Two grumpy giants
and a baby

D. J. Bernstein
University of Illinois at Chicago

Tanja Lange
Technische Universiteit Eindhoven
Discrete-logarithm problems

Fix a prime \(\ell \).

Input: generator \(g \)
of group of order \(\ell \);
element \(h \) of same group.

Output: integer \(k \in \mathbb{Z}/\ell \)
such that \(h = g^k \), where
group is written multiplicatively.

"\(k = \log_g h \)."

How difficult is computation of \(k \)?
Generic algorithms

Will focus on algorithms that work for every group of order \(\ell \).

Allowed operations: neutral element 1; multiplication \(a, b \mapsto ab \).

Will measure algorithm cost by counting \(\# \) multiplications.

Success probability: average over groups and over algorithm randomness.
Each group element computed by the algorithm is trivially expressed as $h^x g^y$ for known $(x, y) \in (\mathbb{Z}/\ell)^2$.

$1 = h^x g^y$ for $(x, y) = (0, 0)$.

$g = h^x g^y$ for $(x, y) = (0, 1)$.

$h = h^x g^y$ for $(x, y) = (1, 0)$.

If algorithm multiplies $h^{x_1} g^{y_1}$ by $h^{x_2} g^{y_2}$ then it obtains $h^x g^y$ where $(x, y) = (x_1, y_1) + (x_2, y_2)$.
Slopes

If $h^{x_1}g^{y_1} = h^{x_2}g^{y_2}$ and $(x_1, y_1) \neq (x_2, y_2)$ then $\log_g h$ is the negative of the slope $(y_2 - y_1)/(x_2 - x_1)$.

(Impossible to have $x_1 = x_2$: if $x_1 = x_2$ then $g^{y_1} = g^{y_2}$ so $y_1 = y_2$, contradiction.)

Algorithm immediately recognizes collisions of group elements by putting each (h^xg^y, x, y) into, e.g., a red-black tree.

(Low memory? Parallel? Distributed? Not in this talk.)
Baby-step-giant-step

(1971 Shanks)

Choose $n \geq 1$,
typically $n \approx \sqrt{l}$.

Points (x, y):
$n + 1$ “baby steps”
$(0, 0), (0, 1), (0, 2), \ldots, (0, n)$;
$n + 1$ “giant steps”
$(1, 0), (1, n), (1, 2n), \ldots, (1, n^2)$.

Can use more giant steps.
Stop when $\log_g h$ is found.
Performance of BSGS

Slope $jn - i$ from $(0, i)$ to $(1, jn)$.

Covers slopes
\{-n, \ldots, -1, 0, 1, 2, 3, \ldots, n^2\},
using $2n - 1$ multiplications.

Finds all discrete logarithms if $\ell \leq n^2 + n + 1$.

Worst case with $n \approx \sqrt{\ell}$:
\[(2 + o(1))\sqrt{\ell} \text{ multiplications.}
\] (In fact always $< 2\sqrt{\ell}$.)

Average case with $n \approx \sqrt{\ell}$:
\[(1.5 + o(1))\sqrt{\ell} \text{ multiplications.}\]
Interleaving (2000 Pollard)

Improve average case to
\((4/3 + o(1)) \sqrt{\ell}\) multiplications:

- \((0, 0), (1, 0)\),
- \((0, 1), (1, n)\),
- \((0, 2), (1, 2n)\),
- \((0, 3), (1, 3n)\),

\(\vdots\)

- \((0, n), (1, n^2)\).

4/3 arises as \(\int_0^1 (2x)^2 \, dx\).
Interleaving (2000 Pollard)

Improve average case to
\((4/3 + o(1))\sqrt{l}\) multiplications:

\((0, 0), (1, 0),\)

\((0, 1), (1, n),\)

\((0, 2), (1, 2n),\)

\((0, 3), (1, 3n),\)

\[\vdots\]

\((0, n), (1, n^2).\)

\(4/3\) arises as \(\int_0^1 (2x)^2 \, dx\).

Oops: Have to start with
\((0, n)\) as step towards \((1, n)\).
But this costs only \(O(\log l)\).
Is BSGS optimal?

After m multiplications have $m + 3$ points in $(\mathbb{Z}/\ell)^2$. Can hope for $(m + 3)(m + 2)/2$ different slopes in \mathbb{Z}/ℓ.
Is BSGS optimal?

