
The state of
factoring algorithms

and other cryptanalytic
threats to RSA

Daniel J. Bernstein
University of Illinois at Chicago

Technische Universiteit Eindhoven

Nadia Heninger
Microsoft Research New England

Tanja Lange
Technische Universiteit Eindhoven

Textbook RSA

Public Key

N = pq modulus

e encryption exponent

Encrypt
c = me (mod N)

Verify
m = se (mod N)

Private Key

p, q primes

d = e−1 mod (p − 1)(q − 1)
decryption exponent

Decrypt
m = cd (mod N)

Sign

s = md (mod N)

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

Computational problems

Factoring

Problem: Given N, compute its prime factors.

I Computationally equivalent to computing private key d .

I Factoring is in NP and coNP → not NP-complete (unless
P=NP or similar).

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

Computational problems

eth roots mod N
Problem: Given N, e, and c , compute x such that xe ≡ c mod N.

I Equivalent to decrypting an RSA-encrypted ciphertext.

I Equivalent to selective forgery of RSA signatures.
I Conflicting results about whether it reduces to factoring:

I “Breaking RSA may not be equivalent to factoring” [Boneh
Venkatesan 1998]
“an algebraic reduction from factoring to breaking
low-exponent RSA can be converted into an efficient factoring
algorithm”

I “Breaking RSA generically is equivalent to factoring”
[Aggarwal Maurer 2009]
“a generic ring algorithm for breaking RSA in ZN can be
converted into an algorithm for factoring”

I “RSA assumption”: This problem is hard.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

Practical concern #1: Textbook RSA is insecure

RSA encryption is homomorphic under multiplication. This lets an
attacker do all sorts of fun things:

Attack: Malleability

Given a ciphertext c = me mod N, cae mod N is an encryption of
ma for any a chosen by attacker.

Attack: Chosen ciphertext attack

Given a ciphertext c, attacker asks for decryption of cae mod N
and divides by a to obtain m.

Attack: Signature forgery

Attacker convinces a signer to sign z = xy e mod N and computes
a valid signature of x as zd/y mod N.

So in practice we always use padding on messages.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

Practical concern #2: Efficiency

Choose e to be small and low hamming weight.

Use Chinese Remainder Theorem to speed up computations with d :

dp = d mod p − 1 dq = d mod q − 1

Compute
cp = mdp mod p cq = mdq mod q

c = crt(cp, cq) mod N

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

Public-key cipher usage

RSA DSA ECDSA ElGamal GOST

TLS 5,756,445 6,241 8 225
SSH 3,821,651 3,729,010 153,109 7
PGP 676,590 2,119,245 2,126,098

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

RSA key size distribution

TLS, November 2011

RSA key size distribution

TLS, November 2011

RSA exponent distribution

TLS, November 2011

Implementation issues

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

MD_Update(&m,buf,j);

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

The Debian OpenSSL entropy disaster

August, 2008: Discovered by Luciano Bello

Keys dependent only on pid and machine architecture:
294,912 keys per key size.

“When Private Keys are Public: Results from the 2008 Debian OpenSSL

Vulnerability” [Yilek, Rescorla, Shacham, Enright, Savage 2009]

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

Searching for more entropy problems

Experiment

1. Acquire many public keys.

2. Look for obvious key-generation problems.

“Public keys” [Lenstra, Hughes, Augier, Bos, Kleinjung, Wachter
Crypto 2012]

“Mining Your Ps and Qs: Detection of Widespread Weak Keys in
Network Devices” [Heninger, Durumeric, Wustrow, Halderman
Usenix Security 2012]

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

What could go wrong with RSA and entropy problems?

I Two hosts share N: → both know private key of the other.

I Two hosts share RSA moduli with a prime factor in common
→ outside observer can factor both keys by calculating the
GCD of public moduli.

N1 = pq1 N2 = pq2

gcd(N1,N2) = p

Time to factor 768-bit RSA
modulus:
two years

Time to calculate GCD for
1024-bit RSA moduli:
15µs

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

Looking for problems: RSA common divisors

Speed-bump

Computing pairwise gcd(Ni ,Nj) for our dataset would take

15µs×
(

11× 106

2

)
pairs ≈ 30 years

of computation time.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

Efficient all-pairs GCDs

We implemented an efficient algorithm due to [Bernstein 2004].

N1N2N3N4

×

N4N3

×

N2N1

N1N2N3N4

mod N2
1 N2

2

mod N2
1

/N1

·

mod N2
2

/N2

·

mod N2
3 N2

4

mod N2
3

/N3

·

mod N2
4

/N4

·gcd(,N1) gcd(,N2)gcd(,N3) gcd(,N4)

product
tree

remainder
tree

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

Results

Repeated Keys

I > 60% of TLS and SSH hosts have non-unique keys.

I > 5% of TLS hosts and > 10% of SSH hosts serve default or
low-entropy keys

I 0.03% TLS hosts and 0.5% of SSH hosts serve Debian weak
keys

Factored keys

I 0.5% of TLS hosts and 0.03% of SSH hosts keys factored

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

Attributing vulnerabilities to implementations
Vast majority of compromised keys generated by headless or
embedded network devices.

I Used information in certificate subjects, version strings, served
over https or http, etc. to cluster hosts by implementation.

I Routers, firewalls, switches, server management cards, cable
modems, VOIP devices, printers, projectors...

Vulnerabilities due mainly to generating keys on first boot with
/dev/urandom, complicated interaction with application entropy
pool behavior.

Disclosure and remediation

I Contacted 61 manufacturers of vulnerable
products.

I After 9 months 13 of them have told us
they fixed problem.

I 5 released security advisories.
Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

This is just the tip of the iceberg

More examples of bad randomness!

I PGP database. [Lenstra et al.]
2 factored RSA keys out of 700,000. Why?

I Smartcards. [2012 Chou (slides in Chinese)]

Factored 103 Taiwan Citizen Digital Certificates
(out of 2.26 million):
smartcard certificates used for paying taxes etc.

Names, email addresses, national IDs were public
but 103 private keys are now known.

Smartcard manufacturer:
“Giesecke & Devrient: Creating Confidence.”

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://hitcon.org/2012/download/0721D3_Prof.Chou_Cryptanalysis in real life.V2.pdf
http://facthacks.cr.yp.to

This is just the tip of the iceberg

More examples of bad randomness!

I PGP database. [Lenstra et al.]
2 factored RSA keys out of 700,000. Why?

I Smartcards. [2012 Chou (slides in Chinese)]

Factored 103 Taiwan Citizen Digital Certificates
(out of 2.26 million):
smartcard certificates used for paying taxes etc.

Names, email addresses, national IDs were public
but 103 private keys are now known.

Smartcard manufacturer:
“Giesecke & Devrient: Creating Confidence.”

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://hitcon.org/2012/download/0721D3_Prof.Chou_Cryptanalysis in real life.V2.pdf
http://facthacks.cr.yp.to

This is just the tip of the iceberg

More examples of bad randomness!

I PGP database. [Lenstra et al.]
2 factored RSA keys out of 700,000. Why?

I Smartcards. [2012 Chou (slides in Chinese)]

Factored 103 Taiwan Citizen Digital Certificates
(out of 2.26 million):
smartcard certificates used for paying taxes etc.

Names, email addresses, national IDs were public
but 103 private keys are now known.

Smartcard manufacturer:
“Giesecke & Devrient: Creating Confidence.”

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://hitcon.org/2012/download/0721D3_Prof.Chou_Cryptanalysis in real life.V2.pdf
http://facthacks.cr.yp.to

This is just the tip of the iceberg

More examples of bad randomness!

I PGP database. [Lenstra et al.]
2 factored RSA keys out of 700,000. Why?

I Smartcards. [2012 Chou (slides in Chinese)]

Factored 103 Taiwan Citizen Digital Certificates
(out of 2.26 million):
smartcard certificates used for paying taxes etc.

Names, email addresses, national IDs were public
but 103 private keys are now known.

Smartcard manufacturer:
“Giesecke & Devrient: Creating Confidence.”

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://hitcon.org/2012/download/0721D3_Prof.Chou_Cryptanalysis in real life.V2.pdf
http://facthacks.cr.yp.to

Evaluating RSA’s risk

Factoring keys is bad, but DSA (and ECDSA) are worse if you’re
worried about entropy problems.

Bad entropy from a single signature can compromise private key.

I e.g. A perfectly good DSA key used on a 2008 Debian system
→ compromised.

I e.g. 1% of DSA SSH host keys compromised from signatures
with bad randomness after two scans.

Would be easy to fix in standard. (Make nonce deterministic: hash
of message, secret salt.)

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

Side-channel attacks

Timing attacks

I Hardware [Kocher 96] “Timing attacks on implementations
of Diffie-Hellman, RSA, DSS, and other systems.”

I Remote software [Brumley Boneh 05] “Remote timing
attacks are practical.”

Cache timing

I Inter-process software [Percival 05] “Cache missing for fun
and profit.”

I Cross-VM software [Zhang Juels Reiter Ristenpart 12]
“Cross-VM Side Channels and Their Use to Extract Private
Keys”

Faults

I [Boneh, DeMillo, Lipton 96], [Lenstra 96]

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

Side-channel attacks

Side-channel structures relevant to RSA:

Exponentiation

I Square-and-multiply: different execution paths/instruction
timing/power levels dependent on bits of private key.

I Defense: Exponent blinding, square and always multiply,
never branch.

CRT coefficients

I Fault attacks can produce a value valid mod only one prime.

I Defense: Verify output.

Padding oracles

I Implementations differentiating between correct and incorrect
decryption → chosen-ciphertext attacks.

