.

There are hundreds (thousands?)
of software tools to help

admins manage web sites:

e.g., wiki-creation tools.

The HTTPSEC data model

When nu.nl HT TP server

receives a request for
http://nu.nl/economie/,

it looks for a file
/var/www/economie/index.html

on its local disk.

An HTTPSEC client also asks for

http://nu.nl/economie/
index.html.httpsec—-pgp.
Server admin has created
index.html.httpsec—-pgp
with a signature of index.html.

There are hundreds (thousands?)
of software tools to help

admins manage web sites:

e.g., wiki-creation tools.

When these tools create
index.html,

do they also create
index.html.httpsec-pgp?’

The HTTPSEC data model

When nu.nl HT TP server

receives a request for
http://nu.nl/economie/,

it looks for a file
/var/www/economie/index.html

on its local disk.

An HTTPSEC client also asks for
http://nu.nl/economie/
index.html.httpsec—-pgp.
Server admin has created
index.html.httpsec—-pgp

with a signature of index.html.

There are hundreds (thousands?)
of software tools to help

admins manage web sites:

e.g., wiki-creation tools.

When these tools create
index.html,

do they also create
index.html.httpsec-pgp?’

What about dynamic data?

The HTTPSEC data model

When nu.nl HT TP server
receives a request for
http://nu.nl/economie/,

it looks for a file
/var/www/economie/index.html

on its local disk.

An HTTPSEC client also asks for
http://nu.nl/economie/
index.html.httpsec—-pgp.
Server admin has created
index.html.httpsec—-pgp

with a signature of index.html.

There are hundreds (thousands?)
of software tools to help

admins manage web sites:

e.g., wiki-creation tools.

When these tools create
index.html,

do they also create
index.html.httpsec-pgp?’

What about dynamic data?

HTTPSEC purists say “Answers
should always be static™.

TPSEC data model

1.nl HT TP server
a request for
‘nu.nl/economie/,
for a file

rw/economie/index.html

cal disk.

PSEC client also asks for
'nu.nl/economie/

1tml . httpsec—-pgp.
dmin has created

1tml . httpsec—-pgp
gnature of index.html.

There are hundreds (thousands?)
of software tools to help

admins manage web sites:

e.g., wiki-creation tools.

When these tools create
index.html,

do they also create
index.html.httpsec—pgp?’

What about dynamic data?

HTTPSEC purists say “Answers
should always be static’.

What at
Are the

Can an ;
obsolete

It clocks
then sig|
include «
But freg
IS an ad|

HTTPSI

admin st
expire; €
refuses t

ta model

P server
for

-onomie/,

nie/index.html

nt also asks for
~onomie/

DSeCc—pgp.
created

DSEeC—PEpP
f index.html.

There are hundreds (thousands?)
of software tools to help

admins manage web sites:

e.g., wiki-creation tools.

When these tools create
index.html,

do they also create
index.html.httpsec-pgp?’

What about dynamic data?

HTTPSEC purists say “Answers
should always be static™.

What about old d
Are the signatures

Can an attacker re
obsolete signed da

If clocks are synch
then signatures ca
include expiration
But frequent re-si;
Is an administratiy

HTTPSEC suicide
admin screws up;
expire; every HTT
refuses to load the

x.html

ks for

tml.

There are hundreds (thousands?)
of software tools to help

admins manage web sites:

e.g., wiki-creation tools.

When these tools create
index.html,

do they also create
index.html.httpsec-pgp’

What about dynamic data?

HTTPSEC purists say “Answers
should always be static’.

What about o/d data?
Are the signatures still valid

Can an attacker replay
obsolete signed data?

If clocks are synchronized
then signatures can

include expiration times.
But frequent re-signing

Is an administrative disaster

HTTPSEC suicide:

admin screws up; signatures
expire; every HT TPSEC clie
refuses to load the page.

There are hundreds (thousands?) What about old data?

of software tools to help Are the signatures still valid?

admins manage web sites:
Can an attacker replay

e.g. wiki-creation tools. .
& obsolete signed data?

When these tools create

index.html,

do they also create

If clocks are synchronized
then signatures can
include expiration times.

index.html.htt -pgp’ ioni
1l0dex. atm pPSeCTPEP But frequent re-signing

What about dynamic data? Is an administrative disaster.
HTTPSEC purists say “Answers HTTPSEC suicide:
should always be static”. admin screws up; signatures

expire; every HTTPSEC client
refuses to load the page.

e hundreds (thousands?)
are tools to help

manage web sites:
I-creation tools.

1ese tools create
1tml,

also create

1tml . httpsec-pgp?

yout dynamic data?

=C purists say “Answers
lways be static™.

What about o/d data?
Are the signatures still valid?

Can an attacker replay
obsolete signed data?

If clocks are synchronized
then signatures can

include expiration times.
But frequent re-signing

Is an administrative disaster.

HTTPSEC suicide:
admin screws up; signatures

expire; every HTTPSEC client

refuses to load the page.

HTTPSI
2010.09.
2010.10

s (thousands?)
o help

eb sites:

tools.

create

S

Dsec-pgp’

mic data?

say Answers
tatic”.

What about old data?
Are the signatures still valid?

Can an attacker replay
obsolete signed data?

If clocks are synchronized
then signatures can

include expiration times.
But frequent re-signing

Is an administrative disaster.

HTTPSEC suicide:

admin screws up; signatures
expire; every HTTPSEC client
refuses to load the page.

HTTPSEC suicide
2010.09.02: US g«
2010.10.07: Belgi:

1ds?)

WEI'S

What about o/d data?
Are the signatures still valid?

Can an attacker replay
obsolete signed data?

If clocks are synchronized
then signatures can

include expiration times.
But frequent re-signing

Is an administrative disaster.

HTTPSEC suicide:

admin screws up; signatures
expire; every HTTPSEC client
refuses to load the page.

HTTPSEC suicide examples
2010.09.02: US government
2010.10.07: Belgian governt

What about old data? HTTPSEC suicide examples:

. - i b/
Are the signatures still valid: 2010.09.02: US government.

Can ar atjcacker replay 2010.10.07: Belgian government.
obsolete signed data?

If clocks are synchronized
then signatures can

include expiration times.
But frequent re-signing

Is an administrative disaster.

HTTPSEC suicide:

admin screws up; signatures
expire; every HTTPSEC client
refuses to load the page.

What about old data? HTTPSEC suicide examples:

. - i b/
Are the signatures still valid: 2010.09.02: US government.

Can ar atjcacker replay 2010.10.07: Belgian government.
obsolete signed data?

| 2012.02.23: httpsec-ref.org.
If clocks are synchronized

then signatures can

include expiration times.
But frequent re-signing

Is an administrative disaster.

HTTPSEC suicide:

admin screws up; signatures
expire; every HTTPSEC client
refuses to load the page.

What about old data?
Are the signatures still valid?

Can an attacker replay
obsolete signed data?

If clocks are synchronized
then signatures can

include expiration times.
But frequent re-signing

Is an administrative disaster.

HTTPSEC suicide:
admin screws up; signatures

expire; every HTTPSEC client

refuses to load the page.

HTTPSEC suicide examples:
2010.09.02: US government.
2010.10.07: Belgian government.
2012.02.23: httpsec-ref.org.

2012.02.28: "Last night I
was unable to check the
weather forecast, because
the fine folks at NOAA.gov

/ weather.gov broke their
HTTPSEC."

What about old data?
Are the signatures still valid?

Can an attacker replay
obsolete signed data?

If clocks are synchronized
then signatures can

include expiration times.
But frequent re-signing

Is an administrative disaster.

HTTPSEC suicide:
admin screws up; signatures

expire; every HTTPSEC client

refuses to load the page.

HTTPSEC suicide examples:
2010.09.02: US government.
2010.10.07: Belgian government.
2012.02.23: httpsec-ref.org.
2012.02.28: "Last night I

was unable to check the
weather forecast, because
the fine folks at NOAA.gov

/ weather.gov broke their
HTTPSEC."

2012.02.28, HTTPSEC-REF
tech-support rep: “httpsec-

accept-expired yes’

yout old data?
signatures still valid?

attacker replay
signhed data?

are synchronized
natures can
xpiration times.
uent re-signing
ministrative disaster.

—C suicide:
“rews up; signatures
very HT TPSEC client

o load the page.

HTTPSEC suicide examples:
2010.09.02: US government.

2010.10.07: Belgian government.

2012.02.23: httpsec-ref.org.
2012.02.28: "Last night I

was unable to check the
weather forecast, because
the fine folks at NOAA.gov

/ weather.gov broke their
HTTPSEC."

2012.02.28, HTTPSEC-REF
tech-support rep: "httpsec-

accept-expired yes"

What akt

ata?
still valid?

play
ta?

ronized
n
times.
ning

e disaster.

signatures
PSEC client

 page.

HTTPSEC suicide examples:
2010.09.02: US government.

2010.10.07: Belgian government.

2012.02.23: httpsec-ref.org.
2012.02.28: "Last night I

was unable to check the
weather forecast, because
the fine folks at NOAA.gov

/ weather.gov broke their
HTTPSEC."

2012.02.28, HTTPSEC-REF
tech-support rep: “httpsec-

accept-expired yes’

What about none

nt

HTTPSEC suicide examples:
2010.09.02: US government.

2010.10.07: Belgian government.

2012.02.23: httpsec-ref.org.
2012.02.28: "Last night I

was unable to check the
weather forecast, because
the fine folks at NOAA.gov

/ weather.gov broke their
HTTPSEC."

2012.02.28, HTTPSEC-REF
tech-support rep: "httpsec-

accept-expired yes"

What about nonexistent file

HTTPSEC suicide examples:
2010.09.02: US government.

2010.10.07: Belgian government.

