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Alice and Bob are communicating.

Eve is eavesdropping.

What cryptography

promises to Alice and Bob:

Confidentiality despite espionage.

Maybe Eve wants to acquire data.

Integrity despite corruption.

Maybe Eve wants to change data.

Availability despite sabotage.

Maybe Eve wants to destroy data.
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delivers in the real world.

� Failures of confidentiality.
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� Failures of availability.



This talk: Some examples

of what cryptography actually

delivers in the real world.

� Failures of confidentiality.

� Failures of integrity.

� Failures of availability.

Often adding cryptography

makes attacks easier

than they were before.



This talk: Some examples

of what cryptography actually

delivers in the real world.

� Failures of confidentiality.

� Failures of integrity.

� Failures of availability.

Often adding cryptography

makes attacks easier

than they were before.

Sometimes cryptography

(deliberately?) gives users

a false sense of security.

Users then behave carelessly,

making attacks even easier.
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“The attacker isn’t sniffing our

network packets so we’re secure.”

e.g. Browser has a cookie

authorizing access to an account.

Cookie = account credentials,

authenticated by server to itself.



Cryptography vs. blind attacks

“The attacker isn’t sniffing our

network packets so we’re secure.”

e.g. Browser has a cookie

authorizing access to an account.

Cookie = account credentials,

authenticated by server to itself.

Browser sends this cookie

to server through HTTP.

Might actually be secure

if Eve isn’t sniffing the network;

but Eve is sniffing the network!

2010 example: Firesheep

stealing Facebook credentials.
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Cryptography vs. passive attacks

“The attacker isn’t forging

network packets so we’re secure.”

Examples of this “security”:

� TCP checking IP address.

� DNS checking IP address.

� New marketing stunt: Tcpcrypt.

“Compare this tcpdump output,

which appears encrypted : : : with

the cleartext packets you would

see without tcpcryptd running.

: : : Active attacks are much

harder as they require listening

and modifying network traffic.”



Reality: Eve is modifying network

traffic, often at massive scale.

2011.10 Wall Street Journal:

“A U.S. company that

makes Internet-blocking gear

acknowledges that Syria has been

using at least 13 of its devices

to censor Web activity there.”



Reality: Eve is modifying network

traffic, often at massive scale.

2011.10 Wall Street Journal:

“A U.S. company that

makes Internet-blocking gear

acknowledges that Syria has been

using at least 13 of its devices

to censor Web activity there.”

2012.02: Trustwave (one of the

SSL CAs trusted by your browser)

admits selling a transparent

HTTPS interception box

to a private company.



Integrity über alles

“We detect corrupt data

so we’re secure.”

What about availability?

What about confidentiality?

Many “security solutions”

ignore these issues.

Sometimes adding crypto

allows easier attacks against

availability and confidentiality.

Interesting example: DNSSEC.
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1993.11: DNSSEC design begins.
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A brief history of

DNSSEC server deployment:

1993.11: DNSSEC design begins.

2008.07: Kaminsky announces

apocalypse, saves the world.

) New focus on DNSSEC.

2009.08.09 DNSSEC servers:

941 IP addresses worldwide.

2010.12.24 DNSSEC servers:

2536 IP addresses worldwide.

2011.12.14 DNSSEC servers:

3393 IP addresses worldwide.
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What is DNSSEC?

Is it a lock for the Internet?

Or is it more like this?

Let’s see what DNSSEC can do

as an amplification tool for

denial-of-service attacks.



