Jet list decoding
D. J. Bernstein

University of Illinois at Chicago

Thanks to:

NSF
(1018836)

NIST
(60NANB10D263)
Cisco
(University Research Program)

Interpolation

Fix coprime $p_{1}, \ldots, p_{n} \in \mathbf{Z}_{>0}$.
Remainder rep of $t \in \mathbf{Z}$:
$\mathrm{ev} t=\left(t \bmod p_{1}, \ldots, t \bmod p_{n}\right)$.
Chinese remainder theorem:
iv t determines $t \bmod N$
where $N=p_{1} \cdots p_{n}$.
Very fast computation:
If $0 \leq t<N$ then
$\frac{t}{N}=\left(\sum_{i} \frac{t q_{i} \bmod p_{i}}{p_{i}}\right) \bmod 1$
where $q_{i}=\left(N / p_{i}\right)^{-1} \bmod p_{i}$.

Decoding

Fix $H<N$. Assume $0 \leq t<H$.
Remainder rep is redundant.
Given any vector $v \approx \mathrm{ev} t$ can reconstruct t.

Traditional definition of " \approx ":
$\prod_{i: v_{i} \neq(\mathrm{ev} t)_{i}} p_{i} \leq \sqrt{N / H}$.
Surprisingly fast $v \mapsto t$ methods.
Proof that v determines t :
if $v \approx \mathrm{ev} u$ and $v \approx \mathrm{ev} t$ then
$\prod_{i:(\mathrm{ev} u)_{i} \neq(\mathrm{ev} t)_{i}} p_{i} \leq N / H$ so
$\prod_{i:(\mathrm{ev} u)_{i}=(\mathrm{ev} t)_{i}} p_{i} \geq H$ but
$\prod_{i:(\mathrm{ev} u)_{i}=(\mathrm{ev} t)_{i}} p_{i}$ divides $t-u$.

List decoding

What if we know $|v-\mathrm{ev} t| \leq W$ where W is above $\sqrt{N / H}$?

Traditional answer: Give up.
No guarantee that t is unique.
Modern answer:
W determines a list of possibilities for t. How quickly can we compute list? How does speed degrade with W ?

1957 Elias, 1958 Wozencraft:
bounds on list size,
but no fast algorithms.

Reed-Solomon decoding

Fix prime power q,
distinct $a_{1}, \ldots, a_{n} \in \mathbf{F}_{q}$.
Remainder rep of $t \in \mathbf{F}_{q}[x]$:
$\mathrm{ev} t=\left(t\left(a_{1}\right), \ldots, t\left(a_{n}\right)\right)$.
Given any vector $v \approx \mathrm{ev} t$
can reconstruct t,
assuming $\operatorname{deg} t<h$.
Traditional " \approx ":
$\#\left\{i: v_{i} \neq(\mathrm{ev} t)_{i}\right\} \leq(n-h) / 2$.
List decoding:
compute list of possibilities for t given larger bound on $|v-\mathrm{ev} t|$.

Jets
The algebra of 1-jets over \mathbf{R} is the quotient ring $\mathbf{R}[\epsilon] / \epsilon^{2}$.

Analogous to the set of complex numbers $\mathbf{C}=\mathbf{R}[i] /\left(i^{2}+1\right)$, but $\epsilon^{2}=0$ while $i^{2}=-1$.

Multiplication of jets:
$(a+b \epsilon)(c+d \epsilon)=a c+(a d+b c) \epsilon$.
Typical construction of a jet:
differentiable $f: \mathbf{R} \rightarrow \mathbf{R}$ induces jet $f(x+\epsilon)=f(x)+f^{\prime}(x) \epsilon$ for each $x \in \mathbf{R}$.
e.g. $\sin (x+\epsilon)=\sin x+(\cos x) \epsilon$.

Lattice-basis reduction

Define $L=(0,24) \mathbf{Z}+(1,17) \mathbf{Z}$
$=\{(b, 24 a+17 b): a, b \in \mathbf{Z}\}$.
What is the shortest nonzero vector in L?

Lattice-basis reduction

Define $L=(0,24) \mathbf{Z}+(1,17) \mathbf{Z}$
$=\{(b, 24 a+17 b): a, b \in \mathbf{Z}\}$.
What is the shortest nonzero vector in L?
$L=(0,24) \mathbf{Z}+(1,17) \mathbf{Z}$

Lattice-basis reduction

Define $L=(0,24) \mathbf{Z}+(1,17) \mathbf{Z}$
$=\{(b, 24 a+17 b): a, b \in \mathbf{Z}\}$.
What is the shortest nonzero vector in L?

$$
\begin{aligned}
L & =(0,24) \mathbf{Z}+(1,17) \mathbf{Z} \\
& =(-1,7) \mathbf{Z}+(1,17) \mathbf{Z}
\end{aligned}
$$

Lattice-basis reduction

Define $L=(0,24) \mathbf{Z}+(1,17) \mathbf{Z}$
$=\{(b, 24 a+17 b): a, b \in \mathbf{Z}\}$.
What is the shortest nonzero vector in L?