2012.02.23: httpsec-ref.org.
2012.02.28: "Last night I

was unable to check the
weather forecast, because
the fine folks at NOAA.gov

/ weather.gov broke their
HTTPSEC."

2012.02.28, HTTPSEC-REF
tech-support rep: “httpsec-

accept-expired yes’

What about nonexistent files?

HTTPSEC suicide examples: What about nonexistent files?

2010.09.02: US government. Does the server admin

2010.10.07: Belgian government. precompute PGP signatures on

“aaaaa does not exist’,
2012.02.23: httpsec-ref.org. “aaaab does not exist”, etc.?

2012.02.28: "Last night I
was unable to check the
weather forecast, because
the fine folks at NOAA.gov

/ weather.gov broke their
HTTPSEC."

2012.02.28, HTTPSEC-REF
tech-support rep: “httpsec-

accept-expired yes’

HTTPSEC suicide examples:
2010.09.02: US government.

2010.10.07: Belgian government.

2012.02.23: httpsec-ref.org.
2012.02.28: "Last night I

was unable to check the
weather forecast, because
the fine folks at NOAA.gov

/ weather.gov broke their
HTTPSEC."

2012.02.28, HTTPSEC-REF
tech-support rep: “httpsec-

accept-expired yes’

What about nonexistent files?

Does the

server admin

precompute PGP signatures on

“aaaaa ¢

“aaaab o

oes not exist’,
oes not exist”, etc.?

Crazy! Obvious approach:

“We sign

each page that exists,

and don't sign anything else.”

HTTPSEC suicide examples:
2010.09.02: US government.

2010.10.07: Belgian government.

2012.02.23: httpsec-ref.org.
2012.02.28: "Last night I

was unable to check the
weather forecast, because
the fine folks at NOAA.gov

/ weather.gov broke their
HTTPSEC."

2012.02.28, HTTPSEC-REF
tech-support rep: “httpsec-

accept-expired yes’

What about nonexistent files?

Does the server admin
precompute PGP signatures on
“aaaaa does not exist’,

“aaaab does not exist”, etc.?

Crazy! Obvious approach:
“We sign each page that exists,
and don't sign anything else.”

User asks for nonexistent page.
Receives unsigned answer
saying the page doesn't exist.
Has no choice but to trust it.

—C suicide examples:

02: US government.

07: Belgian government.

23: httpsec-ref.org.

28: "Last night I
ble to check the
~ forecast, because
e folks at NOAA.gov

er.gov broke their

~ 1
J e

28, HTTPSEC-REF
port rep: “httpsec-

-expired yes”

What about nonexistent files?

Does the server admin
precompute PGP signatures on
“aaaaa does not exist’,

“aaaab does not exist”, etc.?

Crazy! Obvious approach:
“We sign each page that exists,
and don't sign anything else.”

User asks for nonexistent page.
Receives unsigned answer
saying the page doesn't exist.
Has no choice but to trust iIt.

User ask
Recelves
a resporn
saying tl
Has no «

Clearly :

Sometin
Thisis

~examples:

vernment.

AN government.

sec-ref.org.

C night 1
1eck the

t, because
1t NOAA.gov

roke their

’SEC-REF
"httpsec-

yes

What about nonexistent files?

Does the server admin
precompute PGP signatures on
“aaaaa does not exist’,

“aaaab does not exist”, etc.?

Crazy! Obvious approach:
“We sign each page that exists,
and don't sign anything else.”

User asks for nonexistent page.
Receives unsigned answer
saying the page doesn't exist.
Has no choice but to trust it.

User asks for nu.r
Recelves unsigned
a response forged
saying the page dc
Has no choice but

Clearly a violation
Sometimes a viola
This Is not a gooc

nent.

oTg.

oV

L T

What about nonexistent files?

Does the server admin
precompute PGP signatures on

“aaaaa does not exist’,

“aaaab does not exist”, etc.?

Crazy! Obvious approach:
“We sign each page that exists,
and don't sign anything else.”

User asks for nonexistent page.
Receives unsigned answer
saying the page doesn't exist.
Has no choice but to trust it.

User asks for nu.nl/econor
Receives unsigned answer,

a response forged by attacke
saying the page doesn't exis
Has no choice but to trust 1

Clearly a violation of availak
Sometimes a violation of int
This Is not a good approach

What about nonexistent files?

Does the server admin
precompute PGP signatures on
“aaaaa does not exist’,

“aaaab does not exist”, etc.?

Crazy! Obvious approach:
“We sign each page that exists,
and don't sign anything else.”

User asks for nonexistent page.
Receives unsigned answer
saying the page doesn't exist.
Has no choice but to trust it.

User asks for nu.nl/economie.
Receives unsigned answer,

a response forged by attacker,
saying the page doesn't exist.
Has no choice but to trust it.

Clearly a violation of availability.
Sometimes a violation of integrity.
This I1s not a good approach.

What about nonexistent files?

Does the server admin
precompute PGP signatures on

“aaaaa does not exist’,

“aaaab does not exist”, etc.?

Crazy! Obvious approach:
“We sign each page that exists,
and don't sign anything else.”

User asks for nonexistent page.
Receives unsigned answer
saying the page doesn't exist.
Has no choice but to trust it.

User asks for nu.nl/economie.
Receives unsigned answer,

a response forged by attacker,
saying the page doesn't exist.
Has no choice but to trust it.

Clearly a violation of availability.
Sometimes a violation of integrity.
This I1s not a good approach.

Alternative: “NHTTPSEC". e.g.

clegg.com/nonex query returns
"There are no pages between
clegg.com/nick and

clegg.com/start’ -+ signature.

yout nonexistent files?

> server admin
ute PGP signatures on
does not exist’

does not exist”, etc.?

Jbvious approach:
n each page that exists,
't sign anything else.”

s for nonexistent page.
- unsigned answer

1e page doesn't exist.
“hoice but to trust It.

User asks for nu.nl/economie.
Receives unsigned answer,

a response forged by attacker,
saying the page doesn't exist.
Has no choice but to trust it.

Clearly a violation of availability.

Sometimes a violation of integrity.

This I1s not a good approach.

Alternative: "NHTTPSEC". e.g.

clegg.com/nonex query returns
"There are no pages between
clegg.com/nick and

clegg.com/start” + signature.

Try cle;
After se

all cleg
alan, a.
calend:
jennife

wiki.

<istent files?

Imin

signatures on

axist’ |
xist’’, etc.?
proach:

ye that exists,
rthing else.”

xistent page.
answer
esn't exist.
to trust It.

User asks for nu.nl/economie.
Receives unsigned answer,

a response forged by attacker,
saying the page doesn't exist.
Has no choice but to trust it.

Clearly a violation of availability.

Sometimes a violation of integrity.

This I1s not a good approach.

Alternative: “NHTTPSEC". e.g.

clegg.com/nonex query returns
"There are no pages between
clegg.com/nick and
clegg.com/start’ -+ signature.

Try clegg.com/f
After several queri
all clegg.com nar
alan, alvis, and
calendar, home,

jennifer, mail,

wiki.

on

Sts,

User asks for nu.nl/economie.
Receives unsigned answer,

a response forged by attacker,
saying the page doesn't exist.
Has no choice but to trust it.

Clearly a violation of availability.

Sometimes a violation of integrity.

This I1s not a good approach.

Alternative: "NHTTPSEC". e.g.

clegg.com/nonex query returns
"There are no pages between
clegg.com/nick and
clegg.com/start” + signature.

Try clegg.com/foo etc.

A.

al

ter several queries have

clegg.com names:

alan, alvis, andrew, bria

calendar, home, imogene,

jennifer, mail, nick, sta

wiki.

User asks for nu.nl/economie.
Receives unsigned answer,

a response forged by attacker,
saying the page doesn't exist.
Has no choice but to trust it.

Clearly a violation of availability.

Sometimes a violation of integrity.

This I1s not a good approach.

Alternative: “NHTTPSEC". e.g.

clegg.com/nonex query returns
"There are no pages between
clegg.com/nick and
clegg.com/start’ -+ signature.

Try clegg.com/foo etc.

After several queries have

all clegg.com names:

alan, alvis, andrew, brian,
calendar, home, imogene,
jennifer, mail, nick, start,

wiki.

User asks for nu.nl/economie.
Receives unsigned answer,

a response forged by attacker,
saying the page doesn't exist.
Has no choice but to trust it.

Clearly a violation of availability.

Sometimes a violation of integrity.

This I1s not a good approach.

Alternative: “NHTTPSEC". e.g.

clegg.com/nonex query returns
"There are no pages between
clegg.com/nick and

clegg.com/start’ -+ signature.

Try clegg.com/foo etc.

After several queries have

all clegg.com names:

alan, alvis, andrew, brian,
calendar, home, imogene,
jennifer, mail, nick, start,

wiki.

The clegg.com administrator
disabled HT TP directory indexing
— but then leaked the same data
by installing HT TPSEC

with the default NHTTPSEC.

s for nu.nl/economie.
- unsigned answer,

se forged by attacker,
1e page doesn't exist.
“hoice but to trust it.

) violation of availability.

1es a violation of integrity.

1ot a good approach.

ive: "NHTTPSEC". e.g.

“om/nonex query returns
are no pages between
om/nick and

om/start’ + signature.

Try clegg.com/foo etc.

A.

al

ter several queries have

clegg.com names:

alan, alvis, andrew, brian,

calendar, home, imogene,

jennifer, mail, nick, start,

wiki.

The clegg.com administrator
disabled HT TP directory indexing
— but then leaked the same data
by installing HT TPSEC

with the default NHTTPSEC.

Summar
all n nai
on an N
(with sig
that the
using 7

11/economie.
answer,

by attacker,
yesn 't exist.
to trust It.

of availability.

tion of integrity.

| approach.

