
Simplified

high-speed

high-distance

list decoding

for alternant codes

cr.yp.to/papers.html

#simplelist

D. J. Bernstein

University of Illinois at Chicago

Thanks to: Cisco

University Research Program

And thanks to: NIST

grant 60NANB10D263

http://cr.yp.to/papers.html#simplelist
http://cr.yp.to/papers.html#simplelist


Context: McEliece key size

Standard asymptotics:

For 2b security, McEliece needs

(C0 + o(1))b2(lg b)2-bit keys.

Here C0 � 0:7418860694.

Standard asymptotics +

sensible Grover (PQCrypto 2010

Bernstein “Grover vs. McEliece”):

For 2b post-quantum security,

McEliece needs

(4C0 + o(1))b2(lg b)2-bit keys.

Same C0 as before.



One definition of C0:

R = 1� exp(�2R) is satisfied

for a unique R � 0:7968121300;

then C0 = (log 2)2=4R(1� R).



One definition of C0:

R = 1� exp(�2R) is satisfied

for a unique R � 0:7968121300;

then C0 = (log 2)2=4R(1� R).

i.e. R with 0 < R < 1 minimizes

C0 = R=(1� R)(lg(1� R))2.



One definition of C0:

R = 1� exp(�2R) is satisfied

for a unique R � 0:7968121300;

then C0 = (log 2)2=4R(1� R).

i.e. R with 0 < R < 1 minimizes

C0 = R=(1� R)(lg(1� R))2.

Warning:

o(1) does not mean 0.

It means something

that converges to 0 as b ! 1.

Closer look: this o(1) is positive,

so replacing o(1) by 0

would not achieve 2b security.



Where does this come from?



Where does this come from?

McEliece public key

(with Niederreiter compression)

is a k� (n� k) matrix over F2.

R(1� R)n2 bits if k = Rn.



Where does this come from?

McEliece public key

(with Niederreiter compression)

is a k� (n� k) matrix over F2.

R(1� R)n2 bits if k = Rn.

Best attacks known:

c(1+o(1))n=lgn simple operations

where c = 1=(1� R)1�R.



Where does this come from?

McEliece public key

(with Niederreiter compression)

is a k� (n� k) matrix over F2.

R(1� R)n2 bits if k = Rn.

Best attacks known:

c(1+o(1))n=lgn simple operations

where c = 1=(1� R)1�R.

For c(1+o(1))n=lgn � 2b

choose n as (b lg b)=(lg c + o(1)).

R(1�R)b2(lg b)2=(lg c+o(1))2 =

(C0 + o(1))b2(lg b)2 key bits where

C0 = R=(1� R)(lg(1� R))2.



c(1+o(1))n=lgn? c = 1=(1�R)1�R?



c(1+o(1))n=lgn? c = 1=(1�R)1�R?

The public key represents

a k-dimensional subspace of Fn2 .

Secretly equivalent to

a classical binary Goppa code

efficiently correcting w errors.

Tradition: n = 2m, k = n�mw;

so w = (1� R)n=lgn.



c(1+o(1))n=lgn? c = 1=(1�R)1�R?

The public key represents

a k-dimensional subspace of Fn2 .

Secretly equivalent to

a classical binary Goppa code

efficiently correcting w errors.

Tradition: n = 2m, k = n�mw;

so w = (1� R)n=lgn.

Information-set decoding

guesses k error-free positions.

Chance �
�n�w

k

�
=
�n
k

�
;

(1� R + o(1))w since w=n! 0.

More precise: 2009 Bernstein–

Lange–Peters–van Tilborg.



Smaller keys via list decoding

Proposal from PQCrypto 2008

Bernstein–Lange–Peters:

reduce key size by “using

list decoding to increase w.”

List decoding efficiently corrects

more than (1� R)n=lgn errors

in the same secret Goppa code.

Larger w ) harder attacks

) smaller keys for 2b security.



Smaller keys via list decoding

Proposal from PQCrypto 2008

Bernstein–Lange–Peters:

reduce key size by “using

list decoding to increase w.”

List decoding efficiently corrects

more than (1� R)n=lgn errors

in the same secret Goppa code.

Larger w ) harder attacks

) smaller keys for 2b security.

Literature also has many ideas

for reducing key size

by changing the code:

see talks by Misoczki, Peters.



Fix distinct a1; : : : ; an 2 F2m

and monic g 2 F2m [x] with

deg g = t and g(a1) � � � g(an) 6= 0.

The Goppa code Γ � Fn2
is the set of (c1; : : : ; cn) withP

i ci=(x� ai) = 0 in F2m [x]=g.

Typically #Γ = 2n�mt.

Define P = (x� a1) � � � (x� an).

Can write any (c1; : : : ; cn) 2 Γ as�
f(a1)g(a1)

P 0(a1)
; : : : ;

f(an)g(an)

P 0(an)

�

for some f 2 F2m [x]

with deg f < n� t.



Classic Reed–Solomon decoding:

For any w � bt=2c,

correct w errors

in (f(a1); : : : ; f(an))

assuming deg f < n� t.

1960 Peterson:

nO(1) arithmetic ops.

1968 Berlekamp: O(n2).

Modern view: Reduce

a 2-dimensional lattice basis.

1976 Justesen,

independently 1977 Sarwate:

n(lgn)2+o(1). Modern view:

fast lattice-basis reduction.



Improvements (combinable!)

in number of correctable errors:

1. 1998 Guruswami–Sudan:

Increase w from bt=2c up to

n�
p
n(n� t� 1) � t=2+t2=8n.



Improvements (combinable!)

in number of correctable errors:

1. 1998 Guruswami–Sudan:

Increase w from bt=2c up to

n�
p
n(n� t� 1) � t=2+t2=8n.

2. 2000 Koetter–Vardy:

Exploit: error vector 2 f0; 1gn.

Replaces n by n0 = n=2:

n0�
p
n0(n0�t�1) � t=2 + t2=4n.



Improvements (combinable!)

in number of correctable errors:

1. 1998 Guruswami–Sudan:

Increase w from bt=2c up to

n�
p
n(n� t� 1) � t=2+t2=8n.

2. 2000 Koetter–Vardy:

Exploit: error vector 2 f0; 1gn.

Replaces n by n0 = n=2:

n0�
p
n0(n0�t�1) � t=2 + t2=4n.

3. 1970 Goppa?: Γ2(g) = Γ2(g2)

if g is squarefree. Combine with,

e.g., Peterson to reach w = t.



Improvements (combinable!)

in number of correctable errors:

1. 1998 Guruswami–Sudan:

Increase w from bt=2c up to

n�
p
n(n� t� 1) � t=2+t2=8n.

2. 2000 Koetter–Vardy:

Exploit: error vector 2 f0; 1gn.

Replaces n by n0 = n=2:

n0�
p
n0(n0�t�1) � t=2 + t2=4n.

3. 1970 Goppa?: Γ2(g) = Γ2(g2)

if g is squarefree. Combine with,

e.g., Peterson to reach w = t.

4. Guess a few error positions.



Recall asymptotic analysis:

Each extra error

makes attacks more difficult

by a factor 1=(1� R + o(1)).

Have 1=(1� R) � 4:92 + o(1).

Combining all known

poly-time improvements:

� t2=n � (1� R)2n=(lgn)2

extra errors.

Multiplies security level b

by � 1 + (1� R)=lg b.

For same security, divides key size

by � (1 + (1� R)=lg b)2.

1 + o(1) but still noticeable.



Streamlining list decoding

“Multiplicity 2” example of GS:

Input vector (v1; : : : ; vn).

Find small nonzero Q 2 F2m [x; y]

having multiplicity � 2

at each (ai; vi): i.e.,

Q 2 hx� ai; y � vii
2 =

h(x�ai)
2; (x�ai)(y�vi); (y�vi)

2i.

Find all f 2 F2m [x] with

Q(f) = 0 and deg f < n� t.

Notation: Q(f) is Q mod y � f .

Check whether (v1; : : : ; vn)

is close to (f(a1); : : : ; f(an)).



“List size 3” definition of “small”

if 1
4 (n� 1); 1

2 (n� t� 1) 2 Z:

Q = Q0 + Q1y + Q2y
2 + Q3y

3

for some Q0; Q1; Q2; Q3 2 F2m [x];

degQ0 �
3
4 (n� 1) + 3

2 (n� t� 1);

degQ1 �
3
4 (n� 1) + 1

2 (n� t� 1);

degQ2 �
3
4 (n� 1)� 1

2 (n� t� 1);

degQ3 �
3
4 (n� 1)� 3

2 (n� t� 1).



“List size 3” definition of “small”

if 1
4 (n� 1); 1

2 (n� t� 1) 2 Z:

Q = Q0 + Q1y + Q2y
2 + Q3y

3

for some Q0; Q1; Q2; Q3 2 F2m [x];

degQ0 �
3
4 (n� 1) + 3

2 (n� t� 1);

degQ1 �
3
4 (n� 1) + 1

2 (n� t� 1);

degQ2 �
3
4 (n� 1)� 1

2 (n� t� 1);

degQ3 �
3
4 (n� 1)� 3

2 (n� t� 1).

degQ(f) � 3
4 (n�1)+ 3

2 (n�t�1)

but Q(f) is divisible by D2

where D =
Q

i:f(ai)=vi
(x� ai).

Must have Q(f) = 0 if

degD > 3
8 (n� 1) + 3

4 (n� t� 1).

Corrects 1
2 t + 1

4 t�
1
8n + 9

8 errors.



Have 3n + 1 coeffs of Q.

Q 2 hx� ai; y � vii
2

is 3 linear equations on coeffs:

e.g., Q 2 hx; yi2

says coeffs of 1; x; y are 0.

Total 3n linear equations.

Linear algebra now

finds a small Q 6= 0.

Standard root-finding methods

find all f with Q(f) = 0;

use, e.g., 1969 Zassenhaus.



Eliminating localization:

Start with 0-error interpolation:

R 2 F2m [x] has R(ai) = vi.

Compute P = (x�a1) � � � (x�an).

Q 2 hx� ai; y � vii
2 for all i iff

Q0 +Q1R+Q2R
2 +Q3R

3 2 hP 2i

and Q1 + 2Q2R + 3Q3R
2 2 hP i.

Thus have a basis for dual

of F2m [x]-lattice of fQg.

Find small Q by basis reduction.



Eliminating localization:

Start with 0-error interpolation:

R 2 F2m [x] has R(ai) = vi.

Compute P = (x�a1) � � � (x�an).

Q 2 hx� ai; y � vii
2 for all i iff

Q0 +Q1R+Q2R
2 +Q3R

3 2 hP 2i

and Q1 + 2Q2R + 3Q3R
2 2 hP i.

Thus have a basis for dual

of F2m [x]-lattice of fQg.

Find small Q by basis reduction.

This algorithm is a

special case of 1996 Coppersmith,

later understood to supersede GS.



Eliminating the dual:

Simply write down a basis

P 2; (y �R)P; (y �R)2; y(y �R)2

for the same lattice.

Find Q by basis reduction.



Eliminating the dual:

Simply write down a basis

P 2; (y �R)P; (y �R)2; y(y �R)2

for the same lattice.

Find Q by basis reduction.

Special case of 1997

Howgrave-Graham improvement

to 1996 Coppersmith.

Very fast basis computation.

Fast basis reduction: use

2003 Giorgi–Jeannerod–Villard.

Cost `<3:5n(lgn)O(1)

for general list size `.



2006 Lee–O’Sullivan

rediscovered this construction

of a basis for this lattice,

but then found small Q

by Buchberger reduction

(finding a Gröbner basis).

Howgrave-Graham is better!

Buchberger reduction

is more general than

lattice-basis reduction

but is slower.

Lehmer, Knuth, et al.:

start reducing lattice basis

by reducing rounded basis.



What this paper does

Koetter and Vardy change

1998 GS lattice

(= 1996 Coppersmith lattice)

to correct more errors.

Seems outside scope of HG.

Can KV avoid localization?

Can KV avoid dualization?



What this paper does

Koetter and Vardy change

1998 GS lattice

(= 1996 Coppersmith lattice)

to correct more errors.

Seems outside scope of HG.

Can KV avoid localization?

Can KV avoid dualization?

Yes. 2011 Bernstein simplelist:

Streamlined construction of

basis for KV lattice, analogous

to 1997 HG construction of

basis for Coppersmith lattice.



More speedups

1975 Patterson:

Speed up Berlekamp for Γ2(g2).

2007 Wu:

rational list decoding.

Same w as GS,

but much smaller multiplicity.

2008 Bernstein goppalist:

rational + HG + Patterson.

2011 Bernstein jetlist:

rational + HG + KV.

Same w as KV,

but much smaller multiplicity.


