Two grumpy giants and a baby

D. J. Bernstein
University of Illinois at Chicago

Tanja Lange

Technische Universiteit Eindhoven

Discrete-logarithm problems

Fix a prime ℓ .

Input: generator gof group of order ℓ ; element h of same group. Output: integer $k \in \mathbf{Z}/\ell$ such that $h = g^k$, where group is written multiplicatively. " $k = \log_g h$ ".

How difficult is computation of k?

Generic algorithms

Will focus on algorithms that work for every group of order *l*.

Allowed operations: neutral element 1; multiplication $a, b \mapsto ab$.

Will measure algorithm cost by counting # multiplications.

Success probability: average over groups and over algorithm randomness. Each group element computed by the algorithm is trivially expressed as $h^x g^y$ for known $(x, y) \in (\mathbf{Z}/\ell)^2$.

$$egin{aligned} 1 &= h^x g^y ext{ for } (x,y) = (0,0). \ g &= h^x g^y ext{ for } (x,y) = (0,1). \ h &= h^x g^y ext{ for } (x,y) = (1,0). \end{aligned}$$

If algorithm multiplies $h^{x_1}g^{y_1}$ by $h^{x_2}g^{y_2}$ then it obtains h^xg^y where $(x,y) = (x_1,y_1) + (x_2,y_2).$

<u>Slopes</u>

If $h^{x_1}q^{y_1} = h^{x_2}q^{y_2}$ and $(x_1, y_1) \neq (x_2, y_2)$ then $\log_q h$ is the negative of the slope $(y_2 - y_1)/(x_2 - x_1)$. (Impossible to have $x_1 = x_2$: if $x_1 = x_2$ then $q^{y_1} = q^{y_2}$ so $y_1 = y_2$, contradiction.) Algorithm immediately recognizes

collisions of group elements by putting each $(h^x g^y, x, y)$ into, e.g., a red-black tree. (Low memory? Parallel? Distributed? Not in this talk.)

<u>Baby-step-giant-step</u>

(1971 Shanks) Choose n > 1, typically $n \approx \sqrt{\ell}$. Points (x, y): n+1 "baby steps" $(0, 0), (0, 1), (0, 2), \dots, (0, n);$ n+1 "giant steps" $(1, 0), (1, n), (1, 2n), \ldots, (1, n^2).$

Can use more giant steps. Stop when $\log_q h$ is found.

Performance of BSGS

Slope jn - i from (0, i) to (1, jn). Covers slopes $\{-n, \ldots, -1, 0, 1, 2, 3, \ldots, n^2\}$, using 2n - 1 multiplications.

Finds all discrete logarithms if $\ell \leq n^2 + n + 1$.

Worst case with $n \approx \sqrt{\ell}$: $(2 + o(1))\sqrt{\ell}$ multiplications. (In fact always $< 2\sqrt{\ell}$.)

Average case with $n \approx \sqrt{\ell}$: $(1.5 + o(1))\sqrt{\ell}$ multiplications.

Interleaving (2000 Pollard)

```
Improve average case to
(4/3 + o(1))\sqrt{\ell} multiplications:
(0,0),(1,0),
(0, 1), (1, n),
(0, 2), (1, 2n),
(0,3),(1,3n),
(0, n), (1, n^2).
4/3 arises as \int_0^1 (2x)^2 dx.
```

Interleaving (2000 Pollard)

```
Improve average case to
(4/3 + o(1))\sqrt{\ell} multiplications:
(0,0),(1,0),
(0, 1), (1, n),
(0, 2), (1, 2n),
(0,3),(1,3n),
(0, n), (1, n^2).
4/3 arises as \int_0^1 (2x)^2 dx.
Oops: Have to start with
(0, n) as step towards (1, n).
But this costs only O(\log \ell).
```

Is BSGS optimal?

After *m* multiplications have m + 3 points in $(\mathbb{Z}/\ell)^2$. Can hope for (m + 3)(m + 2)/2different slopes in \mathbb{Z}/ℓ .

Is BSGS optimal?

After *m* multiplications have m + 3 points in $(\mathbf{Z}/\ell)^2$. Can hope for (m + 3)(m + 2)/2different slopes in \mathbf{Z}/ℓ .

1994 Nechaev, 1997 Shoup: proof that generic algorithms have success probability $O(m^2/\ell)$. Proof actually gives $\leq ((m+3)(m+2)/2+1)/\ell$.

Is BSGS optimal?

After *m* multiplications have m + 3 points in $(\mathbf{Z}/\ell)^2$. Can hope for (m + 3)(m + 2)/2different slopes in \mathbf{Z}/ℓ .

1994 Nechaev, 1997 Shoup: proof that generic algorithms have success probability $O(m^2/\ell)$. Proof actually gives $\leq ((m+3)(m+2)/2+1)/\ell$. BSGS: at best $\approx m^2/4$ slopes, taking $n \approx m/2$. Factor of 2 away from the bound.

<u>The rho method</u>

(1978 Pollard, r = 3 "mixed"; many subsequent variants)

Initial computation: r uniform random "steps" $(s_1, t_1), \ldots, (s_r, t_r) \in (\mathbf{Z}/\ell)^2$. $O(r \log \ell)$ multiplications; negligible if r is small.

The "walk": Starting from $(x_i, y_i) \in (\mathbf{Z}/\ell)^2$ compute $(x_{i+1}, y_{i+1}) = (x_i, y_i) + (s_j, t_j)$ where $j \in \{1, \ldots, r\}$ is a hash of $h^{x_i} g^{y_i}$.

Performance of rho

Model walk as truly random.

Using m multiplications: $\approx m$ points (x_i, y_i) ; $\approx m^2/2$ pairs of points; slope λ is missed with chance $\approx (1 - 1/\ell)^{m^2/2}$ $\approx \exp(-m^2/(2\ell))$.

Average # multiplications $\approx \sum_{0}^{\infty} \exp(-m^2/(2\ell))$ $\approx \int_{0}^{\infty} \exp(-m^2/(2\ell)) dm$ $= \sqrt{\pi/4}\sqrt{2\ell} = (1.25...)\sqrt{\ell}.$ Better than $(4/3 + o(1))\sqrt{\ell}.$

Performance of rho

Model walk as truly random.

Using m multiplications: $\approx m$ points (x_i, y_i) ; $\approx m^2/2$ pairs of points; slope λ is missed with chance $\approx (1 - 1/\ell)^{m^2/2}$ $\approx \exp(-m^2/(2\ell))$.

Average # multiplications $\approx \sum_{0}^{\infty} \exp(-m^2/(2\ell))$ $\approx \int_{0}^{\infty} \exp(-m^2/(2\ell)) dm$ $= \sqrt{\pi/4}\sqrt{2\ell} = (1.25...)\sqrt{\ell}.$ Better than $(4/3 + o(1))\sqrt{\ell}.$ Don't ask about the worst case.

<u>Anti-collisions</u>

Bad news:

The walk is worse than random.

Very often have $(x_{i+1},y_{i+1})=(x_i,y_i)+(s_j,t_j)$ followed later by $(x_{k+1}, y_{k+1}) = (x_k, y_k) + (s_j, t_j).$ Slope from (x_{k+1},y_{k+1}) to (x_{i+1},y_{i+1}) is not new: same as slope from (x_k, y_k) to (x_i, y_i) .

Repeated slope: "anti-collision".

 $m^2/2$ was too optimistic. About $(1/r)m^2/2$ pairs use same step, so only $(1-1/r)m^2/2$ chances.

This replacement model \Rightarrow $(\sqrt{\pi/2}/\sqrt{1-1/r}+o(1))/\ell.$ Can derive $\sqrt{1-1/r}$ from more complicated 1981 Brent–Pollard \sqrt{V} heuristic. 1998 Blackburn–Murphy: explicit $\sqrt{1-1/r}$. 2009 Bernstein–Lange: simplified heuristic; generalized $\sqrt{1-\sum_{j}p_{j}^{2}}$.

Higher-degree anti-collisions

Actually, rho is even worse!