"TPSEC". e.g.
{ query returns

1ges between
and

>" <+ signature.

Try clegg.com/foo etc.

After several queries have

all clegg.com names:

alan, alvis, andrew, brian,
calendar, home, imogene,
jennifer, mail, nick, start,

wiki.

The clegg.com administrator
disabled HT TP directory indexing
— but then leaked the same data
by installing HT TPSEC

with the default NHTTPSEC.

Summary: Attack
all n names of pag
on an NHT TPSE(
(with signatures g

that there are no |
using n HT TPSE(

nie.

g

ility.

egrity.

e.g.
furns

eell

yture.

Try clegg.com/foo etc.

A.

al

ter several queries have

clegg.com names:

alan, alvis, andrew, brian,

calendar, home, imogene,

jennifer, mail, nick, start,

wiki.

The clegg.com administrator
disabled HT TP directory indexing
— but then leaked the same data
by installing HT TPSEC

with the default NHTTPSEC.

Summary: Attacker learns
all n names of pages

on an NHTTPSEC server
(with signatures guaranteeir

that there are no more)
using n HT TPSEC queries.

Try clegg.com/foo etc.

After several queries have

all clegg.com names:

alan, alvis, andrew, brian,
calendar, home, imogene,
jennifer, mail, nick, start,

wiki.

The clegg.com administrator
disabled HT TP directory indexing
— but then leaked the same data
by installing HT TPSEC

with the default NHTTPSEC.

Summary: Attacker learns

all n names of pages

on an NHTTPSEC server
(with signatures guaranteeing
that there are no more)

using n HTTPSEC queries.

Try clegg.com/foo etc.

After several queries have

all clegg.com names:

alan, alvis, andrew, brian,
calendar, home, imogene,
jennifer, mail, nick, start,

wiki.

The clegg.com administrator
disabled HT TP directory indexing
— but then leaked the same data
by installing HT TPSEC

with the default NHTTPSEC.

Summary: Attacker learns

all n names of pages

on an NHTTPSEC server
(with signatures guaranteeing

that there are no more)
using n HTTPSEC queries.

This Is not a good approach.

Try clegg.com/foo etc.

After several queries have

all clegg.com names:

alan, alvis, andrew, brian,
calendar, home, imogene,
jennifer, mail, nick, start,

wiki.

The clegg.com administrator
disabled HT TP directory indexing
— but then leaked the same data
by installing HT TPSEC

with the default NHTTPSEC.

Summary: Attacker learns

all n names of pages

on an NHTTPSEC server
(with signatures guaranteeing

that there are no more)
using n HTTPSEC queries.

This Is not a good approach.

HTTPSEC purists disagree:
“It is part of the design
philosophy of the Web

that the data in it Is public.”
But this notion Is so extreme
that it became an HT TPSEC

public-relations problem.

oo . com/foo etc.

veral queries have
g.COom names:

lvis, andrew, brian,
1T, home, 1mogene,

3y, mall, nick, start,

gg . com administrator
HT TP directory indexing
hen leaked the same data
ling HT TPSEC

default NHTTPSEC.

Summary: Attacker learns

all n names of pages

on an NHTTPSEC server
(with signatures guaranteeing

that there are no more)
using n HT TPSEC queries.

This I1s not a good approach.

HTTPSEC purists disagree:
“It is part of the design
philosophy of the Web

that the data in it Is public.”
But this notion Is so extreme
that it became an HT TPSEC

public-relations problem.

New HT
1. “NH"

Use a "¢
such as
Reveal /
instead «
“There

hashes

00 etcC.

es have
nes:

rew, brian,
imogene,

nick, start,

dministrator
rectory Indexing
] the same data

°SEC
HTTPSEC.

Summary: Attacker learns

all n names of pages

on an NHTTPSEC server
(with signatures guaranteeing

that there are no more)
using n HT TPSEC queries.

This Is not a good approach.

HTTPSEC purists disagree:
“It is part of the design
philosophy of the Web

that the data in it Is public.”
But this notion Is so extreme
that it became an HT TPSEC

public-relations problem.

New HTTPSEC a

1. “NHTTPSEC3
Use a “one-way h:
such as (iterated s
Reveal hashes of r
instead of revealin
“There are no nz

hashes between

lexing
» data

()

Summary: Attacker learns

all n names of pages

on an NHTTPSEC server
(with signatures guaranteeing

that there are no more)
using n HT TPSEC queries.

This I1s not a good approach.

HTTPSEC purists disagree:
“It is part of the design
philosophy of the Web

that the data in it Is public.”
But this notion Is so extreme
that it became an HT TPSEC
public-relations problem.

New HT TPSEC approach:

1. "NHTTPSEC3" technolc
Use a “one-way hash functic
such as (iterated salted) SH
Reveal hashes of names
instead of revealing names.
"There are no names with

hashes between ... and ..

Summary: Attacker learns New HTTPSEC approach:
all n names of pages

on an NHTTPSEC server
(with signatures guaranteeing

1. "NHTTPSEC3" technology:
Use a “one-way hash function”
such as (iterated salted) SHA-1.

that there are no more) Reveal hashes of names

using n HTTPSEC queries. instead of revealing names.

This Is not a good approach. “There are no names with

hashes between ... and ...

HTTPSEC purists disagree:
“It is part of the design
philosophy of the Web

that the data in it Is public.”
But this notion Is so extreme

that it became an HTTPSEC
public-relations problem.

Summary: Attacker learns New HTTPSEC approach:
all n names of pages
on an NHTTPSEC server

(with signatures guaranteeing

1. "NHTTPSEC3" technology:
Use a “one-way hash function”
such as (iterated salted) SHA-1.

that there are no more) Reveal hashes of names

using n HTTPSEC queries. instead of revealing names.

This Is not a good approach. “There are no names with

HTTPSEC purists disagree: hashes between ... and ...
“It is part of the design 2. Marketing:

philosophy of the Web Pretend that NHTTPSEC3 is
that the data in it is public.” less damaging than NSEC.

But this notion Is so extreme
that it became an HT TPSEC
public-relations problem.

"NHTTPSEC3 does not allow
enumeration of the site.”

y: Attacker learns
mes of pages
HTTPSEC server
‘natures guaranteeing

re are no more)
HTTPSEC queries.

1ot a good approach.

—C purists disagree:
rt of the design

hy of the Web

data in it is public.”
notion Is so extreme
ecame an HT TPSEC

lations problem.

New HT TPSEC approach:

1. "NHTTPSEC3" technology:
Use a “one-way hash function”

such as (iterated salted) SHA-1.

Reveal hashes of names
instead of revealing names.
“There are no names with

hashes between ... and ..."

2. Marketing:
Pretend that NHTTPSEC3 is

less damaging than NSEC.

"NHTTPSEC3 does not allow
enumeration of the site.”

Reality:

by abusi
compute
for man
quickly «
(and knc

or |learns
res

_ server
uaranteeing
more)

_ queries.

| approach.

disagree:
lesign
Web

is public.”
SO extreme
HTTPSEC

oblem.

New HTTPSEC approach:

1. "NHTTPSEC3" technology:
Use a “one-way hash function”

such as (iterated salted) SHA-1.

Reveal hashes of nhames
instead of revealing names.
"There are no names with

hashes between ... and ..."

2. Marketing:
Pretend that NHTTPSEC3 is

less damaging than NSEC.

"NHTTPSEC3 does not allow
enumeration of the site.”

Reality: Attacker
by abusing NHTT
computes the sam
for many different
quickly discovers ¢
(and knows # mis

New HT TPSEC approach:

1. "NHTTPSEC3" technology:
Use a “one-way hash function”

such as (iterated salted) SHA-1.

Reveal hashes of names
instead of revealing names.
“There are no names with

hashes between ... and ..."

2. Marketing:
Pretend that NHTTPSEC3 is

less damaging than NSEC.

"NHTTPSEC3 does not allow
enumeration of the site.”

Reality: Attacker grabs the
by abusing NHT TPSECS3;
computes the same hash fur
for many different name gue
quickly discovers almost all
(and knows # missing name

New HT TPSEC approach:

1. "NHTTPSEC3" technology:
Use a “one-way hash function”

such as (iterated salted) SHA-1.

Reveal hashes of nhames
instead of revealing names.
"There are no names with

hashes between ... and ..."

2. Marketing:
Pretend that NHTTPSEC3 is

less damaging than NSEC.

"NHTTPSEC3 does not allow
enumeration of the site.”

Reality: Attacker grabs the hashes
by abusing NHT TPSEC3;
computes the same hash function
for many different name guesses;
quickly discovers almost all names
(and knows # missing names).

New HT TPSEC approach:

1. "NHTTPSEC3" technology:
Use a “one-way hash function”

such as (iterated salted) SHA-1.

Reveal hashes of nhames
instead of revealing names.
"There are no names with

hashes between ... and ..."

2. Marketing:
Pretend that NHTTPSEC3 is

less damaging than NSEC.

"NHTTPSEC3 does not allow
enumeration of the site.”

Reality: Attacker grabs the hashes
by abusing NHT TPSEC3;
computes the same hash function

for many different name guesses;

quickly discovers almost all names

(and knows #

missing names).

HTTPSEC purists: “You could

have sent all t
as queries to t

N€ SdaMmMe gUueSSES

ne server.’

New HTTPSEC approach: Reality: Attacker grabs the hashes
by abusing NHT TPSEC3;

1. "NHTTPSEC3" technology: |
computes the same hash function

Use a “one-way hash function”

such as (iterated salted) SHA-1.
Reveal hashes of names

for many different name guesses;
quickly discovers almost all names

. . (and knows # missing names).
instead of revealing names.

