
Usable assembly language

for GPUs:

a success story

Daniel J. Bernstein, UIC

Hsieh-Chung Chen, Harvard

Chen-Mou Cheng, NTU

Tanja Lange, Eindhoven

Ruben Niederhagen, E+AS

Peter Schwabe, Academia Sinica

Bo-Yin Yang, Academia Sinica

OpenSSL crypto library

(version 1.0.1, 2012.03)

includes 15 different

asm implementations of AES.

SHA-3-512 implementations

benchmarked in eBASH:

17 for blake512,

25 for keccakc1024,

15 for groestl512,

7 for round3jh512,

12 for skein512512.

Widespread use of asm

in the fastest implementations.

Why not just one

portable implementation?

What do compilers do wrong?

� Instruction selection:

e.g., compiler doesn’t see

how to use vector instructions.

� Instruction scheduling.

� Register allocation.

Can blame programming language

for hiding critical information.

Increasing gap between

common languages and hardware.

NVIDIA GTX 295 graphics card:

Massively parallel—2 GPUs,

60 cores, 480 32-bit ALUs.

(NVIDIA marketing terminology:

60 “MPs”; 480 “cores”.)

Massively vectorized—

1 slow instruction decoder/core.

Relatively little fast RAM—

16384 bytes “shared mem”/core.

(Newer “Fermi” GPUs: better.)

Can C compilers use GPUs?

No! Intolerable slowdown.

NVIDIA solution: Change

the programming language.

Tweaked “CUDA” version of C.

(“OpenCL” variant of CUDA

is also supported by AMD.)

CUDA programs explicitly state

parallelization, vectorization.

Eliminates biggest problem

in instruction selection.

But the NVIDIA compilers

still have big trouble

with register allocation.

Case study: ECC2K-130—

“infeasible” ECDLP challenge

posed in 1997 by Certicom.

Optimized attack

(see paper for references):

� 260:9 iterations of

(x; y) 7! (x0; y0); many in parallel.

x; y are in F2131 ;

x has even Hamming weight w;

j = 3 + ((w=2) mod 8);

� = (y + y2j)=(x + x2j);

x0 = �2 + � + x + x2j ;

y0 = �(x + x0) + x0 + y.

� 70000 bit ops/iteration

with best techniques known;

� 277 bit ops overall.

Main cost (85% of bit ops):

5 poly mults/iteration,

131� 131 ! 261 bits.

� 70000 bit ops/iteration

with best techniques known;

� 277 bit ops overall.

Main cost (85% of bit ops):

5 poly mults/iteration,

131� 131 ! 261 bits.

Compare to theoretical capacity

of one GTX 295: 60 cores,

each 256 bit ops/cycle,

1:242 � 109 cycles/second

) 270 bit ops in 2 years.

64 dual-GTX-295 PCs:

277 bit ops in 2 years.

This comparison assumes that

100% of GPU time is spent

on useful bit operations.

We try writing CUDA code,

feed it to NVIDIA’s nvcc.

Experiment extensively with

“optimizations” to CUDA code.

This comparison assumes that

100% of GPU time is spent

on useful bit operations.

We try writing CUDA code,

feed it to NVIDIA’s nvcc.

Experiment extensively with

“optimizations” to CUDA code.

10� slower than theory!

What’s going wrong?

This comparison assumes that

100% of GPU time is spent

on useful bit operations.

We try writing CUDA code,

feed it to NVIDIA’s nvcc.

Experiment extensively with

“optimizations” to CUDA code.

10� slower than theory!

What’s going wrong?

nvcc is constantly

running out of registers,

spilling to “local memory”;

huge cost. (Less huge on Fermi.)

NVIDIA has ptxas assembler,

documents “PTX” instruction set.

(Recent NVIDIA nvcc releases

support inline PTX in CUDA.)

Great! Rewrite code in PTX,

paying attention to regs.

NVIDIA has ptxas assembler,

documents “PTX” instruction set.

(Recent NVIDIA nvcc releases

support inline PTX in CUDA.)

Great! Rewrite code in PTX,

paying attention to regs.

10� slower than theory!

What’s going wrong?

NVIDIA has ptxas assembler,

documents “PTX” instruction set.

(Recent NVIDIA nvcc releases

support inline PTX in CUDA.)

Great! Rewrite code in PTX,

paying attention to regs.

10� slower than theory!

What’s going wrong?

PTX isn’t the machine language.

ptxas is the actual compiler:

converts to SSA, re-assigns regs,

spills to expensive local memory.

2007 van der Laan

reverse-engineered binaries,

wrote decuda tool

to print machine language

in a readable format.

(NVIDIA now supports this.)

Also cudasm to convert readable

format back to machine language.

2010 L.-S. Chien “Hand-tuned

SGEMM on GT200 GPU”:

Successfully gained speed

using decuda, cudasm

and manually rewriting

a small section of ptxas output.

But this was “tedious” and

hampered by cudasm bugs:

“we must extract minimum region

of binary code needed to be

modified and keep remaining

binary code unchanged : : :

implementation of cudasm is

not entirely complete, it is not a

good idea to write whole assembly

manually and rely on cudasm.”