Download DNSSEC zone list:

wget -m -k -I / \

secspider.cs.ucla.edu

cd secspider.cs.ucla.edu

awk ’

/GREEN.*GREEN.*GREEN.*Yes/ {

split($0,x,/<TD>/)

sub(/<\/TD>/,"",x[5])

print x[5]

}

’ ./*--zone.html \

| sort -u | wc -l



Make list of DNSSEC names:

( cd secspider.cs.ucla.edu

echo ./*--zone.html \

| xargs awk ’

/^Zone <STRONG>/ { z = $2

sub(/<STRONG>/,"",z)

sub(/<\/STRONG>/,"",z)

}

/GREEN.*GREEN.*GREEN.*Yes/ {

split($0,x,/<TD>/)

sub(/<\/TD>/,"",x[5])

print x[5],z,rand()

}’

) | sort -k3n \

| awk ’{print $1,$2}’ > SERVERS



For each domain: Try query,

estimate DNSSEC amplification.

while read ip z

do

dig +dnssec +ignore +tries=1 \

+time=1 any "$z" "@$ip" | \

awk -v "z=$z" -v "ip=$ip" ’{

if ($1 != ";;") next

if ($2 != "MSG") next

if ($3 != "SIZE") next

if ($4 != "rcvd:") next

est = (22+$5)/(40+length(z))

print est,ip,z

}’

done < SERVERS > AMP



For each DNSSEC server,

find domain estimated to have

maximum DNSSEC amplification:

sort -nr AMP | awk ’{

if (seen[$2]) next

if ($1 < 30) next

print $1,$2,$3

seen[$2] = 1

}’ > MAXAMP

head -1 MAXAMP

wc -l MAXAMP

Output (last time I tried it):

95.6279 156.154.102.26 fi.

2326 MAXAMP



Can that really be true?

> 2000 DNSSEC servers

around the Internet, each

providing > 30� amplification

of incoming UDP packets?



Can that really be true?

> 2000 DNSSEC servers

around the Internet, each

providing > 30� amplification

of incoming UDP packets?

Let’s verify this.

Choose quiet test machines

on two different networks

(without egress filters).

e.g. Sender: 1.2.3.4.

Receiver: 5.6.7.8.



Run network-traffic monitors

on 1.2.3.4 and 5.6.7.8.

On 1.2.3.4, set response

address to 5.6.7.8,

and send 1 query/second:

ifconfig eth0:1 \

5.6.7.8 \

netmask 255.255.255.255

while read est ip z

do

dig -b 5.6.7.8 \

+dnssec +ignore +tries=1 \

+time=1 any "$z" "@$ip"

done < MAXAMP >/dev/null 2>&1
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I sustained 51� amplification

of actual network traffic

in a US-to-Europe experiment

on typical university computers

at the end of 2010.

Attacker sending 10Mbps

can trigger 500Mbps flood

from the DNSSEC drone pool,

taking down typical site.

Attacker sending 200Mbps

can trigger 10Gbps flood,

taking down very large site.

Want even more: 100Gbps?

Tell people to install DNSSEC!
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RFC 4033 says

“DNSSEC provides no protection

against denial of service attacks.”

RFC 4033 doesn’t say

“DNSSEC is a pool of

remote-controlled attack drones,

the worst DDoS amplifier

on the Internet.”

Not covered in this talk:

other types of DoS attacks.

e.g. DNSSEC advertising says

zero server-CPU-time cost.

How much server CPU time

can attackers actually consume?
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But wait, there’s more!

RFC 4033 says “DNSSEC does

not provide confidentiality.”

DNSSEC doesn’t encrypt

queries or responses.

RFC 4033 doesn’t say “DNSSEC

damages confidentiality

of data in DNS databases.”

DNSSEC has leaked a huge

number of private DNS names

such as acadmedpa.org.br.

Why does DNSSEC leak data?

An interesting story!
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includes precomputed signatures
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Core DNSSEC data flow:

kuleuven.be DNS database

includes precomputed signatures

from Leuven administrator.

(Hypothetical example.

In the real world,

Leuven isn’t using DNSSEC.)

What about dynamic DNS data?

DNSSEC purists say “Answers

should always be static.”
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What about old DNS data?

Are the signatures still valid?

Can an attacker replay

obsolete signed data?

e.g. You move IP addresses.

Attacker grabs old address,

replays old signature.

If clocks are synchronized

then signatures can

include expiration times.

But frequent re-signing

is an administrative disaster.
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2010.09.02: .us killed itself.