“There are no names with HTTPSEC purists: “You could
hashes between ... and ..." have sent all the same guesses
2. Marketing: as queries to the server.
Pretend that NHTTPSEC3 is 4Mbps flood of queries is

less damaging than NSEC. under 5000 noisy guesses/sec.

NHTTPSECS allows typical
attackers 10000000 to
10000000000 silent guesses/sec.

"NHTTPSEC3 does not allow
enumeration of the site.”

"TPSEC approach:

' TPSEC3" technology:
ne-way hash function”

(iterated salted) SHA-1.

1ashes of names
of revealing names.
are no names with

between ... and ..."

eting:
that NHTTPSEC3 is
aging than NSEC.

PSEC3 does not allow
tion of the site.”

Reality: Attacker grabs the hashes
by abusing NHT TPSECS3;
computes the same hash function
for many different name guesses;
quickly discovers almost all names
(and knows # missing names).

HTTPSEC purists: “You could
have sent all the same guesses

as queries to the server.”

4Mbps flood of queries is

under 5000 noisy guesses/sec.
NHTTPSEC3 allows typical

attackers 10000000 to
10000000000 silent guesses/sec.

Another

Each H
IS anoth
Often yc
of keys f

Could b

HTTPS
by accey
and senc
through

Much lo

pproach:

" technology:
1sh function”

alted) SHA-1.

lames
g names.
mes with

.and ..."

TPSEC3 is
n NSEC.

es not allow
e site.”

Reality: Attacker grabs the hashes
by abusing NHT TPSECS3;
computes the same hash function
for many different name guesses;
quickly discovers almost all names
(and knows # missing names).

HTTPSEC purists: “You could
have sent all the same guesses

as queries to the server.”

4Mbps tlood of queries is

under 5000 noisy guesses/sec.
NHTTPSEC3 allows typical
attackers 10000000 to
10000000000 silent guesses/sec.

Another HTTPSE

Each HTTPSEC k

Is another file to r
Often your browse
of keys from sever
Could be a serious

HTTPSEC speeds
by accepting reque
and sending respo
through UDP pacl

Much lower overhe

I
)nn

A-1.

W

Reality: Attacker grabs the hashes
by abusing NHT TPSECS3;
computes the same hash function
for many different name guesses;
quickly discovers almost all names
(and knows # missing names).

HTTPSEC purists: “You could
have sent all the same guesses

as queries to the server.”

4Mbps flood of queries is

under 5000 noisy guesses/sec.
NHTTPSEC3 allows typical

attackers 10000000 to
10000000000 silent guesses/sec.

Another HT TPSEC optimiz

Each HTTPSEC key/signati
is another file to retrieve.

Often your browser needs a
of keys from several servers.
Could be a serious slowdowr

HTTPSEC speeds this up
by accepting requests
and sending responses
through UDP packets.

Much lower overhead than

Reality: Attacker grabs the hashes
by abusing NHT TPSECS3;
computes the same hash function

for many different name guesses;

quickly discovers almost all names

(and knows # missing names).

HTTPSEC purists: “You could
have sent all the same guesses

as queries to the server.”

AM

ops flood of queries is

undc

er 5000 noisy guesses/sec.

NHTTPSECS allows typical
attackers 10000000 to
10000000000 silent guesses/sec.

Another HT TPSEC optimization

Each HTTPSEC key/signature

Is another file to retrieve.

Often your browser needs a chain
of keys from several servers.
Could be a serious slowdown.

HTTPSEC speeds this up
by accepting requests
and sending responses
through UDP packets.

Much lower overhead than TCP.

Attacker grabs the hashes
ng NHTTPSECS3;

s the same hash function

/ different name guesses;

Jiscovers almost all names

WS #

missing names).

=C purists: “You could

t all t
s to t

N€ SdMeE ZUESSES

ne server.’

lood of queries s

)00 noisy guesses/sec.

SEC3

allows typical

s 10000000 to
0000 silent guesses/sec.

Another HT TPSEC optimization

Each HTTPSEC key/signature

is another file to retrieve.

Often your browser needs a chain
of keys from several servers.
Could be a serious slowdown.

HTTPSEC speeds this up
by accepting requests
and sending responses
through UDP packets.

Much lower overhead than TCP.

The bac
HTTPS

much, n

than HT

Attacker
UDP rec

victim's

to many

The HT
blast the
much la

taking v

orabs the hashes
PSEC3;

e hash function
name guesses;
Imost all names
sing names).

- “You could
ame guesses

erver.’

eries IS
yuesses /sec.
ws typical

0 to

t guesses/sec.

Another HT TPSEC optimization

Each HTTPSEC key/signature

Is another file to retrieve.

Often your browser needs a chain
of keys from several servers.
Could be a serious slowdown.

HTTPSEC speeds this up
by accepting requests
and sending responses
through UDP packets.

Much lower overhead than TCP.

The bad news:
HTTPSEC respon

much, much, muc

than HT TPSEC r¢

Attacker forges m:.
UDP request pack

victim's |P addres:
to many HTTPSE

The HTTPSEC se
blast the victim w

much larger volun
taking victim off t

hashes

1ction
SSES;
names

).

uld
€S

SEC.

Another HT TPSEC optimization

Each HTTPSEC key/signature

is another file to retrieve.

Often your browser needs a chain
of keys from several servers.
Could be a serious slowdown.

HTTPSEC speeds this up
by accepting requests
and sending responses
through UDP packets.

Much lower overhead than TCP.

The bad news:
HTTPSEC responses are

much,

much, much larger

than HT TPSEC requests.

Attacker forges many

UDP request packets from

victim’

s |IP address

to many HT TPSEC servers.

The HTTPSEC servers

blast t
much

taking

ne victim with

arger volume of data,
victim off the Interne

Another HT TPSEC optimization

Each HTTPSEC key/signature

is another file to retrieve.

Often your browser needs a chain
of keys from several servers.
Could be a serious slowdown.

HTTPSEC speeds this up
by accepting requests
and sending responses
through UDP packets.

Much lower overhead than TCP.

The bad news:
HTTPSEC responses are

much, much, much larger
than HT TPSEC requests.

Attacker forges many
UDP request packets from

victim’s |P address
to many HT TPSEC servers.

The HTTPSEC servers
blast the victim with

much larger volume of data,
taking victim off the Internet.

HTTPSEC optimization

" TPSEC key/signature
or file to retrieve.

ur browser needs a chain
rom several servers.

> a serious slowdown.

—C speeds this up
ting requests

ling responses
UDP packets.

wer overhead than TCP.

The bad news:
HTTPSEC responses are

much, much, much larger
than HT TPSEC requests.

Attacker forges many
UDP request packets from

victim’s I[P address
to many HT TPSEC servers.

The HTTPSEC servers
blast the victim with

much larger volume of data,

taking victim off the Internet.

The RF(

provides
against

C optimization

ey /signature
etrieve.

r needs a chain
al servers.

, slowdown.

this up
sts
nses
Kets.

cad than TCP.

The bad news:
HTTPSEC responses are

much, much, much larger
than HT TPSEC requests.

Attacker forges many
UDP request packets from

victim’s |P address
to many HT TPSEC servers.

The HTTPSEC servers
blast the victim with

much larger volume of data,

taking victim off the Internet.

The RFC says “H

provides no protec
against denial of s

ation

Ire

chain

[CP.

The bad news:
HTTPSEC responses are

much, much, much larger
than HT TPSEC requests.

Attacker forges many
UDP request packets from

victim’s |P address
to many HT TPSEC servers.

The HTTPSEC servers
blast the victim with

much larger volume of data,

taking victim off the Internet.

The RFC says “HTTPSEC

provides no protection
against denial of service att:

The bad news: The RFC says "HTTPSEC
HTTPSEC responses are provides no protection

much, much, much larger against denial of service attacks.”
than HT TPSEC requests.

Attacker forges many
UDP request packets from
victim's |P address

to many HT TPSEC servers.

The HTTPSEC servers
blast the victim with

much larger volume of data,
taking victim off the Internet.

The bad news:
HTTPSEC responses are

much, much, much larger
than HT TPSEC requests.

Attacker forges many
UDP request packets from

victim’s |P address
to many HT TPSEC servers.

The HTTPSEC servers
blast the victim with

much larger volume of data,

taking victim off the Internet.

The RFC says “HT TPSEC

provides no protection
against denial of service attacks.”

The RFC doesn't say
"HTTPSEC is a pool of
remote-controlled attack drones,
the worst DDoS amplifier
on the Internet.”

The bad news: The RFC says "HTTPSEC
HTTPSEC responses are provides no protection

much, much, much larger against denial of service attacks.”

than HTTPSEC requests. The RFC doesn’t say

Attacker forges many "HTTPSEC is a pool of

UDP request packets from remote-controlled attack drones,
victim’'s IP address the worst DDoS amplifier

to many HT TPSEC servers. on the Internet.”

The HT TPSEC servers Exericse: investigate

blast the victim with other types of DoS attacks.
much larger volume of data, e.g. HTTPSEC advertising says
taking victim off the Internet. zero server-CPU-time cost.

How much server CPU time
can attackers actually consume?

news:
—C responses are

wuch, much larger
"TPSEC requests.

- forges many

juest packets from

|P address
HTTPSEC servers.

TPSEC servers
» victim with

rger volume of data,

ictim off the Internet.

The RFC says “HTTPSEC
provides no protection

against denial of service attacks.”

The RFC doesn’t say
"HTTPSEC is a pool of
remote-controlled attack drones,
the worst DDoS amplifier

on the Internet.”

Exericse: Investigate

other types of DoS attacks.

e.g. HTTPSEC advertising says
zero server-CPU-time cost.

How much server CPU time

can attackers actually consume?

