
Jet list decoding

D. J. Bernstein

University of Illinois at Chicago

Thanks to:

NSF

(1018836)

NIST

(60NANB10D263)

Cisco

(University Research Program)



Interpolation

Fix coprime p1; : : : ; pn 2 Z>0.

Remainder repn of t 2 Z:

ev t = (t mod p1; : : : ; t mod pn).

Chinese remainder theorem:

ev t determines t mod N

where N = p1 � � � pn.

Very fast computation:

If 0 � t < N then

t

N
=

�X
i

tqi mod pi
pi

�
mod 1

where qi = (N=pi)
�1 mod pi.



Decoding

Fix H < N. Assume 0 � t < H.

Remainder repn is redundant.

Given any vector v � ev t

can reconstruct t.

Traditional definition of “�”:Q
i:vi 6=(ev t)i

pi �
p
N=H.

Surprisingly fast v 7! t methods.

Proof that v determines t:

if v � evu and v � ev t thenQ
i:(evu)i 6=(ev t)i

pi � N=H soQ
i:(evu)i=(ev t)i

pi � H butQ
i:(evu)i=(ev t)i

pi divides t� u.



List decoding

What if we know jv � ev tj � W

where W is above
p
N=H?

Traditional answer: Give up.

No guarantee that t is unique.

Modern answer:

W determines a list

of possibilities for t.

How quickly can we compute list?

How does speed degrade with W?

1957 Elias, 1958 Wozencraft:

bounds on list size,

but no fast algorithms.



Reed–Solomon decoding

Fix prime power q,

distinct a1; : : : ; an 2 Fq.

Remainder repn of t 2 Fq[x]:

ev t = (t(a1); : : : ; t(an)).

Given any vector v � ev t

can reconstruct t,

assuming deg t < h.

Traditional “�”:

#fi : vi 6= (ev t)ig � (n� h)=2.

List decoding:

compute list of possibilities for t

given larger bound on jv � ev tj.



Jets

The algebra of 1-jets over R

is the quotient ring R[�]=�2.

Analogous to the set of complex

numbers C = R[i]=(i2 + 1),

but �2 = 0 while i2 = �1.

Multiplication of jets:

(a+ b�)(c+d�) = ac+ (ad+ bc)�.

Typical construction of a jet:

differentiable f : R! R induces

jet f(x + �) = f(x) + f 0(x)�

for each x 2 R.

e.g. sin(x + �) = sinx + (cosx)�.



Lattice-basis reduction

Define L = (0; 24)Z + (1; 17)Z

= f(b; 24a + 17b) : a; b 2 Zg.

What is the shortest

nonzero vector in L?



Lattice-basis reduction

Define L = (0; 24)Z + (1; 17)Z

= f(b; 24a + 17b) : a; b 2 Zg.

What is the shortest

nonzero vector in L?

L = (0; 24)Z + (1; 17)Z



Lattice-basis reduction

Define L = (0; 24)Z + (1; 17)Z

= f(b; 24a + 17b) : a; b 2 Zg.

What is the shortest

nonzero vector in L?

L = (0; 24)Z + (1; 17)Z

= (�1; 7)Z + (1; 17)Z



Lattice-basis reduction

Define L = (0; 24)Z + (1; 17)Z

= f(b; 24a + 17b) : a; b 2 Zg.

What is the shortest

nonzero vector in L?

L = (0; 24)Z + (1; 17)Z

= (�1; 7)Z + (1; 17)Z

= (�1; 7)Z + (3; 3)Z



Lattice-basis reduction

Define L = (0; 24)Z + (1; 17)Z

= f(b; 24a + 17b) : a; b 2 Zg.

What is the shortest

nonzero vector in L?

L = (0; 24)Z + (1; 17)Z

= (�1; 7)Z + (1; 17)Z

= (�1; 7)Z + (3; 3)Z

= (�4; 4)Z + (3; 3)Z.



Lattice-basis reduction

Define L = (0; 24)Z + (1; 17)Z

= f(b; 24a + 17b) : a; b 2 Zg.

What is the shortest

nonzero vector in L?

L = (0; 24)Z + (1; 17)Z

= (�1; 7)Z + (1; 17)Z

= (�1; 7)Z + (3; 3)Z

= (�4; 4)Z + (3; 3)Z.

(�4; 4); (3; 3) are orthogonal.

Shortest vectors in L are

(0; 0), (3; 3), (�3;�3).



