Two grumpy giants and a baby

D. J. BernsteinUniversity of Illinois at Chicago

Tanja Lange Technische Universiteit Eindhoven

Discrete-logarithm problems

Fix a prime ℓ.

Input: generator g of group of order ℓ ; element h of same group.

Output: integer $k \in \mathbf{Z}/\ell$ such that $h = g^k$, where group is written multiplicatively. " $k = \log_g h$ ".

How difficult is computation of k?

Dependence on the group

Group \mathbf{Z}/ℓ under addition, represented in the usual way: DLP is very easy. Divide h by g modulo ℓ ; time $\exp(O(\log \log \ell))$.

Order- ℓ subgroup of $(\mathbf{Z}/p)^*$ assuming prime $p=2\ell+1$: DLP is not so easy. Best known attacks: "index calculus" methods; time $\exp((\log \ell)^{1/3+o(1)})$.

Order- ℓ subgroup of $(\mathbf{Z}/p)^*$ for much larger p:

DLP is much more difficult.

Best known attacks:

"generic" attacks, the focus of this talk. Time $\exp((1/2 + o(1)) \log \ell)$.

Order-*l* subgroup of properly chosen elliptic-curve group:

DLP is again difficult.

Best known attacks:

"negating" variants of generic attacks.

(See Schwabe talk, last CWG.)

Real-world importance

Apple, "iOS Security", 2012.05: "Some files may need to be written while the device is locked. A good example of this is a mail attachment downloading in the background. This behavior is achieved by using asymmetric elliptic curve cryptography (ECDH over Curve25519)." Also used for "iCloud Backup".

More examples: DNSCrypt; elliptic-curve signatures in German electronic passports.

Generic algorithms

Will focus on algorithms that work for every group of order ℓ .

Allowed operations: neutral element 1; multiplication $a, b \mapsto ab$.

Will measure algorithm cost by counting # multiplications.

Success probability: average over groups and over algorithm randomness.

Each group element computed by the algorithm is trivially expressed as $h^x g^y$ for known $(x, y) \in (\mathbf{Z}/\ell)^2$.

$$1 = h^x g^y$$
 for $(x,y) = (0,0)$. $g = h^x g^y$ for $(x,y) = (0,1)$. $h = h^x g^y$ for $(x,y) = (1,0)$.

If algorithm multiplies $h^{x_1}g^{y_1}$ by $h^{x_2}g^{y_2}$ then it obtains h^xg^y where $(x,y)=(x_1,y_1)+(x_2,y_2).$

Slopes

If $h^{x_1}g^{y_1}=h^{x_2}g^{y_2}$ and $(x_1,y_1) \neq (x_2,y_2)$ then $\log_g h$ is the negative of the slope $(y_2-y_1)/(x_2-x_1)$.

(Impossible to have $x_1=x_2$: if $x_1=x_2$ then $g^{y_1}=g^{y_2}$ so $y_1=y_2$, contradiction.)

Algorithm immediately recognizes collisions of group elements by putting each $(h^x g^y, x, y)$ into, e.g., a red-black tree. (Low memory? Parallel? Distributed? Not in this talk.)

Baby-step-giant-step

(1971 Shanks)

Choose $n \geq 1$, typically $n \approx \sqrt{\ell}$.

Points (x, y): n + 1 "baby steps" $(0, 0), (0, 1), (0, 2), \dots, (0, n);$ n + 1 "giant steps" $(1, 0), (1, n), (1, 2n), \dots, (1, n^2).$

Can use more giant steps. Stop when $\log_q h$ is found.

Performance of BSGS

Slope jn-i from (0,i) to (1,jn).

Covers slopes

$$\{-n,\ldots,-1,0,1,2,3,\ldots,n^2\}$$
, using $2n-1$ multiplications.

Finds all discrete logarithms if $\ell \leq n^2 + n + 1$.

Worst case with $n \approx \sqrt{\ell}$: $(2 + o(1))\sqrt{\ell}$ multiplications. (In fact always $< 2\sqrt{\ell}$.)

Average case with $n \approx \sqrt{\ell}$: $(1.5 + o(1))\sqrt{\ell}$ multiplications.

Interleaving (2000 Pollard)

Improve average case to $(4/3 + o(1))\sqrt{\ell}$ multiplications: (0,0),(1,0),(0,1),(1,n),(0,2),(1,2n),(0,3),(1,3n), $(0, n), (1, n^2).$ 4/3 arises as $\int_{0}^{1} (2x)^{2} dx$.

Interleaving (2000 Pollard)

Improve average case to $(4/3 + o(1))\sqrt{\ell}$ multiplications: (0,0),(1,0),(0,1),(1,n),(0,2),(1,2n),(0,3),(1,3n), $(0, n), (1, n^2).$ 4/3 arises as $\int_{0}^{1} (2x)^{2} dx$.

Oops: Have to start with (0, n) as step towards (1, n).

But this costs only $O(\log \ell)$.

Random self-reductions

Defender slows down BSGS by choosing discrete logs found as late as possible.

Random self-reductions

Defender slows down BSGS by choosing discrete logs found as late as possible.

Attacker compensates by applying a "worst-case-to-average-case reduction": compute $\log_g h$ as $\log_g (hg^r) - r$ for uniform random $r \in \mathbf{Z}/\ell$. Negligible extra cost.

Is BSGS optimal?

After m multiplications have m+3 points in $(\mathbf{Z}/\ell)^2$. Can hope for (m+3)(m+2)/2 different slopes in \mathbf{Z}/ℓ .

Is BSGS optimal?

After m multiplications have m+3 points in $(\mathbf{Z}/\ell)^2$. Can hope for (m+3)(m+2)/2 different slopes in \mathbf{Z}/ℓ .

1994 Nechaev, 1997 Shoup: proof that generic algorithms have success probability $O(m^2/\ell)$. Proof actually gives $\leq ((m+3)(m+2)/2+1)/\ell$.

