
High-speed cryptography

for mobile devices

D. J. Bernstein

University of Illinois at Chicago,

Technische Universiteit Eindhoven

Picture credits:

geeky-gadgets.com; Star Trek

The Internet of Things

Andrew Myers, Stanford Report,

2011.02.11:

“His wine cellar is networked.

Cerf can monitor and control the

temperature, humidity and other

important information from his

smartphone.”

“Welcome to the ‘Internet of

things,’ a much-discussed vision

of a tomorrow in which virtually

every electronic device—ovens,

stereos, toasters, wine cellars—

will be networked.”

: : : “Security, however, is the real

looming cloud, Cerf said.”

: : : “Security, however, is the real

looming cloud, Cerf said.”

Security (confidentiality,

integrity, availability)

of wireless communication

relies critically on crypto.

: : : “Security, however, is the real

looming cloud, Cerf said.”

Security (confidentiality,

integrity, availability)

of wireless communication

relies critically on crypto.

Frequently asked question:

Can all these tiny devices

keep up with the crypto?

: : : “Security, however, is the real

looming cloud, Cerf said.”

Security (confidentiality,

integrity, availability)

of wireless communication

relies critically on crypto.

Frequently asked question:

Can all these tiny devices

keep up with the crypto?

Question in this talk:

Can the smartphone

keep up with the crypto?

Conventional wisdom:

Crypto for tiny devices

is much more challenging

than smartphone crypto.

Smartphones have big CPUs.

Tiny devices usually have

much smaller CPUs.

Expect CPU gap to increase

with deployment of many

ultra-low-cost devices.

) Study smartphone crypto

only as an easy warmup before

studying crypto for tiny devices.

This wisdom is flawed.

Easy to see how

smartphone CPU can be

the most troublesome bottleneck.

This wisdom is flawed.

Easy to see how

smartphone CPU can be

the most troublesome bottleneck.

Communication is centralized:

many tiny devices

are talking to one smartphone.

This wisdom is flawed.

Easy to see how

smartphone CPU can be

the most troublesome bottleneck.

Communication is centralized:

many tiny devices

are talking to one smartphone.

As tiny-device cost drops,

expect dramatic increase in

number of tiny devices,

and thus load on smartphone.

Will smartphone CPU power

increase so dramatically?

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!!

!

!

!
!

!

!
!
!
!

!
!

!

!

!!

!

!
!

!

!

!

!

!!

!

!

!

!

!

!
!
!

!

!

!
!

!

!

! !!

!

!
!

!

!

!

!

! !

!
!

!

!

! !

!

!

!
!

!

!

!!
!

!

!

!

!

!

!
!

!

!

!
!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!!

!

!

!
!

!

!
!
!
!

!
!

!

!

!!

!

!
!

!

!

!

!

!!

!

!

!

!

!

!
!
!

!

!

!
!

!

!

! !!

!

!
!

!

!

!

!

! !

!
!

!

!

! !

!

!

!
!

!

!

!!
!

!

!

!

!

!

!
!

!

!

!
!

!

!

!

!

!

!

Smartphone/tablet CPUs

iPad 1 (2010) contains 45nm

Apple A4 system-on-chip.

Apple A4 contains

1GHz ARM Cortex A8 CPU core

+ PowerVR SGX 535 GPU.

Cortex A8 CPU core

supports ARMv7 instruction set,

including NEON vector insns.

iPhone 4 (2010)

also contains Apple A4.

45nm 1GHz Samsung Exynos

3110 in Samsung Galaxy S (2010)

contains Cortex A8 CPU core.

45nm 1GHz TI OMAP3630 in

Motorola Droid X (2010)

contains Cortex A8 CPU core.

45nm? 800MHz Freescale i.MX50

in Amazon Kindle 4 (2011)

contains Cortex A8 CPU core.

40nm/55nm? Allwinner A10

(2012) in set-top boxes etc.,

reportedly $7 in volume,

contains Cortex A8 CPU core.

More ARMv7+NEON cores:

2� Cortex A9 in Apple A5 in

iPad 2 (2011), iPhone 4 (2011);

4� Cortex A9 in Nvidia

Tegra 3 in Asus Eee Pad

Transformer Prime (2011);

2� Krait in Qualcomm

MSM8960 Snapdragon S4 in

HTC One XL (2012);

2� Cortex A15 in

Samsung Exynos 5250 in

Google Nexus 10 (2012);

etc.

ARMv7+NEON universal?

Not quite.

Some exceptions:

ARM1136 in Qualcomm

MSM7200A in Samsung

GT i7500 Galaxy (2009),

first Samsung Android phone.

Cortex A9 without NEON

in Nvidia Tegra 2

in Motorola Droid X2 (2011).

Intel Atom Z2460

in Motorola RAZR I (2012).

High-speed cryptography

Typical question:

“How fast is AES-128-CTR?”

25 Cortex A8 cycles/byte for

Polyakov code in OpenSSL; not

protected against timing attacks.

19 Cortex A8 cycles/byte for

2012 Bernstein–Schwabe;

protected against timing attacks.

Based on bitsliced software

from 2009 Käsper–Schwabe.

Better question:

“How fast is high-security

encryption using a secret key?”

Much tougher for implementors.

Vary cipher and implementation,

instead of just implementation.

Better question:

“How fast is high-security

encryption using a secret key?”

Much tougher for implementors.

Vary cipher and implementation,

instead of just implementation.

Better results for users.

AES is designed for an

oversimplified CPU model,

ignoring CPU design trends

and physical hardware costs:

AES is designed to use loads.