I Defense: Don’t distinguish failures.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

Partial key recovery and related attacks

RSA particularly susceptible to partial key recovery attacks.

Theorem (Coppersmith/Howgrave-Graham)

We can find roots x of polynomials f of degree d mod divisors B
of N, B = Nβ, when |x | ≤ Nβ2/d .

(Note that RSA problem is to find roots of xe − c mod N.)

I Can factor given 1/2 bits of p. [Coppersmith 96]

I Can factor given 1/4 bits of d . [Boneh Durfee Frankel 98]

I Can factor given 1/2 bits of dp. [Blömer May 03]

Also implies constraints on key choice:

I Can factor if d < N0.292 [Boneh Durfee 98]

Message security: Least significant bit of message as secure as
entire message. [Alexi Chor Goldreich Schnorr 88]

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

Partial key recovery and related attacks

RSA particularly susceptible to partial key recovery attacks.

Theorem (Coppersmith/Howgrave-Graham)

We can find roots x of polynomials f of degree d mod divisors B
of N, B = Nβ, when |x | ≤ Nβ2/d .

(Note that RSA problem is to find roots of xe − c mod N.)

I Can factor given 1/2 bits of p. [Coppersmith 96]

I Can factor given 1/4 bits of d . [Boneh Durfee Frankel 98]

I Can factor given 1/2 bits of dp. [Blömer May 03]

Also implies constraints on key choice:

I Can factor if d < N0.292 [Boneh Durfee 98]

Message security: Least significant bit of message as secure as
entire message. [Alexi Chor Goldreich Schnorr 88]

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

Partial key recovery and related attacks

RSA particularly susceptible to partial key recovery attacks.

Theorem (Coppersmith/Howgrave-Graham)

We can find roots x of polynomials f of degree d mod divisors B
of N, B = Nβ, when |x | ≤ Nβ2/d .

(Note that RSA problem is to find roots of xe − c mod N.)

I Can factor given 1/2 bits of p. [Coppersmith 96]

I Can factor given 1/4 bits of d . [Boneh Durfee Frankel 98]

I Can factor given 1/2 bits of dp. [Blömer May 03]

Also implies constraints on key choice:

I Can factor if d < N0.292 [Boneh Durfee 98]

Message security: Least significant bit of message as secure as
entire message. [Alexi Chor Goldreich Schnorr 88]

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

Protocol issues.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

Padding schemes: Simple cryptanalyses

Fixed-pattern padding

Define a padding scheme (P|m).
Coppersmith’s theorem: With e = 3, if |m| < N1/3 then can
efficiently compute m as solution to

c − (P · 2t + x)3 mod N

[Brier Clavier Coron Naccache 01] Existential forgery of signatures
with |m| > N1/3 by finding solutions to relation

(P + m1)(P + m2) = (P + m3)(P + m4) mod N

using continued fractions.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

The agony and ecstasy of PKCS#1v1.5 and OAEP

PKCS#1: (0x00 0x02|padding string|0x00|message)

Cryptographers: PKCS#1 is not IND-CCA2 secure!

Practitioners: That is not relevant in practice.

1994 Bellare Rogaway: Use OAEP, it’s provably secure in random
oracle model.

1996 Bleichenbacher: “Chosen ciphertext attacks against
protocols based on the RSA encryption standard PKCS#1”

1998 RFC 2437: (1998) “RSAES-OAEP is recommended for

new applications; RSAES-PKCS1-v1 5 is included

only for compatibility with existing

applications, and is not recommended for new

applications”

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

The agony and ecstasy of PKCS#1v1.5 and OAEP

PKCS#1: (0x00 0x02|padding string|0x00|message)

Cryptographers: PKCS#1 is not IND-CCA2 secure!

Practitioners: That is not relevant in practice.

1994 Bellare Rogaway: Use OAEP, it’s provably secure in random
oracle model.

1996 Bleichenbacher: “Chosen ciphertext attacks against
protocols based on the RSA encryption standard PKCS#1”

1998 RFC 2437: (1998) “RSAES-OAEP is recommended for

new applications; RSAES-PKCS1-v1 5 is included

only for compatibility with existing

applications, and is not recommended for new

applications”

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

The agony and ecstasy of PKCS#1v1.5 and OAEP

PKCS#1: (0x00 0x02|padding string|0x00|message)

Cryptographers: PKCS#1 is not IND-CCA2 secure!

Practitioners: That is not relevant in practice.

1994 Bellare Rogaway: Use OAEP, it’s provably secure in random
oracle model.

1996 Bleichenbacher: “Chosen ciphertext attacks against
protocols based on the RSA encryption standard PKCS#1”

1998 RFC 2437: (1998) “RSAES-OAEP is recommended for

new applications; RSAES-PKCS1-v1 5 is included

only for compatibility with existing

applications, and is not recommended for new

applications”

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

The agony and ecstasy of PKCS#1v1.5 and OAEP

PKCS#1: (0x00 0x02|padding string|0x00|message)

Cryptographers: PKCS#1 is not IND-CCA2 secure!

Practitioners: That is not relevant in practice.

1994 Bellare Rogaway: Use OAEP, it’s provably secure in random
oracle model.

1996 Bleichenbacher: “Chosen ciphertext attacks against
protocols based on the RSA encryption standard PKCS#1”

1998 RFC 2437: (1998) “RSAES-OAEP is recommended for

new applications; RSAES-PKCS1-v1 5 is included

only for compatibility with existing

applications, and is not recommended for new

applications”

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

The agony and ecstasy of PKCS#1v1.5 and OAEP

PKCS#1: (0x00 0x02|padding string|0x00|message)

Cryptographers: PKCS#1 is not IND-CCA2 secure!

Practitioners: That is not relevant in practice.

1994 Bellare Rogaway: Use OAEP, it’s provably secure in random
oracle model.

1996 Bleichenbacher: “Chosen ciphertext attacks against
protocols based on the RSA encryption standard PKCS#1”

1998 RFC 2437: (1998) “RSAES-OAEP is recommended for

new applications; RSAES-PKCS1-v1 5 is included

only for compatibility with existing

applications, and is not recommended for new

applications”

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

The agony and ecstasy of PKCS#1v1.5 and OAEP

PKCS#1: (0x00 0x02|padding string|0x00|message)

Cryptographers: PKCS#1 is not IND-CCA2 secure!

Practitioners: That is not relevant in practice.

1994 Bellare Rogaway: Use OAEP, it’s provably secure in random
oracle model.

1996 Bleichenbacher: “Chosen ciphertext attacks against
protocols based on the RSA encryption standard PKCS#1”

1998 RFC 2437: (1998) “RSAES-OAEP is recommended for

new applications; RSAES-PKCS1-v1 5 is included

only for compatibility with existing

applications, and is not recommended for new

applications”

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

The agony and ecstasy of PKCS#1v1.5 and OAEP

PKCS#1: (0x00 0x02|padding string|0x00|message)

Cryptographers: PKCS#1 is not IND-CCA2 secure!

Practitioners: That is not relevant in practice.

1994 Bellare Rogaway: Use OAEP, it’s provably secure in random
oracle model.

1996 Bleichenbacher: “Chosen ciphertext attacks against
protocols based on the RSA encryption standard PKCS#1”

1998 RFC 2437: (1998) “RSAES-OAEP is recommended for

new applications; RSAES-PKCS1-v1 5 is included

only for compatibility with existing

applications, and is not recommended for new

applications”

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

The agony and ecstasy of PKCS#1v1.5 and OAEP

2001 Shoup: There’s a hole in the OAEP security proof, but I fixed
it. The proof uses Coppersmith’s theorem.

2008 RFC5246: “for maximal compatibility with earlier

versions of TLS, this specification uses the

RSAES-PKCS1-v1 5 scheme”

2012 Bardou Focardi Kawamoto Simionato Steel Tsay:
Bleichenbacher attack works against RSA SecureID tokens,
Estonian ID cards.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

The agony and ecstasy of PKCS#1v1.5 and OAEP

2001 Shoup: There’s a hole in the OAEP security proof, but I fixed
it. The proof uses Coppersmith’s theorem.

2008 RFC5246: “for maximal compatibility with earlier

versions of TLS, this specification uses the

RSAES-PKCS1-v1 5 scheme”

2012 Bardou Focardi Kawamoto Simionato Steel Tsay:
Bleichenbacher attack works against RSA SecureID tokens,
Estonian ID cards.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

The agony and ecstasy of PKCS#1v1.5 and OAEP

2001 Shoup: There’s a hole in the OAEP security proof, but I fixed
it. The proof uses Coppersmith’s theorem.

2008 RFC5246: “for maximal compatibility with earlier

versions of TLS, this specification uses the

RSAES-PKCS1-v1 5 scheme”

2012 Bardou Focardi Kawamoto Simionato Steel Tsay:
Bleichenbacher attack works against RSA SecureID tokens,
Estonian ID cards.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

Shoup’s “Simple RSA”

C0 = r e mod N r random

k0||k1 = H(r) H hash function

C1 = enck0(m) enc a symmetric cipher

T = mack1(C1)

Output (C0,C1,T).
Very short and efficient security proof.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

Factoring,
aka. breaking RSA if nothing

else went wrong.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

Preliminaries: Using Sage

The following 2 parts use some code snippets to give examples
using the free open source mathematics software Sage.
http://www.sagemath.org/.

Sage looks like Python

sage: 2*3

6

ˆ is exponentiation, not xor

It has lots of useful libraries:

sage: factor(15)

3 * 5

sage: factor(x^2-1)

(x - 1) * (x + 1)

That’s it, just factor(N)

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://www.sagemath.org/
http://facthacks.cr.yp.to

Preliminaries: Using Sage

The following 2 parts use some code snippets to give examples
using the free open source mathematics software Sage.
http://www.sagemath.org/.