OO

//

�

�



OO

//

�

�

�



OO

//

�

�

�
�



OO

//

�

�

�
��



OO

//

�
��

�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
��



Another example:

Define L = (0; 25)Z + (1; 17)Z.

What is the shortest

nonzero vector in L?



Another example:

Define L = (0; 25)Z + (1; 17)Z.

What is the shortest

nonzero vector in L?

L = (0; 25)Z + (1; 17)Z



Another example:

Define L = (0; 25)Z + (1; 17)Z.

What is the shortest

nonzero vector in L?

L = (0; 25)Z + (1; 17)Z

= (�1; 8)Z + (1; 17)Z



Another example:

Define L = (0; 25)Z + (1; 17)Z.

What is the shortest

nonzero vector in L?

L = (0; 25)Z + (1; 17)Z

= (�1; 8)Z + (1; 17)Z

= (�1; 8)Z + (3; 1)Z.



Another example:

Define L = (0; 25)Z + (1; 17)Z.

What is the shortest

nonzero vector in L?

L = (0; 25)Z + (1; 17)Z

= (�1; 8)Z + (1; 17)Z

= (�1; 8)Z + (3; 1)Z.

Nearly orthogonal.

Shortest vectors in L are

(0; 0), (3; 1), (�3;�1).



OO

//

� � � � � � � �� � � � � � � � � �� � � � � � � � �� � � � � � � � � �� � � �



Polynomial lattices

Define R = F2[x],

r0 = (101000)x = x5 + x3 2 R,

r1 = (10011)x = x4 + x + 1 2 R,

L = (0; r0)R + (1; r1)R.

What is the shortest

nonzero vector in L?



Polynomial lattices

Define R = F2[x],

r0 = (101000)x = x5 + x3 2 R,

r1 = (10011)x = x4 + x + 1 2 R,

L = (0; r0)R + (1; r1)R.

What is the shortest

nonzero vector in L?

L = (0; 101000)R + (1; 10011)R



Polynomial lattices

Define R = F2[x],

r0 = (101000)x = x5 + x3 2 R,

r1 = (10011)x = x4 + x + 1 2 R,

L = (0; r0)R + (1; r1)R.

What is the shortest

nonzero vector in L?

L = (0; 101000)R + (1; 10011)R

= (10; 1110)R + (1; 10011)R



Polynomial lattices

Define R = F2[x],

r0 = (101000)x = x5 + x3 2 R,

r1 = (10011)x = x4 + x + 1 2 R,

L = (0; r0)R + (1; r1)R.

What is the shortest

nonzero vector in L?

L = (0; 101000)R + (1; 10011)R

= (10; 1110)R + (1; 10011)R

= (10; 1110)R + (111; 1)R.



Polynomial lattices

Define R = F2[x],

r0 = (101000)x = x5 + x3 2 R,

r1 = (10011)x = x4 + x + 1 2 R,

L = (0; r0)R + (1; r1)R.

What is the shortest

nonzero vector in L?

L = (0; 101000)R + (1; 10011)R

= (10; 1110)R + (1; 10011)R

= (10; 1110)R + (111; 1)R.

(111; 1): shortest nonzero vector.

(10; 1110): shortest

independent vector.



Degree of (q; r) 2 F2[x]� F2[x]

is defined as maxfdeg q; deg rg.

Can use other metrics,

or equivalently rescale L.

e.g. Define L � F2[
p
x]� F2[

p
x]

as (0; r0
p
x)R + (1; r1

p
x)R.

Successive generators for L:

(0; 101000
p
x), degree 5:5.

(1; 10011
p
x), degree 4:5.

(10; 1110
p
x), degree 3:5.

(111; 1
p
x), degree 2.



Warning: Sometimes

shortest independent vector is

after shortest nonzero vector.

e.g. Define

r0 = 101000, r1 = 10111,

L = (0; r0
p
x)R + (1; r1

p
x)R.

Successive generators for L:

(0; 101000
p
x), degree 5:5.

(1; 10111
p
x), degree 4:5.

(10; 110
p
x), degree 2:5.

(1101; 11
p
x), degree 3.



For any r0; r1 2 R = Fq[x]

with deg r0 > deg r1:

Euclid/Stevin computation:

Define r2 = r0 mod r1,

r3 = r1 mod r2, etc.

Extended: q0 = 0; q1 = 1;

qi+2 = qi � bri=ri+1c qi+1.

Then qir1 � ri (mod r0).