2010.10.07: .be killed itself.
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Some DNSSEC suicide examples:

2010.09.02: .us killed itself.

2010.10.07: .be killed itself.

2012.02.23: ISC administrators

killed some isc.org names.

2012.02.28: “Last night I

was unable to check the

weather forecast, because

the fine folks at NOAA.gov

/ weather.gov broke their

DNSSEC.”

2012.02.28, ISC’s Evan Hunt:

“dnssec-accept-expired yes”
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User asks for www.google.com.

Receives unsigned answer,

a packet forged by Eve,

saying the name doesn’t exist.

Has no choice but to trust it.

Clearly a violation of availability.

Sometimes a violation of integrity.

This is not a good approach.

Alternative: DNSSEC’s “NSEC”.

e.g. nonex.clegg.com query

returns “There are no names

between nick.clegg.com and

start.clegg.com” + signature.

(This is a real example.)



Attacker learns

all n names in clegg.com

(with signatures guaranteeing

that there are no more)

using n DNS queries.

This is not a good approach.

DNSSEC purists disagree:

“It is part of the design

philosophy of the DNS

that the data in it is public.”

But this notion is so extreme

that it became a PR problem.



New DNSSEC approach:

1. “NSEC3” technology:

Use a “one-way hash function”

such as (iterated salted) SHA-1.

Reveal hashes of names

instead of revealing names.

“There are no names with

hashes between : : : and : : : ”



New DNSSEC approach:

1. “NSEC3” technology:

Use a “one-way hash function”

such as (iterated salted) SHA-1.

Reveal hashes of names

instead of revealing names.

“There are no names with

hashes between : : : and : : : ”

2. Marketing:

Pretend that NSEC3 is

less damaging than NSEC.

ISC: “NSEC3 does not allow

enumeration of the zone.”
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computes the same hash function

for many different name guesses;

quickly discovers almost all names
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Reality: Attacker grabs the hashes

by abusing DNSSEC’s NSEC3;

computes the same hash function

for many different name guesses;

quickly discovers almost all names

(and knows # missing names).

DNSSEC purists: “You could

have sent all the same guesses

as queries to the server.”

4Mbps flood of queries is under

500 million noisy guesses/day.

NSEC3 allows typical attackers

1000000 million to 1000000000

million silent guesses/day.
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Misdirected cryptography

“We’re cryptographically

protecting X so we’re secure.”

Is X the complete communication

from Alice to Bob, all the way

from Alice to Bob?

Often X doesn’t reach Bob.

Example: Bob views Alice’s

web page on his Android phone.

Phone asked hotel DNS cache

for web server’s address.

Eve forged the DNS response!

DNS cache checked DNSSEC

but the phone didn’t.



Often X isn’t Alice’s data.



Often X isn’t Alice’s data.

“.ORG becomes the first open

TLD to sign their zone with

DNSSEC : : : Today we reached a

significant milestone in our effort

to bolster online security for the

.ORG community. We are the first

open generic Top-Level Domain

to successfully sign our zone with

Domain Name Security Extensions

(DNSSEC). To date, the .ORG

zone is the largest domain registry

to implement this needed security

measure.”



What did .org actually sign?

2012.03.07 test: Ask .org

about wikipedia.org.

The response has a signed

statement “There might be

names with hashes between

h9rsfb7fpf2l8hg35cmpc765tdk23rp6,

hheprfsv14o44rv9pgcndkt4thnraomv.

We haven’t signed any of

them. Sincerely, .org”

Plus an unsigned statement “The

wikipedia.org name server is

208.80.152.130.”



Often X is horribly incomplete.
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Often X is horribly incomplete.

Example: X is a server address,

with a DNSSEC signature.

What Alice is sending to Bob

are web pages, email, etc.

Those aren’t the same as X!

Alice can use HTTPS

to protect her web pages

: : : but then what attack

is stopped by DNSSEC?
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DNSSEC purists criticize HTTPS:

“Alice can’t trust her servers.”

DNSSEC signers are offline

(preferably in guarded rooms).

