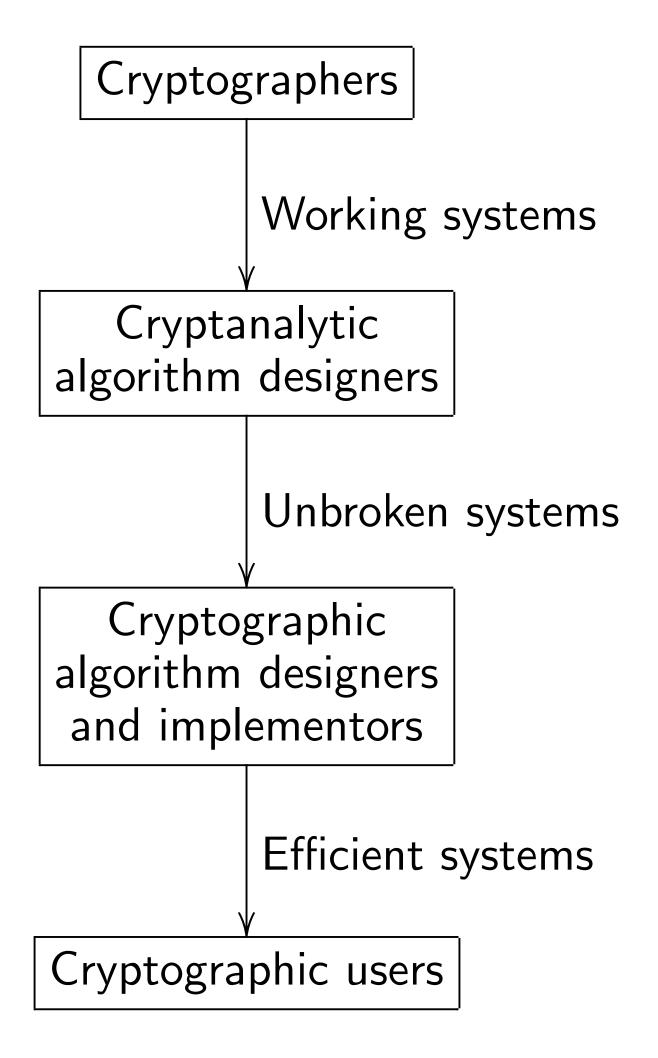
Post-quantum cryptography

D. J. Bernstein

University of Illinois at Chicago,

Technische Universiteit Eindhoven



1. Working systems

Fundamental question for cryptographers: How can we encrypt, decrypt, sign, verify, etc.?

Many answers: DES, Triple DES, FEAL-4, AES, RSA, McEliece encryption, Merkle hash-tree signatures, Merkle–Hellman knapsack encryption, Buchmann–Williams class-group encryption, ECDSA, HFE^{v-}, NTRU, et al.

Detailed example (not a very good cryptosystem!): textbook exponent-3 RSA-1024. Receiver's secret key: distinct 512-bit primes $p, q \in 2 + 3\mathbf{Z}$. Receiver's public key: pq. Sender's plaintext: $m \in \{0, 1, \ldots, pq-1\}.$ Sender's ciphertext: $m^3 \mod pq$. Receiver uses p, q to compute mgiven $m^3 \mod pq$.

2. Unbroken systems

Fundamental question for pre-quantum cryptanalysts: What can an attacker do using $<2^{b}$ operations on a *classical* computer? Fundamental question for post-quantum cryptanalysts: What can an attacker do using $< 2^b$ operations on a quantum computer?

Goal: identify systems that are *not* breakable in $<2^{b}$ operations.

Examples of RSA cryptanalysis:

Schroeppel's "linear sieve", mentioned in 1978 RSA paper, factors pq into p, q using $(2 + o(1))^{(\lg pq)^{1/2}}(\lg \lg pq)^{1/2}$ simple operations (conjecturally). To push this beyond 2^{b} , must choose pq to have at least $(0.5 + o(1))b^2/\lg b$ bits.

Note 1: $\lg = \log_2$.

Note 2: o(1) says *nothing* about, e.g., b = 128.

1993 Buhler–Lenstra–Pomerance, generalizing 1988 Pollard "number-field sieve", factors pq into p, q using $(3.79...+o(1))^{(\lg pq)^{1/3}}(\lg \lg pq)^{2/3}$ simple operations (conjecturally). To push this beyond 2^{b} , must choose pq to have at least $(0.015...+o(1))b^3/(\lg b)^2$ bits. Subsequent improvements:

3.73...; details of o(1). But can reasonably conjecture that $2^{(\lg pq)^{1/3+o(1)}}$ is optimal

—for classical computers.

Many "protocol" attacks.

e.g. attacker guesses user's m, verifies m^3 mod pq.

e.g. attacker hopes $m < (pq)^{1/3}$.

e.g. attacker sees how receiver reacts to $8m^3 \mod pq$.

Typical fix: feed *m* through randomization+padding+"AONT".

"Simple RSA" (2001 Shoup): send $r^3 \mod pq$ for random r; use hash of r as AES-GCM key to encrypt and authenticate m. Cryptographic systems surviving pre-quantum cryptanalysis:

Triple DES (for $b \leq 112$), AES-256 (for $b \le 256$), RSA with $b^{3+o(1)}$ -bit modulus. McEliece with code length $b^{1+o(1)}$, Merkle signatures with "strong" $b^{1+o(1)}$ -bit hash, BW with "strong" $b^{2+o(1)}$ bit discriminant, ECDSA with "strong" $b^{1+o(1)}$ -bit curve, HFE^{v-} with $b^{1+o(1)}$ polynomials, NTRU with $b^{1+o(1)}$ bits, et al.

Typical algorithmic tools for *pre-quantum* cryptanalysts: NFS, ρ, ISD, LLL, F4, XL, et al.

Post-quantum cryptanalysts have all the same tools plus quantum algorithms.

Spectacular example: 1994 Shor factors pq into p, qusing $(\lg pq)^{2+o(1)}$ simple quantum operations. To push this beyond 2^b , must choose pq to have at least $2^{(0.5+o(1))b}$ bits. Yikes. Cryptographic systems surviving post-quantum cryptanalysis:

AES-256 (for b < 128), McEliece code-based encryption with code length $b^{1+o(1)}$, Merkle hash-based signatures with "strong" $b^{1+o(1)}$ -bit hash, HFE^{v-} MQ signatures with $b^{1+o(1)}$ polynomials, NTRU lattice-based encryption with $b^{1+o(1)}$ bits. et al.

3. Efficient systems

Fundamental question for designers and implementors of cryptographic algorithms: Exactly how efficient are the unbroken cryptosystems?

Many goals: minimize encryption time, size, decryption time, etc.

Pre-quantum example: ECDSA with "strong" $b^{1+o(1)}$ -bit curve verifies signature in $b^{2+o(1)}$ simple operations. Signature occupies $b^{1+o(1)}$ bits. Users have cost constraints.

Cryptographers, cryptanalysts, implementors, etc. tend to focus on RSA and ECC, citing these cost constraints.

But we think that the most efficient unbroken *post-quantum* systems will be hash-based systems, code-based systems, lattice-based systems, multivariate-quadratic systems.