Two grumpy giants

 and a babyD. J. Bernstein University of Illinois at Chicago

Tanja Lange

Technische Universiteit Eindhoven

Discrete-logarithm problems

Fix a prime ℓ.

Input: generator g
of group of order ℓ;
element h of same group.
Output: integer $k \in \mathbf{Z} / \ell$
such that $h=g^{k}$, where group is written multiplicatively. " $k=\log _{g} h$ ".

How difficult is computation of k ?

Real-world importance

Apple, "iOS Security", 2012.05:
"Some files may need to be written while the device is locked.
A good example of this is a mail attachment downloading in the background. This behavior is achieved by using asymmetric elliptic curve cryptography (ECDH over Curve25519)." Also used for "iCloud Backup".

More examples: DNSCrypt; elliptic-curve signatures
in German electronic passports.

Generic algorithms

Will focus on algorithms
that work for every
group of order ℓ.
Allowed operations:
neutral element 1 ;
multiplication $a, b \mapsto a b$.
Will measure algorithm cost by counting \# multiplications.

Success probability:
average over groups
and over algorithm randomness.

Each group element

computed by the algorithm is trivially expressed as $h^{x} g^{y}$ for known $(x, y) \in(\mathbf{Z} / \ell)^{2}$.
$1=h^{x} g^{y}$ for $(x, y)=(0,0)$.
$g=h^{x} g^{y}$ for $(x, y)=(0,1)$.
$h=h^{x} g^{y}$ for $(x, y)=(1,0)$.
If algorithm multiplies
$h^{x_{1}} g^{y_{1}}$ by $h^{x_{2}} g^{y_{2}}$
then it obtains $h^{x} g^{y}$ where
$(x, y)=\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)$.

Slopes
If $h^{x_{1}} g^{y_{1}}=h^{x_{2}} g^{y_{2}}$
and $\left(x_{1}, y_{1}\right) \neq\left(x_{2}, y_{2}\right)$
then $\log _{g} h$ is the negative of the slope $\left(y_{2}-y_{1}\right) /\left(x_{2}-x_{1}\right)$.
(Impossible to have $x_{1}=x_{2}$: if $x_{1}=x_{2}$ then $g^{y_{1}}=g^{y_{2}}$ so $y_{1}=y_{2}$, contradiction.)

Algorithm immediately recognizes collisions of group elements by putting each $\left(h^{x} g^{y}, x, y\right)$ into, e.g., a red-black tree. (Low memory? Parallel?
Distributed? Not in this talk.)

Baby-step-giant-step

(1971 Shanks)
Choose $n \geq 1$,
typically $n \approx \sqrt{\ell}$.
Points (x, y) :
$n+1$ "baby steps"
$(0,0),(0,1),(0,2), \ldots,(0, n)$;
$n+1$ "giant steps"
$(1,0),(1, n),(1,2 n), \ldots,\left(1, n^{2}\right)$.
Can use more giant steps.
Stop when $\log _{g} h$ is found.

Performance of BSGS

Slope $j n-i$ from $(0, i)$ to $(1, j n)$.
Covers slopes
$\left\{-n, \ldots,-1,0,1,2,3, \ldots, n^{2}\right\}$,
using $2 n-1$ multiplications.
Finds all discrete logarithms
if $\ell \leq n^{2}+n+1$.
Worst case with $n \approx \sqrt{\ell}$:
$(2+o(1)) \sqrt{\ell}$ multiplications.
(In fact always $<2 \sqrt{\ell}$.)
Average case with $n \approx \sqrt{\ell}$: $(1.5+o(1)) \sqrt{\ell}$ multiplications.

Interleaving (2000 Pollard)

Improve average case to
$(4 / 3+o(1)) \sqrt{\ell}$ multiplications:
$(0,0),(1,0)$,
$(0,1),(1, n)$,
$(0,2),(1,2 n)$,
$(0,3),(1,3 n)$,
$(0, n),\left(1, n^{2}\right)$.
$4 / 3$ arises as $\int_{0}^{1}(2 x)^{2} d x$.

Interleaving (2000 Pollard)

Improve average case to
$(4 / 3+o(1)) \sqrt{\ell}$ multiplications:
$(0,0),(1,0)$,
$(0,1),(1, n)$,
$(0,2),(1,2 n)$,
$(0,3),(1,3 n)$,
$(0, n),\left(1, n^{2}\right)$.
$4 / 3$ arises as $\int_{0}^{1}(2 x)^{2} d x$.
Oops: Have to start with
$(0, n)$ as step towards $(1, n)$.
But this costs only $O(\log \ell)$.

Is BSGS optimal?