$$
\begin{aligned}
L & =(0,24) \mathbf{Z}+(1,17) \mathbf{Z} \\
& =(-1,7) \mathbf{Z}+(1,17) \mathbf{Z} \\
& =(-1,7) \mathbf{Z}+(3,3) \mathbf{Z}
\end{aligned}
$$

Lattice-basis reduction

Define $L=(0,24) \mathbf{Z}+(1,17) \mathbf{Z}$
$=\{(b, 24 a+17 b): a, b \in \mathbf{Z}\}$.
What is the shortest nonzero vector in L?

$$
\begin{aligned}
L & =(0,24) \mathbf{Z}+(1,17) \mathbf{Z} \\
& =(-1,7) \mathbf{Z}+(1,17) \mathbf{Z} \\
& =(-1,7) \mathbf{Z}+(3,3) \mathbf{Z} \\
& =(-4,4) \mathbf{Z}+(3,3) \mathbf{Z} .
\end{aligned}
$$

Lattice-basis reduction

Define $L=(0,24) \mathbf{Z}+(1,17) \mathbf{Z}$
$=\{(b, 24 a+17 b): a, b \in \mathbf{Z}\}$.
What is the shortest nonzero vector in L?

$$
\begin{aligned}
L & =(0,24) \mathbf{Z}+(1,17) \mathbf{Z} \\
& =(-1,7) \mathbf{Z}+(1,17) \mathbf{Z} \\
& =(-1,7) \mathbf{Z}+(3,3) \mathbf{Z} \\
& =(-4,4) \mathbf{Z}+(3,3) \mathbf{Z} .
\end{aligned}
$$

$(-4,4),(3,3)$ are orthogonal.
Shortest vectors in L are
$(0,0),(3,3),(-3,-3)$.

Another example:

Define $L=(0,25) \mathbf{Z}+(1,17) \mathbf{Z}$.
What is the shortest nonzero vector in L?

Another example:
Define $L=(0,25) \mathbf{Z}+(1,17) \mathbf{Z}$.
What is the shortest nonzero vector in L?
$L=(0,25) \mathbf{Z}+(1,17) \mathbf{Z}$

Another example:

Define $L=(0,25) \mathbf{Z}+(1,17) \mathbf{Z}$.

What is the shortest nonzero vector in L?

$$
\begin{aligned}
L & =(0,25) \mathbf{Z}+(1,17) \mathbf{Z} \\
& =(-1,8) \mathbf{Z}+(1,17) \mathbf{Z}
\end{aligned}
$$

Another example:

Define $L=(0,25) \mathbf{Z}+(1,17) \mathbf{Z}$.

What is the shortest nonzero vector in L?

$$
\begin{aligned}
L & =(0,25) \mathbf{Z}+(1,17) \mathbf{Z} \\
& =(-1,8) \mathbf{Z}+(1,17) \mathbf{Z} \\
& =(-1,8) \mathbf{Z}+(3,1) \mathbf{Z} .
\end{aligned}
$$

Another example:

Define $L=(0,25) \mathbf{Z}+(1,17) \mathbf{Z}$.
What is the shortest nonzero vector in L?

$$
\begin{aligned}
L & =(0,25) \mathbf{Z}+(1,17) \mathbf{Z} \\
& =(-1,8) \mathbf{Z}+(1,17) \mathbf{Z} \\
& =(-1,8) \mathbf{Z}+(3,1) \mathbf{Z} .
\end{aligned}
$$

Nearly orthogonal.
Shortest vectors in L are
$(0,0),(3,1),(-3,-1)$.

Polynomial lattices

Define $R=\mathbf{F}_{2}[x]$,
$r_{0}=(101000)_{x}=x^{5}+x^{3} \in R$,
$r_{1}=(10011)_{x}=x^{4}+x+1 \in R$,
$L=\left(0, r_{0}\right) R+\left(1, r_{1}\right) R$.
What is the shortest nonzero vector in L?

Polynomial lattices

Define $R=\mathbf{F}_{2}[x]$,
$r_{0}=(101000)_{x}=x^{5}+x^{3} \in R$,
$r_{1}=(10011)_{x}=x^{4}+x+1 \in R$,
$L=\left(0, r_{0}\right) R+\left(1, r_{1}\right) R$.
What is the shortest nonzero vector in L?
$L=(0,101000) R+(1,10011) R$

Polynomial lattices

Define $R=\mathbf{F}_{2}[x]$,
$r_{0}=(101000)_{x}=x^{5}+x^{3} \in R$,
$r_{1}=(10011)_{x}=x^{4}+x+1 \in R$,
$L=\left(0, r_{0}\right) R+\left(1, r_{1}\right) R$.
What is the shortest nonzero vector in L?

$$
\begin{aligned}
L & =(0,101000) R+(1,10011) R \\
& =(10,1110) R+(1,10011) R
\end{aligned}
$$