DNSSEC precomputes signatures.

DNSSEC doesn’t trust servers.

: : : but X is still wrong!

Alice’s servers still control

all of Alice’s web pages,

unless Alice uses PGP.

With or without PGP, what

attack is stopped by DNSSEC?



Variable-time cryptography

“Our cryptographic

computations expose nothing

but incomprehensible ciphertext

to the attacker, so we’re secure.”

Reality: The attacker

often sees ciphertexts and

how long Alice took to compute

the ciphertexts and how long Bob

took to compute the plaintexts.

Timing variability

often makes the cryptography

easier to attack, sometimes trivial.



Ancient example, shift cipher:

Shift each letter by k,

where k is Alice’s secret key.

e.g. Caesar’s key: 3.

Plaintext HELLO.

Ciphertext KHOOR.
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Ancient example, shift cipher:

Shift each letter by k,

where k is Alice’s secret key.

e.g. Caesar’s key: 3.

Plaintext HELLO.

Ciphertext KHOOR.

e.g. My key: 1.

Plaintext HELLO.

Ciphertext IFMMP.

See how fast that was?

e.g. Your key: 13.

Plaintext HELLO.

Exercise: Find ciphertext.
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easily figure out key

from some ciphertext.

But it’s even worse

against timing attacks:

instantly figure out key,

even for 1-character ciphertext.



This is a very bad cipher:

easily figure out key

from some ciphertext.

But it’s even worse

against timing attacks:

instantly figure out key,

even for 1-character ciphertext.

Our computers are using

much stronger cryptography,

but most implementations

leak secret keys via timing.



1970s: TENEX operating system

compares user-supplied string

against secret password

one character at a time,

stopping at first difference.

AAAAAA vs. SECRET: stop at 1.

SAAAAA vs. SECRET: stop at 2.

SEAAAA vs. SECRET: stop at 3.

Attackers watch comparison time,

deduce position of difference.

A few hundred tries

reveal secret password.
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Objection: “Timings are noisy!”

Answer #1: Even if noise

stops simplest attack,

does it stop all attacks?

Answer #2: Eliminate noise

using statistics of many timings.

Answer #3, what the

1970s attackers actually did:

Increase timing signal

by crossing page boundary,

inducing page faults.



1996 Kocher

extracted RSA keys

from local RSAREF timings:

small numbers were

processed more quickly.

2003 Boneh–Brumley

extracted RSA keys

from an OpenSSL web server.

2011 Brumley–Tuveri:

minutes to steal another

machine’s OpenSSL ECDSA key.

Most IPsec software uses

memcmp to check authenticators.

Exercise: Forge IPsec packets.



Obvious source of problem:

if(...) leaks ... into timing.



Obvious source of problem:

if(...) leaks ... into timing.

Almost as obvious:

x[...] leaks ... into timing.



Obvious source of problem:

if(...) leaks ... into timing.

Almost as obvious:

x[...] leaks ... into timing.

Usually these timings

are correlated with

total encryption time.



Obvious source of problem:

if(...) leaks ... into timing.

Almost as obvious:

x[...] leaks ... into timing.

Usually these timings

are correlated with

total encryption time.

Also have fast effect (via cache

state, branch predictor, etc.)

on timing of other threads and

processes on same machine—

even in other virtual machines!



Fast AES implementations

for most types of CPUs

rely critically on [...].

2005 Bernstein recovered

AES key from a network server

using OpenSSL’s AES software.

2005 Osvik–Shamir–Tromer

in 65ms stole Linux AES key

used for hard-disk encryption.

Attack process on same CPU,

using hyperthreading.

Many clumsy “countermeasures”;

many followup attacks.



Hardware side channels

(audio, video, radio, etc.)

allow many more attacks

for attackers close by,

sometimes farther away.