T he wor

ses are
h larger
>quests.

any
ets from

_—

D

C servers.

rvers
ith
e of data,

he Internet.

The RFC says “HT TPSEC
provides no protection

against denial of service attacks.”

The RFC doesn't say
"HTTPSEC is a pool of
remote-controlled attack drones,
the worst DDoS amplifier

on the Internet.”

Exericse: Investigate

other types of DoS attacks.

e.g. HTTPSEC advertising says
zero server-CPU-time cost.

How much server CPU time

can attackers actually consume?

The worst part of

The RFC says “HTTPSEC
provides no protection

against denial of service attacks.”

The RFC doesn’t say
"HTTPSEC is a pool of
remote-controlled attack drones,
the worst DDoS amplifier

on the Internet.”

Exericse: Investigate

other types of DoS attacks.

e.g. HTTPSEC advertising says
zero server-CPU-time cost.

How much server CPU time

can attackers actually consume?

The worst part of HT TPSE¢

The RFC says “HT TPSEC
provides no protection

against denial of service attacks.”

The RFC doesn't say
"HTTPSEC is a pool of
remote-controlled attack drones,
the worst DDoS amplifier

on the Internet.”

Exericse: Investigate

other types of DoS attacks.

e.g. HTTPSEC advertising says
zero server-CPU-time cost.

How much server CPU time

can attackers actually consume?

The worst part of HTTPSEC

The RFC says “HT TPSEC
provides no protection

against denial of service attacks.”

The RFC doesn't say
"HTTPSEC is a pool of

remote-controlled attack drones,

the worst DDoS amplifier
on the Internet.”

Exericse: Investigate

other types of DoS attacks.

e.g. HTTPSEC advertising says
zero server-CPU-time cost.

How much server CPU time

can attackers actually consume?

The worst part of HTTPSEC

The data signed by HTTPSEC
doesn't actually include

the web pages that

the browser shows to the user.

The RFC says “HT TPSEC
provides no protection

against denial of service attacks.”

The RFC doesn't say
"HTTPSEC is a pool of

remote-controlled attack drones,

the worst DDoS amplifier
on the Internet.”

Exericse: Investigate

other types of DoS attacks.

e.g. HTTPSEC advertising says
zero server-CPU-time cost.

How much server CPU time

can attackers actually consume?

The worst part of HTTPSEC

The data signed by HTTPSEC

doesn't actually include
the web pages that
the browser shows to the user.

HTTPSEC signs only

routing information:
specifically, 30x HT TP redirects.

The RFC says “HT TPSEC
provides no protection

against denial of service attacks.”

The RFC doesn't say
"HTTPSEC is a pool of

remote-controlled attack drones,

the worst DDoS amplifier
on the Internet.”

Exericse: Investigate

other types of DoS attacks.

e.g. HTTPSEC advertising says
zero server-CPU-time cost.

How much server CPU time

can attackers actually consume?

The worst part of HTTPSEC

The data signed by HTTPSEC

doesn't actually include
the web pages that
the browser shows to the user.

HTTPSEC signs only

routing information:
specifically, 30x HT TP redirects.

The HTTPSEC excuse for this:
signing redirects

Is simpler than

signing the final web page.

_says '‘HTTPSEC

no protection
denial of service attacks.”

_ doesn't say

>EC is a pool of
-ontrolled attack drones,
t DDoS amplifier

nternet.”

. Investigate

nes of DoS attacks.
TPSEC advertising says
/er-CPU-time cost.

ch server CPU time
ckers actually consume?

The worst part of HTTPSEC

The data signed by HTTPSEC

doesn't actually include
the web pages that
the browser shows to the user.

HTTPSEC signs only
routing information:

specifically, 30x HT TP redirects.

The HTTPSEC excuse for this:
signing redirects

Is simpler than

signing the final web page.

$ telne
Trying
Connect
Escape .
GET / H
Host: g

HTTP/1.

LLocatio:

HTTPSI
on the *

WWW . ZOC

I TPSEC
tion
ervice attacks.”

say
ool of

attack drones,
mplifier

1te

> attacks.
lvertising says
'me cost.

CPU time
ally consume?

The worst part of HTTPSEC

The data signed by HTTPSEC

doesn't actually include
the web pages that
the browser shows to the user.

HTTPSEC signs only
routing information:

specifically, 30x HT TP redirects.

The HTTPSEC excuse for this:
signing redirects

Is simpler than

signing the final web page.

$ telnet google.
Trying 173.194.6
Connected to goo
Escape character
GET / HTTP/1.1

Host: google.com

HTTP/1.1 301 Mov
Location: http:/

HTTPSEC allows
on the “google.c

WWW.google.com

1cks.”

nes,

says

The worst part of HTTPSEC

The data signed by HTTPSEC

doesn't actually include
the web pages that
the browser shows to the user.

HTTPSEC signs only
routing information:

specifically, 30x HT TP redirects.

The HTTPSEC excuse for this:
signing redirects

Is simpler than

signing the final web page.

$ telnet google.com 80
Trying 173.194.66.102. ..
Connected to google.com.
Escape character is ’7]°.
GET / HTTP/1.1

Host: google.com

HTTP/1.1 301 Moved Perman
Location: http://www.goog

HTTPSEC allows a signatur
on the “google.com —

www.google.com” redirect.

The worst part of HTTPSEC

The data signed by HTTPSEC

doesn't actually include
the web pages that
the browser shows to the user.

HTTPSEC signs only
routing information:

specifically, 30x HT TP redirects.

The HTTPSEC excuse for this:
signing redirects

Is simpler than

signing the final web page.

$ telnet google.com 80

Trying 173.194.66.102. ..
Connected to google.com.
Escape character is ’7]°.

GET / HTTP/1.1

Host: google.com

HTTP/1.1 301 Moved Permanently
Location: http://www.google.com/

HTTPSEC allows a signature
on the “google.com —

www.google.com” redirect.

st part of HTTPSEC

a signed by HT TPSEC
actually include

pages that

/ser shows to the user.

=C signs only
information:

lly, 30x HT TP redirects.

TPSEC excuse for this:
edirects

r than

he final web page.

$ telnet google.com 80
Trying 173.194.66.102. ..
Connected to google.com.
Escape character is ’7]°.

GET / HTTP/1.1

Host: google.com

HTTP/1.1 301 Moved Permanently
Location: http://www.google.com/

HTTPSEC allows a signature
on the “google.com —

www.google.com” redirect.

$ telne
Trying
Connect
Escape .
GET / H

Host: w

HTTP/1.

LLocatio:

HTTPSI
on the *

WWW . ZOC

HTTPSEC

y HTTPSEC

mﬂude
t
to the user.

nly
Nn.

T TP redirects.

cuse for this:

eb page.

$ telnet google.com 80

Trying 173.194.66.102. ..
Connected to google.com.
Escape character is ’7]°.

GET / HTTP/1.1

Host: google.com

HTTP/1.1 301 Moved Permanently
Location: http://www.google.com/

HTTPSEC allows a signature
on the “google.com —

www.google.com” redirect.

$ telnet www.goo
Trying 173.194.6
Connected to www
Escape character

GET / HTTP/1.1

Host: www.google

HTTP/1.1 302 Fou
Location: http:/

HTTPSEC allows
on the "www.goog

WWw.google.nl"

1C)

EC

er.

ects.

his:

$ telnet google.com 80

Trying 173.194.66.102. ..
Connected to google.com.
Escape character is ’7]°.

GET / HTTP/1.1

Host: google.com

HTTP/1.1 301 Moved Permanently
Location: http://www.google.com/

HTTPSEC allows a signature
on the “google.com —

www.google.com” redirect.

$ telnet www.google.com &
Trying 173.194.67.104. ..

Connected to www.google.c
Escape character is ’7]°.

GET / HTTP/1.1

Host: www.google.com

HTTP/1.1 302 Found
Location: http://www.goog

HTTPSEC allows a signatur

on the "www.google.com —

www.google.nl" redirect.

$ telnet google.com 80

Trying 173.194.66.102. ..
Connected to google.com.
Escape character is ’7]°.

GET / HTTP/1.1

Host: google.com

HTTP/1.1 301 Moved Permanently
Location: http://www.google.com/

HTTPSEC allows a signature
on the “google.com —

www.google.com” redirect.

$ telnet www.google.com 80
Trying 173.194.67.104...
Connected to www.google.com.
Escape character is ’7]°.

GET / HTTP/1.1

Host: www.google.com

HTTP/1.1 302 Found
Location: http://www.google.nl/

HTTPSEC allows a signature

on the "www.google.com —
www.google.nl" redirect.

t google.com 30
173.194.66.102. ..
ed to google.com.
character is ’7]°.

I'TP/1.1

oogle.com

1 301 Moved Permanently
n: http://www.google.com/

—C allows a signature
google.com —
gle.com redirect.

$ telnet www.google.com 80
Trying 173.194.67.104. ..
Connected to www.google.com.
Escape character is ’7]°.

GET / HTTP/1.1

Host: www.google.com

HTTP/1.1 302 Found
Location: http://www.google.nl/

HTTPSEC allows a signature

on the "www.google.com —
www.google.nl" redirect.

$ telne
Trying
Connect
Escape .
GET / H

Host: w

HTTP/1.

The resy
Google \

HTTPSI
HTTPSI

com 30
6.102. ..
gle.com.

is *7]°.

ed Permanently

/www.google.com/

a signature
om —
" redirect.

$ telnet www.google.com 80
Trying 173.194.67.104...
Connected to www.google.com.
Escape character is ’7]°.

GET / HTTP/1.1

Host: www.google.com

HTTP/1.1 302 Found
Location: http://www.google.nl/

HTTPSEC allows a signature

on the "www.google.com —
www.google.nl" redirect.

