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The DNS security mess

I’ve been describing

data sent to your browser,

including two HTTP redirects:

google.com ! www.google.com

www.google.com !

www.google.nl
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All the problems of HTTPSEC

are shared by DNSSEC,

including lack of deployment:

almost all DNS packets are

cryptographically unprotected.
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DNSSEC signs DNS redirects

in very much the same way that

HTTPSEC signs HTTP redirects.

All the problems of HTTPSEC

are shared by DNSSEC,

including lack of deployment:

almost all DNS packets are

cryptographically unprotected.

Actually, HTTPSEC is an

imaginary imitation of DNSSEC,

not a real proposal.

But DNSSEC is a real proposal,

and has all of these problems.