After m multiplications
have $m+3$ points in $(\mathbf{Z} / \ell)^{2}$.
Can hope for $(m+3)(m+2) / 2$
different slopes in \mathbf{Z} / ℓ.

Is BSGS optimal?

After m multiplications
have $m+3$ points in $(\mathbf{Z} / \ell)^{2}$.
Can hope for $(m+3)(m+2) / 2$ different slopes in \mathbf{Z} / ℓ.

1994 Nechaev, 1997 Shoup:
proof that generic algorithms have success probability $O\left(m^{2} / \ell\right)$.
Proof actually gives
$\leq((m+3)(m+2) / 2+1) / \ell$.

Is BSGS optimal?

After m multiplications
have $m+3$ points in $(\mathbf{Z} / \ell)^{2}$.
Can hope for $(m+3)(m+2) / 2$ different slopes in \mathbf{Z} / ℓ.

1994 Nechaev, 1997 Shoup:
proof that generic algorithms have success probability $O\left(m^{2} / \ell\right)$.
Proof actually gives
$\leq((m+3)(m+2) / 2+1) / \ell$.
BSGS: at best $\approx m^{2} / 4$ slopes, taking $n \approx m / 2$.
Factor of 2 away from the bound.

The rho method

(1978 Pollard, $r=3$ "mixed"; many subsequent variants)

Initial computation:

r uniform random "steps"
$\left(s_{1}, t_{1}\right), \ldots,\left(s_{r}, t_{r}\right) \in(\mathbf{Z} / \ell)^{2}$.
$O(r \log \ell)$ multiplications; negligible if r is small.

The "walk": Starting from $\left(x_{i}, y_{i}\right) \in(\mathbf{Z} / \ell)^{2}$ compute $\left(x_{i+1}, y_{i+1}\right)=\left(x_{i}, y_{i}\right)+\left(s_{j}, t_{j}\right)$
where $j \in\{1, \ldots, r\}$ is a hash of $h^{x_{i}} g^{y_{i}}$.

Performance of rho

Model walk as truly random.
Using m multiplications:
$\approx m$ points $\left(x_{i}, y_{i}\right)$;
$\approx m^{2} / 2$ pairs of points;
slope λ is missed
with chance $\approx(1-1 / \ell)^{m^{2} / 2}$
$\approx \exp \left(-m^{2} /(2 \ell)\right)$.
Average \# multiplications
$\approx \sum_{0}^{\infty} \exp \left(-m^{2} /(2 \ell)\right)$
$\approx \int_{0}^{\infty} \exp \left(-m^{2} /(2 \ell)\right) d m$
$=\sqrt{\pi / 4} \sqrt{2 \ell}=(1.25 \ldots) \sqrt{\ell}$.
Better than $(4 / 3+o(1)) \sqrt{\ell}$.

Performance of rho

Model walk as truly random.
Using m multiplications:
$\approx m$ points $\left(x_{i}, y_{i}\right)$;
$\approx m^{2} / 2$ pairs of points;
slope λ is missed
with chance $\approx(1-1 / \ell)^{m^{2} / 2}$ $\approx \exp \left(-m^{2} /(2 \ell)\right)$.

Average \# multiplications $\approx \sum_{0}^{\infty} \exp \left(-m^{2} /(2 \ell)\right)$
$\approx \int_{0}^{\infty} \exp \left(-m^{2} /(2 \ell)\right) d m$ $=\sqrt{\pi / 4} \sqrt{2 \ell}=(1.25 \ldots) \sqrt{\ell}$.
Better than $(4 / 3+o(1)) \sqrt{\ell}$.
Don't ask about the worst case.

Anti-collisions

Bad news:

The walk is worse than random.
Very often have
$\left(x_{i+1}, y_{i+1}\right)=\left(x_{i}, y_{i}\right)+\left(s_{j}, t_{j}\right)$
followed later by
$\left(x_{k+1}, y_{k+1}\right)=\left(x_{k}, y_{k}\right)+\left(s_{j}, t_{j}\right)$.
Slope from
$\left(x_{k+1}, y_{k+1}\right)$ to $\left(x_{i+1}, y_{i+1}\right)$
is not new: same as slope from $\left(x_{k}, y_{k}\right)$ to $\left(x_{i}, y_{i}\right)$.

Repeated slope: "anti-collision".
$m^{2} / 2$ was too optimistic.
About $(1 / r) m^{2} / 2$ pairs
use same step, so only
$(1-1 / r) m^{2} / 2$ chances.
This replacement model \Rightarrow
$(\sqrt{\pi / 2} / \sqrt{1-1 / r}+o(1)) \sqrt{\ell}$.
Can derive $\sqrt{1-1 / r}$
from more complicated 1981
Brent-Pollard \sqrt{V} heuristic.
1998 Blackburn-Murphy:
explicit $\sqrt{1-1 / r}$.
2009 Bernstein-Lange:
simplified heuristic;
generalized $\sqrt{1-\sum_{j}} p_{j}^{2}$.