Is BSGS optimal?

After m multiplications have m+3 points in $(\mathbf{Z}/\ell)^2$. Can hope for (m+3)(m+2)/2 different slopes in \mathbf{Z}/ℓ .

1994 Nechaev, 1997 Shoup: proof that generic algorithms have success probability $O(m^2/\ell)$. Proof actually gives $\leq ((m+3)(m+2)/2+1)/\ell$.

BSGS: at best $pprox m^2/4$ slopes, taking npprox m/2.

Factor of 2 away from the bound.

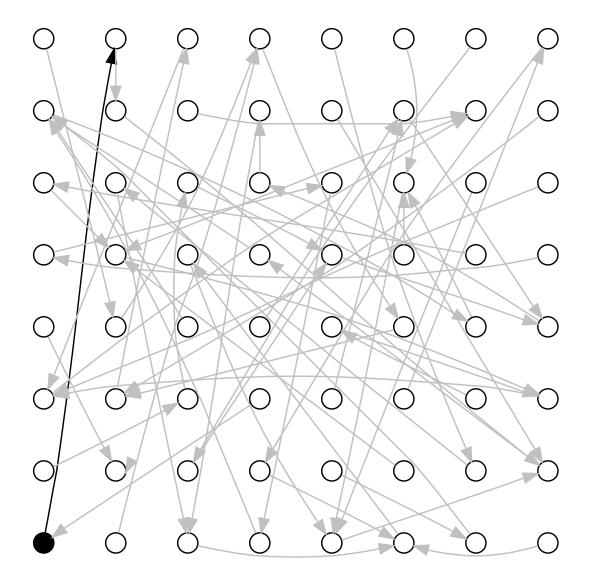
The rho method

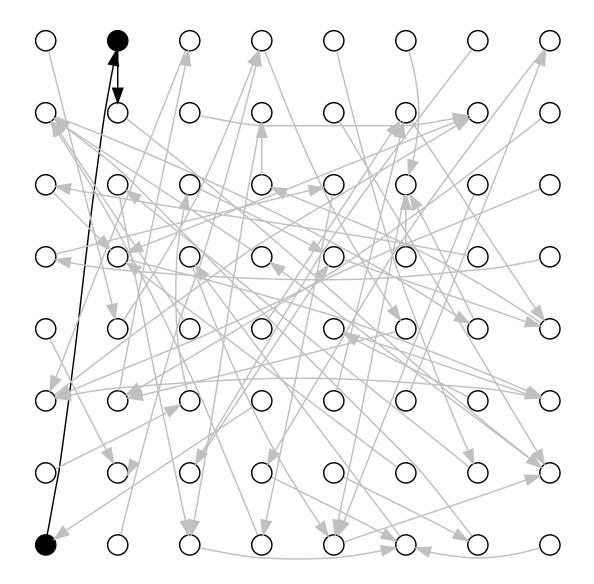
(1978 Pollard, r = 3 "mixed"; many subsequent variants)

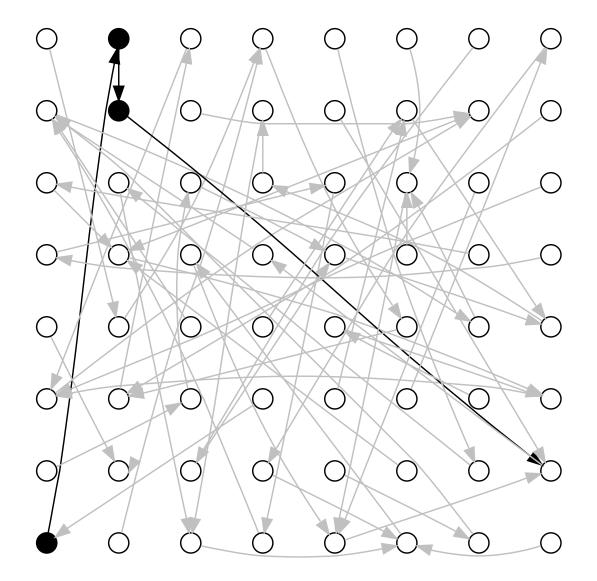
Initial computation: r uniform random "steps" $(s_1, t_1), \ldots, (s_r, t_r) \in (\mathbf{Z}/\ell)^2$. $O(r \log \ell)$ multiplications;

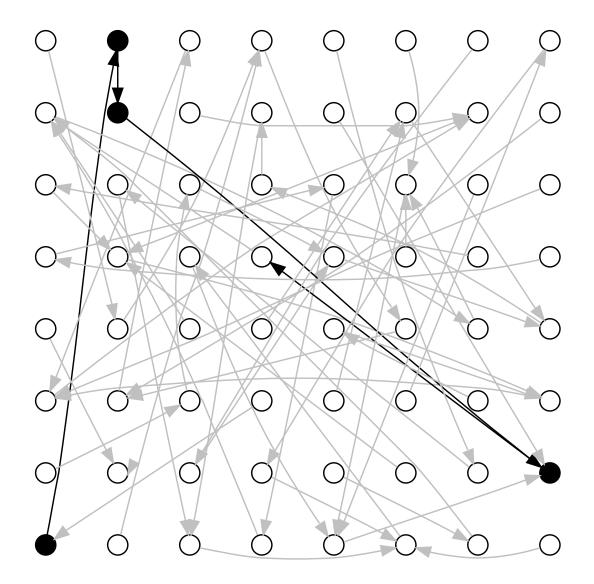
negligible if r is small.