After m multiplications have $m + 3$ points in $(\mathbb{Z}/\ell)^2$. Can hope for $(m + 3)(m + 2)/2$ different slopes in \mathbb{Z}/ℓ.

1994 Nechaev, 1997 Shoup: proof that generic algorithms have success probability $O(m^2/\ell)$. Proof actually gives $\leq ((m + 3)(m + 2)/2 + 1)/\ell$.
Is BSGS optimal?

After m multiplications have $m + 3$ points in $(\mathbb{Z}/\ell)^2$.
Can hope for $(m + 3)(m + 2)/2$ different slopes in \mathbb{Z}/ℓ.

1994 Nechaev, 1997 Shoup: proof that generic algorithms have success probability $O(m^2/\ell)$. Proof actually gives $\leq ((m + 3)(m + 2)/2 + 1)/\ell$.

BSGS: at best $\approx m^2/4$ slopes, taking $n \approx m/2$.
Factor of 2 away from the bound.
The rho method

(1978 Pollard, $r = 3$ “mixed”; many subsequent variants)

Initial computation:
r uniform random “steps”
$(s_1, t_1), \ldots, (s_r, t_r) \in (\mathbb{Z}/\ell)^2$.
$O(r \log \ell)$ multiplications;
negligible if r is small.

The “walk”: Starting from
$(x_i, y_i) \in (\mathbb{Z}/\ell)^2$ compute
$(x_{i+1}, y_{i+1}) = (x_i, y_i) + (s_j, t_j)$
where $j \in \{1, \ldots, r\}$
is a hash of $h^{x_i} g^{y_i}$.
Performance of rho

Model walk as truly random.

Using m multiplications:

$\approx m$ points (x_i, y_i);

$\approx m^2/2$ pairs of points;

slope λ is missed

with chance $\approx (1 - 1/\ell)^{m^2/2}$

$\approx \exp(-m^2/(2\ell))$.

Average # multiplications

$\approx \sum_0^\infty \exp(-m^2/(2\ell))$

$\approx \int_0^\infty \exp(-m^2/(2\ell)) \, dm$

$= \sqrt{\pi/4}\sqrt{2\ell} = (1.25\ldots)\sqrt{\ell}$.

Better than $(4/3 + o(1))\sqrt{\ell}$.
Performance of rho

Model walk as truly random.

Using m multiplications:

$\approx m$ points (x_i, y_i);
$\approx m^2/2$ pairs of points;
slope λ is missed

with chance $\approx (1 - 1/\ell)m^2/2$
$\approx \exp(-m^2/(2\ell))$.

Average # multiplications

$\approx \sum_{0}^{\infty} \exp(-m^2/(2\ell))$
$\approx \int_{0}^{\infty} \exp(-m^2/(2\ell)) \, dm$

$= \sqrt{\pi}/4\sqrt{2\ell} = (1.25\ldots)\sqrt{\ell}$.

Better than $(4/3 + o(1))\sqrt{\ell}$.

Don’t ask about the worst case.
Anti-collisions

Bad news:
The walk is worse than random.

Very often have
\[(x_{i+1}, y_{i+1}) = (x_i, y_i) + (s_j, t_j)\]
followed later by
\[(x_{k+1}, y_{k+1}) = (x_k, y_k) + (s_j, t_j).\]

Slope from
\[(x_{k+1}, y_{k+1})\] to \[(x_{i+1}, y_{i+1})\]
is not new: same as slope from
\[(x_k, y_k)\] to \[(x_i, y_i).\]

Repeated slope: “anti-collision”.
$m^2/2$ was too optimistic.
About $(1/r)m^2/2$ pairs use same step, so only $(1 - 1/r)m^2/2$ chances.

This replacement model $\Rightarrow \left(\frac{\sqrt{\pi/2}}{\sqrt{1 - 1/r} + o(1)} \right) \sqrt{\ell}.$

Can derive $\sqrt{1 - 1/r}$ from more complicated 1981 Brent–Pollard \sqrt{V} heuristic.
1998 Blackburn–Murphy: explicit $\sqrt{1 - 1/r}$.
2009 Bernstein–Lange: simplified heuristic;
generalized $\sqrt{1 - \sum_j p_j^2}.$
Higher-degree anti-collisions

Actually, rho is even worse!