But this was “tedious” and

hampered by cudasm bugs:

“we must extract minimum region

of binary code needed to be

modified and keep remaining

binary code unchanged : : :

implementation of cudasm is

not entirely complete, it is not a

good idea to write whole assembly

manually and rely on cudasm.”

Not a serious obstacle!

We fixed various bugs

and now use cudasm

to generate our GTX 295 code.

Everybody knows that

writing in asm is painful.

Maybe the most painful part:

have to manually assign

live values to registers.

Our fix: qhasm-cudasm.

Usable asm for GPUs.

Everybody knows that

writing in asm is painful.

Maybe the most painful part:

have to manually assign

live values to registers.

Our fix: qhasm-cudasm.

Usable asm for GPUs.

The old parts: cudasm;

qhasm toolkit for parsing

and smart register allocation.

Everybody knows that

writing in asm is painful.

Maybe the most painful part:

have to manually assign

live values to registers.

Our fix: qhasm-cudasm.

Usable asm for GPUs.

The old parts: cudasm;

qhasm toolkit for parsing

and smart register allocation.

New: usable syntax

for the GPU instructions.

C/C++/CUDA:

z2 = x2 ^ y2;

PTX:

xor.b32 %r24, %r22, %r23;

cudasm:

xor.b32 $r2, $r3, $r2

qhasm-cudasm:

z2 = x2 ^ y2

See paper for many

detailed examples.

low32 threadinfo

input threadinfo

enter Z9kerneladdPjPKjS_

low32 tid

low32 x

low32 y

low32 t

low32 tstart

low32 tend

low32 ttid

low32 tselected

low32 now

tselected = 0

low32 j

low32 twenty

cond testloop

tid = 65535 & threadinfo

cond tid12

tid12 tid - c[0]

low32 tid4

tid4 = tid << 2

offset tid4off

tid4off = tid << 2

low32 batchshift

batchshift = blockindex

batchshift int24*= 33536

x = parameters[0]

y = parameters[1]

t = parameters[2]

x += batchshift

y += batchshift

low32 0x0

low32 0x1

low32 0x2

low32 0x3

low32 0x4

low32 0pos

syncthreads

new 0x4

0pos = tid4 + x

0x0 = g[0pos]

0pos += 512

0x1 = g[0pos]

0pos += 512

0x2 = g[0pos]

0pos += 512

0x3 = g[0pos]

0pos += 512

0x4 = g[0pos] if tid12 signed<

s[tid4off + 512] = 0x0

s[tid4off + 1024] = 0x1

s[tid4off + 1536] = 0x2

s[tid4off + 2048] = 0x3

s[tid4off + 2560] = 0x4 if tid12 signed<

low32 1x0

low32 1x1

low32 1x2

low32 1x3

low32 1x4

low32 1pos

syncthreads

new 1x4

1pos = tid4 + y

1x0 = g[1pos]

1pos += 512

1x1 = g[1pos]

1pos += 512

1x2 = g[1pos]

1pos += 512

1x3 = g[1pos]

1pos += 512

1x4 = g[1pos] if tid12 signed<

s[tid4off + 2608] = 1x0

s[tid4off + 3120] = 1x1

s[tid4off + 3632] = 1x2

s[tid4off + 4144] = 1x3

s[tid4off + 4656] = 1x4 if tid12 signed<

syncthreads

j = 0

twenty = 20

syncthreads

tstart = halfclock

low32 2x0

low32 2x1

low32 2x2

low32 2x3

low32 2x4

low32 0y0

low32 0y1

low32 0y2

low32 0y3

low32 0y4

new 2x4

new 0y4

2x0 = s[tid4off + 512]

2x1 = s[tid4off + 1024]

2x2 = s[tid4off + 1536]

2x3 = s[tid4off + 2048]

2x4 = s[tid4off + 2560] if tid12 signed<

0y0 = s[tid4off + 2608]

0y1 = s[tid4off + 3120]

0y2 = s[tid4off + 3632]

0y3 = s[tid4off + 4144]

0y4 = s[tid4off + 4656] if tid12 signed<

2x0 ^= 0y0

2x1 ^= 0y1

2x2 ^= 0y2

2x3 ^= 0y3

2x4 ^= 0y4

s[tid4off + 512] = 2x0

s[tid4off + 1024] = 2x1

s[tid4off + 1536] = 2x2

s[tid4off + 2048] = 2x3

s[tid4off + 2560] = 2x4 if tid12 signed<

syncthreads

tend = halfclock

tend -= tstart

tend <<= 1

low32 3x0

low32 3x1

low32 3x2

low32 3x3

low32 3x4

low32 2pos

syncthreads

new 3x4

3x0 = s[tid4off + 512]

3x1 = s[tid4off + 1024]

3x2 = s[tid4off + 1536]

3x3 = s[tid4off + 2048]

3x4 = s[tid4off + 2560] if tid12 signed<

2pos = tid4 + x

g[2pos] = 3x0

2pos += 512

g[2pos] = 3x1

2pos += 512

g[2pos] = 3x2

2pos += 512

g[2pos] = 3x3

2pos += 512

g[2pos] = 3x4 if tid12 signed<

ttid = tid << 2

ttid += t

g[ttid] = tend

leave