$ telnet www.goo
Trying 173.194.6
Connected to www
Escape character

GET / HTTP/1.1

Host: www.google

HTTP/1.1 200 OK

The response cont
Google web page.

HTTPSEC does n
HTTPSEC signs c

ently

le.com/

$ telnet www.google.com 80
Trying 173.194.67.104. ..
Connected to www.google.com.
Escape character is ’7]°.

GET / HTTP/1.1

Host: www.google.com

HTTP/1.1 302 Found
Location: http://www.google.nl/

HTTPSEC allows a signature

on the "www.google.com —
www.google.nl" redirect.

$ telnet www.google.nl 8C
Trying 173.194.66.94. ..

Connected to www.google.n
Escape character is ’7]°.

GET / HTTP/1.1

Host: www.google.nl

HTTP/1.1 200 OK

The response contains the a
Google web page.

HTTPSEC does not sign th
HTTPSEC signs only redire

$ telnet www.google.com 80
Trying 173.194.67.104...
Connected to www.google.com.
Escape character is ’7]°.

GET / HTTP/1.1

Host: www.google.com

HTTP/1.1 302 Found
Location: http://www.google.nl/

HTTPSEC allows a signature

on the "www.google.com —
www.google.nl" redirect.

$ telnet www.google.nl 80
Trying 173.194.66.94...
Connected to www.google.nl.
Escape character is ’7]°.

GET / HTTP/1.1

Host: www.google.nl

HTTP/1.1 200 OK

The response contains the actual
Google web page.

HTTPSEC does not sign this.
HT TPSEC signs only redirects.

t www.google.com 30
173.194.67.104. ..

ed to www.google.com.
character is ’7]°.

I'TP/1.1

AW . google . com

1 302 Found
n: http://www.google.nl/

—C allows a signature
WWW.google.com —

gle.nl" redirect.

$ telnet www.google.nl 80
Trying 173.194.66.94. ..
Connected to www.google.nl.
Escape character is ’7]°.

GET / HTTP/1.1

Host: www.google.nl

HTTP/1.1 200 OK

The response contains the actual
Google web page.

HTTPSEC does not sign this.
HTTPSEC signs only redirects.

“You m:

and you

gle.com 80
7.104. ..
.google.com.

is *7]°.

. COom

nd
/www.google.nl/

a signature
le.com —

redirect.

$ telnet www.google.nl 30
Trying 173.194.66.94...
Connected to www.google.nl.
Escape character is ’7]°.

GET / HTTP/1.1

Host: www.google.nl

HTTP/1.1 200 OK

The response contains the actual
Google web page.

HTTPSEC does not sign this.
HTTPSEC signs only redirects.

“You may say this
and you're not the

Ol .

le.nl/

$ telnet www.google.nl 80
Trying 173.194.66.94. ..
Connected to www.google.nl.
Escape character is ’7]°.

GET / HTTP/1.1

Host: www.google.nl

HTTP/1.1 200 OK

The response contains the actual
Google web page.

HTTPSEC does not sign this.
HTTPSEC signs only redirects.

“You may say this is stupid,
and you're not the only one.

$ telnet www.google.nl 80
Trying 173.194.66.94...
Connected to www.google.nl.
Escape character is ’7]°.

GET / HTTP/1.1

Host: www.google.nl

HTTP/1.1 200 OK

The response contains the actual
Google web page.

HTTPSEC does not sign this.
HTTPSEC signs only redirects.

“You may say this is stupid,
and you're not the only one.”

$ telnet www.google.nl 80
Trying 173.194.66.94...
Connected to www.google.nl.
Escape character is ’7]°.

GET / HTTP/1.1

Host: www.google.nl

HTTP/1.1 200 OK

The response contains the actual
Google web page.

HTTPSEC does not sign this.
HTTPSEC signs only redirects.

“You may say this is stupid,
and you're not the only one.”

If final web page isn't signed,
what is the security benefit of
signing the redirects?

Attacker simply forges the page.

$ telnet www.google.nl 80
Trying 173.194.66.94...
Connected to www.google.nl.
Escape character is ’7]°.

GET / HTTP/1.1

Host: www.google.nl

HTTP/1.1 200 OK

The response contains the actual
Google web page.

HTTPSEC does not sign this.
HTTPSEC signs only redirects.

“You may say this is stupid,
and you're not the only one.”

If final web page isn't signed,
what is the security benefit of
signing the redirects?

Attacker simply forges the page.

If final web page is signed,
what is the security benefit of
signing the redirects?
Attacker can't forge the page.

$ telnet www.google.nl 80
Trying 173.194.66.94...
Connected to www.google.nl.
Escape character is ’7]°.

GET / HTTP/1.1

Host: www.google.nl

HTTP/1.1 200 OK

The response contains the actual
Google web page.

HTTPSEC does not sign this.
HTTPSEC signs only redirects.

“You may say this is stupid,
and you're not the only one.”

If final web page isn't signed,
what is the security benefit of
signing the redirects?

Attacker simply forges the page.

If final web page is signed,
what is the security benefit of
signing the redirects?
Attacker can't forge the page.

Redirects can benefit from
availability and confidentiality,
but HTTPSEC doesn’t provide

availability and confidentiality.

t www.google.nl 30
173.194.66.94. ..

ed to www.google.nl.
character is ’7]°.

I'TP/1.1

AW .google.nl

1 200 OK

yonse contains the actual
veb page.

=C does not sign this.
=C signs only redirects.

“You may say this Is stupid,
and you're not the only one.”

If final web page isn't signed,
what is the security benefit of
signing the redirects?

Attacker simply forges the page.

If final web page is signed,
what is the security benefit of
signing the redirects?
Attacker can't forge the page.

Redirects can benefit from
availability and confidentiality,
but HTTPSEC doesn’t provide

availability and confidentiality.

HTTPSI

After ye
>100 pe
tens of r
regulatic
from go
direct p:
please Ir

gle.nl 80
6.94. ..
.google.nl.

is *7]°.

.nl

ains the actual

ot sign this.
nly redirects.

“You may say this is stupid,
and you're not the only one.”

If final web page isn't signed,
what is the security benefit of
signing the redirects?

Attacker simply forges the page.

If final web page is signed,
what is the security benefit of
signing the redirects?
Attacker can't forge the page.

Redirects can benefit from
availability and confidentiality,

but HTTPSEC doesn’t provide
availability and confidentiality.

HTTPSEC vs. HT

After years of deve
>100 people, grar
tens of millions of
regulations requiri
from government .
direct payments tc
please install HT 1

ctual

/S.
“ts.

“You may say this iIs stupid,
and you're not the only one.”

If final web page isn't signed,
what is the security benefit of
signing the redirects?

Attacker simply forges the page.

If final web page is signed,
what is the security benefit of
signing the redirects?
Attacker can't forge the page.

Redirects can benefit from
availability and confidentiality,
but HTTPSEC doesn’t provide

availability and confidentiality.

HTTPSEC vs. HTTPS

After years of development |
>100 people, grants totallin
tens of millions of EUR, U.S
regulations requiring HT TP
from government agencies, :

direct payments to admins t
please install HT TPSEC:

“You may say this is stupid,
and you're not the only one.”

If final web page isn't signed,
what is the security benefit of
signing the redirects?

Attacker simply forges the page.

If final web page is signed,
what is the security benefit of
signing the redirects?
Attacker can't forge the page.

Redirects can benefit from
availability and confidentiality,
but HTTPSEC doesn’t provide

availability and confidentiality.

HTTPSEC vs. HTTPS

After years of development by
>100 people, grants totalling
tens of millions of EUR, U.S.
regulations requiring HT TPSEC
from government agencies, and

direct payments to admins to
please install HT TPSEC:

“You may say this is stupid,
and you're not the only one.”

If final web page isn't signed,
what is the security benefit of
signing the redirects?

Attacker simply forges the page.

If final web page is signed,
what is the security benefit of
signing the redirects?
Attacker can't forge the page.

Redirects can benefit from
availability and confidentiality,

but HTTPSEC doesn’t provide
availability and confidentiality.

HTTPSEC vs. HTTPS

After years of development by
>100 people, grants totalling
tens of millions of EUR, U.S.
regulations requiring HT TPSEC
from government agencies, and

direct payments to admins to
please install HT TPSEC:

HTTPSEC is running on a few
thousand Internet servers.

Network World, 2013.01.29:
"HTTPSEC adoption stalls
outside of federal government”

Yy say this Is stupid,
re not the only one.”

veb page isn't signed,
the security benefit of
he redirects?

- simply forges the page.

veb page Is signed,
the security benefit of
he redirects?

- can't forge the page.

s can benefit from
ity and confidentiality,

[PSEC doesn’t provide
ity and confidentiality.

HTTPSEC vs. HTTPS

After years of development by
>100 people, grants totalling
tens of millions of EUR, U.S.
regulations requiring HTTPSEC
from government agencies, and

direct payments to admins to
please install HT TPSEC:

HTTPSEC is running on a few
thousand Internet servers.

Network World, 2013.01.29:
"HTTPSEC adoption stalls

outside of federal government”

There's

HTTPS

and con
for the ¢

HTTPS
web too

HTTPS

doesn't
with nor
tries to .
iIsn't a h

“1s stupid,
 only one.”

sn't signed,

y benefit of
ts?

rges the page.

s signed,

y benefit of
ts?

ye the page.

ofit from
nfidentiality,
esn t provide
nfidentiality.

HTTPSEC vs. HTTPS

After years of development by
>100 people, grants totalling
tens of millions of EUR, U.S.
regulations requiring HT TPSEC
from government agencies, and

direct payments to admins to
please install HT TPSEC:

HTTPSEC is running on a few
thousand Internet servers.