ECRYPT Stream Cipher Project

(eSTREAM), 2004–2008,

selected portfolio of four software

ciphers: HC-128, Rabbit,

Salsa20/12, SOSEMANUK.

(Also some hardware ciphers.)

Salsa20 (2005 Bernstein):

20-round ARX stream cipher,

256-bit key; permutation-based

(single-key Even–Mansour)

cipher in counter mode.

Salsa20 is designed to use

vectorized arithmetic.

Salsa20 cryptanalytic papers

by Aumasson, Berbain, Biasse,

Biryukov, Castro, Crowley,

Estevez-Tapiador, Fischer,

Ishiguro, Khazaei, Kiyomoto,

Kubo, Meier, Miyake, Nakashima,

Pelissier, Priemuth-Schmid,

Quisquater, Rechberger, Robshaw,

Saito, Suzaki, Tsunoo:

2249 attack against 8 rounds.

Top-ranked software cipher in

polls at SASC 2007, SASC 2008.

eSTREAM: 12 rounds is fine.

I’m conservative: 20 rounds.

64-byte Salsa20 output block:

320 ARX sequences such as

s4 = x0 + x12

x4 ^= (s4 >>> 25)

operating on 32-bit integers.

i.e. 5 ARX sequences/byte.

ARM without NEON:

2 insns; 1 Cortex A8 cycle.

Sounds like 5 cycles/byte.

Actually >15 cycles/byte:

reg problems, latency problems.

2012 Bernstein–Schwabe:

optimize using NEON.

128-bit NEON vector insns:

e.g. 4 32-bit ops/cycle.

4x a0 = diag1 + diag0

Good: many ops/cycle.

Good: simultaneous

ARM+NEON instructions.

Good: tons of space in regs.

Bad: 4� same op.

Bad: no vector >>> .

Salsa20 has 4� same op;

can vectorize within block.

Salsa20 uses counter mode;

can vectorize across blocks.

We vectorize within block,

parallelize across 3 blocks,

use ARM+NEON simultaneously.

<6 cycles/byte,

protected against timing attacks.

Much faster than AES-128.

More crypto operations

Bernstein–Lange–Schwabe:

new cryptographic library,

NaCl (“salt”).

Acknowledgments:

code contributions from

Matthew Dempsky (Mochi

Media), Niels Duif (Eindhoven),

Emilia Käsper (Leuven),

Adam Langley (Google),

Bo-Yin Yang (Academia Sinica).

Most of the Internet

is cryptographically unprotected.

Even when crypto is deployed,

it usually isn’t secure.

Primary goal of NaCl: Fix this.

nacl.cr.yp.to: source

and extensive documentation.

Largest NaCl deployment so far:

DNSCrypt from OpenDNS,

high-security authenticated

encryption for DNS queries.

http://nacl.cr.yp.to

Critical NaCl design goals:

� No secret load addresses.

� No secret branch conditions.

� No padding oracles.

� Centralize randomness.

� Avoid unnecessary randomness.

� Avoid pure crypto failures.

� Speed.

Case study: EdDSA

1985 ElGamal signatures:

(R;S) is signature of M

if BH(M) � ARRS (mod q)

and R;S 2 f0; 1; : : : ; q � 2g.

Here q is standard prime,

B is standard base,

A is signer’s public key,

H(M) is hash of message.

Signer generates A and R

as secret powers of B;

easily solves for S.

1990 Schnorr improvements:

1. Hash R in the exponent:

BH(M) � AH(R)RS .

Reduces attacker control.

2. Replace three exponents

with two exponents:

BH(M)=H(R) � ARS=H(R).

Saves time in verification.

3. Simplify by relabeling S:

BH(M)=H(R) � ARS .

Saves time in verification.

4. Merge the hashes:

BH(R;M) � ARS .

) Resilient to H collisions.

5. Eliminate inversions for signer:

BS � RAH(R;M).

Simpler, faster.

6. Compress R to H(R;M).

Saves space in signatures.

7. Use half-size H output.

Saves space in signatures.

5. Eliminate inversions for signer:

BS � RAH(R;M).

Simpler, faster.

6. Compress R to H(R;M).

Saves space in signatures.

7. Use half-size H output.

Saves space in signatures.

Subsequent research: extensive

theoretical study of security of

Schnorr’s system.

5. Eliminate inversions for signer:

BS � RAH(R;M).

Simpler, faster.

6. Compress R to H(R;M).

Saves space in signatures.

7. Use half-size H output.

Saves space in signatures.

Subsequent research: extensive

theoretical study of security of

Schnorr’s system.

But patented.) DSA, ECDSA

avoided most improvements.

5. Eliminate inversions for signer:

BS � RAH(R;M).

Simpler, faster.

6. Compress R to H(R;M).

Saves space in signatures.

7. Use half-size H output.

Saves space in signatures.

Subsequent research: extensive

theoretical study of security of

Schnorr’s system.

But patented.) DSA, ECDSA

avoided most improvements.

Patent expired in 2008.

EdDSA (CHES 2011 Bernstein–

Duif–Lange–Schwabe–Yang):

Use elliptic curves in “complete

�1-twisted Edwards” form.

) very high speed,

natural side-channel protection,

no exceptional cases.

Skip signature compression.

Support batch verification.

Use double-size H output,

and include A as input.

Generate R deterministically

as a secret hash of M.

) Avoid PlayStation disaster.

Cortex A8 speed summary

2012 Bernstein–Schwabe:

<6 cycles/byte:

encrypt with Salsa20.

<3 cycles/byte:

authenticate with Poly1305.

ECC (Curve25519) public-key ops:

460200 cycles for DH.

624846 cycles to verify.

244655 cycles to sign.