Higher-degree anti-collisions

Actually, rho is even worse!

Often have
$\left(x_{i+1}, y_{i+1}\right)=\left(x_{i}, y_{i}\right)+\left(s_{j}, t_{j}\right)$
$\left(x_{i+2}, y_{i+2}\right)=\left(x_{i+1}, y_{i+1}\right)+\left(s_{h}, t_{h}\right)$
followed later by
$\left(x_{k+1}, y_{k+1}\right)=\left(x_{k}, y_{k}\right)+\left(s_{h}, t_{h}\right)$
$\left(x_{k+2}, y_{k+2}\right)=\left(x_{k+1}, y_{k+1}\right)+\left(s_{j}, t_{j}\right)$
so slope from
$\left(x_{k+2}, y_{k+2}\right)$ to $\left(x_{i+2}, y_{i+2}\right)$
is not new.
"Degree-2 local anti-collisions":
$1 / \sqrt{1-1 / r-1 / r^{2}+1 / r^{3}}$.
See paper for more.

Is rho optimal?

Allow r to grow slowly with ℓ.
(Not quickly: remember
cost of initial computation.)
$\sqrt{1-1 / r} \rightarrow 1$.
$\sqrt{1-1 / r-1 / r^{2}+1 / r^{3}} \rightarrow 1$.
Experimental evidence \Rightarrow average $(\sqrt{\pi / 2}+o(1)) \sqrt{\ell}$.

But still have many
global anti-collisions:
slopes appearing repeatedly.

Two grumpy giants and a baby

B: $(0,0)+\{0, \ldots, n\}(0,1)$.
Gi: $(1,0)+\{0, \ldots, n\}(0, n)$.
G2: $(2,0)-\{0, \ldots, n\}(0, n+1)$.

Two grumpy giants and a baby

B: $(0,0)+\{0, \ldots, n\}(0,1)$.
G1: $(1,0)+\{0, \ldots, n\}(0, n)$.
G2: $(2,0)-\{0, \ldots, n\}(0, n+1)$.
Minor initial cost: $(0,-(n+1))$.

Two grumpy giants and a baby

B: $(0,0)+\{0, \ldots, n\}(0,1)$.
G1: $(1,0)+\{0, \ldots, n\}(0, n)$.
G2: $(2,0)-\{0, \ldots, n\}(0, n+1)$.
Minor initial cost: $(0,-(n+1))$.
As before can interleave:
$(0,0),(1,0),(2,0)$,
$(0,1),(1, n),(2,-(n+1))$,
$(0,2),(1,2 n),(2,-2(n+1))$,
$(0,3),(1,3 n),(2,-3(n+1))$,
$(0, n),\left(1, n^{2}\right),(2,-n(n+1))$.

Grumpy performance

For $(1.5+o(1)) \sqrt{\ell}$ mults:
BSGS, with $n \approx 0.75 \sqrt{\ell}$ or interleaved with $n \approx \sqrt{\ell}$, finds $(0.5625+o(1)) \ell$ slopes.

Grumpy performance

For $(1.5+o(1)) \sqrt{\ell}$ mults:
BSGS, with $n \approx 0.75 \sqrt{\ell}$ or interleaved with $n \approx \sqrt{\ell}$, finds $(0.5625+o(1)) \ell$ slopes.

Truly random walk

finds $(0.6753 \ldots+o(1)) \ell$ slopes.

Grumpy performance

For $(1.5+o(1)) \sqrt{\ell}$ mults:
BSGS, with $n \approx 0.75 \sqrt{\ell}$ or interleaved with $n \approx \sqrt{\ell}$, finds $(0.5625+o(1)) \ell$ slopes.

Truly random walk
finds $(0.6753 \ldots+o(1)) \ell$ slopes.
Two grumpy giants and a baby, with $n \approx 0.5 \sqrt{\ell}$,
find $(0.71875+o(1)) \ell$ slopes.

Grumpy performance

For $(1.5+o(1)) \sqrt{\ell}$ mults:
BSGS, with $n \approx 0.75 \sqrt{\ell}$ or interleaved with $n \approx \sqrt{\ell}$, finds $(0.5625+o(1)) \ell$ slopes.

Truly random walk
finds $(0.6753 \ldots+o(1)) \ell$ slopes.
Two grumpy giants and a baby, with $n \approx 0.5 \sqrt{\ell}$,
find $(0.71875+o(1)) \ell$ slopes.
Also better average case than rho.