Network World, 2013.01.29:
"HTTPSEC adoption stalls
outside of federal government”

There's competitic

HTTPS aims for |
and confidentiality
for the complete v

HTTPS works wit
web tools and dyn

HTTPS doesn't al
doesn't have any |
with nonexistent f
tries to avoid leak
isn't a huge DDoS

of

age.

of

HTTPSEC vs. HTTPS

After years of development by
>100 people, grants totalling
tens of millions of EUR, U.S.
regulations requiring HTTPSEC
from government agencies, and

direct payments to admins to
please install HT TPSEC:

HTTPSEC is running on a few
thousand Internet servers.

Network World, 2013.01.29:
"HTTPSEC adoption stalls
outside of federal government”

There's competition: HTTF

HTTPS aims for integrity
and confidentiality
for the complete web pages.

HTTPS works with existing
web tools and dynamic data

HTTPS doesn’t allow replay
doesn't have any problems
with nonexistent files;

tries to avoid leaking data;
isn't a huge DDoS amplifier

HTTPSEC vs. HTTPS

After years of development by
>100 people, grants totalling
tens of millions of EUR, U.S.
regulations requiring HT TPSEC
from government agencies, and

direct payments to admins to
please install HT TPSEC:

HTTPSEC is running on a few
thousand Internet servers.

Network World, 2013.01.29:
"HTTPSEC adoption stalls
outside of federal government”

There's competition: HTTPS!

HTTPS aims for integrity
and confidentiality
for the complete web pages.

HTTPS works with existing
web tools and dynamic data.

HTTPS doesn’t allow replays;
doesn't have any problems
with nonexistent files;

tries to avoid leaking data;
isn't a huge DDoS amplifier.

—C vs. HTTPS

ars of development by

ople, grants totalling
nillions of EUR, U.S.

ns requiring HTTPSEC
vernment agencies, and

)yments to admins to
istall HT TPSEC:

—C is running on a few
1 Internet servers.

World, 2013.01.29:
>EC adoption stalls
of federal government”

There's competition: HT TPS!

HTTPS aims for integrity
and confidentiality
for the complete web pages.

HTTPS works with existing
web tools and dynamic data.

HTTPS doesn’t allow replays;
doesn’t have any problems
with nonexistent files;

tries to avoid leaking data;
isn't a huge DDoS amplifier.

What th
say abol

"HTTP!
to be co

TPS

lopment by
ts totalling
EUR, U.S.
ng HT TPSEC
agencies, and
> admins to

PSEC:

ing on a few
Servers.

)13.01.29:
lon stalls
government”

There's competition: HTTPS!

HTTPS aims for integrity
and confidentiality
for the complete web pages.

HTTPS works with existing
web tools and dynamic data.

HTTPS doesn’t allow replays;
doesn't have any problems
with nonexistent files;

tries to avoid leaking data;
isn't a huge DDoS amplifier.

What the HTTPS
say about HTTPS

"HTTPS requires
to be constantly o

)y

SEC
1nd

’1t”

There's competition: HT TPS!

HTTPS aims for integrity
and confidentiality
for the complete web pages.

HTTPS works with existing
web tools and dynamic data.

HTTPS doesn’t allow replays;
doesn’t have any problems
with nonexistent files;

tries to avoid leaking data;
isn't a huge DDoS amplifier.

What the HTTPSEC propor
say about HTTPS:

"HTTPS requires keys
to be constantly online.”

There's competition: HTTPS!

HTTPS aims for integrity
and confidentiality
for the complete web pages.

HTTPS works with existing
web tools and dynamic data.

HTTPS doesn’t allow replays;
doesn't have any problems
with nonexistent files;

tries to avoid leaking data;
isn't a huge DDoS amplifier.

What the HTTPSEC proponents
say about HTTPS:

"HTTPS requires keys
to be constantly online.”

There's competition: HTTPS!

HTTPS aims for integrity
and confidentiality
for the complete web pages.

HTTPS works with existing
web tools and dynamic data.

HTTPS doesn’t allow replays;
doesn't have any problems
with nonexistent files;

tries to avoid leaking data;
isn't a huge DDoS amplifier.

What the HTTPSEC proponents
say about HTTPS:

"HTTPS requires keys
to be constantly online.”

Yes, it does: so what?

There's competition: HTTPS!

HTTPS aims for integrity
and confidentiality
for the complete web pages.

HTTPS works with existing
web tools and dynamic data.

HTTPS doesn’t allow replays;
doesn't have any problems
with nonexistent files;

tries to avoid leaking data;
isn't a huge DDoS amplifier.

What the HTTPSEC proponents
say about HTTPS:

"HTTPS requires keys
to be constantly online.”

Yes, it does: so what?

"HTTPS requires servers
to use per-query crypto.”

There's competition: HTTPS!

HTTPS aims for integrity
and confidentiality
for the complete web pages.

HTTPS works with existing
web tools and dynamic data.

HTTPS doesn’t allow replays;
doesn't have any problems
with nonexistent files;

tries to avoid leaking data;
isn't a huge DDoS amplifier.

What the HTTPSEC proponents
say about HTTPS:

"HTTPS requires keys
to be constantly online.”

Yes, it does: so what?

"HTTPS requires servers
to use per-query crypto.”

Yes, it does: so what?

There's competition: HTTPS!

HTTPS aims for integrity
and confidentiality
for the complete web pages.

HTTPS works with existing
web tools and dynamic data.

HTTPS doesn’t allow replays;
doesn't have any problems
with nonexistent files;

tries to avoid leaking data;
isn't a huge DDoS amplifier.

What the HTTPSEC proponents
say about HTTPS:

"HTTPS requires keys
to be constantly online.”

Yes, it does: so what?

"HTTPS requires servers
to use per-query crypto.”

Yes, it does: so what?

"HTTPS protects only the
channel, not the data. It doesn't
provide end-to-end security.”

There's competition: HTTPS!

HTTPS aims for integrity
and confidentiality
for the complete web pages.

HTTPS works with existing
web tools and dynamic data.

HTTPS doesn’t allow replays;
doesn't have any problems
with nonexistent files;

tries to avoid leaking data;
isn't a huge DDoS amplifier.

What the HTTPSEC proponents
say about HTTPS:

"HTTPS requires keys
to be constantly online.”

Yes, it does: so what?

"HTTPS requires servers
to use per-query crypto.”

Yes, it does: so what?

"HTTPS protects only the
channel, not the data. It doesn't
provide end-to-end security.”

Huh? What does this mean?

competition: HTTPS!

aims for integrity
fidentiality
omplete web pages.

works with existing
s and dynamic data.

doesn't allow replays;
have any problems
1existent files;

avoid leaking data;
uge DDoS amplifier.

What the HTTPSEC proponents
say about HTTPS:

"HTTPS requires keys
to be constantly online.”

Yes, it does: so what?

"HTTPS requires servers
to use per-query crypto.”

Yes, it does: so what?

"HTTPS protects only the
channel, not the data. It doesn't
provide end-to-end security.”

Huh? What does this mean?

“If the s
signed d
laptop t

which gi

which ve
then the
HTTPS

n: HTTPS!

ntegrity
/

veb pages.

h existing
amic data.

low replays;
roblems
les;

ing data;
 amplifier.

What the HTTPSEC proponents
say about HTTPS:

"HTTPS requires keys
to be constantly online.”

Yes, it does: so what?

"HTTPS requires servers
to use per-query crypto.”

Yes, it does: so what?

"HTTPS protects only the
channel, not the data. It doesn't
provide end-to-end security.”

Huh? What does this mean?

“If the site owner
signed data from |
laptop to an untrt
which gives It to y

which verifies the

then the server ca
HTTPS lets the s

!S,

What the HTTPSEC proponents
say about HTTPS:

"HTTPS requires keys
to be constantly online.”

Yes, it does: so what?

"HTTPS requires servers
to use per-query crypto.”

Yes, it does: so what?

"HTTPS protects only the
channel, not the data. It doesn't
provide end-to-end security.”

Huh? What does this mean?

“If the site owner copies PG
sighed data from his trusted
laptop to an untrusted serve
which gives it to your brows

which verifies the signed dat
then the server can't change

HTTPS lets the server chan

What the HTTPSEC proponents
say about HTTPS:

"HTTPS requires keys
to be constantly online.”

Yes, it does: so what?

"HTTPS requires servers
to use per-query crypto.”

Yes, it does: so what?

"HTTPS protects only the
channel, not the data. It doesn't
provide end-to-end security.”

Huh? What does this mean?

“If the site owner copies PGP-
sighed data from his trusted

laptop to an untrusted server,
which gives it to your browser,

which verifies the signed data,
then the server can’'t change it.
HTTPS lets the server change it.”

What the HTTPSEC proponents
say about HTTPS:

"HTTPS requires keys
to be constantly online.”

Yes, it does: so what?

"HTTPS requires servers
to use per-query crypto.”

Yes, it does: so what?

"HTTPS protects only the
channel, not the data. It doesn't
provide end-to-end security.”

Huh? What does this mean?

“If the site owner copies PGP-
sighed data from his trusted

laptop to an untrusted server,
which gives it to your browser,

which verifies the signed data,
then the server can’'t change it.
HTTPS lets the server change it.”

Yes, of course, but why is the
site owner putting his data on
an untrusted server?

What the HTTPSEC proponents
say about HTTPS:

"HTTPS requires keys
to be constantly online.”

Yes, it does: so what?

"HTTPS requires servers
to use per-query crypto.”

Yes, it does: so what?

"HTTPS protects only the
channel, not the data. It doesn't
provide end-to-end security.”

Huh? What does this mean?

“If the site owner copies PGP-
sighed data from his trusted

laptop to an untrusted server,
which gives it to your browser,

which verifies the signed data,
then the server can’'t change it.
HTTPS lets the server change it.”