Often have

\[(x_{i+1}, y_{i+1}) = (x_i, y_i) + (s_j, t_j)\]
\[(x_{i+2}, y_{i+2}) = (x_{i+1}, y_{i+1}) + (s_h, t_h)\]

followed later by

\[(x_{k+1}, y_{k+1}) = (x_k, y_k) + (s_h, t_h)\]
\[(x_{k+2}, y_{k+2}) = (x_{k+1}, y_{k+1}) + (s_j, t_j)\]

so slope from

\[(x_{k+2}, y_{k+2}) \text{ to } (x_{i+2}, y_{i+2})\]

is not new.

“Degree-2 local anti-collisions”:

\[\frac{1}{\sqrt{1 - 1/r - 1/r^2 + 1/r^3}}.\]

See paper for more.
Is rho optimal?

Allow r to grow slowly with ℓ. (Not quickly: remember cost of initial computation.)

$$\sqrt{1 - 1/r} \rightarrow 1.$$
$$\sqrt{1 - 1/r - 1/r^2 + 1/r^3} \rightarrow 1.$$

Experimental evidence \Rightarrow
average $\left(\sqrt{\pi/2 + o(1)}\right) \sqrt{\ell}$.

But still have many
global anti-collisions:
slopes appearing repeatedly.
Two grumpy giants and a baby

B: \((0, 0) + \{0, \ldots, n\}(0, 1)\).

G1: \((1, 0) + \{0, \ldots, n\}(0, n)\).

G2: \((2, 0) - \{0, \ldots, n\}(0, n+1)\).
Two grumpy giants and a baby

B: $(0, 0) + \{0, \ldots, n\}(0, 1)$.

G1: $(1, 0) + \{0, \ldots, n\}(0, n)$.

G2: $(2, 0) - \{0, \ldots, n\}(0, n+1)$.

Minor initial cost: $(0, -(n + 1))$.
Two grumpy giants and a baby

B: \((0,0)+\{0, \ldots, n\}(0,1)\).

G1: \((1,0)+\{0, \ldots, n\}(0,n)\).

G2: \((2,0)-\{0, \ldots, n\}(0,n+1)\).

Minor initial cost: \((0, -(n+1))\).

As before can interleave:
\((0,0), (1,0), (2,0), (0,1), (1,n), (2,-(n+1)), (0,2), (1,2n), (2,-2(n+1)), (0,3), (1,3n), (2,-3(n+1)), \ldots, (0,n), (1,n^2), (2,-n(n+1))\).
Grumpy performance

For $(1.5 + o(1))\sqrt{\ell}$ mults:

BSGS, with $n \approx 0.75\sqrt{\ell}$
or interleaved with $n \approx \sqrt{\ell}$, finds $(0.5625 + o(1))\ell$ slopes.
Grumpy performance

For $(1.5 + o(1))\sqrt{\ell}$ mults:

BSGS, with $n \approx 0.75\sqrt{\ell}$
or interleaved with $n \approx \sqrt{\ell}$,finds $(0.5625 + o(1))\ell$ slopes.

Truly random walk
finds $(0.6753\ldots + o(1))\ell$ slopes.
Grumpy performance

For \((1.5 + o(1))\sqrt{l}\) mults:

BSGS, with \(n \approx 0.75\sqrt{l}\)
or interleaved with \(n \approx \sqrt{l}\),
finds \((0.5625 + o(1))l\) slopes.

Truly random walk
finds \((0.6753\ldots + o(1))l\) slopes.

Two grumpy giants and a baby,
with \(n \approx 0.5\sqrt{l}\),
find \((0.71875 + o(1))l\) slopes.
Grumpy performance

For \((1.5 + o(1))\sqrt{l}\) mults:

BSGS, with \(n \approx 0.75\sqrt{l}\)
or interleaved with \(n \approx \sqrt{l}\),
finds \((0.5625 + o(1))l\) slopes.

Truly random walk
finds \((0.6753 \ldots + o(1))l\) slopes.

Two grumpy giants and a baby,
with \(n \approx 0.5\sqrt{l}\),
find \((0.71875 + o(1))l\) slopes.

Also better average case than rho.