Lattice view: Have

(0; r0
p
x)R + (1; r1

p
x)R =

(qi; ri
p
x)R + (qi+1; ri+1

p
x)R.

Can continue until ri+1 = 0.

gcdfr0; r1g = ri= leadcoeff ri.



Reducing lattice basis for L

is a “half gcd” computation,

stopping halfway to the gcd.

deg ri decreases; deg qi increases;

deg qi+1 + deg ri = deg r0.

Say j is minimal with

deg rj
p
x � (deg r0)=2.

Then deg qj � (deg r0)=2 so

deg(qj ; rj
p
x) � (deg r0)=2.

Shortest nonzero vector.

(qj+�; rj+�
p
x) has degree

deg r0
p
x� deg(qj ; rj

p
x)

for some � 2 f�1; 1g.

Shortest independent vector.



Proof of “shortest”:

Take any (q; r
p
x) in lattice.

(q; r
p
x) = u(qj ; rj

p
x)

+ v(qj+�; rj+�
p
x)

for some u; v 2 R.

qjrj+� � qj+�rj = �r0

so v = �(rqj � qrj)=r0

and u = �(qrj+� � rqj+�)=r0.

If deg(q; r
p
x)

< deg(qj+�; rj+�
p
x)

then deg v < 0 so v = 0;

i.e., any vector in lattice

shorter than (qj+�; rj+�
p
x)

is a multiple of (qj ; rj
p
x).



Higher-rank lattices

If M 2 Fq[x]`�` has detM 6= 0

then the columns of M have

a nonzero linear combination Q

with degQ � (deg detM)=`.

Can compute Q with

similar speed to matrix mult.

(2003 Giorgi–Jeannerod–Villard

+ small fix from 2011 Bernstein)

M 2 Z`�`: loosen bound on Q.

(1982 Lenstra–Lenstra–Lovasz:

polynomial time; : : : ;

2011 Novocin–Stehlé–Villard:

almost as fast as Fq[x] case)



Divisors in intervals

Classic problem: Find all

divisors of N in [A�H;A + H],

given positive integers N;A;H

with A > H.

Reformulation: In Q[y] define

g = Hy and f = (A + Hy)=N.

Want all r 2 Q with jrj � 1,

g(r) 2 Z, numerator(f(r)) = 1.

Classic solution for many cases:

Find small nonzero polynomial

' 2 Z + Zf + Zfg � Q[y].

For each rational root r of ',

check whether A + Hr divides N.



Understanding this solution

for H < (A�H)=6N1=3:



Understanding this solution

for H < (A�H)=6N1=3:

f = � � �+ Hy=N,

fg = � � �+ H2y2=N,

so det(1; f; fg) = H3=N2.

Lattice-basis reduction finds

' with coeffs � 2H=N2=3.



Understanding this solution

for H < (A�H)=6N1=3:

f = � � �+ Hy=N,

fg = � � �+ H2y2=N,

so det(1; f; fg) = H3=N2.

Lattice-basis reduction finds

' with coeffs � 2H=N2=3.

Take divisor of N in [A�H;A+H].

Write as A + Hr; r 2 Q, jrj � 1.

Then j'(r)j � 6H=N2=3.



Understanding this solution

for H < (A�H)=6N1=3:

f = � � �+ Hy=N,

fg = � � �+ H2y2=N,

so det(1; f; fg) = H3=N2.

Lattice-basis reduction finds

' with coeffs � 2H=N2=3.

Take divisor of N in [A�H;A+H].

Write as A + Hr; r 2 Q, jrj � 1.

Then j'(r)j � 6H=N2=3.

1; f(r); f(r)g(r) 2 ((A+Hr)=N)Z

so '(r) 2 ((A + Hr)=N)Z.

But (A + Hr)=N > 6H=N2=3

so '(r) must be 0.



Classic generalization: Find all

divisors of N in fA� BH; : : : ;

A� B;A; A + B; : : : ; A + BHg,

given positive integers N;A;B;H

with A > BH.

Mediocre approach: Define

g = Hy and f = (A + BHy)=N.

Proceed as before.

Loses factor B2 in det.



Classic generalization: Find all

divisors of N in fA� BH; : : : ;

A� B;A; A + B; : : : ; A + BHg,

given positive integers N;A;B;H

with A > BH.

Mediocre approach: Define

g = Hy and f = (A + BHy)=N.

Proceed as before.

Loses factor B2 in det.