Yes, of course, but why is the
site owner putting his data on
an untrusted server?

"HTTPS destroys the caching
layer. This Matters.”

What the HTTPSEC proponents
say about HTTPS:

"HTTPS requires keys
to be constantly online.”

Yes, it does: so what?

"HTTPS requires servers
to use per-query crypto.”

Yes, it does: so what?

"HTTPS protects only the
channel, not the data. It doesn't
provide end-to-end security.”

Huh? What does this mean?

“If the site owner copies PGP-
sighed data from his trusted

laptop to an untrusted server,
which gives it to your browser,

which verifies the signed data,
then the server can’'t change it.
HTTPS lets the server change it.”

Yes, of course, but why is the
site owner putting his data on
an untrusted server?

"HTTPS destroys the caching
layer. This Matters.”

Yeah, sure it does. Film at 11:
Internet Destroyed By HT TPS.

e HTTPSEC proponents
it HTTPS:

> requires keys
nstantly online.”

oes: so what?

> requires servers
er-query crypto.”

oes: so what?

> protects only the
not the data. It doesn't
end-to-end security.”

/hat does this mean?

“If the site owner copies PGP-
sighed data from his trusted

laptop to an untrusted server,
which gives it to your browser,

which verifies the signed data,
then the server can’'t change it.
HTTPS lets the server change it.”

Yes, of course, but why is the
site owner putting his data on
an untrusted server?

"HTTPS destroys the caching
layer. This Matters.”

Yeah, sure it does. Film at 11:
Internet Destroyed By HT TPS.

The DN

|'ve beet
data sen
including

google.

WWW . £0C

WWW . £0C
WWW . £0OC

But ther
many m
Domain

EC proponents

keys

nline.”
1at?

Servers
rypto.”

1at?

only the
ata. It doesn't
| security.”

this mean?

“If the site owner copies PGP-
sighed data from his trusted

laptop to an untrusted server,
which gives it to your browser,

which verifies the signed data,
then the server can’'t change it.
HTTPS lets the server change it.”

Yes, of course, but why is the
site owner putting his data on
an untrusted server?

"HTTPS destroys the caching
layer. This Matters.”

Yeah, sure it does. Film at 11:
Internet Destroyed By HT TPS.

The DNS security

|'ve been describir
data sent to your
including two HT"

google.com — w

WWW.google.com

WWwW.google.nl
WWW.google.nl v

But there are actu
many more redirec
Domain Name Sy:s

1ents

esn't

“If the site owner copies PGP-
sighed data from his trusted

laptop to an untrusted server,
which gives It to your browser,

which verifies the signed data,
then the server can’'t change it.

HTTPS lets the server change it.”

Yes, of course, but why is the
site owner putting his data on
an untrusted server?

"HTTPS destroys the caching
layer. This Matters.”

Yeah, sure it does. Film at 11:
Internet Destroyed By HT TPS.

The DNS security mess

|'ve been describing
data sent to your browser,
including two HT TP redirec

google.com — www.googl

WWwW.google.com —

WWW.google.nl
www.google.nl web page

But there are actually
many more redirection steps
Domain Name System lookt

“If the site owner copies PGP-
sighed data from his trusted

laptop to an untrusted server,
which gives It to your browser,

which verifies the signed data,
then the server can’'t change it.
HTTPS lets the server change it.”

Yes, of course, but why is the
site owner putting his data on
an untrusted server?

"HTTPS destroys the caching
layer. This Matters."

Yeah, sure it does. Film at 11:
Internet Destroyed By HT TPS.

The DNS security mess

|'ve been describing
data sent to your browser,
including two HT TP redirects:

google.com — wWww.google.com

WWwW.google.com —

WWwW.google.nl
www.google.nl web page

But there are actually
many more redirection steps:
Domain Name System lookups.

ite owner copies PGP-
ata from his trusted

O an untrusted server,
ves It to your browser,
rifies the signed data,

- server can't change It.

lets the server change it."

ourse, but why is the
er putting his data on
sted server?

> destroys the caching
his Matters.”

re it does. Film at 11:
Destroyed By HT TPS.

The DNS security mess

|'ve been describing
data sent to your browser,
including two HT TP redirects:

google.com — www.google.com

WWwW.google.com —

WWW.google.nl
www.google.nl web page

But there are actually
many more redirection steps:
Domain Name System lookups.

com NS
google.
google.
google.

WWW . ZOC

173.194

WWW . £0C

WWW . ZOC
nl NS 1
google.
WWW . ZOC

WWW . £OC

copies PGP-
1Is trusted
sted server,
our browser,
sighed data,
n't change it.

rver change it.”

t why Is the

his data on
Y4

the caching

S.

- Film at 11:
| By HTTPS.

The DNS security mess

|'ve been describing
data sent to your browser,
including two HT TP redirects:

google.com — wWww.google.com

WWwW.google.com —

WWwW.google.nl
www.google.nl web page

But there are actually
many more redirection steps:
Domain Name System lookups.

com NS 192.5.6.3(
google.com NS 2

google.com A 74
google.com — w

WWW.google.com

173.194.66.99

WWW.google.com

WWwW.google.nl
nl NS 192.5.4.1
google.nl NS 21
www.google.nl f

WWW.google.nl v

T,

er,

|t

ge It."

1€

on

g

11:
PS.

The DNS security mess

|'ve been describing
data sent to your browser,
including two HT TP redirects:

google.com — wWww.google.com

WWwW.google.com —

WWwW.google.nl
www.google.nl web page

But there are actually
many more redirection steps:
Domain Name System lookups.

com NS 192.5.6.30

google.com NS 216.239.34
google.com A 74.125.136.1
google.com — www.googl

WWwW.google.com A

173.194.66.99

WWwW.google.com —

WWwW.google.nl

nl NS 192.5.4.1
google.nl NS 216.239.34.:
www.google.nl A 74.125.1

www.google.nl web page

The DNS security mess

|'ve been describing
data sent to your browser,
including two HT TP redirects:

google.com — wWww.google.com

WWwW.google.com —

WWwW.google.nl
www.google.nl web page

But there are actually
many more redirection steps:
Domain Name System lookups.

com NS 192.5.6.30
google.com NS 216.239.34.10
google.com A 74.125.136.100

google.com — www.google.com

WWW.google.com A

173.194.66.99

WWwW.google.com —

WWwW.google.nl

nl NS 192.5.4.1
google.nl NS 216.239.34.10
www.google.nl A 74.125.132.94

www.google.nl web page

S security mess

1 describing
t to your browser,
r two HT TP redirects:

com — WWwW.google.com

gle.com —
gle.nl

gle.nl web page

e are actually
ore redirection steps:
Name System lookups.

com NS 192.5.6.30
google.com NS 216.239.34.10
google.com A 74.125.136.100

google.com — www.google.com

WWwW.google.com A

173.194.66.99

WWwW.google.com —

WWwW.google.nl

nl NS 192.5.4.1
google.nl NS 216.239.34.10
www.google.nl A 74.125.132.94

www.google.nl web page

DNSSE(
In very r

HTTPSI

All the |
are share
including
almost ¢

cryptogr

‘mess

g
browser,
[P redirects:

AW . google.com

_>

veb page

ally
tion steps:
stem lookups.

com NS 192.5.6.30
google.com NS 216.239.34.10
google.com A 74.125.136.100

google.com — www.google.com

WWW.google.com A

173.194.66.99

WWwW.google.com —

WWwW.google.nl

nl NS 192.5.4.1
google.nl NS 216.239.34.10
www.google.nl A 74.125.132.94

www.google.nl web page

DNSSEC signs DR
in very much the ¢
HTTPSEC signs

All the problems c
are shared by DNS

including lack of ¢
almost all DNS ps
cryptographically |

ts:

S . COIl

IPS.

com NS 192.5.6.30
google.com NS 216.239.34.10
google.com A 74.125.136.100

google.com — www.google.com

WWwW.google.com A

173.194.66.99

WWwW.google.com —

WWwW.google.nl

nl NS 192.5.4.1
google.nl NS 216.239.34.10
www.google.nl A 74.125.132.94

www.google.nl web page

DNSSEC signs DNS redirect
in very much the same way
HTTPSEC signs HTTP redi

All the problems of HT TPS|

are shared by DNSSEC,
including lack of deploymen

almost all DNS packets are
cryptographically unprotecte

com NS 192.5.6.30

google.com NS 216.239.34.10
google.com A 74.125.136.100
google.com — www.google.com

WWW.google.com A

173.194.66.99

WWwW.google.com —

WWwW.google.nl

nl NS 192.5.4.1
google.nl NS 216.239.34.10
www.google.nl A 74.125.132.94

www.google.nl web page

DNSSEC signs DNS redirects
iIn very much the same way that
HTTPSEC signs HTTP redirects.

All the problems of HTTPSEC
are shared by DNSSEC,
including lack of deployment:

almost all DNS packets are
cryptographically unprotected.

com NS 192.5.6.30
google.com NS 216.239.34.10
google.com A 74.125.136.100

google.com — www.google.com

WWW.google.com A

173.194.66.99

WWwW.google.com —

WWwW.google.nl

nl NS 192.5.4.1
google.nl NS 216.239.34.10
www.google.nl A 74.125.132.94

www.google.nl web page

DNSSEC signs DNS redirects
iIn very much the same way that
HTTPSEC signs HTTP redirects.

All the problems of HTTPSEC
are shared by DNSSEC,
including lack of deployment:

almost all DNS packets are
cryptographically unprotected.

Actually, HTTPSEC is an
imaginary imitation of DNSSEC,

not a real proposal.
But DNSSEC is a real proposal,
and has all of these problems.

