
Authenticated ciphers

D. J. Bernstein

University of Illinois at Chicago

Joint work with:

Tanja Lange

Technische Universiteit Eindhoven

Advertisement: SHARCS 2012

(Special-Purpose Hardware for

Attacking Cryptographic Systems)

is right before FSE+SHA-3.

2012.01.23 deadline

to submit extended abstracts.

2012.sharcs.org

http://2012.sharcs.org


Multiple-year SHA-3 competition

has produced a natural focus

for security analysis

and performance analysis.

Community shares an interest

in selecting best hash as SHA-3.

Intensive analysis of candidates:

hash conferences, hash workshops,

active SHA-3 mailing list, etc.

Would have been harder to

absorb same work spread over

more conferences, more time.

Focus improves community’s

understanding and confidence.



This is a familiar pattern.

June 1998: AES block-cipher

submissions from 50 people )

community focus.

April 2005: eSTREAM stream-

cipher submissions from 100

people ) community focus.

October 2008: SHA-3 hash-

function submissions from 200

people ) community focus.



This is a familiar pattern.

June 1998: AES block-cipher

submissions from 50 people )

community focus.

April 2005: eSTREAM stream-

cipher submissions from 100

people ) community focus.

October 2008: SHA-3 hash-

function submissions from 200

people ) community focus.

NESSIE was much less focused

and ended up in more trouble:

e.g., only two MAC submissions.



The next community focus

What’s next after block ciphers,

stream ciphers, hash functions?

Proposal: authenticated ciphers.

Basic security goal: two users

start with a shared secret key;

then want to protect messages

against espionage and forgery.

The usual competition:

maximize security subject to

performance constraints;

i.e.: maximize performance

subject to security constraints.



“Isn’t authenticated encryption

done already?”



“Isn’t authenticated encryption

done already?”

FSE 2011 Krovetz–Rogaway cite

EtM, RPC, IAPM, XCBC, OCB1,

TAE, CCM, CWC, GCM, EAX,

OCB2, CCFB, CHM, SIV, CIP,

HBS, BTM; and propose OCB3.

Same paper reports

various timings for AES-GCM;

better timings for AES-OCB3,

“the fastest reported times for

AE” (authenticated encryption);

within � of AES.



“Isn’t authenticated encryption

done already?”

FSE 2011 Krovetz–Rogaway cite

EtM, RPC, IAPM, XCBC, OCB1,

TAE, CCM, CWC, GCM, EAX,

OCB2, CCFB, CHM, SIV, CIP,

HBS, BTM; and propose OCB3.

Same paper reports

various timings for AES-GCM;

better timings for AES-OCB3,

“the fastest reported times for

AE” (authenticated encryption);

within � of AES.

“That’s the end! AES-OCB3!”



General themes of next several

slides in this talk:

1. Is AES-OCB3 the best way

to build an authenticated cipher?

Many reasons to be skeptical.



General themes of next several

slides in this talk:

1. Is AES-OCB3 the best way

to build an authenticated cipher?

Many reasons to be skeptical.

2. Examples of how

earlier authenticated ciphers

already beat AES-OCB3



General themes of next several

slides in this talk:

1. Is AES-OCB3 the best way

to build an authenticated cipher?

Many reasons to be skeptical.

2. Examples of how

earlier authenticated ciphers

already beat AES-OCB3

: : : in some respects.



General themes of next several

slides in this talk:

1. Is AES-OCB3 the best way

to build an authenticated cipher?

Many reasons to be skeptical.

2. Examples of how

earlier authenticated ciphers

already beat AES-OCB3

: : : in some respects.

Conclusion: No reason to think

that existing work is optimal.

Ample room for competition.



Changing the components

AES-GCM uses AES-CTR.

Many bits of AES input

thus end up as constants,

invalidating many differentials.

Can AES-GCM get away with

one or two fewer AES rounds

while still providing security

against differential attacks?

AES-OCB3 doesn’t use CTR.

Can it be safely modified

to use some constant bits?



We know more about ciphers

in 2012 than we did in 1998.

Can we obtain better speeds

by replacing AES

with another block cipher?



We know more about ciphers

in 2012 than we did in 1998.

Can we obtain better speeds

by replacing AES

with another block cipher?

Can we obtain better speeds

by replacing AES-CTR

with another stream cipher?



We know more about ciphers

in 2012 than we did in 1998.

Can we obtain better speeds

by replacing AES

with another block cipher?

Can we obtain better speeds

by replacing AES-CTR

with another stream cipher?

Yes, course! See eSTREAM.

Example, ARM Cortex A8:

28.9 cycles/byte for AES-OCB3.

25.4 cycles/byte for AES-CTR.

8.53 cycles/byte for Salsa20/20.

5.53 cycles/byte for Salsa20/12.



How expensive are MACs?

Can take any modern hash

(or design another one!),

plug into HMAC.



How expensive are MACs?

Can take any modern hash

(or design another one!),

plug into HMAC.

Are universal hashes better?

GCM’s universal hash:

faster than HMAC in hardware

but much slower in software.



How expensive are MACs?

Can take any modern hash

(or design another one!),

plug into HMAC.

Are universal hashes better?

GCM’s universal hash:

faster than HMAC in hardware

but much slower in software.

UMAC, VMAC, etc.:

faster than HMAC in software;

what about hardware?

(I’m doing a new PEMA design.)



Improving security

AES-GCM, AES-OCB3, etc.

advertise “provable security”

if AES is secure.



Improving security

AES-GCM, AES-OCB3, etc.

advertise “provable security”

if AES is secure.

But is AES actually secure?

Are the latest AES-cryptanalysis

papers reason for concern?

(I don’t think so,

but maybe you disagree.)



Improving security

AES-GCM, AES-OCB3, etc.

advertise “provable security”

if AES is secure.

But is AES actually secure?

Are the latest AES-cryptanalysis

papers reason for concern?

(I don’t think so,

but maybe you disagree.)

Does efficiency force ciphers

to have a scary key schedule?



What happens to security

if there are many messages?



What happens to security

if there are many messages?

Usually the security proofs

become meaningless.

e.g. AES-OCB3 theorems allow

attack probability 6q2=2128

after q blocks of AES input.

Is q � 260 so hard to imagine?



What happens to security

if there are many messages?

Usually the security proofs

become meaningless.

e.g. AES-OCB3 theorems allow

attack probability 6q2=2128

after q blocks of AES input.

Is q � 260 so hard to imagine?

128-bit block size for AES

is beginning to look rather small.

Wouldn’t it be more comfortable

to have 256-bit blocks?



What happens to security

if the attacker is lucky

and succeeds at one forgery?

AES-GCM answer: key recovery.

AES-OCB3 answer: ?



What happens to security

if the attacker is lucky

and succeeds at one forgery?

AES-GCM answer: key recovery.

AES-OCB3 answer: ?

Can limit the damage

by rejecting old nonces

and deriving key from nonce;

but this creates

speed problems for AES,

bigger speed problems for GCM.



What happens to security

if the attacker is lucky

and succeeds at one forgery?

AES-GCM answer: key recovery.

AES-OCB3 answer: ?

Can limit the damage

by rejecting old nonces

and deriving key from nonce;

but this creates

speed problems for AES,

bigger speed problems for GCM.

How important is this?

Do we need high key agility?



What about side-channel attacks?

Not a strong point for AES.

Not a strong point for GCM.



What about side-channel attacks?

Not a strong point for AES.

Not a strong point for GCM.

We understand reasonably well

how to design primitives

to avoid software side channels.



What about side-channel attacks?

Not a strong point for AES.

Not a strong point for GCM.

We understand reasonably well

how to design primitives

to avoid software side channels.

How can we design primitives

to reduce cost of

avoiding hardware side channels?

One approach (e.g., Keccak):

maximize bit-level parallelism,

minimize degree over F2.



Cost metrics

Is time the most important

metric for performance?



Cost metrics

Is time the most important

metric for performance?

Does your cryptography fit

onto an RFID, or

into a small corner of a CPU?

What is the smallest area

for an authenticated cipher?



Cost metrics

Is time the most important

metric for performance?

Does your cryptography fit

onto an RFID, or

into a small corner of a CPU?

What is the smallest area

for an authenticated cipher?

For each A: How fast is

an authenticated cipher

that fits into area A?



Is AES-OCB3 actually faster than

AES-GCM at rejecting forgeries?



Is AES-OCB3 actually faster than

AES-GCM at rejecting forgeries?

AES-GCM rejects forgery

with no decryption time.

AES-OCB3 is faster than

AES-GCM, but is it faster than

just the MAC in AES-GCM?



Is AES-OCB3 actually faster than

AES-GCM at rejecting forgeries?

AES-GCM rejects forgery

with no decryption time.

AES-OCB3 is faster than

AES-GCM, but is it faster than

just the MAC in AES-GCM?

Many other MACs are

clearly faster than AES-OCB3.



Is AES-OCB3 actually faster than

AES-GCM at rejecting forgeries?

AES-GCM rejects forgery

with no decryption time.

AES-OCB3 is faster than

AES-GCM, but is it faster than

just the MAC in AES-GCM?

Many other MACs are

clearly faster than AES-OCB3.

What is most important for

performance of authenticated

ciphers: normal traffic, or

floods of forged traffic?



AES-OCB3 saves time in

encryption and decryption

by building a MAC

that “accidentally” also

computes a ciphertext.



AES-OCB3 saves time in

encryption and decryption

by building a MAC

that “accidentally” also

computes a ciphertext.

Can we build a cipher

that “accidentally” also

computes a fast MAC?



AES-OCB3 saves time in

encryption and decryption

by building a MAC

that “accidentally” also

computes a ciphertext.

Can we build a cipher

that “accidentally” also

computes a fast MAC?

Fast MAC of m0;m1; : : :

typically looks like

k0m0 + k1m1 + � � �.

Use kimi in computing

ith block of ciphertext?

Compare to 1996 Lucks HFF .



Another approach (e.g.,

Helix, Phelix, Keccak):

map state, plaintext block

to new state, ciphertext block.



Another approach (e.g.,

Helix, Phelix, Keccak):

map state, plaintext block

to new state, ciphertext block.

Complaint about Helix/Phelix:

state-recovery attack

if user repeats nonces

for different plaintexts

chosen by the attacker.



Another approach (e.g.,

Helix, Phelix, Keccak):

map state, plaintext block

to new state, ciphertext block.

Complaint about Helix/Phelix:

state-recovery attack

if user repeats nonces

for different plaintexts

chosen by the attacker.

Does this actually matter?

Fix 1: Give up, and stop

feeding plaintext into state.

Fix 2: Use much larger blocks,

much stronger map.



Isn’t this fun?

Authenticated-cipher competition,

like hash-function competition,

is much more than mode

competition.



Isn’t this fun?

Authenticated-cipher competition,

like hash-function competition,

is much more than mode

competition.

Want to build a better cipher?

Combine with any standard MAC,

submit to the competition.



Isn’t this fun?

Authenticated-cipher competition,

like hash-function competition,

is much more than mode

competition.

Want to build a better cipher?

Combine with any standard MAC,

submit to the competition.

Want to build a better MAC?

Combine with AES, submit.



Isn’t this fun?

Authenticated-cipher competition,

like hash-function competition,

is much more than mode

competition.

Want to build a better cipher?

Combine with any standard MAC,

submit to the competition.

Want to build a better MAC?

Combine with AES, submit.

Oh, you are a mode designer?

Take standard components,

submit.



Suggested timeline



Suggested timeline

First and most important:

Stop thinking about SHA-3.



Suggested timeline

First and most important:

Stop thinking about SHA-3.

Second half of 2012:

Public discussion of requirements.

Much easier than for hashing,

but still some real questions:

e.g., how much damage is okay

if nonces are reused?



Suggested timeline

First and most important:

Stop thinking about SHA-3.

Second half of 2012:

Public discussion of requirements.

Much easier than for hashing,

but still some real questions:

e.g., how much damage is okay

if nonces are reused?

Mid-2012: ECRYPT workshop.

Mid-2013: Submission deadline.

Mid-2014: Second round.

Mid-2015: Third round.



Most work is volunteered

by cryptographers+cryptanalysts

designing+attacking submissions.

(And we’ll do benchmarking.)

Also need central committee

of experienced cryptologists

evaluating cryptanalyses and

selecting the best submissions.

Is this committee work

so much fun that

the right people

will volunteer for it? Maybe!



Competition name

“AES”: “Authenticated

Encryption Standard”?



Competition name

“AES”: “Authenticated

Encryption Standard”?

“AACS”: “Advanced

Authenticated Cipher Standard”?



Competition name

“AES”: “Authenticated

Encryption Standard”?

“AACS”: “Advanced

Authenticated Cipher Standard”?

“aSTREAM”?



Competition name

“AES”: “Authenticated

Encryption Standard”?

“AACS”: “Advanced

Authenticated Cipher Standard”?

“aSTREAM”? “YACC”?



Competition name

“AES”: “Authenticated

Encryption Standard”?

“AACS”: “Advanced

Authenticated Cipher Standard”?

“aSTREAM”? “YACC”?

“AEAAEADAOIAIP”?



Competition name

“AES”: “Authenticated

Encryption Standard”?

“AACS”: “Advanced

Authenticated Cipher Standard”?

“aSTREAM”? “YACC”?

“AEAAEADAOIAIP”?

Greg Rose has suggested

“eSAFE”. Maybe “ECRYPT

Secure Authenticated Fast

Encryption”?



Competition name

“AES”: “Authenticated

Encryption Standard”?

“AACS”: “Advanced

Authenticated Cipher Standard”?

“aSTREAM”? “YACC”?

“AEAAEADAOIAIP”?

Greg Rose has suggested

“eSAFE”. Maybe “ECRYPT

Secure Authenticated Fast

Encryption”?

Orr: “FEAR”? “SHÆ-3”?