Compare 2007 Biham–

Dunkelman–Indesteege–Keller–

Preneel (a feasible computation

recovers one user’s Keeloq key

from an hour of ciphertext) to

2008 Eisenbarth–Kasper–Moradi–

Paar–Salmasizadeh–Shalmani

(power consumption revealed

master Keeloq secret; recover any

user’s Keeloq key in seconds).
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“We authenticate our messages

before we encrypt them, and of

course we check for forgeries after
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Decrypting unauthenticated data

“We authenticate our messages

before we encrypt them, and of

course we check for forgeries after

decryption, so we’re secure.”

Theoretically it’s possible to get

this right, but it’s terribly fragile.

1998 Bleichenbacher: Attacker

steals SSL RSA plaintext

by observing server responses

to � 106 variants of ciphertext.



SSL inverts RSA, then checks

for correct “PKCS padding”

(which many forgeries have).

Subsequent processing applies

more serious integrity checks.

Server responses reveal

pattern of PKCS forgeries;

pattern reveals plaintext.

Typical defense strategy:

try to hide differences

between padding checks and

subsequent integrity checks.

But nobody gets this right.



More recent attacks

exploiting server responses:

2009 Albrecht–Paterson–Watson

recovered some SSH plaintext.

2011 Paterson–Ristenpart–

Shrimpton distinguished

48-byte SSL encryptions

of YES and NO.

2012 Alfardan–Paterson

recovered DTLS plaintext

from OpenSSL and GnuTLS.

Let’s peek at the 2011 attack.
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(10: depends on SSL options.)
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Alice authenticates NO

as NO + 10-byte authenticator.

(10: depends on SSL options.)

Then hides length by padding

to 16 or 32 or 48 or : : : bytes

(choice made by sender).

Padding 12 bytes to 32:

append bytes 19 19 19 ....

Then puts 16 random bytes in

front, encrypts in “CBC mode”.

Encryption of 48 bytes

R; P1; P2 is R;C1; C2 where

C1 = AES(R � P1),

C2 = AES(C1 � P2).
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computes P2 = C1 � AES�1(C2);
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Bob receives R;C1; C2;

computes P1 = R � AES�1(C1);

computes P2 = C1 � AES�1(C2);

checks padding and authenticator.

What if Eve sends R0; C1 where

R0 = R � 0 : : : 0 16 16 16 16?

Bob computes

P 0

1 = P1 � 0 : : : 0 16 16 16 16.

Padding is still valid,

as is the authenticator.

If plaintext had been YES then

Bob would have rejected R0; C1

for having a bad authenticator.
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Examples of this “security”:
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Bad crypto primitives

“We’re using a cryptographic

standard so we’re secure.”

Examples of this “security”:

� DES.

� 512-bit RSA.

� 768-bit RSA.

� MD5-based certificates.

1996 Dobbertin–Bosselaers–

Preneel: “It is anticipated that

these techniques can be used

to produce collisions for MD5”.

Standardization committees didn’t

pay attention; why would they?



Speed over security

Crypto performance problems

often lead users to reduce

cryptographic security levels

or give up on cryptography.

Example 1:

Google SSL uses RSA-1024.

Security note:

Analyses in 2003 concluded

that RSA-1024 was breakable;

e.g., 2003 Shamir–Tromer

estimated 1 year, � 107 USD.

RSA Labs and NIST response:

Move to RSA-2048 by 2010.
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“1024-bit factorization is

expensive. Our data isn’t worth

that much, so we’re secure.”

Is it really so expensive?

Hardware keeps getting better.

Are you the only target?

Can attack many keys at once,

spreading costs over those keys:

batch NFS, batch ECDL, etc.

Is the attacker paying?

Conficker broke into 10 million

PCs around the Internet.



Example 2: Tor uses RSA-1024.

Example 3: DNSSEC uses RSA-

1024: “tradeoff between the

risk of key compromise and

performance: : : ”

Example 4: OpenSSL continues to

use secret AES array indices.

Example 5:

https://sourceforge.net/account

is protected by SSL but

https://sourceforge.net/develop

redirects browser to

http://sourceforge.net/develop,

turning off the cryptography.

https://sourceforge.net/account
https://sourceforge.net/develop
http://sourceforge.net/develop

