Never trust a bunny
D. J. Bernstein

University of Illinois at Chicago

Tanja Lange

Technische Universiteit Eindhoven

The $\mathrm{HB}\left(n, \tau, \tau^{\prime}\right)$ protocol

(2001 Hopper-Blum)
Secret $s \in \mathbf{F}_{2}^{n}$.
Reader sends random $C \in \mathbf{F}_{2}^{n \times n}$.
Tag sends $T=C s+e$
where each bit of e is set with probability τ.

Reader checks that $T-C s$ has $\leq \tau^{\prime} n$ bits set.
"Reasonable" parameters:
$n=512, \tau=1 / 8, \tau^{\prime}=1 / 4$.

The $\operatorname{LPN}(n, \tau)$ problem

Computational LPN problem:
compute s given
random $R_{1} ; R_{1} s+e_{1} ;$
random $R_{2} ; R_{2} s+e_{2} ; \ldots$
Equivalently: Compute s given random $r_{1} \in \mathbf{F}_{2}^{n} ; r_{1} \cdot s+e_{1}$; random $r_{2} \in \mathbf{F}_{2}^{n} ; r_{2} \cdot s+e_{2} ; \ldots$

Solving computational LPN breaks HB and all of the other protocols in this talk.
(Warning: "The LPN problem" is normally defined as a decisional problem.)

Breaking HB without solving LPN

Attacker sends to the tag:
$C=\left(\begin{array}{ccccc}1 & 0 & 0 & \ldots & 0 \\ 1 & 0 & 0 & \ldots & 0 \\ 1 & 0 & 0 & \ldots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & 0 & \ldots & 0\end{array}\right)$
Majority vote of tag response is very likely to be
first bit of s.
Repeat for other bits.
Many subsequent HB variants
try to resist active attacks.

MatrixLapin $\left(n, \tau, \tau^{\prime}\right)$
Secrets $s, s^{\prime} \in \mathbf{F}_{2}^{n}$.
Reader sends random $C \in \mathbf{F}_{2}^{n \times n}$. (Improvement: restrict to "nice" subspace; same in next protocol.)

Tag sends

random invertible $R \in \mathbf{F}_{2}^{n \times n}$
and $T=R\left(C s+s^{\prime}\right)+e$
where each bit of e is
set with probability τ.
Reader checks that
R is invertible and that
$T-R\left(C s+s^{\prime}\right)$ has $\leq \tau^{\prime} n$ bits set.

$\underline{\operatorname{Lapin}}\left(n, f, \tau, \tau^{\prime}\right)$ where $\operatorname{deg} f=n$

(ESE 2012 Heyse-Kiltz-
Lyubashevsky-Paar-Pietrzak)
Secrets $s, s^{\prime} \in \mathbf{F}_{2}[x] / f$.
Reader sends random $c \in \mathbf{F}_{2}[x] / f$.

Tag sends

random invertible $r \in \mathbf{F}_{2}[x] / f$
and $t=r\left(c s+s^{\prime}\right)+e$
where each bit of e is set with probability τ.

Reader checks that r is invertible and that $t-r\left(c s+s^{\prime}\right)$ has $\leq \tau^{\prime} n$ bits set.

Ring-LPN (n, f, τ)
Lapin c and r correspond to matrices C and R.
Highly non-random matrices!
Saves space and time but maybe risks attacks.

Computational Ring-LPN problem
(FSE 2012): compute s given random $r_{1} ; r_{1} s+e_{1}$; random $r_{2} ; r_{2} s+e_{2} ; \ldots$

Feed c repeatedly to Lapin tag, solve Ring-LPN $\Rightarrow c s+s^{\prime}$. Repeat with c^{\prime} where $c-c^{\prime}$ is invertible, obtain s and s^{\prime}.

Lapin features

FSE 2012 paper says:

1. Lapin has "comparable" efficiency to AES.

Lapin features

FSE 2012 paper says:

1. Lapin has "comparable" efficiency to AES.
2. Lapin is "provably secure".

Lapin features

FSE 2012 paper says:

1. Lapin has "comparable" efficiency to AES.
2. Lapin is "provably secure".
3. Ring-LPN with irreducible f is as hard to break as LPN "to the best of our knowledge".

Lapin features

FSE 2012 paper says:

1. Lapin has "comparable" efficiency to AES.
2. Lapin is "provably secure".
3. Ring-LPN with irreducible f is as hard to break as LPN "to the best of our knowledge".
4. $\operatorname{LPN}(512,1 / 8)$ "would require 2^{77} memory (and thus at least thus much time) to solve when given access to approximately as many samples".