Sage looks like Python, but there are a few differences:

sage: 2^3

8

ˆ is exponentiation, not xor

It has lots of useful libraries:

sage: factor(15)

3 * 5

sage: factor(x^2-1)

(x - 1) * (x + 1)

That’s it, just factor(N)

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://www.sagemath.org/
http://facthacks.cr.yp.to

Preliminaries: Using Sage

The following 2 parts use some code snippets to give examples
using the free open source mathematics software Sage.
http://www.sagemath.org/.

Sage looks like Python, but there are a few differences:

sage: 2^3

8

ˆ is exponentiation, not xor

It has lots of useful libraries:

sage: factor(15)

3 * 5

sage: factor(x^2-1)

(x - 1) * (x + 1)

That’s it, just factor(N)

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://www.sagemath.org/
http://facthacks.cr.yp.to

Preliminaries: Using Sage

The following 2 parts use some code snippets to give examples
using the free open source mathematics software Sage.
http://www.sagemath.org/.

Sage looks like Python, but there are a few differences:

sage: 2^3

8

ˆ is exponentiation, not xor

It has lots of useful libraries:

sage: factor(15)

3 * 5

sage: factor(x^2-1)

(x - 1) * (x + 1)

That’s it, just factor(N)

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://www.sagemath.org/
http://facthacks.cr.yp.to

Preliminaries: Using Sage

The following 2 parts use some code snippets to give examples
using the free open source mathematics software Sage.
http://www.sagemath.org/.

Sage looks like Python, but there are a few differences:

sage: 2^3

8

ˆ is exponentiation, not xor

It has lots of useful libraries:

sage: factor(15)

3 * 5

sage: factor(x^2-1)

(x - 1) * (x + 1)

That’s it, just factor(N)

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://www.sagemath.org/
http://facthacks.cr.yp.to

Trial division

Factoring easy-to-factor numbers:

sage: N=1701411834604692317316873037158841057535

is obviously divisible by 5.

sage: N/5 # / is exact division

340282366920938463463374607431768211507

Searching for p by trial division takes time about p/ log(p)
(number of primes up to p) trial divisions.
Computers can test quickly for divisibility by a precomputed set of
primes (using % or gcd with product). Can batch this computation
for many moduli N using product and remainder trees.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

Trial division

Factoring easy-to-factor numbers:

sage: N=1701411834604692317316873037158841057535

is obviously divisible by 5.

sage: N/5 # / is exact division

340282366920938463463374607431768211507

Searching for p by trial division takes time about p/ log(p)
(number of primes up to p) trial divisions.
Computers can test quickly for divisibility by a precomputed set of
primes (using % or gcd with product). Can batch this computation
for many moduli N using product and remainder trees.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

Trial division

Factoring easy-to-factor numbers:

sage: N=1701411834604692317316873037158841057535

is obviously divisible by 5.

sage: N/5 # / is exact division

340282366920938463463374607431768211507

Searching for p by trial division takes time about p/ log(p)
(number of primes up to p) trial divisions.
Computers can test quickly for divisibility by a precomputed set of
primes (using % or gcd with product). Can batch this computation
for many moduli N using product and remainder trees.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

Pollard rho

Do random walk modulo N, hope for collision modulo factor p.
E.g. using Floyd’s cycle finding algorithm

N=698599699288686665490308069057420138223871

a=98357389475943875; c=10 # some random values

a1=(a^2+c) % N ; a2=(a1^2+c) % N

while gcd(N,a2-a1)==1:

a1=(a1^2+c) %N

a2=(((a2^2+c)%N)^2+c)%N

gcd(N,a2-a1)

output is 2053

Pollard’s rho method runs till a prime p divides a1− a2 and N.
By the birthday paradox expect collisions modulo p after

√
p steps.

Each step is more expensive than trial division, so don’t use this to
find 5 but to find 2053.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

Pollard rho

Do random walk modulo N, hope for collision modulo factor p.
E.g. using Floyd’s cycle finding algorithm

N=698599699288686665490308069057420138223871

a=98357389475943875; c=10 # some random values

a1=(a^2+c) % N ; a2=(a1^2+c) % N

while gcd(N,a2-a1)==1:

a1=(a1^2+c) %N

a2=(((a2^2+c)%N)^2+c)%N

gcd(N,a2-a1) # output is 2053

Pollard’s rho method runs till a prime p divides a1− a2 and N.
By the birthday paradox expect collisions modulo p after

√
p steps.

Each step is more expensive than trial division, so don’t use this to
find 5 but to find 2053.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

Pollard rho

Do random walk modulo N, hope for collision modulo factor p.
E.g. using Floyd’s cycle finding algorithm

N=698599699288686665490308069057420138223871

a=98357389475943875; c=10 # some random values

a1=(a^2+c) % N ; a2=(a1^2+c) % N

while gcd(N,a2-a1)==1:

a1=(a1^2+c) %N

a2=(((a2^2+c)%N)^2+c)%N

gcd(N,a2-a1) # output is 2053

Pollard’s rho method runs till a prime p divides a1− a2 and N.
By the birthday paradox expect collisions modulo p after

√
p steps.

Each step is more expensive than trial division, so don’t use this to
find 5 but to find 2053.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

Pollard’s p − 1 method

If ar ≡ 1 mod p then p | gcd(ar − 1,N).

Don’t know p, pick very smooth number r , hoping for ord(a)p to
divide it.

N=44426601460658291157725536008128017297890787

4637194279031281180366057

r=lcm(range(1,2^22)) # this takes a while ...

s=Integer(pow(2,r,N))

gcd(s-1,N) # output is 1267650600228229401496703217601

This method finds larger factors than the rho method (in the same
time) but only works for special primes. Here
p − 1 = 26 · 32 · 52 · 17 · 227 · 491 · 991 · 36559 · 308129 · 4161791
has only small factors (aka. p − 1 is smooth).

Outdated recommendation: avoid such primes, use only “strong
primes”. ECM (next pages) finds all primes.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

Pollard’s p − 1 method

If ar ≡ 1 mod p then p | gcd(ar − 1,N).
Don’t know p, pick very smooth number r , hoping for ord(a)p to
divide it.

N=44426601460658291157725536008128017297890787

4637194279031281180366057

r=lcm(range(1,2^22)) # this takes a while ...

s=Integer(pow(2,r,N))

gcd(s-1,N) # output is 1267650600228229401496703217601

This method finds larger factors than the rho method (in the same
time) but only works for special primes. Here
p − 1 = 26 · 32 · 52 · 17 · 227 · 491 · 991 · 36559 · 308129 · 4161791
has only small factors (aka. p − 1 is smooth).

Outdated recommendation: avoid such primes, use only “strong
primes”. ECM (next pages) finds all primes.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

Pollard’s p − 1 method

If ar ≡ 1 mod p then p | gcd(ar − 1,N).
Don’t know p, pick very smooth number r , hoping for ord(a)p to
divide it.

N=44426601460658291157725536008128017297890787

4637194279031281180366057

r=lcm(range(1,2^22)) # this takes a while ...

s=Integer(pow(2,r,N))

gcd(s-1,N)

output is 1267650600228229401496703217601

This method finds larger factors than the rho method (in the same
time) but only works for special primes. Here
p − 1 = 26 · 32 · 52 · 17 · 227 · 491 · 991 · 36559 · 308129 · 4161791
has only small factors (aka. p − 1 is smooth).

Outdated recommendation: avoid such primes, use only “strong
primes”. ECM (next pages) finds all primes.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

Pollard’s p − 1 method

If ar ≡ 1 mod p then p | gcd(ar − 1,N).
Don’t know p, pick very smooth number r , hoping for ord(a)p to
divide it.

N=44426601460658291157725536008128017297890787

4637194279031281180366057

r=lcm(range(1,2^22)) # this takes a while ...

s=Integer(pow(2,r,N))

gcd(s-1,N) # output is 1267650600228229401496703217601

This method finds larger factors than the rho method (in the same
time) but only works for special primes.

Here
p − 1 = 26 · 32 · 52 · 17 · 227 · 491 · 991 · 36559 · 308129 · 4161791
has only small factors (aka. p − 1 is smooth).

Outdated recommendation: avoid such primes, use only “strong
primes”. ECM (next pages) finds all primes.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

Pollard’s p − 1 method

If ar ≡ 1 mod p then p | gcd(ar − 1,N).
Don’t know p, pick very smooth number r , hoping for ord(a)p to
divide it.

N=44426601460658291157725536008128017297890787

4637194279031281180366057

r=lcm(range(1,2^22)) # this takes a while ...

s=Integer(pow(2,r,N))

gcd(s-1,N) # output is 1267650600228229401496703217601

This method finds larger factors than the rho method (in the same
time) but only works for special primes. Here
p − 1 = 26 · 32 · 52 · 17 · 227 · 491 · 991 · 36559 · 308129 · 4161791
has only small factors (aka. p − 1 is smooth).

Outdated recommendation: avoid such primes, use only “strong
primes”. ECM (next pages) finds all primes.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

ECM – Math description

Pollard’s p − 1 method uses multiplicative group of integers
modulo p; finds p if ord(a)p divides r for some but not all primes p.

Lenstra’s Elliptic Curve Method uses the group of points on an
elliptic curve modulo p. Let P be a point on the curve. If the order
of P (under computations modulo p) divides r for some but not all
primes p, can find p using an appropriate gcd with rP and N.

Computations work as in p − 1 method: the curve is given modulo
N; all arithmetic is done modulo N.

