Never trust a bunny

D. J. Bernstein University of Illinois at Chicago

Tanja Lange

Technische Universiteit Eindhoven

<u>The HB(n, τ, τ') protocol</u> (2001 Hopper–Blum) Secret $s \in \mathbf{F}_2^n$.

Reader sends random $C \in \mathbf{F}_2^{n \times n}$.

Tag sends T = Cs + ewhere each bit of e is set with probability τ .

Reader checks that T - Cs has $< \tau' n$ bits set.

"Reasonable" parameters: $n=512,\ au=1/8,\ au'=1/4.$

The LPN (n, τ) problem

Computational LPN problem: compute *s* given random R_1 ; $R_1s + e_1$; random R_2 ; $R_2s + e_2$; ...

Equivalently: Compute s given random $r_1 \in \mathbf{F}_2^n$; $r_1 \cdot s + e_1$; random $r_2 \in \mathbf{F}_2^n$; $r_2 \cdot s + e_2$; ...

Solving computational LPN breaks HB and all of the other protocols in this talk.

(Warning: "The LPN problem" is normally defined as a decisional problem.)

Breaking HB without solving LPN

Attacker sends to the tag: $C = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 1 & 0 & \dots & 0 \\ 1 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & 0 & \dots & 0 \end{pmatrix}.$

Majority vote of tag response is very likely to be first bit of *s*. Repeat for other bits.

Many subsequent HB variants try to resist active attacks.

$\underline{\mathsf{MatrixLapin}(n,\tau,\tau')}$

Secrets $s, s' \in \mathbf{F}_2^n$.

Reader sends random $C \in \mathbf{F}_2^{n \times n}$. (Improvement: restrict to "nice" subspace; same in next protocol.)

Tag sends random invertible $R \in \mathbf{F}_2^{n \times n}$ and T = R(Cs + s') + ewhere each bit of e is set with probability τ .

Reader checks that R is invertible and that T - R(Cs + s') has $\leq \tau' n$ bits set.

Lapin (n, f, τ, τ') where deg f = n(FSE 2012 Heyse–Kiltz– Lyubashevsky–Paar–Pietrzak) Secrets $s, s' \in \mathbf{F}_2[x]/f$. Reader sends random $c \in \mathbf{F}_2|x|/f$. Tag sends random invertible $r \in \mathbf{F}_2[x]/f$ and t = r(cs + s') + ewhere each bit of e is

set with probability au.

Reader checks that r is invertible and that t - r(cs + s') has $\leq \tau' n$ bits set.

$\underline{\mathsf{Ring}}\underline{\mathsf{-LPN}}(n, f, \tau)$

Lapin *c* and *r* correspond to matrices *C* and *R*. Highly non-random matrices! Saves space and time but maybe risks attacks.

Computational Ring-LPN problem (FSE 2012): compute *s* given random r_1 ; $r_1s + e_1$; random r_2 ; $r_2s + e_2$; ...

Feed c repeatedly to Lapin tag, solve Ring-LPN $\Rightarrow cs + s'$. Repeat with c' where c - c' is invertible, obtain s and s'.

FSE 2012 paper says:

1. Lapin has "comparable" efficiency to AES.

FSE 2012 paper says:

1. Lapin has "comparable" efficiency to AES.

2. Lapin is "provably secure".

FSE 2012 paper says:

1. Lapin has "comparable" efficiency to AES.

2. Lapin is "provably secure".

Ring-LPN with irreducible f
is as hard to break as LPN
"to the best of our knowledge".

FSE 2012 paper says:

1. Lapin has "comparable" efficiency to AES.

2. Lapin is "provably secure".

Ring-LPN with irreducible f
is as hard to break as LPN
"to the best of our knowledge".

4. LPN(512, 1/8) "would require 2⁷⁷ memory (and thus at least thus much time) to solve when given access to approximately as many samples".

<u>Interlude</u>

[Hoowdinked clip #1]

2000 Blum–Kalai–Wasserman

Standard attack on LPN.