Much better approach: Define

g = Hy and f = (UA + Hy)=N,

assuming U 2 Z, UB � 1 2 NZ.

If Hr 2 Z and A+BHr divides N

then f(r) 2 ((A + BHr)=N)Z.



Linear combinations as divisors

Further generalization: Find all

divisors As + Bt of N with

1 � s � J; jtj � H; gcdfs; tg = 1.

Generalization of classic solution:

Define g = (H=J)y; U as before;

f = (UA + (H=J)y)=N.

As before find small nonzero

' 2 Z + Zf + Zfg.

Write each rational root of ' as

Jt=Hs with gcdfs; tg = 1, s > 0.

Check whether As + Bt divides N

with s � J and jtj � H.



Understanding this solution

for HJ < (A� BH)=6N1=3:

det(1; f; fg) = H3=J3N2.

Lattice-basis reduction finds

' with coeffs � 2H=JN2=3.

If 1 � s � J and jtj � H

and r = Jt=Hs then
��s2'(r)

�� =��'0s
2 + '1stJ=H + '2t

2J2=H2
��

� 3(2H=JN2=3)J2 = 6HJ=N2=3.

If also As + Bt divides N

then sf(r) = (UAs + t)=N 2
((As + Bt)=N)Z and sg(r) 2 Z

so s2'(r) 2 ((As + Bt)=N)Z.



1984 Lenstra: A + Bt algorithm,

for proving primality.

1986 Rivest–Shamir: A + t,

for attacking constrained RSA.

Many subsequent generalizations.

2003 Bernstein: projective view,

but only affine applications.

Projective applications:

2007 Wu, 2008 Bernstein

(including this As+Bt algorithm),

2009 Castagnos–Joux–

Laguillaumie–Nguyen.



Higher multiplicities

Generalization of A + t algorithm:

Choose a multiplicity k

and a lattice dimension `.

Find small nonzero ' 2
Z + Zf + Zf2 + � � �+ Zfk

+Zfkg+Zfkg2+� � �+Zfkg`�k�1.

det =

(H=N)`(`�1)=2N(`�k)(`�k�1)=2

so j'j �
� � � (H=N)(`�1)=2N(`�k)(`�k�1)=2`.

But '(r) 2 (divisor=N)kZ.



Optimize: large ` with k � �`

if A�H = N�.

#ft possibilities searchedg � N�2
.

Same for A + Bt etc.

1996 Coppersmith:

A + t with multiplicities; N�2
;

various generalizations.

But algorithm was slower:

identified lattice via dual.

1997 Howgrave-Graham:

this algorithm; skip dualization;

simply write down fk etc.



The gcd tweak

Minor tweak: Find all A + t with

jtj � H and gcdfA + t; Ng � N�.

These t’s include previous t’s:

if A + t divides N and A + t � N�

then gcdfA + t; Ng � N�.

Solution: Compute the same '

from the same lattice as before.

For each rational root r of ',

check gcdfA + Hr;Ng � N�.



1997 Sudan:

Fq[x] instead of Z,

N = (x� a1) � � � (x� an),

multiplicity 1, dual algorithm,

for list decoding.

1999 Guruswami–Sudan:

same with high multiplicity.

1999 Goldreich–Ron–Sudan:

Z, multiplicity 1, dual.

2000 Boneh:

Z, high multiplicity.



“The GS decoder”:

Reconstruct t 2 Fq[x] given

(t(a1); : : : ; t(an)) + errors;

distinct a1; : : : ; an 2 Fq;

#errors < (1� �)n;

deg t � �2n.

Reconstruct t 2 Fq[x] given

(�1t(a1); : : : ; �nt(an)) + errors;

distinct a1; : : : ; an 2 Fq;

nonzero �1; : : : ; �n 2 Fq;

#errors < (1� �)n;

deg t � �2n.



Higher-degree polynomials

gcdfN; p(t)g � N�:

#ft possibilities searchedg
� N�2=d if p monic, deg p = d.

1988 Håstad: � = 1, k = 1.

1989 Vallée–Girault–Toffin:

� = 1, k = 1, dual.

1996 Coppersmith:

� = 1, high multiplicity, dual.

1997 Howgrave-Graham:

� = 1, high multiplicity.

2000 Boneh:

any �, high multiplicity.



Gaussian divisors in intervals

New (?) problem: Find all

t 2 f�H; : : : ;�1; 0; 1; : : : ; Hg
with A0 +t+A1i dividing N0 +N1i

in Z[i]=(i2 + 1); assume A0 > H.