Interlude

[Hoowdinked clip \#1]

2000 Blum-Kalai-Wasserman

Standard attack on LPN.
Main idea: If r_{1} and r_{2}
have the same starting bits then $r_{1}+r_{2}$ has starting bits 0 and
$t_{1}+t_{2}=\left(r_{1}+r_{2}\right) \cdot s+\left(e_{1}+e_{2}\right)$.
Repeat: clear more bits, obtain $(0,0, \ldots, 0,1)$ as a combination of 2^{a} values r_{i}. Corresponding t combination is last bit of s with noise.

Use many combinations to eliminate noise.

2006 Levieil-Fouque

Same main idea,
but clear fewer bits.
Obtain ($0,0, \ldots, 0, *, \ldots, *$)
for every pattern of $*, \ldots, *$.
Enumerate each possibility
for bits of s at $*$ positions. Use fast Walsh transform.

Advantage: smaller noise.
Need fewer queries, less memory, less computation.

Source of " 277 memory".

2006 Levieil-Fouque

Same main idea,
but clear fewer bits.
Obtain ($0,0, \ldots, 0, *, \ldots, *$)
for every pattern of $*, \ldots, *$.
Enumerate each possibility
for bits of s at $*$ positions. Use fast Walsh transform.

Advantage: smaller noise.
Need fewer queries, less memory, less computation.

Source of " 27 memory". Actually needs $\approx 2^{82}$ bytes .

2011 Kirchner

Assume matrix R_{1} is invertible.
Compute R_{1}^{-1} and
$R_{2} R_{1}^{-1}\left(R_{1} s+e_{1}\right)+R_{2} s+e_{2}$,
$R_{3} R_{1}^{-1}\left(R_{1} s+e_{1}\right)+R_{3} s+e_{3}$,
$R_{4} R_{1}^{-1}\left(R_{1} s+e_{1}\right)+R_{4} s+e_{4}, \ldots$

2011 Kirchner

Assume matrix R_{1} is invertible.
Compute R_{1}^{-1} and
$R_{2} R_{1}^{-1}\left(R_{1} s+e_{1}\right)+R_{2} s+e_{2}$,
$R_{3} R_{1}^{-1}\left(R_{1} s+e_{1}\right)+R_{3} s+e_{3}$,
$R_{4} R_{1}^{-1}\left(R_{1} s+e_{1}\right)+R_{4} s+e_{4}, \ldots$
Obtain new $\operatorname{LPN}(n, \tau)$ problem
$R_{2}^{\prime} ; R_{2}^{\prime} e_{1}+e_{2}$;
$R_{3}^{\prime} ; R_{3}^{\prime} e_{1}+e_{3} ;$
$R_{4}^{\prime} ; R_{4}^{\prime} e_{1}+e_{4} ; \ldots$

2011 Kirchner

Assume matrix R_{1} is invertible.
Compute R_{1}^{-1} and
$R_{2} R_{1}^{-1}\left(R_{1} s+e_{1}\right)+R_{2} s+e_{2}$,
$R_{3} R_{1}^{-1}\left(R_{1} s+e_{1}\right)+R_{3} s+e_{3}$,
$R_{4} R_{1}^{-1}\left(R_{1} s+e_{1}\right)+R_{4} s+e_{4}, \ldots$
Obtain new $\operatorname{LPN}(n, \tau)$ problem
$R_{2}^{\prime} ; R_{2}^{\prime} e_{1}+e_{2}$;
$R_{3}^{\prime} ; R_{3}^{\prime} e_{1}+e_{3} ;$
$R_{4}^{\prime} ; R_{4}^{\prime} e_{1}+e_{4} ; \ldots$
with sparse secret e_{1}.
Guess some bits of e_{1}, cancel fewer bits;
less noise to deal with.

Our attack on Lapin

Main improvements in paper:

- Use the ring structure
to save time in computations.
- Better guessing strategy.

We break Ring-LPN(512, 1/8) in
$<2^{56}$ bytes of memory,
$<2^{38}$ queries, and
$<2^{98}$ bit operations.

Our attack on Lapin

Main improvements in paper:

- Use the ring structure
to save time in computations.
- Better guessing strategy.

We break Ring-LPN(512, 1/8) in
$<2^{56}$ bytes of memory,
$<2^{38}$ queries, and
$<2^{98}$ bit operations.
Many tradeoffs possible: e.g.,
$<2^{78}$ bytes of memory,
$<2^{63}$ queries, and
$<2^{88}$ bit operations.

What about LPN?

Better guessing strategy also helps for LPN.

We break $\operatorname{LPN}(1024,1 / 20)$ in
$<2^{21}$ bytes of memory,
$<2^{64}$ queries, and
$<2^{100}$ bit operations
(or $<2^{93}$ for Ring-LPN).
Also have a new trick to reduce \# queries. $\operatorname{LPN}(1024,1 / 20): 10$ queries!

Coda
[Hoowdinked clip \#2]

Picture taken 2012.04.27 at CWI:

