Simplified high-speed high-distance list decoding for alternant codes cr.yp.to/papers.html

#simplelist

D. J. Bernstein University of Illinois at Chicago

Thanks to: Cisco University Research Program

And thanks to: NIST grant 60NANB10D263

Context: McEliece key size

Standard asymptotics:

For 2^{b} security, McEliece needs $(C_{0} + o(1))b^{2}(\lg b)^{2}$ -bit keys. Here $C_{0} \approx 0.7418860694$.

Standard asymptotics + sensible Grover (PQCrypto 2010 Bernstein "Grover vs. McEliece"): For 2^b post-quantum security, McEliece needs $(4C_0 + o(1))b^2(\lg b)^2$ -bit keys. Same C_0 as before. One definition of C_0 : $R = 1 - \exp(-2R)$ is satisfied for a unique $R \approx 0.7968121300$; then $C_0 = (\log 2)^2 / 4R(1 - R)$. One definition of C_0 : $R = 1 - \exp(-2R)$ is satisfied for a unique $R \approx 0.7968121300$; then $C_0 = (\log 2)^2 / 4R(1 - R)$.

i.e. R with 0 < R < 1 minimizes $C_0 = R/(1 - R)(\lg(1 - R))^2$. One definition of C_0 : $R = 1 - \exp(-2R)$ is satisfied for a unique $R \approx 0.7968121300$; then $C_0 = (\log 2)^2 / 4R(1 - R)$.

i.e. R with 0 < R < 1 minimizes $C_0 = R/(1 - R)(\lg(1 - R))^2$.

Warning: o(1) does not mean 0. It means something that converges to 0 as $b \rightarrow \infty$. Closer look: this o(1) is positive, so replacing o(1) by 0 would not achieve 2^b security.

McEliece public key (with Niederreiter compression) is a $k \times (n - k)$ matrix over \mathbf{F}_2 . $R(1 - R)n^2$ bits if k = Rn.

McEliece public key (with Niederreiter compression) is a $k \times (n - k)$ matrix over \mathbf{F}_2 . $R(1 - R)n^2$ bits if k = Rn.

Best attacks known: $c^{(1+o(1))n/\lg n}$ simple operations where $c = 1/(1-R)^{1-R}$.

McEliece public key (with Niederreiter compression) is a $k \times (n - k)$ matrix over \mathbf{F}_2 . $R(1 - R)n^2$ bits if k = Rn.

Best attacks known: $c^{(1+o(1))n/\lg n}$ simple operations where $c = 1/(1-R)^{1-R}$. For $c^{(1+o(1))n/\lg n} \ge 2^b$ choose n as $(b\lg b)/(\lg c + o(1))$. $R(1-R)b^2(\lg b)^2/(\lg c + o(1))^2 =$ $(C_0 + o(1))b^2(\lg b)^2$ key bits where $C_0 = R/(1-R)(\lg(1-R))^2$.

$$c^{(1+o(1))n/\lg n}$$
? $c = 1/(1-R)^{1-R}$?

$$c^{(1+o(1))n/\lg n}$$
? $c = 1/(1-R)^{1-R}$?

The public key represents a k-dimensional subspace of \mathbf{F}_2^n . Secretly equivalent to a classical binary Goppa code efficiently correcting w errors. Tradition: $n = 2^m$, k = n - mw; so $w = (1 - R)n/\lg n$.

$$c^{(1+o(1))n/\lg n}$$
? $c = 1/(1-R)^{1-R}$?

The public key represents a k-dimensional subspace of \mathbf{F}_2^n . Secretly equivalent to a classical binary Goppa code efficiently correcting w errors. Tradition: $n = 2^m$, k = n - mw; so $w = (1 - R)n/\lg n$.

Information-set decoding guesses k error-free positions. Chance $\approx {\binom{n-w}{k}}/{\binom{n}{k}};$ $(1-R+o(1))^w$ since $w/n \to 0$. More precise: 2009 Bernstein– Lange–Peters–van Tilborg.

Smaller keys via list decoding

Proposal from PQCrypto 2008 Bernstein–Lange–Peters: reduce key size by "using list decoding to increase w."

List decoding efficiently corrects more than $(1 - R)n/\lg n$ errors in the same secret Goppa code. Larger $w \Rightarrow$ harder attacks \Rightarrow smaller keys for 2^b security.

Smaller keys via list decoding

Proposal from PQCrypto 2008 Bernstein–Lange–Peters: reduce key size by "using list decoding to increase w."

List decoding efficiently corrects more than $(1 - R)n/\lg n$ errors in the same secret Goppa code. Larger $w \Rightarrow$ harder attacks \Rightarrow smaller keys for 2^b security.

Literature also has many ideas for reducing key size by *changing* the code: see talks by Misoczki, Peters. Fix distinct $a_1, \ldots, a_n \in \mathbf{F}_{2^m}$ and monic $g \in \mathbf{F}_{2^m}[x]$ with deg g = t and $g(a_1) \cdots g(a_n) \neq 0$. The Goppa code $\Gamma \subseteq \mathbf{F}_2^n$ is the set of (c_1, \ldots, c_n) with $\sum_i c_i / (x - a_i) = 0$ in $\mathbf{F}_{2^m}[x]/g$. Typically $\#\Gamma = 2^{n-mt}$.

Define $P = (x - a_1) \cdots (x - a_n)$. Can write any $(c_1, \ldots, c_n) \in \Gamma$ as $\left(\frac{f(a_1)g(a_1)}{P'(a_1)}, \ldots, \frac{f(a_n)g(a_n)}{P'(a_n)}\right)$ for some $f \in \mathbf{F}_{2^m}[x]$ with deg f < n - t. Classic Reed–Solomon decoding: For any $w \leq \lfloor t/2 \rfloor$, correct w errors in $(f(a_1), \ldots, f(a_n))$ assuming deg f < n - t.

1960 Peterson: $n^{O(1)}$ arithmetic ops.

1968 Berlekamp: $O(n^2)$. Modern view: Reduce a 2-dimensional lattice basis.

1976 Justesen, independently 1977 Sarwate: $n(\lg n)^{2+o(1)}$. Modern view: fast lattice-basis reduction.

1. 1998 Guruswami–Sudan: Increase w from $\lfloor t/2 \rfloor$ up to $n - \sqrt{n(n - t - 1)} \approx t/2 + t^2/8n$.

1. 1998 Guruswami–Sudan: Increase w from $\lfloor t/2 \rfloor$ up to $n - \sqrt{n(n - t - 1)} \approx t/2 + t^2/8n$.

2. 2000 Koetter-Vardy: Exploit: error vector $\in \{0, 1\}^n$. Replaces n by n' = n/2: $n' - \sqrt{n'(n'-t-1)} \approx t/2 + t^2/4n$.

1. 1998 Guruswami–Sudan: Increase w from $\lfloor t/2 \rfloor$ up to $n - \sqrt{n(n - t - 1)} \approx t/2 + t^2/8n$.

2. 2000 Koetter–Vardy:
Exploit: error vector
$$\in \{0, 1\}^n$$
.
Replaces n by $n' = n/2$:
 $n' - \sqrt{n'(n'-t-1)} \approx t/2 + t^2/4n$.

3. 1970 Goppa?: $\Gamma_2(g) = \Gamma_2(g^2)$ if *g* is squarefree. Combine with, e.g., Peterson to reach w = t.

1. 1998 Guruswami–Sudan: Increase w from $\lfloor t/2 \rfloor$ up to $n - \sqrt{n(n - t - 1)} \approx t/2 + t^2/8n$.

2. 2000 Koetter–Vardy:
Exploit: error vector
$$\in \{0, 1\}^n$$
.
Replaces n by $n' = n/2$:
 $n' - \sqrt{n'(n'-t-1)} \approx t/2 + t^2/4n$.

3. 1970 Goppa?: $\Gamma_2(g) = \Gamma_2(g^2)$ if *g* is squarefree. Combine with, e.g., Peterson to reach w = t.

4. Guess a few error positions.

Recall asymptotic analysis: Each extra error makes attacks more difficult by a factor 1/(1 - R + o(1)). Have $1/(1 - R) \approx 4.92 + o(1)$.

Combining all known poly-time improvements: $\approx t^2/n \approx (1 - R)^2 n/(\lg n)^2$ extra errors.

Multiplies security level bby $\approx 1 + (1 - R)/\lg b$.

For same security, divides key size by $\approx (1 + (1 - R)/\lg b)^2$. 1 + o(1) but still noticeable.

Streamlining list decoding

"Multiplicity 2" example of GS: Input vector (v_1, \ldots, v_n) . Find small nonzero $Q \in \mathbf{F}_{2^m}[x, y]$ having multiplicity ≥ 2 at each (a_i, v_i) : i.e., $Q\in \langle x-a_i,y-v_i
angle^2=$ $\langle (x-a_i)^2, (x-a_i)(y-v_i), (y-v_i)^2 \rangle$. Find all $f \in \mathbf{F}_{2^m}[x]$ with Q(f) = 0 and deg f < n - t. Notation: Q(f) is $Q \mod y - f$.

Check whether (v_1, \ldots, v_n) is close to $(f(a_1), \ldots, f(a_n))$.

"List size 3" definition of "small" if $rac{1}{4}(n-1)$, $rac{1}{2}(n-t-1)\in {\sf Z}$: $Q = Q_0 + Q_1 y + Q_2 y^2 + Q_3 y^3$ for some $Q_0, Q_1, Q_2, Q_3 \in \mathbf{F}_{2^m}[x]$; $\deg Q_0 \leq \frac{3}{4}(n-1) + \frac{3}{2}(n-t-1);$ $\deg Q_1 \leq \frac{3}{4}(n-1) + \frac{1}{2}(n-t-1);$ $\deg Q_2 \leq \frac{3}{4}(n-1) - \frac{1}{2}(n-t-1);$ $\deg Q_3 \le \frac{3}{4}(n-1) - \frac{3}{2}(n-t-1).$ $\deg Q(f) \leq \frac{3}{4}(n-1) + \frac{3}{2}(n-t-1)$ but Q(f) is divisible by D^2 where $D = \prod_{i:f(a_i)=v_i} (x - a_i)$. Must have Q(f) = 0 if $\deg D > \frac{3}{8}(n-1) + \frac{3}{4}(n-t-1).$ Corrects $\frac{1}{2}t + \frac{1}{4}t - \frac{1}{8}n + \frac{9}{8}$ errors.

Have 3n + 1 coeffs of Q.

 $Q\in \langle x-a_i,y-v_i
angle^2$ is 3 linear equations on coeffs: e.g., $Q \in \langle x, y \rangle^2$ says coeffs of 1, x, y are 0. Total 3n linear equations. Linear algebra now finds a small $Q \neq 0$. Standard root-finding methods find all f with Q(f) = 0;

use, e.g., 1969 Zassenhaus.

Eliminating localization:

Start with 0-error interpolation: $R \in \mathbf{F}_{2^m}[x]$ has $R(a_i) = v_i$. Compute $P = (x - a_1) \cdots (x - a_n)$.

 $Q \in \langle x - a_i, y - v_i \rangle^2$ for all i iff $Q_0 + Q_1 R + Q_2 R^2 + Q_3 R^3 \in \langle P^2 \rangle$ and $Q_1 + 2Q_2 R + 3Q_3 R^2 \in \langle P \rangle$.

Thus have a basis for dual of $\mathbf{F}_{2^m}[x]$ -lattice of $\{Q\}$. Find small Q by basis reduction. Eliminating localization:

Start with 0-error interpolation: $R \in \mathbf{F}_{2^m}[x]$ has $R(a_i) = v_i$. Compute $P = (x - a_1) \cdots (x - a_n)$.

 $Q \in \langle x - a_i, y - v_i \rangle^2$ for all i iff $Q_0 + Q_1 R + Q_2 R^2 + Q_3 R^3 \in \langle P^2 \rangle$ and $Q_1 + 2Q_2 R + 3Q_3 R^2 \in \langle P \rangle$.

Thus have a basis for dual of $\mathbf{F}_{2^m}[x]$ -lattice of $\{Q\}$. Find small Q by basis reduction.

This algorithm is a special case of 1996 Coppersmith, later understood to supersede GS.

Eliminating the dual:

Simply write down a basis P^2 , (y - R)P, $(y - R)^2$, $y(y - R)^2$ for the same lattice. Find Q by basis reduction. Eliminating the dual:

Simply write down a basis P^2 , (y - R)P, $(y - R)^2$, $y(y - R)^2$ for the same lattice. Find Q by basis reduction. Special case of 1997 Howgrave-Graham improvement

to 1996 Coppersmith.

Very fast basis computation. Fast basis reduction: use 2003 Giorgi–Jeannerod–Villard.

 $\operatorname{Cost} \ell^{<3.5} n (\lg n)^{O(1)}$

for general list size ℓ .

2006 Lee-O'Sullivan rediscovered this construction of a basis for this lattice, but then found small Qby Buchberger reduction (finding a Gröbner basis). Howgrave-Graham is better! Buchberger reduction is more general than lattice-basis reduction but is slower.

Lehmer, Knuth, et al.: start reducing lattice basis by reducing rounded basis.

What this paper does

Koetter and Vardy change 1998 GS lattice (= 1996 Coppersmith lattice) to correct more errors.

Seems outside scope of HG. Can KV avoid localization? Can KV avoid dualization?

What this paper does

Koetter and Vardy change 1998 GS lattice (= 1996 Coppersmith lattice) to correct more errors.

Seems outside scope of HG. Can KV avoid localization? Can KV avoid dualization?

Yes. 2011 Bernstein simplelist: Streamlined construction of basis for KV lattice, analogous to 1997 HG construction of basis for Coppersmith lattice.

More speedups

1975 Patterson: Speed up Berlekamp for $\Gamma_2(g^2)$. 2007 Wu: rational list decoding. Same w as GS, but much smaller multiplicity. 2008 Bernstein goppalist: rational + HG + Patterson.

2011 Bernstein jetlist: rational + HG + KV. Same w as KV, but much smaller multiplicity.