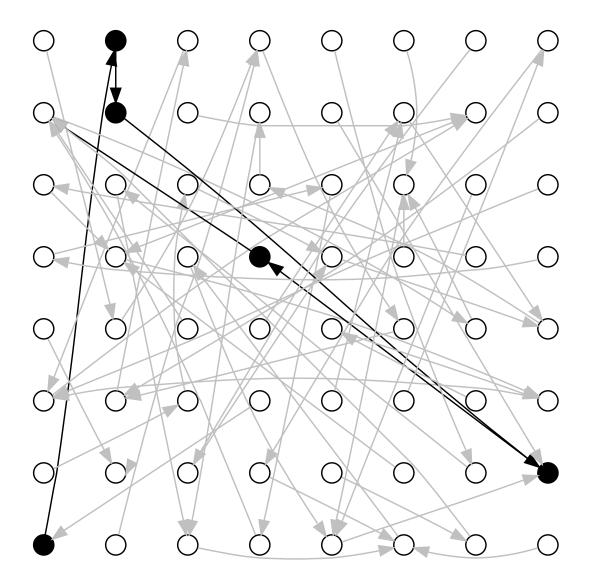
The "walk": Starting from $(x_i,y_i)\in (\mathbf{Z}/\ell)^2$ compute $(x_{i+1},y_{i+1})=(x_i,y_i)+(s_j,t_j)$ where $j\in\{1,\ldots,r\}$ is a hash of $h^{x_i}g^{y_i}$.

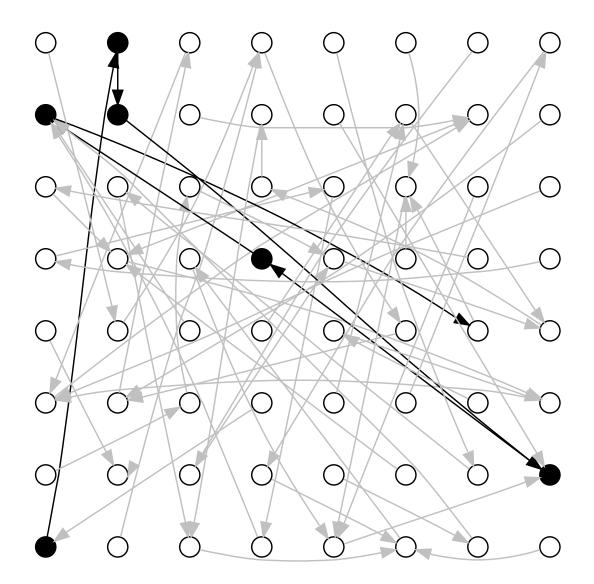


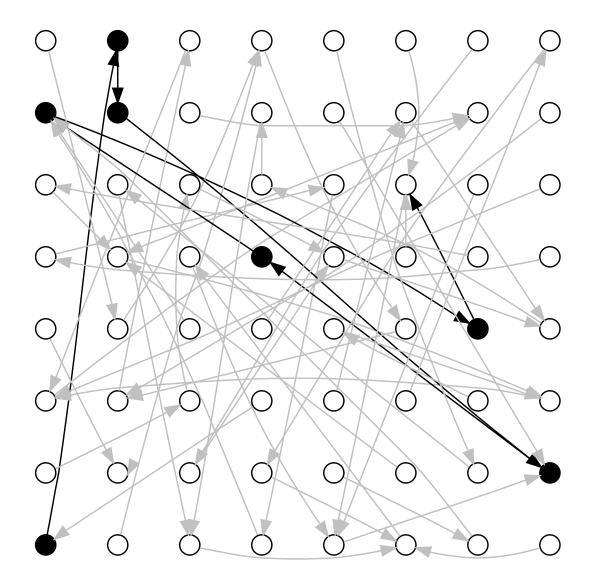


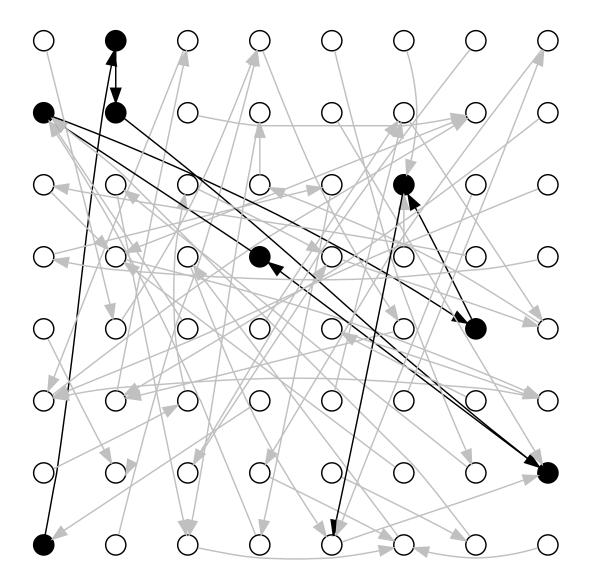


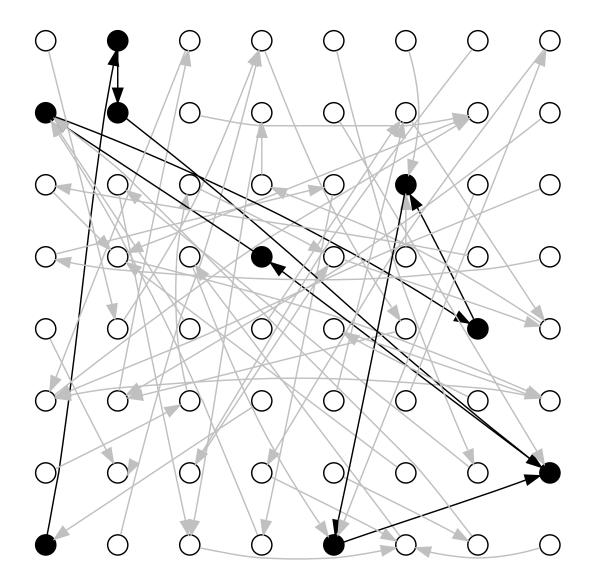


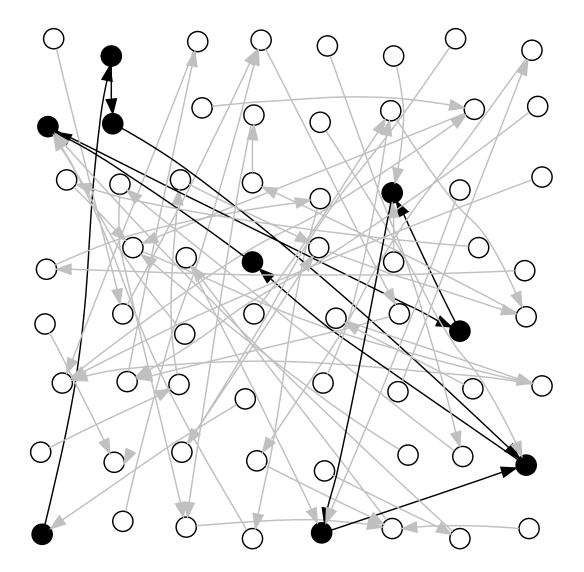


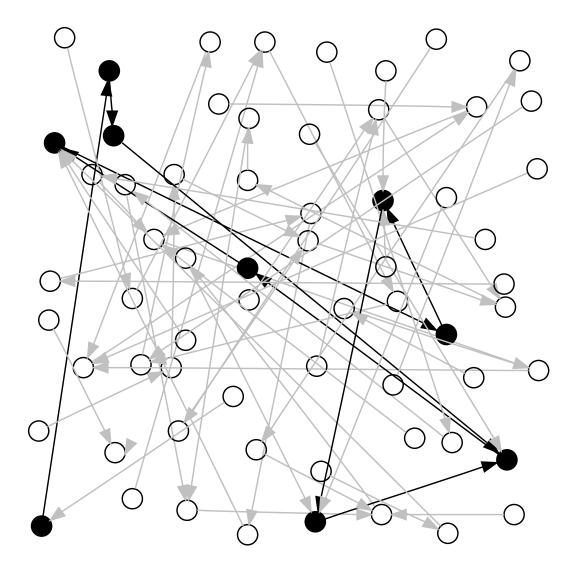


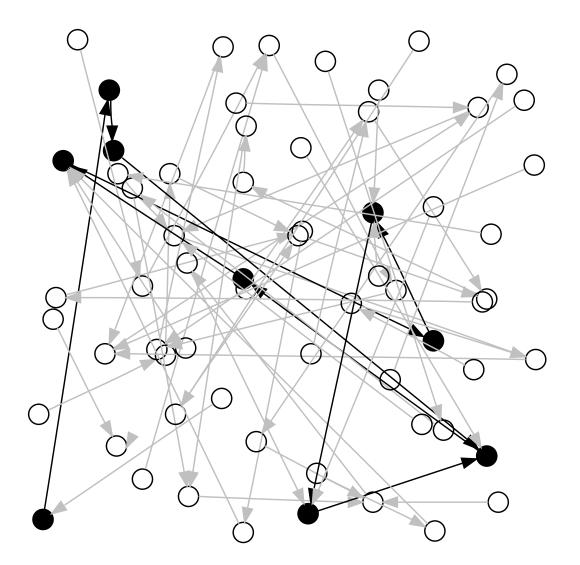


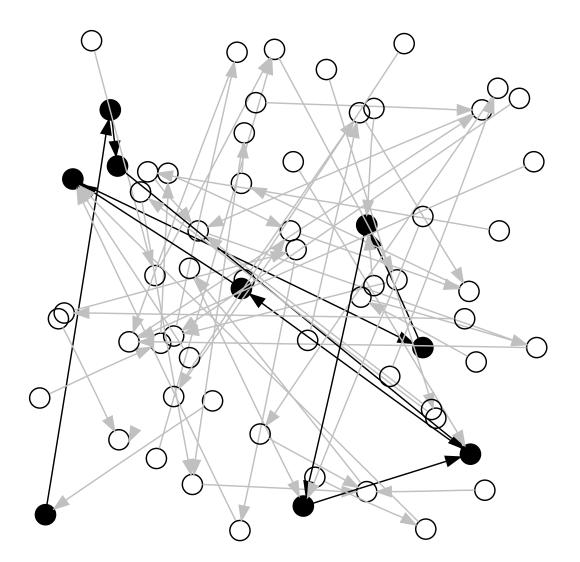


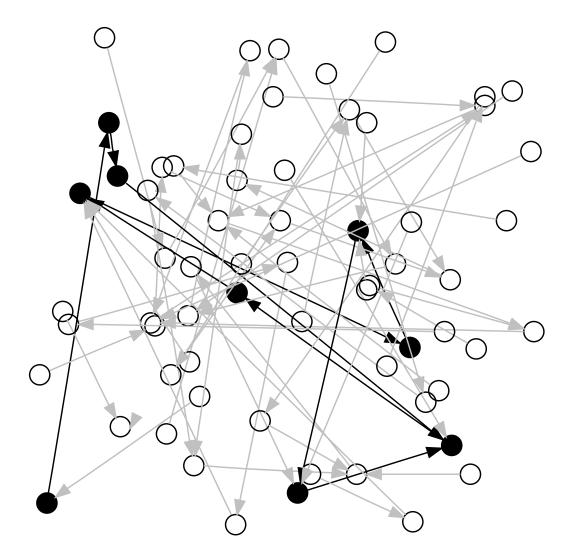


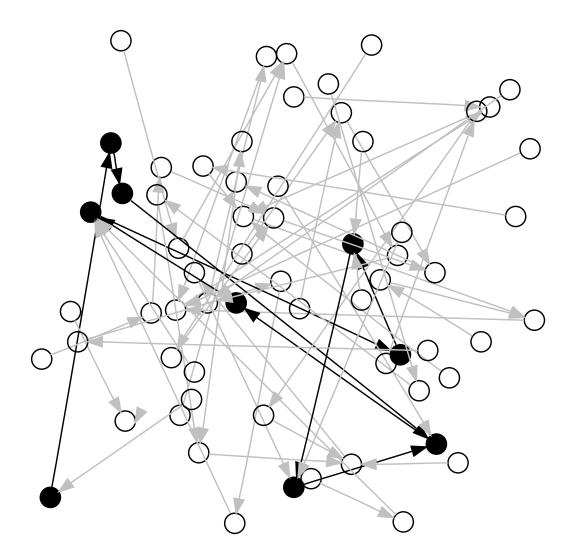


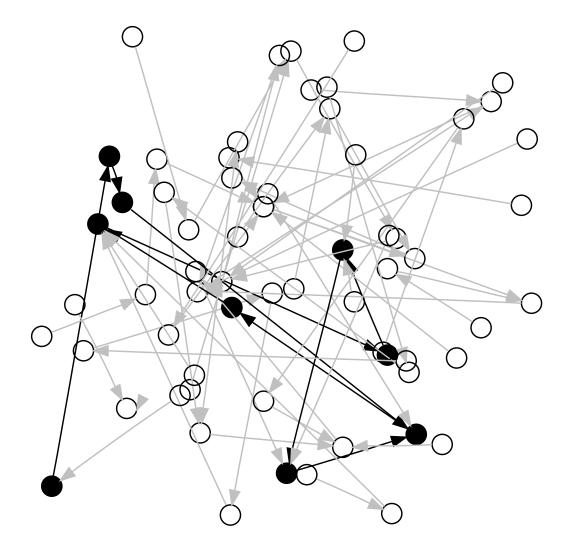


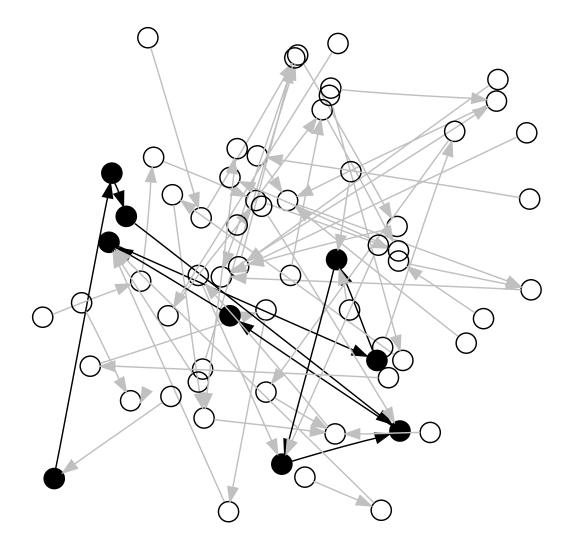


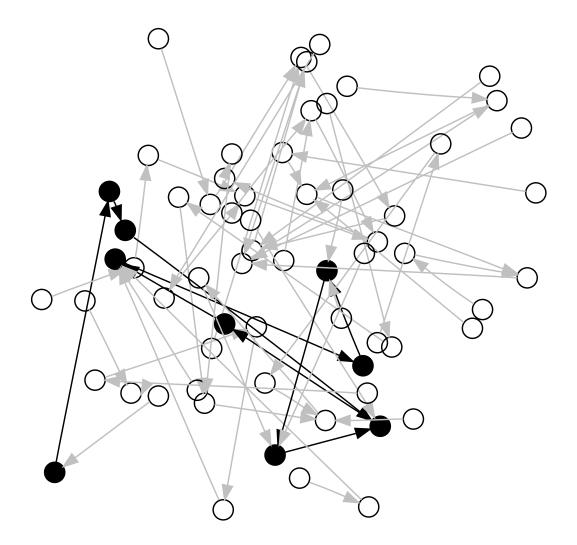


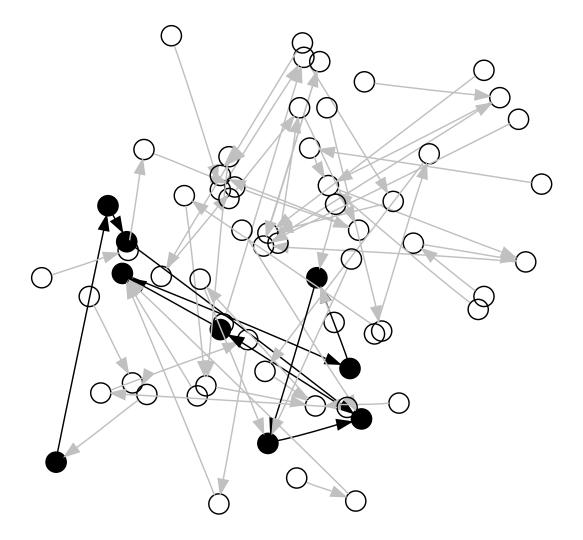


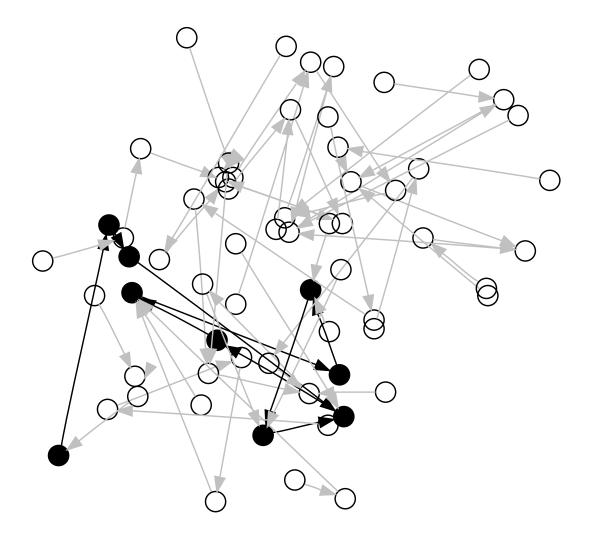


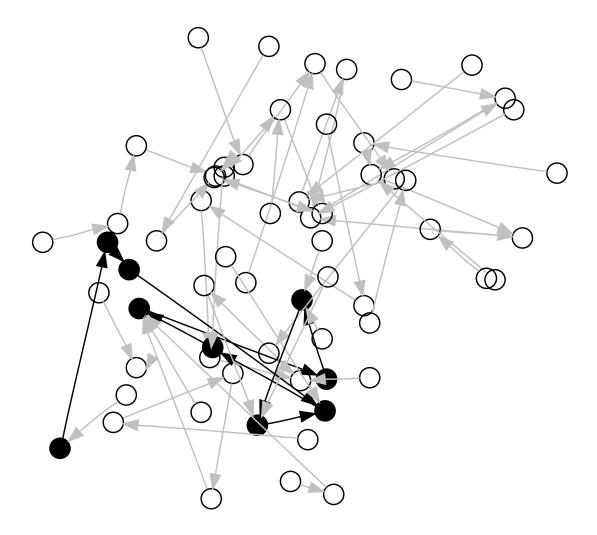


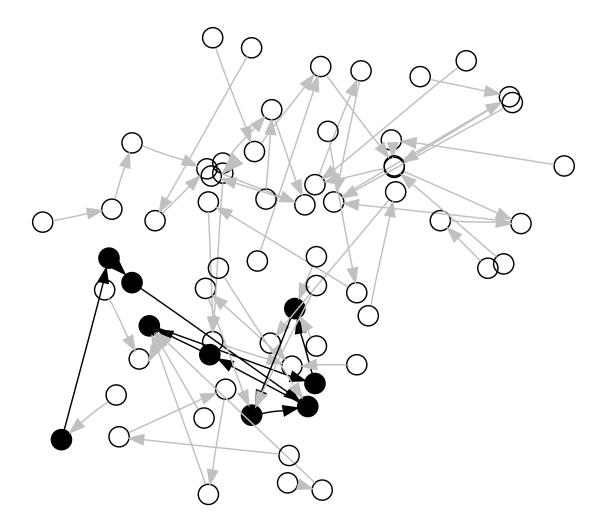


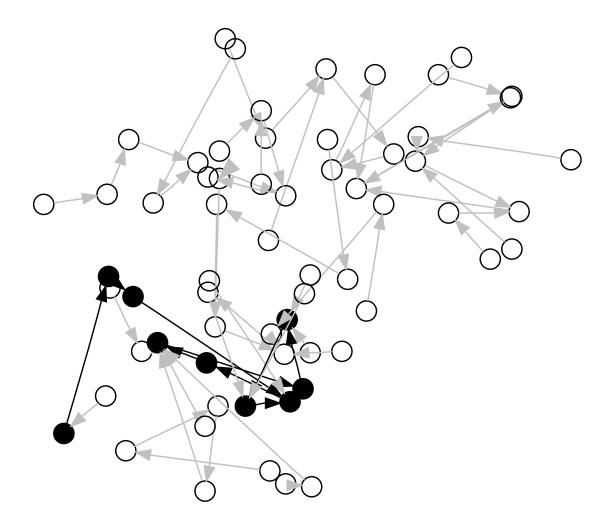


