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The HB(n; �; � 0) protocol

(2001 Hopper–Blum)

Secret s 2 Fn2 .

Reader sends random C 2 Fn�n2 .

Tag sends T = Cs + e

where each bit of e is

set with probability � .

Reader checks that

T � Cs has � � 0n bits set.

“Reasonable” parameters:

n = 512, � = 1=8, � 0 = 1=4.



The LPN(n; � ) problem

Computational LPN problem:

compute s given

random R1; R1s + e1;

random R2; R2s + e2; : : :

Equivalently: Compute s given

random r1 2 Fn2 ; r1 � s + e1;

random r2 2 Fn2 ; r2 � s + e2; : : :

Solving computational LPN

breaks HB and all of the

other protocols in this talk.

(Warning: “The LPN problem”

is normally defined as

a decisional problem.)



Breaking HB without solving LPN

Attacker sends to the tag:

C =

0
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1 0 0 : : : 0

1 0 0 : : : 0

1 0 0 : : : 0
...

...
...

. . .
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1 0 0 : : : 0
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CCCCA

.

Majority vote of tag response

is very likely to be

first bit of s.

Repeat for other bits.

Many subsequent HB variants

try to resist active attacks.



MatrixLapin(n; �; � 0)

Secrets s; s0 2 Fn2 .

Reader sends random C 2 Fn�n2 .

(Improvement: restrict to “nice”

subspace; same in next protocol.)

Tag sends

random invertible R 2 Fn�n2

and T = R(Cs + s0) + e

where each bit of e is

set with probability � .

Reader checks that

R is invertible and that

T �R(Cs+s0) has � � 0n bits set.



Lapin(n; f; �; � 0) where deg f = n

(FSE 2012 Heyse–Kiltz–

Lyubashevsky–Paar–Pietrzak)

Secrets s; s0 2 F2[x]=f .

Reader sends random c2F2[x]=f .

Tag sends

random invertible r 2 F2[x]=f

and t = r(cs + s0) + e

where each bit of e is

set with probability � .

Reader checks that

r is invertible and that

t� r(cs + s0) has � � 0n bits set.



Ring-LPN(n; f; � )

Lapin c and r correspond to

matrices C and R.

Highly non-random matrices!

Saves space and time

but maybe risks attacks.

Computational Ring-LPN problem

(FSE 2012): compute s given

random r1; r1s + e1;

random r2; r2s + e2; : : :

Feed c repeatedly to Lapin tag,

solve Ring-LPN ) cs + s0.

Repeat with c0 where c � c0 is

invertible, obtain s and s0.
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FSE 2012 paper says:

1. Lapin has “comparable”

efficiency to AES.
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Lapin features

FSE 2012 paper says:

1. Lapin has “comparable”

efficiency to AES.

2. Lapin is “provably secure”.

3. Ring-LPN with irreducible f

is as hard to break as LPN

“to the best of our knowledge”.

4. LPN(512; 1=8) “would require

277 memory (and thus at least

thus much time) to solve when

given access to approximately as

many samples”.



Interlude

[Hoowdinked clip #1]



2000 Blum–Kalai–Wasserman

Standard attack on LPN.

Main idea: If r1 and r2

have the same starting bits then

r1 + r2 has starting bits 0 and

t1 + t2 = (r1 + r2) � s + (e1 + e2).

Repeat: clear more bits,

obtain (0; 0; : : : ; 0; 1) as a

combination of 2a values ri.

Corresponding t combination

is last bit of s with noise.

Use many combinations

to eliminate noise.



2006 Levieil–Fouque

Same main idea,

but clear fewer bits.

Obtain (0; 0; : : : ; 0; �; : : : ; �)

for every pattern of �; : : : ; �.

Enumerate each possibility

for bits of s at � positions.

Use fast Walsh transform.

Advantage: smaller noise.

Need fewer queries, less memory,

less computation.

Source of “277 memory”.



2006 Levieil–Fouque

Same main idea,

but clear fewer bits.

Obtain (0; 0; : : : ; 0; �; : : : ; �)

for every pattern of �; : : : ; �.

Enumerate each possibility

for bits of s at � positions.

Use fast Walsh transform.

Advantage: smaller noise.

Need fewer queries, less memory,

less computation.

Source of “277 memory”.

Actually needs � 282 bytes.



2011 Kirchner

Assume matrix R1 is invertible.
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2011 Kirchner

Assume matrix R1 is invertible.

Compute R�1
1 and

R2R
�1
1 (R1s + e1) + R2s + e2,

R3R
�1
1 (R1s + e1) + R3s + e3,

R4R
�1
1 (R1s + e1) + R4s + e4, : : :

Obtain new LPN(n; � ) problem

R0

2; R0

2e1 + e2;

R0

3; R0

3e1 + e3;

R0

4; R0

4e1 + e4; : : :

with sparse secret e1.

Guess some bits of e1,

cancel fewer bits;

less noise to deal with.



Our attack on Lapin

Main improvements in paper:

� Use the ring structure

to save time in computations.

� Better guessing strategy.

We break Ring-LPN(512; 1=8) in

<256 bytes of memory,

<238 queries, and

<298 bit operations.



Our attack on Lapin

Main improvements in paper:

� Use the ring structure

to save time in computations.

� Better guessing strategy.

We break Ring-LPN(512; 1=8) in

<256 bytes of memory,

<238 queries, and

<298 bit operations.

Many tradeoffs possible: e.g.,

<278 bytes of memory,

<263 queries, and

<288 bit operations.



What about LPN?

Better guessing strategy

also helps for LPN.

We break LPN(1024; 1=20) in

<221 bytes of memory,

<264 queries, and

<2100 bit operations

(or <293 for Ring-LPN).

Also have a new trick

to reduce # queries.

LPN(1024; 1=20): 10 queries!



Coda
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