One approach: Take norms.

(A0 + t)2 + A2
1 divides N2

0 + N2
1 .

Use standard degree-2 algorithm.

Works for H � (N2
0 + N2

1 )�
2=2

if (A0 �H)2 + A2
1 = (N2

0 + N2
1 )�.

Worse: Find divisor of N2
0 + N2

1

in [(A0�H)2+A2
1; (A0+H)2+A2

1],

using degree-1 algorithm.

Works for A0H � (N2
0 + N2

1 )�
2
.



Another approach:

lattice-basis reduction over Z[i].

Works, but searches t 2 Z[i],

again wasting time.



Another approach:

lattice-basis reduction over Z[i].

Works, but searches t 2 Z[i],

again wasting time.

Better approach:

(A0 + t)2 + A2
1 divides

(A0 + t� A1i)(N0 + N1i)

so it divides (A0 + t)N1 � A1N0.

Also divides N2
0 + N2

1 .

gcd
�

(A0 + t)N1 � A1N0; N
2
0 + N2

1

	
� (N2

0 + N2
1 )�.

Works for H � (N2
0 + N2

1 )�
2
,

assuming gcdfN0; N1g = 1.



Jet divisors

Easily generalize:

A0s + B0t, other algebras, etc.

My main interest today:

the 1-jet algebra Z[�]=�2.

To search for small (s; t) 2 Z� Z

with (A0 + A1�)s + (B0 + B1�)t

dividing N0 + N1� in Z[�]=�2: use

gcd
�

∆; N2
0

	 � (N2
0 )� where ∆ =

(A0N1�A1N0)s+(B0N1�B1N0)t.

#f(s; t) searchedg � (N2
0 )�

2
,

assuming gcdfN0; B0N1g = 1.

Searching for A0s + B0t dividing

N0 would search only N�2

0 .



Classical binary Goppa codes

Fix integers n � 0, m � 1;

distinct a1; : : : ; an 2 F2m ;

monic g 2 F2m [x]

with g(a1) � � � g(an) 6= 0.

The code: Define Γ � Fn2
as set of (c1; : : : ; cn) withP

i ci=(x� ai) = 0 in F2m [x]=g.

minfjcj : c 2 Γ� f0gg � deg g+1;

lg #Γ � n�m deg g.

Better bounds in the BCH case

g = xk and in many other cases.



Say we receive v = c + e.

Define D;E 2 F2m [x] by

D =
Q

i:ei 6=0(x� ai) and

E =
P

iDei=(x� ai).



Say we receive v = c + e.

Define D;E 2 F2m [x] by

D =
Q

i:ei 6=0(x� ai) and

E =
P

iDei=(x� ai).

Lift
P

i vi=(x�ai) from F2m [x]=g

to s 2 F2m [x] with deg s < deg g.

Find shortest nonzero

(qj ; rj
p
x) in the lattice L =

(0; g
p
x)F2m [x] + (1; s

p
x)F2m [x].



Say we receive v = c + e.

Define D;E 2 F2m [x] by

D =
Q

i:ei 6=0(x� ai) and

E =
P

iDei=(x� ai).

Lift
P

i vi=(x�ai) from F2m [x]=g

to s 2 F2m [x] with deg s < deg g.

Find shortest nonzero

(qj ; rj
p
x) in the lattice L =

(0; g
p
x)F2m [x] + (1; s

p
x)F2m [x].

Fact: If jej � (deg g)=2

then E=D = rj=qj so

D is monic denominator of rj=qj .



Say we receive v = c + e.

Define D;E 2 F2m [x] by

D =
Q

i:ei 6=0(x� ai) and

E =
P

iDei=(x� ai).

Lift
P

i vi=(x�ai) from F2m [x]=g

to s 2 F2m [x] with deg s < deg g.

Find shortest nonzero

(qj ; rj
p
x) in the lattice L =

(0; g
p
x)F2m [x] + (1; s

p
x)F2m [x].

Fact: If jej � (deg g)=2

then E=D = rj=qj so

D is monic denominator of rj=qj .

ei = 0 if D(ai) 6= 0.

ei = E(ai)=D
0(ai) if D(ai) = 0.



Why does this work?
P

i ei=(x� ai) = E=D andP
i ci=(x� ai) = 0 in F2m [x]=g

so s = E=D in F2m [x]=g

so (D;E
p
x) 2 L.



Why does this work?
P

i ei=(x� ai) = E=D andP
i ci=(x� ai) = 0 in F2m [x]=g

so s = E=D in F2m [x]=g

so (D;E
p
x) 2 L.

(D;E
p
x) is a short vector:

deg(D;E
p
x) � jej � (deg g)=2

< deg g + 1=2� deg(qj ; rj
p
x).



Why does this work?
P

i ei=(x� ai) = E=D andP
i ci=(x� ai) = 0 in F2m [x]=g

so s = E=D in F2m [x]=g

so (D;E
p
x) 2 L.

(D;E
p
x) is a short vector:

deg(D;E
p
x) � jej � (deg g)=2

< deg g + 1=2� deg(qj ; rj
p
x).

Recall “shortest” proof:

(D;E
p
x) 2 (qj ; rj

p
x)F2m [x],

so E=D = rj=qj . Done!

Euclid decoding: 1975 Sugiyama–

Kasahara–Hirasawa–Namekawa.



List decoding for these codes

What if jej > (deg g)=2?

Find shortest nonzero (D0; E0
p
x)

and independent (D1; E1
p
x) in

(0; g
p
x)F2m [x] + (1; s

p
x)F2m [x],

with degrees (deg g)=2� �

and (deg g)=2 + 1=2 + �

for some � 2 f0; 1=2; 1; 3=2; : : :g.

Know that (D;E
p
x) =

u(D0; E0
p
x) + v(D1; E1

p
x);

v = �(ED0 �DE0)=g 2 F2m [x],

u = �(DE1 � ED1)=g 2 F2m [x],

deg v � jej � (deg g)=2� 1=2� �,

degu � jej � (deg g)=2 + �.



Critical facts about D:

� D = uD0 + vD1 with known

D0 and D1, bounded u and v.

� D divides known

N =
Q

i(x� ai).



Critical facts about D:

� D = uD0 + vD1 with known

D0 and D1, bounded u and v.

� D divides known

N =
Q

i(x� ai).

This is exactly the

“linear combinations as divisors”

problem! Solve with lattices.

Reach same jej as GS,

but much smaller k.

(2007 Wu: dual of

essentially this algorithm; see

2008 Bernstein for coprimality)



Jet list decoding

Recall D =
Q

i:ei 6=0(x� ai)

and E =
P

iDei=(x� ai).

ei 2 f0; 1g
so E =

P
iD=(x� ai) = D0.

One consequence:

Γ2(g) = Γ2(g2) if g is squarefree.

This doubles deg g, drastically

increasing # errors decoded.

But Γ2(g2) decoders vary

in effectiveness and efficiency.



1968 Berlekamp decodes

deg g errors for Γ2(g2).

1975 Patterson: same, faster.

1998 Guruswami–Sudan:

� deg g + (deg g)2=2n errors.

2007 Wu: same, faster;

the “rational” speedup.

2008 Bernstein: even faster;

“rational” + Patterson.



1968 Berlekamp decodes

deg g errors for Γ2(g2).

1975 Patterson: same, faster.

1998 Guruswami–Sudan:

� deg g + (deg g)2=2n errors.

2007 Wu: same, faster;

the “rational” speedup.

2008 Bernstein: even faster;

“rational” + Patterson.

2001 Koetter–Vardy:

� deg g + (deg g)2=n errors.

Can “rational” algorithms

correct this many errors?



1968 Berlekamp decodes

deg g errors for Γ2(g2).

1975 Patterson: same, faster.

1998 Guruswami–Sudan:

� deg g + (deg g)2=2n errors.

2007 Wu: same, faster;

the “rational” speedup.

2008 Bernstein: even faster;

“rational” + Patterson.

2001 Koetter–Vardy:

� deg g + (deg g)2=n errors.

Can “rational” algorithms

correct this many errors?

Yes! Jet list decoding.



Works for arbitrary Γ2(g).

Notation: N;D;E; : : : as before.

D divides N so the jet

D(x + �) = D + �D0 = D + �E

divides N(x + �) = N + �N 0.

D + �E =

u(D0 + �E0) + v(D1 + �E1).

Apply the jet-divisors idea:

find large gcd
�
N 0D � NE;N2

	
.

2007 Wu reaches same jej
in one special case, BCH. Jet list

decoding is faster, more general.

Generalize F2 to Fq: use

gcd
�

(N 0D)q�1 � (NE)q�1; Nq
	

.