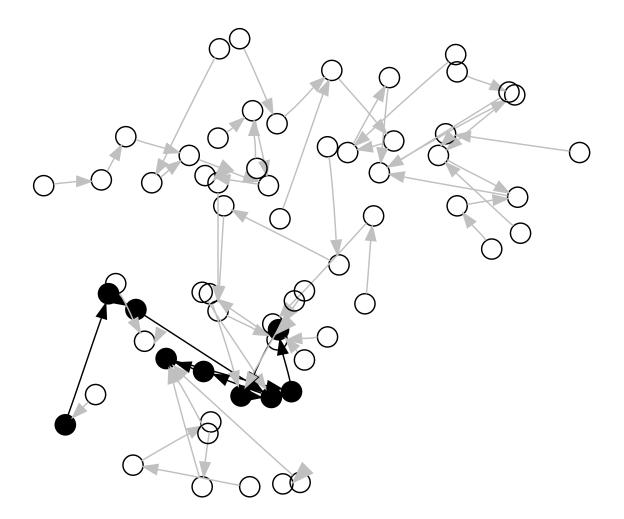


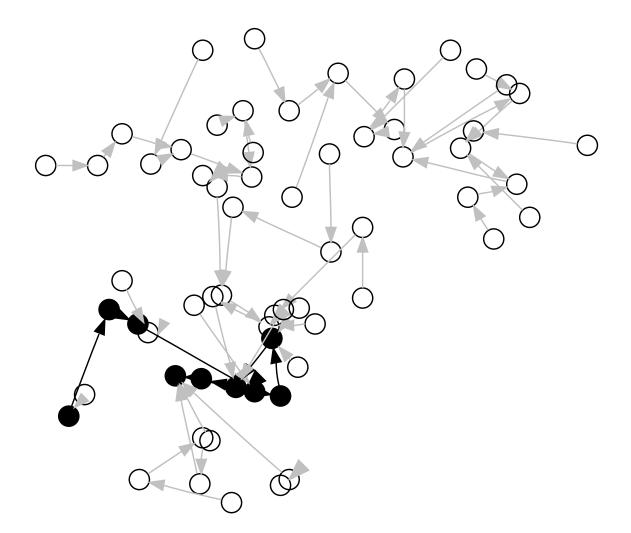


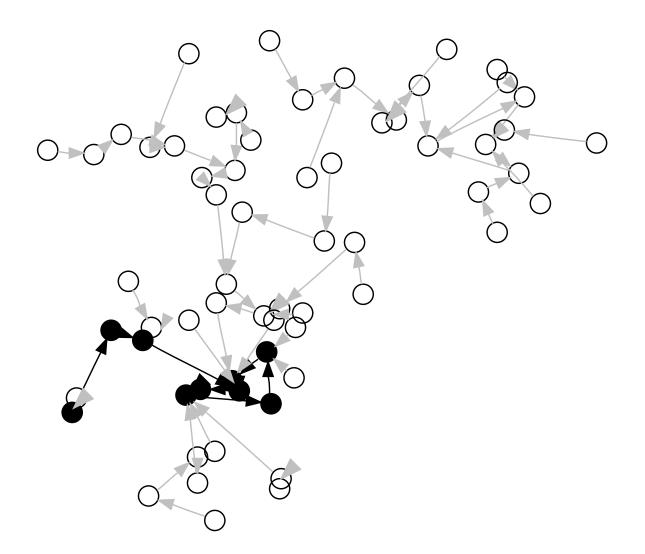


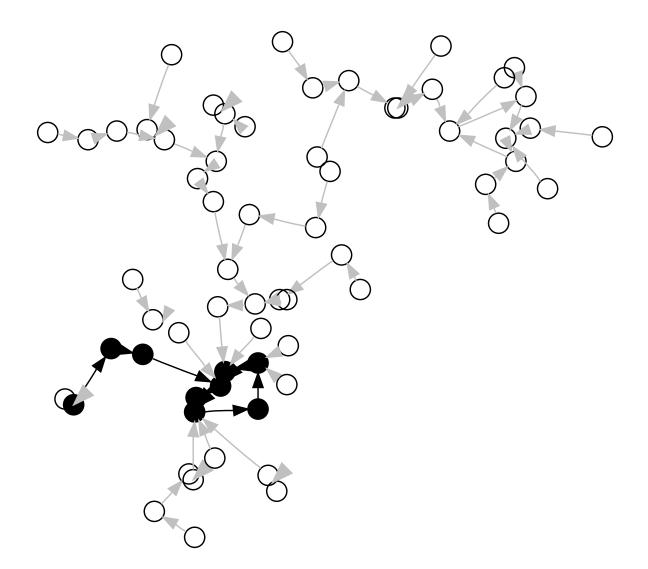


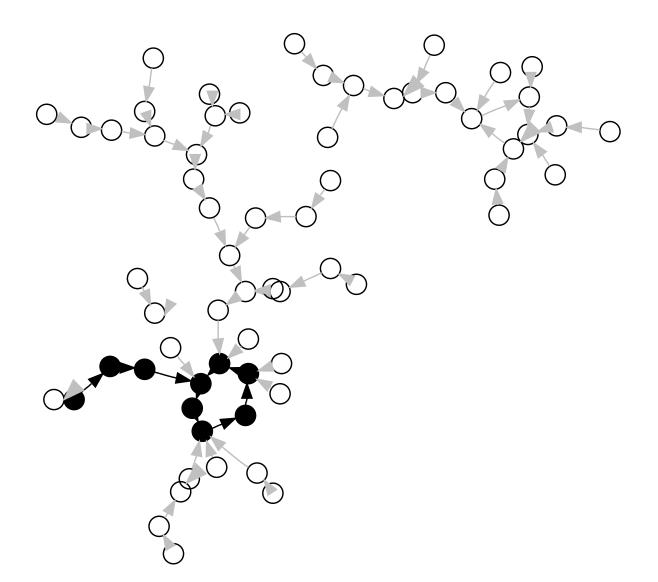


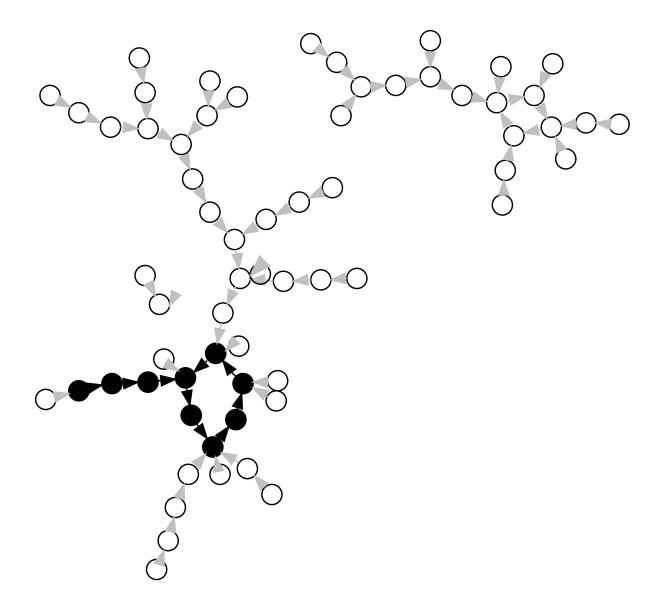












Performance of rho

Model walk as truly random.

Using m multiplications:

$$pprox m$$
 points (x_i,y_i) ; $pprox m^2/2$ pairs of points; slope λ is missed with chance $pprox (1-1/\ell)^{m^2/2}$ $pprox \exp(-m^2/(2\ell))$.

Average # multiplications

$$pprox \sum_0^\infty \exp(-m^2/(2\ell))$$
 $pprox \int_0^\infty \exp(-m^2/(2\ell)) \, dm$
 $= \sqrt{\pi/4} \sqrt{2\ell} = (1.25...) \sqrt{\ell}.$
Better than $(4/3 + o(1)) \sqrt{\ell}.$

Performance of rho

Model walk as truly random.

Using m multiplications:

$$pprox m$$
 points $(x_i,y_i);$ $pprox m^2/2$ pairs of points; slope λ is missed with chance $pprox (1-1/\ell)^{m^2/2}$ $pprox \exp(-m^2/(2\ell)).$

Average # multiplications

$$\approx \sum_{0}^{\infty} \exp(-m^2/(2\ell))$$

$$\approx \int_{0}^{\infty} \exp(-m^2/(2\ell)) dm$$

$$= \sqrt{\pi/4} \sqrt{2\ell} = (1.25...) \sqrt{\ell}.$$
Better than $(4/3 + o(1)) \sqrt{\ell}.$

Don't ask about the worst case.

Anti-collisions

Bad news:

The walk is worse than random.

Very often have

$$(oldsymbol{x}_{i+1}$$
 , $oldsymbol{y}_{i+1}) = (oldsymbol{x}_i$, $oldsymbol{y}_i) + (oldsymbol{s}_j$, $oldsymbol{t}_j)$

followed later by

$$(x_{k+1},y_{k+1})=(x_k,y_k)+(s_j,t_j)$$
 .

Slope from

$$(oldsymbol{x}_{k+1},oldsymbol{y}_{k+1})$$
 to $(oldsymbol{x}_{i+1},oldsymbol{y}_{i+1})$

is not new: same as slope from

$$(x_k, y_k)$$
 to (x_i, y_i) .

Repeated slope: "anti-collision".

 $m^2/2$ was too optimistic. About $(1/r)m^2/2$ pairs use same step, so only $(1-1/r)m^2/2$ chances.

This replacement model
$$\Rightarrow$$
 $(\sqrt{\pi/2}/\sqrt{1-1/r}+o(1))\sqrt{\ell}.$

Can derive $\sqrt{1-1/r}$ from more complicated 1981 Brent–Pollard \sqrt{V} heuristic. 1998 Blackburn–Murphy: explicit $\sqrt{1-1/r}$. 2009 Bernstein–Lange: simplified heuristic; generalized $\sqrt{1-\sum_j p_j^2}$.

Higher-degree anti-collisions

Actually, rho is even worse!

Often have

$$(x_{i+1},y_{i+1}) = (x_i,y_i) + (s_j,t_j) \ (x_{i+2},y_{i+2}) = (x_{i+1},y_{i+1}) + (s_h,t_h)$$
 followed later by

$$egin{aligned} &(x_{k+1},y_{k+1}) = (x_k,y_k) + (s_h,t_h) \ &(x_{k+2},y_{k+2}) = (x_{k+1},y_{k+1}) + (s_j,t_j) \ & ext{so slope from} \end{aligned}$$

so slope from

$$(x_{k+2},y_{k+2})$$
 to (x_{i+2},y_{i+2}) is not new.

"Degree-2 local anti-collisions":

$$1/\sqrt{1-1/r-1/r^2+1/r^3}$$
.

See paper for more.

Is rho optimal?

Allow r to grow slowly with ℓ . (Not quickly: remember cost of initial computation.)

$$\sqrt{1-1/r} o 1. \ \sqrt{1-1/r-1/r^2+1/r^3} o 1.$$

Experimental evidence \Rightarrow average $(\sqrt{\pi/2} + o(1))\sqrt{\ell}$.

But still have many global anti-collisions: slopes appearing repeatedly.

Two grumpy giants and a baby

B: $(0,0)+\{0,\ldots,n\}(0,1)$.

G1: $(1,0)+\{0,\ldots,n\}(0,n)$.

G2: $(2,0)-\{0,\ldots,n\}(0,n+1)$.

Two grumpy giants and a baby

B: $(0,0)+\{0,\ldots,n\}(0,1)$.

G1: $(1,0)+\{0,\ldots,n\}(0,n)$.

G2: $(2,0)-\{0,\ldots,n\}(0,n+1)$.

Minor initial cost: (0, -(n+1)).

Two grumpy giants and a baby

B:
$$(0,0)+\{0,\ldots,n\}(0,1)$$
.

G1:
$$(1,0)+\{0,\ldots,n\}(0,n)$$
.

G2:
$$(2,0)-\{0,\ldots,n\}(0,n+1)$$
.

Minor initial cost:
$$(0, -(n+1))$$
.

As before can interleave:

$$(0,1),(1,n),(2,-(n+1)),$$

$$(0,2),(1,2n),(2,-2(n+1)),$$

$$(0,3),(1,3n),(2,-3(n+1)),$$

•

$$(0, n), (1, n^2), (2, -n(n+1)).$$

For $(1.5 + o(1))\sqrt{\ell}$ mults:

BSGS, with $n \approx 0.75 \sqrt{\ell}$ or interleaved with $n \approx \sqrt{\ell}$, finds $(0.5625 + o(1))\ell$ slopes.

For $(1.5 + o(1))\sqrt{\ell}$ mults:

BSGS, with $n \approx 0.75\sqrt{\ell}$ or interleaved with $n \approx \sqrt{\ell}$, finds $(0.5625 + o(1))\ell$ slopes.

Truly random walk finds $(0.6753...+o(1))\ell$ slopes.

For $(1.5 + o(1))\sqrt{\ell}$ mults:

BSGS, with $n \approx 0.75 \sqrt{\ell}$ or interleaved with $n \approx \sqrt{\ell}$, finds $(0.5625 + o(1))\ell$ slopes.

Truly random walk finds $(0.6753...+o(1))\ell$ slopes.

Two grumpy giants and a baby, with $n \approx 0.5 \sqrt{\ell}$, find $(0.71875 + o(1))\ell$ slopes.

For $(1.5 + o(1))\sqrt{\ell}$ mults:

BSGS, with $n \approx 0.75 \sqrt{\ell}$ or interleaved with $n \approx \sqrt{\ell}$, finds $(0.5625 + o(1))\ell$ slopes.

Truly random walk finds $(0.6753...+o(1))\ell$ slopes.

Two grumpy giants and a baby, with $n \approx 0.5 \sqrt{\ell}$, find $(0.71875 + o(1))\ell$ slopes.

Also better average case than rho.