Hasse’s theorem: the order of an elliptic curve modulo p is in
[p + 1− 2

√
p, p + 1 + 2

√
p]. There are lots of smooth numbers in

this interval.
Lenstra: Good distribution in the interval.

ECM has the power to change the group; if E1 does not work, go
for E2,E3, . . . till a point has smooth order modulo a p.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

ECM – Math description

Pollard’s p − 1 method uses multiplicative group of integers
modulo p; finds p if ord(a)p divides r for some but not all primes p.

Lenstra’s Elliptic Curve Method uses the group of points on an
elliptic curve modulo p. Let P be a point on the curve. If the order
of P (under computations modulo p) divides r for some but not all
primes p, can find p using an appropriate gcd with rP and N.

Computations work as in p − 1 method: the curve is given modulo
N; all arithmetic is done modulo N.

Hasse’s theorem: the order of an elliptic curve modulo p is in
[p + 1− 2

√
p, p + 1 + 2

√
p]. There are lots of smooth numbers in

this interval.
Lenstra: Good distribution in the interval.

ECM has the power to change the group; if E1 does not work, go
for E2,E3, . . . till a point has smooth order modulo a p.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

ECM – Math description

Pollard’s p − 1 method uses multiplicative group of integers
modulo p; finds p if ord(a)p divides r for some but not all primes p.

Lenstra’s Elliptic Curve Method uses the group of points on an
elliptic curve modulo p. Let P be a point on the curve. If the order
of P (under computations modulo p) divides r for some but not all
primes p, can find p using an appropriate gcd with rP and N.

Computations work as in p − 1 method: the curve is given modulo
N; all arithmetic is done modulo N.

Hasse’s theorem: the order of an elliptic curve modulo p is in
[p + 1− 2

√
p, p + 1 + 2

√
p]. There are lots of smooth numbers in

this interval.
Lenstra: Good distribution in the interval.

ECM has the power to change the group; if E1 does not work, go
for E2,E3, . . . till a point has smooth order modulo a p.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

ECM – Math description

Pollard’s p − 1 method uses multiplicative group of integers
modulo p; finds p if ord(a)p divides r for some but not all primes p.

Lenstra’s Elliptic Curve Method uses the group of points on an
elliptic curve modulo p. Let P be a point on the curve. If the order
of P (under computations modulo p) divides r for some but not all
primes p, can find p using an appropriate gcd with rP and N.

Computations work as in p − 1 method: the curve is given modulo
N; all arithmetic is done modulo N.

Hasse’s theorem: the order of an elliptic curve modulo p is in
[p + 1− 2

√
p, p + 1 + 2

√
p].

There are lots of smooth numbers in
this interval.
Lenstra: Good distribution in the interval.

ECM has the power to change the group; if E1 does not work, go
for E2,E3, . . . till a point has smooth order modulo a p.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

ECM – Math description

Pollard’s p − 1 method uses multiplicative group of integers
modulo p; finds p if ord(a)p divides r for some but not all primes p.

Lenstra’s Elliptic Curve Method uses the group of points on an
elliptic curve modulo p. Let P be a point on the curve. If the order
of P (under computations modulo p) divides r for some but not all
primes p, can find p using an appropriate gcd with rP and N.

Computations work as in p − 1 method: the curve is given modulo
N; all arithmetic is done modulo N.

Hasse’s theorem: the order of an elliptic curve modulo p is in
[p + 1− 2

√
p, p + 1 + 2

√
p]. There are lots of smooth numbers in

this interval.

Lenstra: Good distribution in the interval.

ECM has the power to change the group; if E1 does not work, go
for E2,E3, . . . till a point has smooth order modulo a p.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

ECM – Math description

Pollard’s p − 1 method uses multiplicative group of integers
modulo p; finds p if ord(a)p divides r for some but not all primes p.

Lenstra’s Elliptic Curve Method uses the group of points on an
elliptic curve modulo p. Let P be a point on the curve. If the order
of P (under computations modulo p) divides r for some but not all
primes p, can find p using an appropriate gcd with rP and N.

Computations work as in p − 1 method: the curve is given modulo
N; all arithmetic is done modulo N.

Hasse’s theorem: the order of an elliptic curve modulo p is in
[p + 1− 2

√
p, p + 1 + 2

√
p]. There are lots of smooth numbers in

this interval.
Lenstra: Good distribution in the interval.

ECM has the power to change the group; if E1 does not work, go
for E2,E3, . . . till a point has smooth order modulo a p.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

ECM – Math description

Pollard’s p − 1 method uses multiplicative group of integers
modulo p; finds p if ord(a)p divides r for some but not all primes p.

Lenstra’s Elliptic Curve Method uses the group of points on an
elliptic curve modulo p. Let P be a point on the curve. If the order
of P (under computations modulo p) divides r for some but not all
primes p, can find p using an appropriate gcd with rP and N.

Computations work as in p − 1 method: the curve is given modulo
N; all arithmetic is done modulo N.

Hasse’s theorem: the order of an elliptic curve modulo p is in
[p + 1− 2

√
p, p + 1 + 2

√
p]. There are lots of smooth numbers in

this interval.
Lenstra: Good distribution in the interval.

ECM has the power to change the group; if E1 does not work, go
for E2,E3, . . . till a point has smooth order modulo a p.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

EECM: Edwards ECM, Basic version

Use Elliptic curve in twisted Edwards form:
E : ax2 + y2 = 1 + dx2y2 with point P = (x , y); a, d 6= 0, a 6= d .
Generate random curve by picking random nonzero a, x , y ,
compute d = (ax2 + y2 − 1)/x2y2.

Multiplication in p − 1 method replaced by addition on E :

(x1, y1) + (x2, y2) =

(
x1y2 + x2y1

1 + dx1y1x2y2
,

y1y2 − ax1x2
1− dx1y1x2y1

)
.

Neutral element in this group is (0, 1).

Compute rP = (x̄ , ȳ) modulo N using double-and-add method;
avoid divisions by using projective coordinates. For formulas see
http://hyperelliptic.org/EFD.

Compute gcd(x̄ ,N); this finds primes p for which the order of P
modulo p divides r .

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://hyperelliptic.org/EFD
http://facthacks.cr.yp.to

EECM: Edwards ECM, Basic version

Use Elliptic curve in twisted Edwards form:
E : ax2 + y2 = 1 + dx2y2 with point P = (x , y); a, d 6= 0, a 6= d .
Generate random curve by picking random nonzero a, x , y ,
compute d = (ax2 + y2 − 1)/x2y2.

Multiplication in p − 1 method replaced by addition on E :

(x1, y1) + (x2, y2) =

(
x1y2 + x2y1

1 + dx1y1x2y2
,

y1y2 − ax1x2
1− dx1y1x2y1

)
.

Neutral element in this group is (0, 1).

Compute rP = (x̄ , ȳ) modulo N using double-and-add method;
avoid divisions by using projective coordinates. For formulas see
http://hyperelliptic.org/EFD.

Compute gcd(x̄ ,N); this finds primes p for which the order of P
modulo p divides r .

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://hyperelliptic.org/EFD
http://facthacks.cr.yp.to

EECM: Edwards ECM, Basic version

Use Elliptic curve in twisted Edwards form:
E : ax2 + y2 = 1 + dx2y2 with point P = (x , y); a, d 6= 0, a 6= d .
Generate random curve by picking random nonzero a, x , y ,
compute d = (ax2 + y2 − 1)/x2y2.

Multiplication in p − 1 method replaced by addition on E :

(x1, y1) + (x2, y2) =

(
x1y2 + x2y1

1 + dx1y1x2y2
,

y1y2 − ax1x2
1− dx1y1x2y1

)
.

Neutral element in this group is (0, 1).

Compute rP = (x̄ , ȳ) modulo N using double-and-add method;
avoid divisions by using projective coordinates. For formulas see
http://hyperelliptic.org/EFD.

Compute gcd(x̄ ,N); this finds primes p for which the order of P
modulo p divides r .

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://hyperelliptic.org/EFD
http://facthacks.cr.yp.to

ECM: production version

I Use special curves with
I small coefficients for faster computation, e.g. (1/23, 1/7) is a

point on 25x2 + y2 = 1− 24167x2y2;
I with better chance of smooth orders; this curve has a

guaranteed factor of 12.

I Split computation into 2 stages:
I stage 1 as described before with somewhat smaller t in

r=lcm(range(1,t));
I stage 2 checks (qi r)P for the next few primes qi > t

(computed in a batched manner).

I See http://eecm.cr.yp.to/ for explanations, good curves,
code, references, etc.

I Method runs very well on GPUs; distributed computing.

I ECM is still active research area.

ECM is very efficient at factoring random numbers (once small
factors are removed). Favorite method to kill RSA-360.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://eecm.cr.yp.to/
http://facthacks.cr.yp.to

ECM: production version

I Use special curves with
I small coefficients for faster computation, e.g. (1/23, 1/7) is a

point on 25x2 + y2 = 1− 24167x2y2;
I with better chance of smooth orders; this curve has a

guaranteed factor of 12.

I Split computation into 2 stages:
I stage 1 as described before with somewhat smaller t in

r=lcm(range(1,t));
I stage 2 checks (qi r)P for the next few primes qi > t

(computed in a batched manner).

I See http://eecm.cr.yp.to/ for explanations, good curves,
code, references, etc.

I Method runs very well on GPUs; distributed computing.

I ECM is still active research area.

ECM is very efficient at factoring random numbers (once small
factors are removed).