Main idea: If r_1 and r_2 have the same starting bits then $r_1 + r_2$ has starting bits 0 and $t_1 + t_2 = (r_1 + r_2) \cdot s + (e_1 + e_2).$

Repeat: clear more bits, obtain (0, 0, ..., 0, 1) as a combination of 2^a values r_i . Corresponding t combination is last bit of s with noise.

Use many combinations to eliminate noise.

2006 Levieil–Fouque

Same main idea, but clear fewer bits. Obtain (0,0,...,0,*,...,*) for every pattern of *,...,*.

Enumerate each possibility for bits of *s* at * positions. Use fast Walsh transform.

Advantage: smaller noise. Need fewer queries, less memory, less computation.

Source of "277 memory".

2006 Levieil-Fouque

Same main idea, but clear fewer bits. Obtain (0,0,...,0,*,...,*) for every pattern of *,...,*.

Enumerate each possibility for bits of *s* at * positions. Use fast Walsh transform.

Advantage: smaller noise. Need fewer queries, less memory, less computation.

Source of "2⁷⁷ memory". Actually needs $\approx 2^{82}$ bytes.

2011 Kirchner

Assume matrix R_1 is invertible. Compute R_1^{-1} and $R_2R_1^{-1}(R_1s + e_1) + R_2s + e_2$, $R_3R_1^{-1}(R_1s + e_1) + R_3s + e_3$, $R_4R_1^{-1}(R_1s + e_1) + R_4s + e_4$, ...

2011 Kirchner

Assume matrix R_1 is invertible. Compute R_1^{-1} and $R_2R_1^{-1}(R_1s + e_1) + R_2s + e_2$, $R_3R_1^{-1}(R_1s + e_1) + R_3s + e_3$, $R_4R_1^{-1}(R_1s + e_1) + R_4s + e_4$, ...

Obtain new LPN (n, τ) problem R'_{2} ; $R'_{2}e_{1} + e_{2}$; R'_{3} ; $R'_{3}e_{1} + e_{3}$; R'_{4} ; $R'_{4}e_{1} + e_{4}$;...

2011 Kirchner

Assume matrix R_1 is invertible. Compute R_1^{-1} and $R_2R_1^{-1}(R_1s + e_1) + R_2s + e_2,$ $R_3R_1^{-1}(R_1s + e_1) + R_3s + e_3,$ $R_4R_1^{-1}(R_1s + e_1) + R_4s + e_4, \dots$

Obtain new LPN (n, τ) problem R'_{2} ; $R'_{2}e_{1} + e_{2}$; R'_{3} ; $R'_{3}e_{1} + e_{3}$; R'_{4} ; $R'_{4}e_{1} + e_{4}$; with sparse secret e_{1} .

Guess some bits of e_1 , cancel fewer bits; less noise to deal with.

<u>Our attack on Lapin</u>

Main improvements in paper:

- Use the ring structure to save time in computations.
- Better guessing strategy.

We break Ring-LPN(512, 1/8) in <2⁵⁶ bytes of memory, <2³⁸ queries, and <2⁹⁸ bit operations.

<u>Our attack on Lapin</u>

Main improvements in paper:

- Use the ring structure to save time in computations.
- Better guessing strategy.

We break Ring-LPN(512, 1/8) in <2⁵⁶ bytes of memory, <2³⁸ queries, and <2⁹⁸ bit operations.

Many tradeoffs possible: e.g., <2⁷⁸ bytes of memory, <2⁶³ queries, and <2⁸⁸ bit operations.

What about LPN?

Better guessing strategy also helps for LPN.

We break LPN(1024, 1/20) in $<2^{21}$ bytes of memory, $<2^{64}$ queries, and $<2^{100}$ bit operations (or $<2^{93}$ for Ring-LPN). Also have a new trick to reduce # queries. LPN(1024, 1/20): 10 queries!

<u>Coda</u>

[Hoowdinked clip #2]

Picture taken 2012.04.27 at CWI:

