Jet list decoding

D. J. Bernstein University of Illinois at Chicago Thanks to: NSF (1018836)NIST (60NANB10D263) Cisco (University Research Program)

Interpolation

Fix coprime $p_1, \ldots, p_n \in \mathbb{Z}_{>0}$.

Remainder repn of $t \in Z$: ev $t = (t \mod p_1, \ldots, t \mod p_n)$.

Chinese remainder theorem: ev t determines t mod N where $N = p_1 \cdots p_n$.

Very fast computation: If $0 \le t < N$ then $\frac{t}{N} = \left(\sum_{i} \frac{tq_i \mod p_i}{p_i}\right) \mod 1$ where $q_i = (N/p_i)^{-1} \mod p_i$.

Decoding

Fix H < N. Assume $0 \le t < H$.

Remainder repn is redundant. Given any vector $v \approx ev t$ can reconstruct t.

Traditional definition of " \approx ": $\prod_{i:v_i\neq (\text{ev}\,t)_i} p_i \leq \sqrt{N/H}.$ Surprisingly fast $v \mapsto t$ methods. Proof that v determines t: if $v pprox \operatorname{ev} u$ and $v pprox \operatorname{ev} t$ then $\prod_{i:(\mathrm{ev}\, u)_i \neq (\mathrm{ev}\, t)_i} p_i \leq N/H$ so $| |_{i:(\operatorname{ev} u)_i=(\operatorname{ev} t)_i} p_i \geq H$ but $||_{i:(ev u)_i=(ev t)_i} p_i$ divides t-u.

List decoding

What if we know $|v - ev t| \le W$ where W is above $\sqrt{N/H}$?

Traditional answer: Give up.

No guarantee that t is unique.

Modern answer:

W determines a list

of possibilities for t.

How quickly can we compute list?

How does speed degrade with W?

1957 Elias, 1958 Wozencraft: bounds on list size, but no fast algorithms.

Reed-Solomon decoding

Fix prime power q, distinct $a_1, \ldots, a_n \in \mathbf{F}_q$. Remainder repn of $t \in \mathbf{F}_q[x]$: $ev t = (t(a_1), ..., t(a_n)).$ Given any vector v pprox ev tcan reconstruct t, assuming deg t < h. Traditional " \approx ": $\#\{i: v_i \neq (evt)_i\} \le (n-h)/2.$ List decoding: compute list of possibilities for tgiven larger bound on |v - ev t|.

<u>Jets</u>

The algebra of 1-jets over **R** is the quotient ring $\mathbf{R}[\epsilon]/\epsilon^2$.

Analogous to the set of complex numbers $\mathbf{C} = \mathbf{R}[i]/(i^2+1)$, but $\epsilon^2 = 0$ while $i^2 = -1$.

Multiplication of jets: $(a+b\epsilon)(c+d\epsilon) = ac+(ad+bc)\epsilon.$

Typical construction of a jet: differentiable $f : \mathbf{R} \to \mathbf{R}$ induces jet $f(x + \epsilon) = f(x) + f'(x)\epsilon$ for each $x \in \mathbf{R}$. e.g. $\sin(x + \epsilon) = \sin x + (\cos x)\epsilon$.

Define $L = (0, 24)\mathbf{Z} + (1, 17)\mathbf{Z}$ = { $(b, 24a + 17b) : a, b \in \mathbf{Z}$ }.

What is the shortest nonzero vector in *L*?

Define $L = (0, 24)\mathbf{Z} + (1, 17)\mathbf{Z}$ = { $(b, 24a + 17b) : a, b \in \mathbf{Z}$ }.

What is the shortest nonzero vector in *L*?

 $L = (0, 24)\mathbf{Z} + (1, 17)\mathbf{Z}$

Define $L = (0, 24)\mathbf{Z} + (1, 17)\mathbf{Z}$ = { $(b, 24a + 17b) : a, b \in \mathbf{Z}$ }.

What is the shortest nonzero vector in *L*?

 $L = (0, 24)\mathbf{Z} + (1, 17)\mathbf{Z}$ $= (-1, 7)\mathbf{Z} + (1, 17)\mathbf{Z}$

Define $L = (0, 24)\mathbf{Z} + (1, 17)\mathbf{Z}$ = { $(b, 24a + 17b) : a, b \in \mathbf{Z}$ }.

What is the shortest nonzero vector in *L*?

 $L = (0, 24)\mathbf{Z} + (1, 17)\mathbf{Z}$ $= (-1, 7)\mathbf{Z} + (1, 17)\mathbf{Z}$ $= (-1, 7)\mathbf{Z} + (3, 3)\mathbf{Z}$

Define $L = (0, 24)\mathbf{Z} + (1, 17)\mathbf{Z}$ = { $(b, 24a + 17b) : a, b \in \mathbf{Z}$ }.

What is the shortest nonzero vector in *L*?

L = (0, 24)Z + (1, 17)Z= (-1, 7)Z + (1, 17)Z = (-1, 7)Z + (3, 3)Z = (-4, 4)Z + (3, 3)Z.

Define $L = (0, 24)\mathbf{Z} + (1, 17)\mathbf{Z}$ = { $(b, 24a + 17b) : a, b \in \mathbf{Z}$ }.

What is the shortest nonzero vector in *L*?

 $L = (0, 24)\mathbf{Z} + (1, 17)\mathbf{Z}$ = (-1, 7)\mathbf{Z} + (1, 17)\mathbf{Z} = (-1, 7)\mathbf{Z} + (3, 3)\mathbf{Z} = (-4, 4)\mathbf{Z} + (3, 3)\mathbf{Z}.

(-4, 4), (3, 3) are orthogonal. Shortest vectors in *L* are (0, 0), (3, 3), (-3, -3).

What is the shortest nonzero vector in *L*?

What is the shortest nonzero vector in *L*?

 $L = (0, 25)\mathbf{Z} + (1, 17)\mathbf{Z}$

What is the shortest nonzero vector in *L*?

$$L = (0, 25)\mathbf{Z} + (1, 17)\mathbf{Z}$$

= $(-1, 8)\mathbf{Z} + (1, 17)\mathbf{Z}$

What is the shortest nonzero vector in *L*?

$$L = (0, 25)\mathbf{Z} + (1, 17)\mathbf{Z}$$
$$= (-1, 8)\mathbf{Z} + (1, 17)\mathbf{Z}$$
$$= (-1, 8)\mathbf{Z} + (3, 1)\mathbf{Z}.$$

What is the shortest nonzero vector in *L*?

$$L = (0, 25)\mathbf{Z} + (1, 17)\mathbf{Z}$$

= (-1, 8)\mathbf{Z} + (1, 17)\mathbf{Z}
= (-1, 8)\mathbf{Z} + (3, 1)\mathbf{Z}.

Nearly orthogonal. Shortest vectors in L are (0, 0), (3, 1), (-3, -1).

Define $R = \mathbf{F}_2[x]$, $r_0 = (101000)_x = x^5 + x^3 \in R$, $r_1 = (10011)_x = x^4 + x + 1 \in R$, $L = (0, r_0)R + (1, r_1)R$.

What is the shortest nonzero vector in *L*?

Define $R = \mathbf{F}_2[x]$, $r_0 = (101000)_x = x^5 + x^3 \in R$, $r_1 = (10011)_x = x^4 + x + 1 \in R$, $L = (0, r_0)R + (1, r_1)R$.

What is the shortest nonzero vector in *L*?

L = (0, 101000)R + (1, 10011)R

Define $R = \mathbf{F}_2[x]$, $r_0 = (101000)_x = x^5 + x^3 \in R$, $r_1 = (10011)_x = x^4 + x + 1 \in R$, $L = (0, r_0)R + (1, r_1)R$.

What is the shortest nonzero vector in *L*?

L = (0, 101000)R + (1, 10011)R= (10, 1110)R + (1, 10011)R

Define $R = \mathbf{F}_2[x]$, $r_0 = (101000)_x = x^5 + x^3 \in R$, $r_1 = (10011)_x = x^4 + x + 1 \in R$, $L = (0, r_0)R + (1, r_1)R$.

