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Context: McEliece key size

Standard asymptotics:

For 2b security, McEliece needs

(C0 + o(1))b2(lg b)2-bit keys.

Here C0 � 0:7418860694.

Standard asymptotics +

sensible Grover (PQCrypto 2010

Bernstein “Grover vs. McEliece”):

For 2b post-quantum security,

McEliece needs

(4C0 + o(1))b2(lg b)2-bit keys.

Same C0 as before.
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One definition of C0:

R = 1� exp(�2R) is satisfied

for a unique R � 0:7968121300;

then C0 = (log 2)2=4R(1� R).

i.e. R with 0 < R < 1 minimizes

C0 = R=(1� R)(lg(1� R))2.

Warning:

o(1) does not mean 0.

It means something

that converges to 0 as b ! 1.

Closer look: this o(1) is positive,

so replacing o(1) by 0

would not achieve 2b security.
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McEliece public key

(with Niederreiter compression)

is a k� (n� k) matrix over F2.

R(1� R)n2 bits if k = Rn.

Best attacks known:

c(1+o(1))n=lgn simple operations

where c = 1=(1� R)1�R.

For c(1+o(1))n=lgn � 2b

choose n as (b lg b)=(lg c + o(1)).

R(1�R)b2(lg b)2=(lg c+o(1))2 =

(C0 + o(1))b2(lg b)2 key bits where

C0 = R=(1� R)(lg(1� R))2.
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c(1+o(1))n=lgn? c = 1=(1�R)1�R?

The public key represents

a k-dimensional subspace of Fn2 .

Secretly equivalent to

a classical binary Goppa code

efficiently correcting w errors.

Tradition: n = 2m, k = n�mw;

so w = (1� R)n=lgn.

Information-set decoding

guesses k error-free positions.

Chance �
�n�w

k

�
=
�n
k

�
;

(1� R + o(1))w since w=n! 0.

More precise: 2009 Bernstein–

Lange–Peters–van Tilborg.
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list decoding to increase w.”
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more than (1� R)n=lgn errors

in the same secret Goppa code.

Larger w ) harder attacks
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Proposal from PQCrypto 2008

Bernstein–Lange–Peters:

reduce key size by “using

list decoding to increase w.”

List decoding efficiently corrects

more than (1� R)n=lgn errors

in the same secret Goppa code.

Larger w ) harder attacks

) smaller keys for 2b security.

Literature also has many ideas

for reducing key size

by changing the code:

see talks by Misoczki, Peters.



Fix distinct a1; : : : ; an 2 F2m

and monic g 2 F2m [x] with

deg g = t and g(a1) � � � g(an) 6= 0.

The Goppa code Γ � Fn2
is the set of (c1; : : : ; cn) withP

i ci=(x� ai) = 0 in F2m [x]=g.

Typically #Γ = 2n�mt.

Define P = (x� a1) � � � (x� an).

Can write any (c1; : : : ; cn) 2 Γ as�
f(a1)g(a1)

P 0(a1)
; : : : ;

f(an)g(an)

P 0(an)

�

for some f 2 F2m [x]

with deg f < n� t.



Classic Reed–Solomon decoding:

For any w � bt=2c,

correct w errors

in (f(a1); : : : ; f(an))

assuming deg f < n� t.

1960 Peterson:

nO(1) arithmetic ops.

1968 Berlekamp: O(n2).

Modern view: Reduce

a 2-dimensional lattice basis.

1976 Justesen,

independently 1977 Sarwate:

n(lgn)2+o(1). Modern view:

fast lattice-basis reduction.
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1. 1998 Guruswami–Sudan:

Increase w from bt=2c up to

n�
p
n(n� t� 1) � t=2+t2=8n.

2. 2000 Koetter–Vardy:

Exploit: error vector 2 f0; 1gn.

Replaces n by n0 = n=2:

n0�
p
n0(n0�t�1) � t=2 + t2=4n.

3. 1970 Goppa?: Γ2(g) = Γ2(g2)

if g is squarefree. Combine with,

e.g., Peterson to reach w = t.

4. Guess a few error positions.



Recall asymptotic analysis:

Each extra error

makes attacks more difficult

by a factor 1=(1� R + o(1)).

Have 1=(1� R) � 4:92 + o(1).

Combining all known

poly-time improvements:

� t2=n � (1� R)2n=(lgn)2

extra errors.

Multiplies security level b

by � 1 + (1� R)=lg b.

For same security, divides key size

by � (1 + (1� R)=lg b)2.

1 + o(1) but still noticeable.



Streamlining list decoding

“Multiplicity 2” example of GS:

Input vector (v1; : : : ; vn).

Find small nonzero Q 2 F2m [x; y]

having multiplicity � 2

at each (ai; vi): i.e.,

Q 2 hx� ai; y � vii
2 =

h(x�ai)
2; (x�ai)(y�vi); (y�vi)

2i.

Find all f 2 F2m [x] with

Q(f) = 0 and deg f < n� t.

Notation: Q(f) is Q mod y � f .

Check whether (v1; : : : ; vn)

is close to (f(a1); : : : ; f(an)).
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for some Q0; Q1; Q2; Q3 2 F2m [x];
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3
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3
4 (n� 1)� 1

2 (n� t� 1);

degQ3 �
3
4 (n� 1)� 3

2 (n� t� 1).

degQ(f) � 3
4 (n�1)+ 3

2 (n�t�1)

but Q(f) is divisible by D2

where D =
Q

i:f(ai)=vi
(x� ai).

Must have Q(f) = 0 if

degD > 3
8 (n� 1) + 3

4 (n� t� 1).

Corrects 1
2 t + 1

4 t�
1
8n + 9

8 errors.



Have 3n + 1 coeffs of Q.

Q 2 hx� ai; y � vii
2

is 3 linear equations on coeffs:

e.g., Q 2 hx; yi2

says coeffs of 1; x; y are 0.

Total 3n linear equations.

Linear algebra now

finds a small Q 6= 0.

Standard root-finding methods

find all f with Q(f) = 0;

use, e.g., 1969 Zassenhaus.
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Compute P = (x�a1) � � � (x�an).

Q 2 hx� ai; y � vii
2 for all i iff

Q0 +Q1R+Q2R
2 +Q3R

3 2 hP 2i

and Q1 + 2Q2R + 3Q3R
2 2 hP i.

Thus have a basis for dual

of F2m [x]-lattice of fQg.

Find small Q by basis reduction.

This algorithm is a

special case of 1996 Coppersmith,

later understood to supersede GS.
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Simply write down a basis

P 2; (y �R)P; (y �R)2; y(y �R)2

for the same lattice.

Find Q by basis reduction.

Special case of 1997

Howgrave-Graham improvement

to 1996 Coppersmith.

Very fast basis computation.

Fast basis reduction: use

2003 Giorgi–Jeannerod–Villard.

Cost `<3:5n(lgn)O(1)

for general list size `.



2006 Lee–O’Sullivan

rediscovered this construction

of a basis for this lattice,

but then found small Q

by Buchberger reduction

(finding a Gröbner basis).

Howgrave-Graham is better!

Buchberger reduction

is more general than

lattice-basis reduction

but is slower.

Lehmer, Knuth, et al.:

start reducing lattice basis

by reducing rounded basis.
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to correct more errors.
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What this paper does

Koetter and Vardy change

1998 GS lattice

(= 1996 Coppersmith lattice)

to correct more errors.

Seems outside scope of HG.

Can KV avoid localization?

Can KV avoid dualization?

Yes. 2011 Bernstein simplelist:

Streamlined construction of

basis for KV lattice, analogous

to 1997 HG construction of

basis for Coppersmith lattice.



More speedups

1975 Patterson:

Speed up Berlekamp for Γ2(g2).

2007 Wu:

rational list decoding.

Same w as GS,

but much smaller multiplicity.

2008 Bernstein goppalist:

rational + HG + Patterson.

2011 Bernstein jetlist:

rational + HG + KV.

Same w as KV,

but much smaller multiplicity.