Favorite method to kill RSA-360.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://eecm.cr.yp.to/
http://facthacks.cr.yp.to

ECM: production version

I Use special curves with
I small coefficients for faster computation, e.g. (1/23, 1/7) is a

point on 25x2 + y2 = 1− 24167x2y2;
I with better chance of smooth orders; this curve has a

guaranteed factor of 12.

I Split computation into 2 stages:
I stage 1 as described before with somewhat smaller t in

r=lcm(range(1,t));
I stage 2 checks (qi r)P for the next few primes qi > t

(computed in a batched manner).

I See http://eecm.cr.yp.to/ for explanations, good curves,
code, references, etc.

I Method runs very well on GPUs; distributed computing.

I ECM is still active research area.

ECM is very efficient at factoring random numbers (once small
factors are removed). Favorite method to kill RSA-360.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://eecm.cr.yp.to/
http://facthacks.cr.yp.to

Factoring bad choices of N

Problem if one takes ’same size’ too literally:
N = 100

00
0029
99
99
997921.

Yes, this looks like very close to a power of 10, actually close to
10340. Square root

√
N is almost an integer, almost 10170.

Brute-force search N % (10170-i) finds factor p = 10170 − 33 and
then q = N/p = 10170 + 63.

In real life would expect this with power of 2 instead of 10.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

Factoring bad choices of N

Problem if one takes ’same size’ too literally:
N = 100

00
0029
99
99
997921.

Yes, this looks like very close to a power of 10, actually close to
10340. Square root

√
N is almost an integer, almost 10170.

Brute-force search N % (10170-i) finds factor p = 10170 − 33 and
then q = N/p = 10170 + 63.

In real life would expect this with power of 2 instead of 10.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

Factoring bad choices of N

Problem if one takes ’same size’ too literally:
N = 100

00
0029
99
99
997921.

Yes, this looks like very close to a power of 10, actually close to
10340. Square root

√
N is almost an integer, almost 10170.

Brute-force search N % (10170-i) finds factor p = 10170 − 33 and
then q = N/p = 10170 + 63.

In real life would expect this with power of 2 instead of 10.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

Factoring bad choices of N

Problem if one takes ’same size’ too literally:
N = 100

00
0029
99
99
997921.

Yes, this looks like very close to a power of 10, actually close to
10340. Square root

√
N is almost an integer, almost 10170.

Brute-force search N % (10170-i) finds factor p = 10170 − 33 and
then q = N/p = 10170 + 63.

In real life would expect this with power of 2 instead of 10.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

This problem happens not only for p and q too close to powers of
2 or 10. User starts search for p with some offset c as
p = next prime(2512 + c). Takes q = next prime(p).

sage: N=115792089237316195423570985008721211221144628

262713908746538761285902758367353

sage: sqrt(N).numerical_approx(256).str(no_sci=2)

’340282366920938463463374607431817146356.999999999999

9999999999999999999999940’

very close to an integer

sage: a=ceil(sqrt(N)); a^2-N

4096 # 4096=64^2; this is a square!

sage: N/(a-64)

340282366920938463463374607431817146293 # an integer!

sage: N/340282366920938463463374607431817146293

340282366920938463463374607431817146421

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

This problem happens not only for p and q too close to powers of
2 or 10. User starts search for p with some offset c as
p = next prime(2512 + c). Takes q = next prime(p).

sage: N=115792089237316195423570985008721211221144628

262713908746538761285902758367353

sage: sqrt(N).numerical_approx(256).str(no_sci=2)

’340282366920938463463374607431817146356.999999999999

9999999999999999999999940’ # very close to an integer

sage: a=ceil(sqrt(N)); a^2-N

4096 # 4096=64^2; this is a square!

sage: N/(a-64)

340282366920938463463374607431817146293 # an integer!

sage: N/340282366920938463463374607431817146293

340282366920938463463374607431817146421

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

This problem happens not only for p and q too close to powers of
2 or 10. User starts search for p with some offset c as
p = next prime(2512 + c). Takes q = next prime(p).

sage: N=115792089237316195423570985008721211221144628

262713908746538761285902758367353

sage: sqrt(N).numerical_approx(256).str(no_sci=2)

’340282366920938463463374607431817146356.999999999999

9999999999999999999999940’ # very close to an integer

sage: a=ceil(sqrt(N)); a^2-N

4096

4096=64^2; this is a square!

sage: N/(a-64)

340282366920938463463374607431817146293 # an integer!

sage: N/340282366920938463463374607431817146293

340282366920938463463374607431817146421

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

This problem happens not only for p and q too close to powers of
2 or 10. User starts search for p with some offset c as
p = next prime(2512 + c). Takes q = next prime(p).

sage: N=115792089237316195423570985008721211221144628

262713908746538761285902758367353

sage: sqrt(N).numerical_approx(256).str(no_sci=2)

’340282366920938463463374607431817146356.999999999999

9999999999999999999999940’ # very close to an integer

sage: a=ceil(sqrt(N)); a^2-N

4096 # 4096=64^2; this is a square!

sage: N/(a-64)

340282366920938463463374607431817146293 # an integer!

sage: N/340282366920938463463374607431817146293

340282366920938463463374607431817146421

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

This problem happens not only for p and q too close to powers of
2 or 10. User starts search for p with some offset c as
p = next prime(2512 + c). Takes q = next prime(p).

sage: N=115792089237316195423570985008721211221144628

262713908746538761285902758367353

sage: sqrt(N).numerical_approx(256).str(no_sci=2)

’340282366920938463463374607431817146356.999999999999

9999999999999999999999940’ # very close to an integer

sage: a=ceil(sqrt(N)); a^2-N

4096 # 4096=64^2; this is a square!

sage: N/(a-64)

340282366920938463463374607431817146293

an integer!

sage: N/340282366920938463463374607431817146293

340282366920938463463374607431817146421

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

This problem happens not only for p and q too close to powers of
2 or 10. User starts search for p with some offset c as
p = next prime(2512 + c). Takes q = next prime(p).

sage: N=115792089237316195423570985008721211221144628

262713908746538761285902758367353

sage: sqrt(N).numerical_approx(256).str(no_sci=2)

’340282366920938463463374607431817146356.999999999999

9999999999999999999999940’ # very close to an integer

sage: a=ceil(sqrt(N)); a^2-N

4096 # 4096=64^2; this is a square!

sage: N/(a-64)

340282366920938463463374607431817146293 # an integer!

sage: N/340282366920938463463374607431817146293

340282366920938463463374607431817146421

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

Fermat factorization

We wrote N = a2 − b2 = (a + b)(a− b) and factored it using
N/(a− b).

sage: N=11579208923731619544867939228200664041319989

0130332179010243714077028592474181

sage: sqrt(N).numerical_approx(256).str(no_sci=2)

’340282366920938463500268096066682468352.99999994715

09747085563508368188422193’

sage: a=ceil(sqrt(N)); i=0

sage: while not is_square((a+i)^2-N):

....: i=i+1 # gives i=2

....: # was q=next_prime(p+2^66+974892437589)

This always works eventually: N = ((q + p)/2)2 − ((q − p)/2)2

but searching for (q + p)/2 starting with d
√

Ne will usually run for
about

√
N ≈ p steps.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

Fermat factorization

We wrote N = a2 − b2 = (a + b)(a− b) and factored it using
N/(a− b).

sage: N=11579208923731619544867939228200664041319989

0130332179010243714077028592474181

sage: sqrt(N).numerical_approx(256).str(no_sci=2)

’340282366920938463500268096066682468352.99999994715

09747085563508368188422193’

sage: a=ceil(sqrt(N)); i=0

sage: while not is_square((a+i)^2-N):

....: i=i+1

gives i=2

....: # was q=next_prime(p+2^66+974892437589)

This always works eventually: N = ((q + p)/2)2 − ((q − p)/2)2

but searching for (q + p)/2 starting with d
√

Ne will usually run for
about

√
N ≈ p steps.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

Fermat factorization

We wrote N = a2 − b2 = (a + b)(a− b) and factored it using
N/(a− b).

sage: N=11579208923731619544867939228200664041319989

0130332179010243714077028592474181

sage: sqrt(N).numerical_approx(256).str(no_sci=2)

’340282366920938463500268096066682468352.99999994715

09747085563508368188422193’

sage: a=ceil(sqrt(N)); i=0

sage: while not is_square((a+i)^2-N):

....: i=i+1 # gives i=2

....: # was q=next_prime(p+2^66+974892437589)

This always works eventually: N = ((q + p)/2)2 − ((q − p)/2)2

but searching for (q + p)/2 starting with d
√

Ne will usually run for
about

√
N ≈ p steps.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

Fermat factorization

We wrote N = a2 − b2 = (a + b)(a− b) and factored it using
N/(a− b).

sage: N=11579208923731619544867939228200664041319989

0130332179010243714077028592474181

sage: sqrt(N).numerical_approx(256).str(no_sci=2)

’340282366920938463500268096066682468352.99999994715

09747085563508368188422193’

sage: a=ceil(sqrt(N)); i=0

sage: while not is_square((a+i)^2-N):

....: i=i+1 # gives i=2

....: # was q=next_prime(p+2^66+974892437589)

This always works

eventually: N = ((q + p)/2)2 − ((q − p)/2)2

but searching for (q + p)/2 starting with d
√

Ne will usually run for
about

√
N ≈ p steps.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

Fermat factorization

We wrote N = a2 − b2 = (a + b)(a− b) and factored it using
N/(a− b).

sage: N=11579208923731619544867939228200664041319989

0130332179010243714077028592474181

sage: sqrt(N).numerical_approx(256).str(no_sci=2)

’340282366920938463500268096066682468352.99999994715

09747085563508368188422193’

sage: a=ceil(sqrt(N)); i=0

sage: while not is_square((a+i)^2-N):

....: i=i+1 # gives i=2

....: # was q=next_prime(p+2^66+974892437589)

This always works eventually: N = ((q + p)/2)2 − ((q − p)/2)2

but searching for (q + p)/2 starting with d
√

Ne will usually run for
about

√
N ≈ p steps.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

Fermat factorization

We wrote N = a2 − b2 = (a + b)(a− b) and factored it using
N/(a− b).

sage: N=11579208923731619544867939228200664041319989

0130332179010243714077028592474181

sage: sqrt(N).numerical_approx(256).str(no_sci=2)

’340282366920938463500268096066682468352.99999994715

09747085563508368188422193’

sage: a=ceil(sqrt(N)); i=0

sage: while not is_square((a+i)^2-N):

....: i=i+1 # gives i=2

....: # was q=next_prime(p+2^66+974892437589)

This always works eventually: N = ((q + p)/2)2 − ((q − p)/2)2

but searching for (q + p)/2 starting with d
√

Ne will usually run for
about

√
N ≈ p steps.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

An example of the quadratic sieve (QS)

Let’s try Fermat to factor N = 2759. Recall idea:
if a2 − N is a square b2 then N = (a− b)(a + b).