What is the shortest nonzero vector in *L*?

L = (0, 101000)R + (1, 10011)R= (10, 1110)R + (1, 10011)R = (10, 1110)R + (111, 1)R.

Define $R = \mathbf{F}_2[x]$, $r_0 = (101000)_x = x^5 + x^3 \in R$, $r_1 = (10011)_x = x^4 + x + 1 \in R$, $L = (0, r_0)R + (1, r_1)R$.

What is the shortest nonzero vector in *L*?

L = (0, 101000)R + (1, 10011)R= (10, 1110)R + (1, 10011)R = (10, 1110)R + (111, 1)R.

(111, 1): shortest nonzero vector. (10, 1110): shortest independent vector.

Degree of $(q, r) \in \mathbf{F}_2[x] \times \mathbf{F}_2[x]$ is defined as max{deg q, deg r}.

Can use other metrics, or equivalently rescale *L*.

e.g. Define $L \subseteq \mathbf{F}_2[\sqrt{x}] \times \mathbf{F}_2[\sqrt{x}]$ as $(0, r_0\sqrt{x})R + (1, r_1\sqrt{x})R$.

Successive generators for *L*: (0, 101000 \sqrt{x}), degree 5.5. (1, 10011 \sqrt{x}), degree 4.5. (10, 1110 \sqrt{x}), degree 3.5. (111, 1 \sqrt{x}), degree 2. Warning: Sometimes shortest independent vector is *after* shortest nonzero vector.

e.g. Define $r_0 = 101000, r_1 = 10111,$ $L = (0, r_0\sqrt{x})R + (1, r_1\sqrt{x})R.$ Successive generators for *L*: $(0, 101000\sqrt{x}),$ degree 5.5. $(1, 10111\sqrt{x}),$ degree 4.5.

 $(10, 110\sqrt{x})$, degree 2.5. $(1101, 11\sqrt{x})$, degree 3. For any $r_0, r_1 \in R = \mathbf{F}_q[x]$ with deg $r_0 > \deg r_1$:

Euclid/Stevin computation: Define $r_2 = r_0 \mod r_1$, $r_3 = r_1 \mod r_2$, etc.

Extended: $q_0 = 0$; $q_1 = 1$; $q_{i+2} = q_i - \lfloor r_i/r_{i+1} \rfloor q_{i+1}$. Then $q_i r_1 \equiv r_i \pmod{r_0}$.

Lattice view: Have $(0, r_0\sqrt{x})R + (1, r_1\sqrt{x})R =$ $(q_i, r_i\sqrt{x})R + (q_{i+1}, r_{i+1}\sqrt{x})R.$

Can continue until $r_{i+1} = 0$. gcd $\{r_0, r_1\} = r_i$ / leadcoeff r_i . Reducing lattice basis for *L* is a "half gcd" computation, stopping halfway to the gcd.

 $\deg r_i$ decreases; $\deg q_i$ increases; $\deg q_{i+1} + \deg r_i = \deg r_0$.

Say j is minimal with $\deg r_j \sqrt{x} \leq (\deg r_0)/2.$ Then $\deg q_j \leq (\deg r_0)/2$ so $\deg(q_j, r_j \sqrt{x}) \leq (\deg r_0)/2.$ Shortest nonzero vector.

 $(q_{j+\epsilon}, r_{j+\epsilon}\sqrt{x})$ has degree deg $r_0\sqrt{x} - deg(q_j, r_j\sqrt{x})$ for some $\epsilon \in \{-1, 1\}$. Shortest independent vector. Proof of "shortest":

Take any $(q, r\sqrt{x})$ in lattice. $(q, r\sqrt{x}) = u(q_j, r_j\sqrt{x})$ $+ v(q_{j+\epsilon}, r_{j+\epsilon}\sqrt{x})$ for some $u, v \in R$.

 $q_j r_{j+\epsilon} - q_{j+\epsilon} r_j = \pm r_0$ so $v = \pm (rq_j - qr_j)/r_0$ and $u = \pm (qr_{j+\epsilon} - rq_{j+\epsilon})/r_0$. If deg(q, $r\sqrt{x}$) $< \deg(q_{j+\epsilon}, r_{j+\epsilon} \sqrt{x})$ then deg v < 0 so v = 0; i.e., any vector in lattice shorter than $(q_{j+\epsilon}, r_{j+\epsilon}\sqrt{x})$ is a multiple of $(q_j, r_j \sqrt{x})$.

<u>Higher-rank lattices</u>

If $M \in \mathbf{F}_q[x]^{\ell \times \ell}$ has det $M \neq 0$ then the columns of M have a nonzero linear combination Qwith deg $Q \leq (\text{deg det } M)/\ell$.

Can compute *Q* with similar speed to matrix mult. (2003 Giorgi–Jeannerod–Villard + small fix from 2011 Bernstein)

 $M \in \mathbf{Z}^{\ell \times \ell}$: loosen bound on Q. (1982 Lenstra–Lenstra–Lovasz: polynomial time; ...; 2011 Novocin–Stehlé–Villard: almost as fast as $\mathbf{F}_q[x]$ case)

Divisors in intervals

Classic problem: Find all divisors of N in [A - H, A + H], given positive integers N, A, H with A > H.

Reformulation: In $\mathbf{Q}[y]$ define g = Hy and f = (A + Hy)/N. Want all $r \in \mathbf{Q}$ with $|r| \leq 1$, $g(r) \in \mathbf{Z}$, numerator(f(r)) = 1.

Classic solution for many cases: Find small nonzero polynomial $\varphi \in \mathbf{Z} + \mathbf{Z}f + \mathbf{Z}fg \subset \mathbf{Q}[y]$. For each rational root r of φ , check whether A + Hr divides N.

Understanding this solution for $H < (A - H)/6N^{1/3}$:

Understanding this solution for $H < (A - H)/6N^{1/3}$:

$$f = \cdots + Hy/N,$$

 $fg = \cdots + H^2y^2/N,$
so det $(1, f, fg) = H^3/N^2.$
Lattice-basis reduction finds
 φ with coeffs $\leq 2H/N^{2/3}.$

Understanding this solution for $H < (A - H)/6N^{1/3}$:

 $f = \dots + Hy/N$, $fg = \dots + H^2y^2/N$, so det $(1, f, fg) = H^3/N^2$. Lattice-basis reduction finds φ with coeffs $\leq 2H/N^{2/3}$.

Take divisor of N in [A-H, A+H]. Write as $A+Hr; r \in \mathbf{Q}, |r| \leq 1$. Then $|arphi(r)| \leq 6H/N^{2/3}$. Understanding this solution for $H < (A - H)/6N^{1/3}$:

$$f = \dots + Hy/N$$
,
 $fg = \dots + H^2y^2/N$,
so det $(1, f, fg) = H^3/N^2$.
Lattice-basis reduction finds
 φ with coeffs $\leq 2H/N^{2/3}$.

Take divisor of N in [A-H,A+H]. Write as $A+Hr;\ r\in {f Q},\ |r|\leq 1.$ Then $|arphi(r)|\leq 6H/N^{2/3}.$

1, f(r), $f(r)g(r) \in ((A+Hr)/N)Z$ so $\varphi(r) \in ((A+Hr)/N)Z$. But $(A+Hr)/N > 6H/N^{2/3}$ so $\varphi(r)$ must be 0. Classic generalization: Find all divisors of N in $\{A - BH, \ldots, A - B, A, A + B, \ldots, A + BH\}$, given positive integers N, A, B, H with A > BH.

Mediocre approach: Define g = Hy and f = (A + BHy)/N. Proceed as before. Loses factor B^2 in det. Classic generalization: Find all divisors of N in $\{A - BH, \ldots, A - B, A, A + B, \ldots, A + BH\}$, given positive integers N, A, B, H with A > BH.

Mediocre approach: Define g = Hy and f = (A + BHy)/N. Proceed as before. Loses factor B^2 in det.

Much better approach: Define g = Hy and f = (UA + Hy)/N, assuming $U \in Z$, $UB - 1 \in NZ$. If $Hr \in Z$ and A + BHr divides Nthen $f(r) \in ((A + BHr)/N)Z$.

Linear combinations as divisors

Further generalization: Find all divisors As + Bt of N with $1 \leq s \leq J$; $|t| \leq H$; $gcd\{s,t\} = 1$.

Generalization of classic solution:

Define g = (H/J)y; U as before; f = (UA + (H/J)y)/N. As before find small nonzero $\varphi \in \mathbf{Z} + \mathbf{Z}f + \mathbf{Z}fg$.

Write each rational root of φ as Jt/Hs with $gcd\{s,t\} = 1, s > 0$. Check whether As + Bt divides Nwith $s \leq J$ and $|t| \leq H$. Understanding this solution for $HJ < (A - BH)/6N^{1/3}$:

det(1, f, fg) = H^3/J^3N^2 . Lattice-basis reduction finds φ with coeffs $\leq 2H/JN^{2/3}$.

If $1 \le s \le J$ and $|t| \le H$ and r = Jt/Hs then $|s^2\varphi(r)| = |\varphi_0 s^2 + \varphi_1 st J/H + \varphi_2 t^2 J^2/H^2| \le 3(2H/JN^{2/3})J^2 = 6HJ/N^{2/3}.$

If also As + Bt divides Nthen $sf(r) = (UAs + t)/N \in$ ((As + Bt)/N)**Z** and $sg(r) \in$ **Z** so $s^2\varphi(r) \in ((As + Bt)/N)$ **Z**. 1984 Lenstra: A + Bt algorithm, for proving primality.

1986 Rivest–Shamir: A + t, for attacking constrained RSA.

Many subsequent generalizations.

2003 Bernstein: projective view, but only affine applications.

Projective applications: 2007 Wu, 2008 Bernstein (including this *As*+*Bt* algorithm), 2009 Castagnos–Joux– Laguillaumie–Nguyen.

Higher multiplicities

Generalization of A + t algorithm:

Choose a multiplicity kand a lattice dimension ℓ .

Find small nonzero $\varphi \in$ $\mathbf{Z} + \mathbf{Z}f + \mathbf{Z}f^2 + \cdots + \mathbf{Z}f^k$ $+ \mathbf{Z}f^kg + \mathbf{Z}f^kg^2 + \cdots + \mathbf{Z}f^kg^{\ell-k-1}.$

det = $(H/N)^{\ell(\ell-1)/2} N^{(\ell-k)(\ell-k-1)/2}$ so $|\varphi| \leq \dots (H/N)^{(\ell-1)/2} N^{(\ell-k)(\ell-k-1)/2\ell}$.

But $\varphi(r) \in (\operatorname{divisor}/N)^k \mathbf{Z}$.

Optimize: large ℓ with $k \approx \theta \ell$ if $A - H = N^{\theta}$. $\#\{t \text{ possibilities searched}\} \approx N^{\theta^2}$. Same for A + Bt etc.

1996 Coppersmith: A + t with multiplicities; N^{θ^2} ; various generalizations. But algorithm was slower: identified lattice via dual.

1997 Howgrave-Graham: this algorithm; skip dualization; simply write down f^k etc.

The gcd tweak

Minor tweak: Find all A + t with $|t| \leq H$ and $gcd\{A + t, N\} \geq N^{\theta}$.

These t's include previous t's: if A + t divides N and $A + t \ge N^{\theta}$ then $gcd\{A + t, N\} \ge N^{\theta}$.

Solution: Compute the same φ from the same lattice as before. For each rational root r of φ , check gcd{A + Hr, N} $\geq N^{\theta}$. 1997 Sudan: $\mathbf{F}_q[x]$ instead of \mathbf{Z} , $N = (x - a_1) \cdots (x - a_n)$, multiplicity 1, dual algorithm, for list decoding.

1999 Guruswami–Sudan: same with high multiplicity.

- 1999 Goldreich–Ron–Sudan:
- **Z**, multiplicity 1, dual.
- 2000 Boneh:
- Z, high multiplicity.

"The GS decoder":

Reconstruct $t \in \mathbf{F}_q[x]$ given $(t(a_1), \ldots, t(a_n)) + \text{errors};$ distinct $a_1, \ldots, a_n \in \mathbf{F}_q;$ $\#\text{errors} < (1 - \theta)n;$ $\deg t \le \theta^2 n.$

Reconstruct $t \in \mathbf{F}_q[x]$ given $(\beta_1 t(a_1), \dots, \beta_n t(a_n)) + \text{errors};$ distinct $a_1, \dots, a_n \in \mathbf{F}_q;$ nonzero $\beta_1, \dots, \beta_n \in \mathbf{F}_q;$ $\#\text{errors} < (1 - \theta)n;$ $\deg t \leq \theta^2 n.$

<u>Higher-degree polynomials</u>

 $gcd{N, p(t)} \ge N^{ heta}$: #{t possibilities searched} $\approx N^{ heta^2/d}$ if p monic, deg p = d.

1988 Håstad: $\theta = 1$, k = 1.

- 1989 Vallée–Girault–Toffin:
- heta=1, k=1, dual.

1996 Coppersmith:

heta=1, high multiplicity, dual.

1997 Howgrave-Graham:

heta=1, high multiplicity.

2000 Boneh:

any θ , high multiplicity.

Gaussian divisors in intervals

New (?) problem: Find all $t \in \{-H, \ldots, -1, 0, 1, \ldots, H\}$ with A_0+t+A_1i dividing N_0+N_1i in $\mathbf{Z}[i]/(i^2+1)$; assume $A_0 > H$.

One approach: Take norms. $(A_0 + t)^2 + A_1^2$ divides $N_0^2 + N_1^2$. Use standard degree-2 algorithm. Works for $H \approx (N_0^2 + N_1^2)^{\theta^2/2}$ if $(A_0 - H)^2 + A_1^2 = (N_0^2 + N_1^2)^{\theta}$.

Worse: Find divisor of $N_0^2 + N_1^2$ in $[(A_0 - H)^2 + A_1^2, (A_0 + H)^2 + A_1^2]$, using degree-1 algorithm. Works for $A_0 H \approx (N_0^2 + N_1^2)^{\theta^2}$. Another approach: lattice-basis reduction over Z[i]. Works, but searches $t \in Z[i]$, again wasting time. Another approach: lattice-basis reduction over Z[i]. Works, but searches $t \in Z[i]$, again wasting time.

Better approach: $(A_0 + t)^2 + A_1^2$ divides $(A_0 + t - A_1 i)(N_0 + N_1 i)$ so it divides $(A_0 + t)N_1 - A_1N_0$. Also divides $N_0^2 + N_1^2$.

 $gcd\{(A_0+t)N_1 - A_1N_0, N_0^2 + N_1^2\}$ $\geq (N_0^2 + N_1^2)^{\theta}.$

Works for $H \approx (N_0^2 + N_1^2)^{\theta^2}$, assuming gcd $\{N_0, N_1\} = 1$.

<u>Jet divisors</u>

Easily generalize:

 $A_0s + B_0t$, other algebras, etc. My main interest today: the 1-jet algebra $\mathbf{Z}[\epsilon]/\epsilon^2$.

To search for small $(s, t) \in \mathbb{Z} \times \mathbb{Z}$ with $(A_0 + A_1\epsilon)s + (B_0 + B_1\epsilon)t$ dividing $N_0 + N_1\epsilon$ in $\mathbb{Z}[\epsilon]/\epsilon^2$: use $gcd\{\Delta, N_0^2\} \ge (N_0^2)^{\theta}$ where $\Delta =$ $(A_0N_1 - A_1N_0)s + (B_0N_1 - B_1N_0)t$.

 $\#\{(s,t) \text{ searched}\} pprox (N_0^2)^{ heta^2}, \ ext{assuming gcd}\{N_0, B_0N_1\} = 1.$

Searching for $A_0s + B_0t$ dividing N_0 would search only $N_0^{\theta^2}$.

Classical binary Goppa codes

Fix integers $n \ge 0$, $m \ge 1$; distinct $a_1, \ldots, a_n \in \mathbf{F}_{2^m}$; monic $g \in \mathbf{F}_{2^m}[x]$ with $g(a_1) \cdots g(a_n) \ne 0$.

The code: Define $\Gamma \subseteq \mathbf{F}_2^n$ as set of (c_1, \ldots, c_n) with $\sum_i c_i / (x - a_i) = 0$ in $\mathbf{F}_{2^m}[x]/g$. min $\{|c| : c \in \Gamma - \{0\}\} \ge \deg g + 1;$ $\lg \#\Gamma \ge n - m \deg g$. Better bounds in the BCH case $g = x^k$ and in many other cases.

Lift $\sum_{i} v_i/(x-a_i)$ from $\mathbf{F}_{2^m}[x]/g$ to $s \in \mathbf{F}_{2^m}[x]$ with deg $s < \deg g$. Find shortest nonzero $(q_j, r_j\sqrt{x})$ in the lattice L = $(0, g\sqrt{x})\mathbf{F}_{2^m}[x] + (1, s\sqrt{x})\mathbf{F}_{2^m}[x].$

Lift $\sum_{i} v_i/(x-a_i)$ from $\mathbf{F}_{2m}[x]/g$ to $s \in \mathbf{F}_{2m}[x]$ with deg $s < \deg g$. Find shortest nonzero $(q_j, r_j\sqrt{x})$ in the lattice L = $(0, g\sqrt{x})\mathbf{F}_{2m}[x] + (1, s\sqrt{x})\mathbf{F}_{2m}[x]$. Fact: If $|e| \le (\deg g)/2$ then $E/D = r_j/q_j$ so D is monic denominator of r_j/q_j .

Lift $\sum_i v_i/(x-a_i)$ from $\mathbf{F}_{2^m}[x]/g$ to $s \in \mathbf{F}_{2^m}[x]$ with deg $s < \deg g$. Find shortest nonzero $(q_j, r_j \sqrt{x})$ in the lattice L = $(0, g\sqrt{x})\mathbf{F}_{2}m[x] + (1, s\sqrt{x})\mathbf{F}_{2}m[x].$ Fact: If $|e| < (\deg g)/2$ then $E/D = r_j/q_j$ so D is monic denominator of r_j/q_j . $e_i = 0$ if $D(a_i) \neq 0$. $e_i = E(a_i)/D'(a_i)$ if $D(a_i) = 0$.

Why does this work?

 $\sum_i e_i/(x-a_i) = E/D$ and $\sum_i c_i/(x-a_i) = 0$ in $\mathbf{F}_{2^m}[x]/g$ so s = E/D in $\mathbf{F}_{2^m}[x]/g$ so $(D, E\sqrt{x}) \in L$. Why does this work?

 $\sum_i e_i/(x-a_i) = E/D$ and $\sum_i c_i/(x-a_i) = 0$ in $\mathbf{F}_{2^m}[x]/g$ so s = E/D in $\mathbf{F}_{2^m}[x]/g$ so $(D, E\sqrt{x}) \in L$.

 $(D, E\sqrt{x})$ is a short vector: $\deg(D, E\sqrt{x}) \le |e| \le (\deg g)/2$ $< \deg g + 1/2 - \deg(q_j, r_j\sqrt{x}).$ Why does this work?

 $\sum_i e_i/(x - a_i) = E/D$ and $\sum_i c_i/(x - a_i) = 0$ in $\mathbf{F}_{2^m}[x]/g$ so s = E/D in $\mathbf{F}_{2^m}[x]/g$ so $(D, E\sqrt{x}) \in L$.

 $(D, E\sqrt{x})$ is a short vector: $\deg(D, E\sqrt{x}) \le |e| \le (\deg g)/2$ $< \deg g + 1/2 - \deg(q_j, r_j\sqrt{x}).$

Recall "shortest" proof: $(D, E\sqrt{x}) \in (q_j, r_j\sqrt{x})\mathbf{F}_{2^m}[x],$ so $E/D = r_j/q_j$. Done!

Euclid decoding: 1975 Sugiyama– Kasahara–Hirasawa–Namekawa.

List decoding for these codes

What if $|e| > (\deg g)/2?$

Find shortest nonzero $(D_0, E_0\sqrt{x})$ and independent $(D_1, E_1 \sqrt{x})$ in $(0, g\sqrt{x})\mathbf{F}_{2}m[x] + (1, s\sqrt{x})\mathbf{F}_{2}m[x],$ with degrees $(\deg g)/2 - \delta$ and $(\deg q)/2 + 1/2 + \delta$ for some $\delta \in \{0, 1/2, 1, 3/2, \ldots\}$. Know that $(D, E\sqrt{x}) =$ $u(D_0, E_0\sqrt{x}) + v(D_1, E_1\sqrt{x});$ $v = \pm (ED_0 - DE_0)/g \in \mathbf{F}_{2^m}[x],$ $u = \pm (DE_1 - ED_1)/g \in \mathbf{F}_{2^m}[x],$ $\deg v < |e| - (\deg g)/2 - 1/2 - \delta$, $\deg u \leq |e| - (\deg g)/2 + \delta.$

Critical facts about *D*:

- $D = uD_0 + vD_1$ with known D_0 and D_1 , bounded u and v.
- *D* divides known

$$N = \prod_i (x - a_i).$$

Critical facts about D:

• $D = uD_0 + vD_1$ with known D_0 and D_1 , bounded u and v.

•
$$D$$
 divides known $N = \prod_i (x - a_i).$

This is exactly the "linear combinations as divisors" problem! Solve with lattices.

Reach same |e| as GS, but much smaller k.

(2007 Wu: dual of essentially this algorithm; see 2008 Bernstein for coprimality)

Jet list decoding

Recall $D = \prod_{i:e_i
eq 0} (x - a_i)$ and $E = \sum_i De_i / (x - a_i).$

 $e_i \in \{0,1\}$ so $E = \sum_i D/(x-a_i) = D'.$

One consequence: $\Gamma_2(g) = \Gamma_2(g^2)$ if g is squarefree. This doubles deg g, drastically increasing # errors decoded.

But $\Gamma_2(g^2)$ decoders vary in effectiveness and efficiency.

1968 Berlekamp decodes deg g errors for $\Gamma_2(g^2)$. 1975 Patterson: same, faster. 1998 Guruswami-Sudan: $\approx \deg g + (\deg g)^2/2n$ errors. 2007 Wu: same, faster; the "rational" speedup. 2008 Bernstein: even faster: "rational" + Patterson.

1968 Berlekamp decodes deg g errors for $\Gamma_2(q^2)$. 1975 Patterson: same, faster. 1998 Guruswami-Sudan: $\approx \deg g + (\deg g)^2/2n$ errors. 2007 Wu: same, faster; the "rational" speedup. 2008 Bernstein: even faster: "rational" + Patterson.

2001 Koetter–Vardy: $\approx \deg g + (\deg g)^2/n$ errors. Can "rational" algorithms correct this many errors?

1968 Berlekamp decodes deg g errors for $\Gamma_2(q^2)$. 1975 Patterson: same, faster. 1998 Guruswami-Sudan: $\approx \deg g + (\deg g)^2/2n$ errors. 2007 Wu: same, faster; the "rational" speedup. 2008 Bernstein: even faster: "rational" + Patterson.

2001 Koetter–Vardy: $\approx \deg g + (\deg g)^2/n$ errors. Can "rational" algorithms correct this many errors? Yes! Jet list decoding. Works for arbitrary $\Gamma_2(g)$. Notation: N, D, E, ... as before. D divides N so the jet $D(x + \epsilon) = D + \epsilon D' = D + \epsilon E$ divides $N(x + \epsilon) = N + \epsilon N'$. $D + \epsilon E =$ $u(D_0 + \epsilon E_0) + v(D_1 + \epsilon E_1).$ Apply the jet-divisors idea: find large $gcd\{N'D - NE, N^2\}$. 2007 Wu reaches same |e| in one special case, BCH. Jet list decoding is faster, more general.

Generalize \mathbf{F}_2 to \mathbf{F}_q : use gcd $\{(N'D)^{q-1} - (NE)^{q-1}, N^q\}$.