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1. Working systems

Fundamental question for

cryptographers:

How can we encrypt, decrypt,

sign, verify, etc.?

Many answers:

DES, Triple DES, FEAL-4, AES,

RSA, McEliece encryption,

Merkle hash-tree signatures,

Merkle–Hellman knapsack

encryption, Buchmann–Williams

class-group encryption,

ECDSA, HFEv�, NTRU, et al.



Detailed example

(not a very good cryptosystem!):

textbook exponent-3 RSA-1024.

Receiver’s secret key: distinct

512-bit primes p; q 2 2 + 3Z.

Receiver’s public key: pq.

Sender’s plaintext:

m 2 f0; 1; : : : ; pq � 1g.

Sender’s ciphertext: m3 mod pq.

Receiver uses p; q to compute m

given m3 mod pq.



2. Unbroken systems

Fundamental question for

pre-quantum cryptanalysts:

What can an attacker do

using <2b operations

on a classical computer?

Fundamental question for

post-quantum cryptanalysts:

What can an attacker do

using <2b operations

on a quantum computer?

Goal: identify systems that are

not breakable in <2b operations.



Examples of RSA cryptanalysis:

Schroeppel’s “linear sieve”,

mentioned in 1978 RSA paper,

factors pq into p; q using

(2 + o(1))(lg pq)1=2(lg lg pq)1=2

simple operations (conjecturally).

To push this beyond 2b,

must choose pq to have at least

(0:5 + o(1))b2=lg b bits.

Note 1: lg = log2.

Note 2: o(1) says nothing

about, e.g., b = 128.



1993 Buhler–Lenstra–Pomerance,

generalizing 1988 Pollard

“number-field sieve”,

factors pq into p; q using

(3:79 : : : + o(1))(lg pq)1=3(lg lg pq)2=3

simple operations (conjecturally).

To push this beyond 2b,

must choose pq to have at least

(0:015 : : : + o(1))b3=(lg b)2 bits.

Subsequent improvements:

3:73 : : :; details of o(1).

But can reasonably conjecture

that 2(lg pq)1=3+o(1)
is optimal

—for classical computers.



Many “protocol” attacks.

e.g. attacker guesses user’s m,

verifies m3 mod pq.

e.g. attacker hopes m < (pq)1=3.

e.g. attacker sees how

receiver reacts to 8m3 mod pq.

Typical fix: feed m through

randomization+padding+“AONT”.

“Simple RSA” (2001 Shoup):

send r3 mod pq for random r;

use hash of r as AES-GCM key

to encrypt and authenticate m.



Cryptographic systems surviving

pre-quantum cryptanalysis:

Triple DES (for b � 112),

AES-256 (for b � 256),

RSA with b3+o(1)-bit modulus,

McEliece with code length

b1+o(1), Merkle signatures

with “strong” b1+o(1)-bit hash,

BW with “strong” b2+o(1)-

bit discriminant, ECDSA with

“strong” b1+o(1)-bit curve,

HFEv� with b1+o(1) polynomials,

NTRU with b1+o(1) bits, et al.



Typical algorithmic tools for

pre-quantum cryptanalysts:

NFS, �, ISD, LLL, F4, XL, et al.

Post-quantum cryptanalysts

have all the same tools

plus quantum algorithms.

Spectacular example:

1994 Shor factors pq into p; q

using (lg pq)2+o(1)

simple quantum operations.

To push this beyond 2b,

must choose pq to have at least

2(0:5+o(1))b bits. Yikes.



Cryptographic systems surviving

post-quantum cryptanalysis:

AES-256 (for b � 128),

McEliece code-based encryption

with code length b1+o(1),

Merkle hash-based signatures

with “strong” b1+o(1)-bit hash,

HFEv� MQ signatures with

b1+o(1) polynomials,

NTRU lattice-based encryption

with b1+o(1) bits,

et al.



3. Efficient systems

Fundamental question for

designers and implementors

of cryptographic algorithms:

Exactly how efficient are the

unbroken cryptosystems?

Many goals: minimize encryption

time, size, decryption time, etc.

Pre-quantum example:

ECDSA with “strong” b1+o(1)-bit

curve verifies signature in b2+o(1)

simple operations.

Signature occupies b1+o(1) bits.



Users have cost constraints.

Cryptographers, cryptanalysts,

implementors, etc. tend to

focus on RSA and ECC,

citing these cost constraints.

But we think that

the most efficient unbroken

post-quantum systems will be

hash-based systems,

code-based systems,

lattice-based systems,

multivariate-quadratic systems.