532 − 2759 = 50. Not exactly a square: 50 = 2 · 52.

542 − 2759 = 157. Ummm, doesn’t look like a square.
552 − 2759 = 266.
562 − 2759 = 377.
572 − 2759 = 490. Hey, 49 is a square . . . 490 = 2 · 5 · 72.
582 − 2759 = 605. Not exactly a square: 605 = 5 · 112.

Fermat doesn’t seem to be working very well for this number.

But the product 50 · 490 · 605 is a square: 22 · 54 · 72 · 112.
QS computes gcd{2759, 53 · 57 · 58−

√
50 · 490 · 605} = 31.

Exercise: Square product has 50% chance of factoring pq.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

An example of the quadratic sieve (QS)

Let’s try Fermat to factor N = 2759. Recall idea:
if a2 − N is a square b2 then N = (a− b)(a + b).

532 − 2759 = 50. Not exactly a square: 50 = 2 · 52.
542 − 2759 = 157. Ummm, doesn’t look like a square.

552 − 2759 = 266.
562 − 2759 = 377.
572 − 2759 = 490. Hey, 49 is a square . . . 490 = 2 · 5 · 72.
582 − 2759 = 605. Not exactly a square: 605 = 5 · 112.

Fermat doesn’t seem to be working very well for this number.

But the product 50 · 490 · 605 is a square: 22 · 54 · 72 · 112.
QS computes gcd{2759, 53 · 57 · 58−

√
50 · 490 · 605} = 31.

Exercise: Square product has 50% chance of factoring pq.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

An example of the quadratic sieve (QS)

Let’s try Fermat to factor N = 2759. Recall idea:
if a2 − N is a square b2 then N = (a− b)(a + b).

532 − 2759 = 50. Not exactly a square: 50 = 2 · 52.
542 − 2759 = 157. Ummm, doesn’t look like a square.
552 − 2759 = 266.

562 − 2759 = 377.
572 − 2759 = 490. Hey, 49 is a square . . . 490 = 2 · 5 · 72.
582 − 2759 = 605. Not exactly a square: 605 = 5 · 112.

Fermat doesn’t seem to be working very well for this number.

But the product 50 · 490 · 605 is a square: 22 · 54 · 72 · 112.
QS computes gcd{2759, 53 · 57 · 58−

√
50 · 490 · 605} = 31.

Exercise: Square product has 50% chance of factoring pq.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

An example of the quadratic sieve (QS)

Let’s try Fermat to factor N = 2759. Recall idea:
if a2 − N is a square b2 then N = (a− b)(a + b).

532 − 2759 = 50. Not exactly a square: 50 = 2 · 52.
542 − 2759 = 157. Ummm, doesn’t look like a square.
552 − 2759 = 266.
562 − 2759 = 377.

572 − 2759 = 490. Hey, 49 is a square . . . 490 = 2 · 5 · 72.
582 − 2759 = 605. Not exactly a square: 605 = 5 · 112.

Fermat doesn’t seem to be working very well for this number.

But the product 50 · 490 · 605 is a square: 22 · 54 · 72 · 112.
QS computes gcd{2759, 53 · 57 · 58−

√
50 · 490 · 605} = 31.

Exercise: Square product has 50% chance of factoring pq.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

An example of the quadratic sieve (QS)

Let’s try Fermat to factor N = 2759. Recall idea:
if a2 − N is a square b2 then N = (a− b)(a + b).

532 − 2759 = 50. Not exactly a square: 50 = 2 · 52.
542 − 2759 = 157. Ummm, doesn’t look like a square.
552 − 2759 = 266.
562 − 2759 = 377.
572 − 2759 = 490. Hey, 49 is a square . . . 490 = 2 · 5 · 72.

582 − 2759 = 605. Not exactly a square: 605 = 5 · 112.

Fermat doesn’t seem to be working very well for this number.

But the product 50 · 490 · 605 is a square: 22 · 54 · 72 · 112.
QS computes gcd{2759, 53 · 57 · 58−

√
50 · 490 · 605} = 31.

Exercise: Square product has 50% chance of factoring pq.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

An example of the quadratic sieve (QS)

Let’s try Fermat to factor N = 2759. Recall idea:
if a2 − N is a square b2 then N = (a− b)(a + b).

532 − 2759 = 50. Not exactly a square: 50 = 2 · 52.
542 − 2759 = 157. Ummm, doesn’t look like a square.
552 − 2759 = 266.
562 − 2759 = 377.
572 − 2759 = 490. Hey, 49 is a square . . . 490 = 2 · 5 · 72.
582 − 2759 = 605. Not exactly a square: 605 = 5 · 112.

Fermat doesn’t seem to be working very well for this number.

But the product 50 · 490 · 605 is a square: 22 · 54 · 72 · 112.
QS computes gcd{2759, 53 · 57 · 58−

√
50 · 490 · 605} = 31.

Exercise: Square product has 50% chance of factoring pq.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

An example of the quadratic sieve (QS)

Let’s try Fermat to factor N = 2759. Recall idea:
if a2 − N is a square b2 then N = (a− b)(a + b).

532 − 2759 = 50. Not exactly a square: 50 = 2 · 52.
542 − 2759 = 157. Ummm, doesn’t look like a square.
552 − 2759 = 266.
562 − 2759 = 377.
572 − 2759 = 490. Hey, 49 is a square . . . 490 = 2 · 5 · 72.
582 − 2759 = 605. Not exactly a square: 605 = 5 · 112.

Fermat doesn’t seem to be working very well for this number.

But the product 50 · 490 · 605 is a square: 22 · 54 · 72 · 112.
QS computes gcd{2759, 53 · 57 · 58−

√
50 · 490 · 605} = 31.

Exercise: Square product has 50% chance of factoring pq.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

An example of the quadratic sieve (QS)

Let’s try Fermat to factor N = 2759. Recall idea:
if a2 − N is a square b2 then N = (a− b)(a + b).

532 − 2759 = 50. Not exactly a square: 50 = 2 · 52.
542 − 2759 = 157. Ummm, doesn’t look like a square.
552 − 2759 = 266.
562 − 2759 = 377.
572 − 2759 = 490. Hey, 49 is a square . . . 490 = 2 · 5 · 72.
582 − 2759 = 605. Not exactly a square: 605 = 5 · 112.

Fermat doesn’t seem to be working very well for this number.

But the product 50 · 490 · 605 is a square: 22 · 54 · 72 · 112.
QS computes gcd{2759, 53 · 57 · 58−

√
50 · 490 · 605} = 31.

Exercise: Square product has 50% chance of factoring pq.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

QS more systematically

Try larger N. Easy to generate many differences a2 − N:

N = 314159265358979323

X = [a^2-N for a in range(sqrt(N)+1,sqrt(N)+500000)]

See which differences are easy to factor:

P = list(primes(2,1000))

F = easyfactorizations(P,X)

Use linear algebra mod 2 to find a square:

M = matrix(GF(2),len(F),len(P),lambda i,j:P[j] in F[i][0])

for K in M.left_kernel().basis():

x = product([sqrt(f[2]+N) for f,k in zip(F,K) if k==1])

y = sqrt(product([f[2] for f,k in zip(F,K) if k==1]))

print [gcd(N,x - y),gcd(N,x + y)]

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

QS more systematically

Try larger N. Easy to generate many differences a2 − N:

N = 314159265358979323

X = [a^2-N for a in range(sqrt(N)+1,sqrt(N)+500000)]

See which differences are easy to factor:

P = list(primes(2,1000))

F = easyfactorizations(P,X)

Use linear algebra mod 2 to find a square:

M = matrix(GF(2),len(F),len(P),lambda i,j:P[j] in F[i][0])

for K in M.left_kernel().basis():

x = product([sqrt(f[2]+N) for f,k in zip(F,K) if k==1])

y = sqrt(product([f[2] for f,k in zip(F,K) if k==1]))

print [gcd(N,x - y),gcd(N,x + y)]

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

QS more systematically

Try larger N. Easy to generate many differences a2 − N:

N = 314159265358979323

X = [a^2-N for a in range(sqrt(N)+1,sqrt(N)+500000)]

See which differences are easy to factor:

P = list(primes(2,1000))

F = easyfactorizations(P,X)

Use linear algebra mod 2 to find a square:

M = matrix(GF(2),len(F),len(P),lambda i,j:P[j] in F[i][0])

for K in M.left_kernel().basis():

x = product([sqrt(f[2]+N) for f,k in zip(F,K) if k==1])

y = sqrt(product([f[2] for f,k in zip(F,K) if k==1]))

print [gcd(N,x - y),gcd(N,x + y)]

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

Strategies to implement easyfactorizations

Trial-dividing a2 − N using primes in [1, y] costs y1+o(1).
Four major directions of improvements:

I Early aborts: e.g., throw a2 − N away if unfactored part
is uncomfortably large after primes in [1, y0.5].
1982 Pomerance: optimized early aborts
reduce cost of trial division to y0+o(1)

while reducing effectiveness by factor y0.5+o(1).

I Batch trial division: same as tree idea from before.

I “Sieving”: like the Sieve of Eratosthenes. Example:
use arithmetic progressions of a with 1009 dividing a2 − N.

I rho, p − 1, p + 1, ECM. Low memory, high parallelism.

Sieving seemed very important 30 years ago. Today much less use:
we care more about communication cost and lattice optimization.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

Strategies to implement easyfactorizations

Trial-dividing a2 − N using primes in [1, y] costs y1+o(1).
Four major directions of improvements:

I Early aborts: e.g., throw a2 − N away if unfactored part
is uncomfortably large after primes in [1, y0.5].
1982 Pomerance: optimized early aborts
reduce cost of trial division to y0+o(1)

while reducing effectiveness by factor y0.5+o(1).

I Batch trial division: same as tree idea from before.

I “Sieving”: like the Sieve of Eratosthenes. Example:
use arithmetic progressions of a with 1009 dividing a2 − N.

I rho, p − 1, p + 1, ECM. Low memory, high parallelism.

Sieving seemed very important 30 years ago. Today much less use:
we care more about communication cost and lattice optimization.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

Strategies to implement easyfactorizations

Trial-dividing a2 − N using primes in [1, y] costs y1+o(1).
Four major directions of improvements:

I Early aborts: e.g., throw a2 − N away if unfactored part
is uncomfortably large after primes in [1, y0.5].
1982 Pomerance: optimized early aborts
reduce cost of trial division to y0+o(1)

while reducing effectiveness by factor y0.5+o(1).

I Batch trial division: same as tree idea from before.

I “Sieving”: like the Sieve of Eratosthenes. Example:
use arithmetic progressions of a with 1009 dividing a2 − N.

I rho, p − 1, p + 1, ECM. Low memory, high parallelism.

Sieving seemed very important 30 years ago. Today much less use:
we care more about communication cost and lattice optimization.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

Strategies to implement easyfactorizations

Trial-dividing a2 − N using primes in [1, y] costs y1+o(1).
Four major directions of improvements:

I Early aborts: e.g., throw a2 − N away if unfactored part
is uncomfortably large after primes in [1, y0.5].
1982 Pomerance: optimized early aborts
reduce cost of trial division to y0+o(1)

while reducing effectiveness by factor y0.5+o(1).

I Batch trial division: same as tree idea from before.

I “Sieving”: like the Sieve of Eratosthenes. Example:
use arithmetic progressions of a with 1009 dividing a2 − N.

I rho, p − 1, p + 1, ECM. Low memory, high parallelism.

Sieving seemed very important 30 years ago. Today much less use:
we care more about communication cost and lattice optimization.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

Interlude: Smoothness

How many integers in [1, y2] factor into primes in [1, y]?

Easy lower bound: at least ≈0.5y2/(log y)2.
(There are ≈y/ log y primes in [1, y].
Consider products of two such primes.)

Somewhat careful analysis: constant times y2.

More careful analysis: ≈0.306y2.

How many integers in [1, yu] factor into primes in [1, y]?
Somewhat careful analysis: ≈u−uyu.
More careful analysis: e.g., ≈0.277 · 10−10yu for u = 10.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

Interlude: Smoothness

How many integers in [1, y2] factor into primes in [1, y]?

Easy lower bound: at least ≈0.5y2/(log y)2.
(There are ≈y/ log y primes in [1, y].
Consider products of two such primes.)

Somewhat careful analysis: constant times y2.

More careful analysis: ≈0.306y2.

How many integers in [1, yu] factor into primes in [1, y]?
Somewhat careful analysis: ≈u−uyu.
More careful analysis: e.g., ≈0.277 · 10−10yu for u = 10.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

Interlude: Smoothness

How many integers in [1, y2] factor into primes in [1, y]?

Easy lower bound: at least ≈0.5y2/(log y)2.
(There are ≈y/ log y primes in [1, y].
Consider products of two such primes.)

Somewhat careful analysis: constant times y2.

More careful analysis: ≈0.306y2.

How many integers in [1, yu] factor into primes in [1, y]?
Somewhat careful analysis: ≈u−uyu.
More careful analysis: e.g., ≈0.277 · 10−10yu for u = 10.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

Interlude: Smoothness

How many integers in [1, y2] factor into primes in [1, y]?

Easy lower bound: at least ≈0.5y2/(log y)2.
(There are ≈y/ log y primes in [1, y].
Consider products of two such primes.)

Somewhat careful analysis: constant times y2.

More careful analysis: ≈0.306y2.

How many integers in [1, yu] factor into primes in [1, y]?
Somewhat careful analysis: ≈u−uyu.
More careful analysis: e.g., ≈0.277 · 10−10yu for u = 10.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

Interlude: Smoothness

How many integers in [1, y2] factor into primes in [1, y]?

Easy lower bound: at least ≈0.5y2/(log y)2.
(There are ≈y/ log y primes in [1, y].
Consider products of two such primes.)

Somewhat careful analysis: constant times y2.

More careful analysis: ≈0.306y2.

How many integers in [1, yu] factor into primes in [1, y]?
Somewhat careful analysis: ≈u−uyu.
More careful analysis: e.g., ≈0.277 · 10−10yu for u = 10.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

QS scalability

QS is slow for small N . . . but scales very well to larger N.

Choose y = N1/u.
If differences a2 − N were random integers mod N
then they would factor into primes in [1, y] with probability ≈u−u.
(Actually a2 − N is closer to

√
N; even more likely to factor.)

Factorization exponent vectors produce linear dependencies
once there are ≈uuy/ log y differences.

Choose u on scale of
√

log N/ log log N
to balance uu with N1/u. Subexponential cost!

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

History of the world, part 1

1931 Lehmer–Powers, 1975 Morrison–Brillhart, “CFRAC”:
find small squares mod N using

√
N continued fraction.

1977 Schroeppel “linear sieve”:
find square products of ab(ab − N) by sieving ab − N;
use a, b in small range around

√
N.

This uses exp(O(
√

log N log log N)) operations.

1982 Pomerance, QS: a2 − N.

Retroactively plug in ECM or batch trial division,
and fast linear algebra:
each method uses exp((1 + o(1))

√
log N log log N) operations.

Applying ECM directly to N
also uses exp((1 + o(1))

√
log N log log N) operations.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

History of the world, part 1

1931 Lehmer–Powers, 1975 Morrison–Brillhart, “CFRAC”:
find small squares mod N using

√
N continued fraction.

1977 Schroeppel “linear sieve”:
find square products of ab(ab − N) by sieving ab − N;
use a, b in small range around

√
N.

This uses exp(O(
√

log N log log N)) operations.

1982 Pomerance, QS: a2 − N.

Retroactively plug in ECM or batch trial division,
and fast linear algebra:
each method uses exp((1 + o(1))

√
log N log log N) operations.

Applying ECM directly to N
also uses exp((1 + o(1))

√
log N log log N) operations.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

History of the world, part 1

1931 Lehmer–Powers, 1975 Morrison–Brillhart, “CFRAC”:
find small squares mod N using

√
N continued fraction.

1977 Schroeppel “linear sieve”:
find square products of ab(ab − N) by sieving ab − N;
use a, b in small range around

√
N.

This uses exp(O(
√

log N log log N)) operations.

1982 Pomerance, QS: a2 − N.

Retroactively plug in ECM or batch trial division,
and fast linear algebra:
each method uses exp((1 + o(1))

√
log N log log N) operations.

Applying ECM directly to N
also uses exp((1 + o(1))

√
log N log log N) operations.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

History of the world, part 2

1982 Schnorr, 1987 Seysen, 1988 A. Lenstra,
1992 H. Lenstra–Pomerance: another method
that provably uses exp((1 + o(1))

√
log N log log N) operations.

1988 Pomerance–Smith–Tuler:
“Over the last few years there has developed a remarkable six-way
tie for the asymptotically fastest factoring algorithms. . . . It might
be tempting to conjecture that L(N) is in fact the true complexity
of factoring, but no one seems to have any idea how to obtain
even heuristic lower bounds for factoring.”

1985 Odlyzko, commenting on the same conjecture:
“It is this author’s guess that this is not the case, and that we are
missing some insight that will let us break below the L(p) barrier.”

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

History of the world, part 2

1982 Schnorr, 1987 Seysen, 1988 A. Lenstra,
1992 H. Lenstra–Pomerance: another method
that provably uses exp((1 + o(1))

√
log N log log N) operations.

1988 Pomerance–Smith–Tuler:
“Over the last few years there has developed a remarkable six-way
tie for the asymptotically fastest factoring algorithms. . . . It might
be tempting to conjecture that L(N) is in fact the true complexity
of factoring, but no one seems to have any idea how to obtain
even heuristic lower bounds for factoring.”

1985 Odlyzko, commenting on the same conjecture:
“It is this author’s guess that this is not the case, and that we are
missing some insight that will let us break below the L(p) barrier.”