Often have

 $(x_{i+1}, y_{i+1}) = (x_i, y_i) + (s_j, t_j)$ $(x_{i+2}, y_{i+2}) = (x_{i+1}, y_{i+1}) + (s_h, t_h)$ followed later by

$$(x_{k+1}, y_{k+1}) = (x_k, y_k) + (s_h, t_h)$$

 $(x_{k+2}, y_{k+2}) = (x_{k+1}, y_{k+1}) + (s_j, t_j)$
so slope from

 (x_{k+2}, y_{k+2}) to (x_{i+2}, y_{i+2}) is not new.

"Degree-2 local anti-collisions": $1/\sqrt{1-1/r}-1/r^2+1/r^3}$. See paper for more.

<u>Is rho optimal?</u>

Allow r to grow slowly with ℓ . (Not quickly: remember cost of initial computation.)

$$egin{aligned} \sqrt{1-1/r} & o 1. \ \sqrt{1-1/r} & o 1. \ \sqrt{1-1/r} & o 1/r^2 + 1/r^3 & o 1. \end{aligned}$$

Experimental evidence \Rightarrow average $(\sqrt{\pi/2} + o(1))\sqrt{\ell}$.

But still have many global anti-collisions: slopes appearing repeatedly. Two grumpy giants and a baby

B: $(0, 0) + \{0, ..., n\}(0, 1)$. G1: $(1, 0) + \{0, ..., n\}(0, n)$. G2: $(2, 0) - \{0, ..., n\}(0, n+1)$. Two grumpy giants and a baby

B: $(0, 0) + \{0, ..., n\}(0, 1)$. G1: $(1, 0) + \{0, ..., n\}(0, n)$. G2: $(2, 0) - \{0, ..., n\}(0, n+1)$.

Minor initial cost: (0, -(n + 1)).

<u>Two grumpy giants and a baby</u>

B: $(0,0)+\{0,\ldots,n\}(0,1)$. G1: $(1,0)+\{0,\ldots,n\}(0,n)$. G2: $(2,0)-\{0,\ldots,n\}(0,n+1)$.

Minor initial cost: (0, -(n + 1)).

As before can interleave: (0, 0), (1, 0), (2, 0), (0, 1), (1, n), (2, -(n + 1)), (0, 2), (1, 2n), (2, -2(n + 1)), (0, 3), (1, 3n), (2, -3(n + 1)), \vdots $(0, n), (1, n^2), (2, -n(n + 1)).$

For $(1.5 + o(1))\sqrt{\ell}$ mults:

BSGS, with $n \approx 0.75\sqrt{\ell}$ or interleaved with $n \approx \sqrt{\ell}$, finds $(0.5625 + o(1))\ell$ slopes.

For $(1.5 + o(1))\sqrt{\ell}$ mults:

BSGS, with $n \approx 0.75\sqrt{\ell}$ or interleaved with $n \approx \sqrt{\ell}$, finds $(0.5625 + o(1))\ell$ slopes.

Truly random walk finds $(0.6753...+o(1))\ell$ slopes.

For $(1.5 + o(1))\sqrt{\ell}$ mults:

BSGS, with $n \approx 0.75\sqrt{\ell}$ or interleaved with $n \approx \sqrt{\ell}$, finds $(0.5625 + o(1))\ell$ slopes.

Truly random walk finds $(0.6753...+o(1))\ell$ slopes.

Two grumpy giants and a baby, with $n \approx 0.5 \sqrt{\ell}$, find $(0.71875 + o(1))\ell$ slopes.

For $(1.5 + o(1))\sqrt{\ell}$ mults:

BSGS, with $n \approx 0.75\sqrt{\ell}$ or interleaved with $n \approx \sqrt{\ell}$, finds $(0.5625 + o(1))\ell$ slopes.

Truly random walk finds $(0.6753...+o(1))\ell$ slopes.

Two grumpy giants and a baby, with $n \approx 0.5 \sqrt{\ell}$, find $(0.71875 + o(1))\ell$ slopes.

Also better average case than rho.