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of verifying a signature.

HTTPSEC tries to reduce
client-side costs (and
precomputation costs) through
choice of crypto primitive.

Many HT TPSEC crypto options:
640-bit RSA, original specs;
768-bit RSA, many docs;
1024-bit RSA, current

signatures from VeriSign etc.;
DSA, “10 to 40 times as slow for

verification” but faster for signing.

HTTPSEC made breakable
choices such as 640-bit RSA
for no reason other than
fear of overload.

HTTPSEC needed more options
to survive the inevitable breaks:
and even more complexity

for reasons |'ll explain.

More complexity = more bugs,
including security holes.

Author of one very popular
HT TP server: “The effort of
implementing everything correctly

IS just staggering.”
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layer. This Matters.”

Yeah, sure it does. Film at 11:
Internet Destroyed By HT TPS.
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DNSSEC signs DNS redirects
iIn very much the same way that
HTTPSEC signs HTTP redirects.

All the problems of HTTPSEC
are shared by DNSSEC,
including lack of deployment:

almost all DNS packets are
cryptographically unprotected.

Actually, HTTPSEC is an
imaginary imitation of DNSSEC,

not a real proposal.
But DNSSEC is a real proposal,
and has all of these problems.