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

The number-field sieve (NFS)

1988 Pollard, independently 1989 Elkies,
generalized by 1990 Lenstra–Lenstra–Manasse–Pollard:
Use (a + bα)(a + bm) with α ≡ m (mod n).
exp((2.08 . . .+ o(1))(log N)1/3(log log N)2/3).

1991 Adleman, 1993 Buhler–Lenstra–Pomerance:
exp((1.92 . . .+ o(1))(log N)1/3(log log N)2/3).
Adleman estimated QS/NFS cutoff as N ≈ 21100.

1993 Coppersmith:
exp((1.90 . . .+ o(1))(log N)1/3(log log N)2/3).

1993 Coppersmith, batch NFS (“factorization factory”):
exp((1.63 . . .+ o(1))(log N)1/3(log log N)2/3)
after a precomputation independent of N.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

So what does this mean for RSA-1024?

Complicated NFS analysis and optimization. Latest estimates:
Attacker breaks my 1024-bit key by scanning ≈270 pairs (a, b).

Plan A: NSA is building a 226-watt computer center in Bluffdale.
Plan B: The Conficker botnet broke into ≈223 machines.
Plan C: China has a supercomputer center in Tianjin.

257 watts
256 watts
244 watts
230 watts
226 watts

226 watts of standard GPUs: 284 floating-point mults/year.
Latest estimates: This is enough to break 1024-bit RSA.
. . . and special-purpose chips should be at least 10× faster.
. . . and batch NFS should be even faster.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

So what does this mean for RSA-1024?

Complicated NFS analysis and optimization. Latest estimates:
Attacker breaks my 1024-bit key by scanning ≈270 pairs (a, b).

Plan A: NSA is building a 226-watt computer center in Bluffdale.
Plan B: The Conficker botnet broke into ≈223 machines.
Plan C: China has a supercomputer center in Tianjin.

257 watts Earth receives from the Sun
256 watts Earth’s surface receives from the Sun
244 watts
230 watts
226 watts

226 watts of standard GPUs: 284 floating-point mults/year.
Latest estimates: This is enough to break 1024-bit RSA.
. . . and special-purpose chips should be at least 10× faster.
. . . and batch NFS should be even faster.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

So what does this mean for RSA-1024?

Complicated NFS analysis and optimization. Latest estimates:
Attacker breaks my 1024-bit key by scanning ≈270 pairs (a, b).

Plan A: NSA is building a 226-watt computer center in Bluffdale.
Plan B: The Conficker botnet broke into ≈223 machines.
Plan C: China has a supercomputer center in Tianjin.

257 watts Earth receives from the Sun
256 watts Earth’s surface receives from the Sun
244 watts Current world power usage
230 watts
226 watts

226 watts of standard GPUs: 284 floating-point mults/year.
Latest estimates: This is enough to break 1024-bit RSA.
. . . and special-purpose chips should be at least 10× faster.
. . . and batch NFS should be even faster.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

So what does this mean for RSA-1024?

Complicated NFS analysis and optimization. Latest estimates:
Attacker breaks my 1024-bit key by scanning ≈270 pairs (a, b).

Plan A: NSA is building a 226-watt computer center in Bluffdale.
Plan B: The Conficker botnet broke into ≈223 machines.
Plan C: China has a supercomputer center in Tianjin.

257 watts Earth receives from the Sun
256 watts Earth’s surface receives from the Sun
244 watts Current world power usage
230 watts Botnet running 223 typical CPUs
226 watts

226 watts of standard GPUs: 284 floating-point mults/year.
Latest estimates: This is enough to break 1024-bit RSA.
. . . and special-purpose chips should be at least 10× faster.
. . . and batch NFS should be even faster.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

So what does this mean for RSA-1024?

Complicated NFS analysis and optimization. Latest estimates:
Attacker breaks my 1024-bit key by scanning ≈270 pairs (a, b).

Plan A: NSA is building a 226-watt computer center in Bluffdale.
Plan B: The Conficker botnet broke into ≈223 machines.
Plan C: China has a supercomputer center in Tianjin.

257 watts Earth receives from the Sun
256 watts Earth’s surface receives from the Sun
244 watts Current world power usage
230 watts Botnet running 223 typical CPUs
226 watts One dinky little computer center

226 watts of standard GPUs: 284 floating-point mults/year.
Latest estimates: This is enough to break 1024-bit RSA.
. . . and special-purpose chips should be at least 10× faster.
. . . and batch NFS should be even faster.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

So what does this mean for RSA-1024?

Complicated NFS analysis and optimization. Latest estimates:
Attacker breaks my 1024-bit key by scanning ≈270 pairs (a, b).

Plan A: NSA is building a 226-watt computer center in Bluffdale.
Plan B: The Conficker botnet broke into ≈223 machines.
Plan C: China has a supercomputer center in Tianjin.

257 watts Earth receives from the Sun
256 watts Earth’s surface receives from the Sun
244 watts Current world power usage
230 watts Botnet running 223 typical CPUs
226 watts One dinky little computer center

226 watts of standard GPUs: 284 floating-point mults/year.
Latest estimates: This is enough to break 1024-bit RSA.
. . . and special-purpose chips should be at least 10× faster.
. . . and batch NFS should be even faster.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

Quantum computers

Okay, you’re using RSA-3072.

. . . and then the attacker builds a big quantum computer.
Imagine extreme case: qubit ops are about as cheap as bit ops.

Major impact, part 1: 1996 Grover.
Speeds up searching s possible roots of f
from ≈s iterations of f to ≈√s iterations of f .
Example (2010 Bernstein): This speeds up ECM!

Major impact, part 2: 1994 Shor.
Factors N using one exponentiation modulo N.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

Quantum computers

Okay, you’re using RSA-3072.

. . . and then the attacker builds a big quantum computer.
Imagine extreme case: qubit ops are about as cheap as bit ops.

Major impact, part 1: 1996 Grover.
Speeds up searching s possible roots of f
from ≈s iterations of f to ≈√s iterations of f .
Example (2010 Bernstein): This speeds up ECM!

Major impact, part 2: 1994 Shor.
Factors N using one exponentiation modulo N.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

Quantum computers

Okay, you’re using RSA-3072.

. . . and then the attacker builds a big quantum computer.
Imagine extreme case: qubit ops are about as cheap as bit ops.

Major impact, part 1: 1996 Grover.
Speeds up searching s possible roots of f
from ≈s iterations of f to ≈√s iterations of f .
Example (2010 Bernstein): This speeds up ECM!

Major impact, part 2: 1994 Shor.
Factors N using one exponentiation modulo N.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

Post-quantum RSA

Conventional wisdom:
Shor’s algorithm supersedes all previous factorization methods.
In fact, it breaks RSA as quickly as RSA decrypts,
so we have no hope of security from scaling RSA key sizes.

This isn’t true!
Use “multi-prime RSA.” Oops, 1997/1998 Tandem patent.
Fortunately, already in 1983 RSA patent: “the present invention
may use a modulus n which is a product of three or more primes.”

Concrete analysis suggests that RSA with 231 4096-bit primes
provides >2100 security vs. all known quantum attacks.
Key fits on a hard drive; encryption+decryption take only a week.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

Post-quantum RSA

Conventional wisdom:
Shor’s algorithm supersedes all previous factorization methods.
In fact, it breaks RSA as quickly as RSA decrypts,
so we have no hope of security from scaling RSA key sizes.

This isn’t true!
Use “multi-prime RSA.”

Oops, 1997/1998 Tandem patent.
Fortunately, already in 1983 RSA patent: “the present invention
may use a modulus n which is a product of three or more primes.”

Concrete analysis suggests that RSA with 231 4096-bit primes
provides >2100 security vs. all known quantum attacks.
Key fits on a hard drive; encryption+decryption take only a week.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

Post-quantum RSA

Conventional wisdom:
Shor’s algorithm supersedes all previous factorization methods.
In fact, it breaks RSA as quickly as RSA decrypts,
so we have no hope of security from scaling RSA key sizes.

This isn’t true!
Use “multi-prime RSA.” Oops, 1997/1998 Tandem patent.

Fortunately, already in 1983 RSA patent: “the present invention
may use a modulus n which is a product of three or more primes.”

Concrete analysis suggests that RSA with 231 4096-bit primes
provides >2100 security vs. all known quantum attacks.
Key fits on a hard drive; encryption+decryption take only a week.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

Post-quantum RSA

Conventional wisdom:
Shor’s algorithm supersedes all previous factorization methods.
In fact, it breaks RSA as quickly as RSA decrypts,
so we have no hope of security from scaling RSA key sizes.

This isn’t true!
Use “multi-prime RSA.” Oops, 1997/1998 Tandem patent.
Fortunately, already in 1983 RSA patent: “the present invention
may use a modulus n which is a product of three or more primes.”

Concrete analysis suggests that RSA with 231 4096-bit primes
provides >2100 security vs. all known quantum attacks.
Key fits on a hard drive; encryption+decryption take only a week.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

Post-quantum RSA

Conventional wisdom:
Shor’s algorithm supersedes all previous factorization methods.
In fact, it breaks RSA as quickly as RSA decrypts,
so we have no hope of security from scaling RSA key sizes.

This isn’t true!
Use “multi-prime RSA.” Oops, 1997/1998 Tandem patent.
Fortunately, already in 1983 RSA patent: “the present invention
may use a modulus n which is a product of three or more primes.”

Concrete analysis suggests that RSA with 231 4096-bit primes
provides >2100 security vs. all known quantum attacks.
Key fits on a hard drive; encryption+decryption take only a week.

Bernstein, Heninger, Lange: Cryptanalytic threats to RSA http://facthacks.cr.yp.to

http://facthacks.cr.yp.to