Polynomial lattices

Define $R=\mathbf{F}_{2}[x]$,
$r_{0}=(101000)_{x}=x^{5}+x^{3} \in R$,
$r_{1}=(10011)_{x}=x^{4}+x+1 \in R$,
$L=\left(0, r_{0}\right) R+\left(1, r_{1}\right) R$.
What is the shortest nonzero vector in L?

$$
\begin{aligned}
L & =(0,101000) R+(1,10011) R \\
& =(10,1110) R+(1,10011) R \\
& =(10,1110) R+(111,1) R .
\end{aligned}
$$

Polynomial lattices

Define $R=\mathbf{F}_{2}[x]$,
$r_{0}=(101000)_{x}=x^{5}+x^{3} \in R$,
$r_{1}=(10011)_{x}=x^{4}+x+1 \in R$,
$L=\left(0, r_{0}\right) R+\left(1, r_{1}\right) R$.
What is the shortest nonzero vector in L ?

$$
\begin{aligned}
L & =(0,101000) R+(1,10011) R \\
& =(10,1110) R+(1,10011) R \\
& =(10,1110) R+(111,1) R .
\end{aligned}
$$

$(111,1)$: shortest nonzero vector.
$(10,1110)$: shortest
independent vector.

Degree of $(q, r) \in \mathbf{F}_{2}[x] \times \mathbf{F}_{2}[x]$ is defined as $\max \{\operatorname{deg} q, \operatorname{deg} r\}$.

Can use other metrics, or equivalently rescale L.
e.g. Define $L \subseteq \mathbf{F}_{2}[\sqrt{x}] \times \mathbf{F}_{2}[\sqrt{x}]$ as $\left(0, r_{0} \sqrt{x}\right) R+\left(1, r_{1} \sqrt{x}\right) R$.

Successive generators for L :
$(0,101000 \sqrt{x})$, degree 5.5.
$(1,10011 \sqrt{x})$, degree 4.5 .
$(10,1110 \sqrt{x})$, degree 3.5 .
$(111,1 \sqrt{x})$, degree 2 .

Warning: Sometimes
shortest independent vector is after shortest nonzero vector.
e.g. Define
$r_{0}=101000, r_{1}=10111$,
$L=\left(0, r_{0} \sqrt{x}\right) R+\left(1, r_{1} \sqrt{x}\right) R$.
Successive generators for L :
$(0,101000 \sqrt{x})$, degree 5.5 .
$(1,10111 \sqrt{x})$, degree 4.5 .
$(10,110 \sqrt{x})$, degree 2.5 .
$(1101,11 \sqrt{x})$, degree 3 .

For any $r_{0}, r_{1} \in R=\mathbf{F}_{q}[x]$
with $\operatorname{deg} r_{0}>\operatorname{deg} r_{1}$:
Euclid/Stevin computation:
Define $r_{2}=r_{0} \bmod r_{1}$, $r_{3}=r_{1} \bmod r_{2}$, etc.

Extended: $q_{0}=0 ; q_{1}=1$;
$q_{i+2}=q_{i}-\left\lfloor r_{i} / r_{i+1}\right\rfloor q_{i+1}$.
Then $q_{i} r_{1} \equiv r_{i} \quad\left(\bmod r_{0}\right)$.
Lattice view: Have
$\left(0, r_{0} \sqrt{x}\right) R+\left(1, r_{1} \sqrt{x}\right) R=$
$\left(q_{i}, r_{i} \sqrt{x}\right) R+\left(q_{i+1}, r_{i+1} \sqrt{x}\right) R$.
Can continue until $r_{i+1}=0$. $\operatorname{gcd}\left\{r_{0}, r_{1}\right\}=r_{i} /$ leadcoeff r_{i}.

Reducing lattice basis for L is a "half ged" computation, stopping halfway to the ged.
$\operatorname{deg} r_{i}$ decreases; $\operatorname{deg} q_{i}$ increases; $\operatorname{deg} q_{i+1}+\operatorname{deg} r_{i}=\operatorname{deg} r_{0}$.

Say j is minimal with $\operatorname{deg} r_{j} \sqrt{x} \leq\left(\operatorname{deg} r_{0}\right) / 2$. Then $\operatorname{deg} q_{j} \leq\left(\operatorname{deg} r_{0}\right) / 2$ so $\operatorname{deg}\left(q_{j}, r_{j} \sqrt{x}\right) \leq\left(\operatorname{deg} r_{0}\right) / 2$. Shortest nonzero vector.
$\left(q_{j+\epsilon}, r_{j+\epsilon} \sqrt{x}\right)$ has degree $\operatorname{deg} r_{0} \sqrt{x}-\operatorname{deg}\left(q_{j}, r_{j} \sqrt{x}\right)$ for some $\epsilon \in\{-1,1\}$.
Shortest independent vector.

Proof of "shortest":

Take any $(q, r \sqrt{x})$ in lattice.
$(q, r \sqrt{x})=u\left(q_{j}, r_{j} \sqrt{x}\right)$

$$
+v\left(q_{j+\epsilon}, r_{j+\epsilon} \sqrt{x}\right)
$$

for some $u, v \in R$.
$q_{j} r_{j+\epsilon}-q_{j+\epsilon} r_{j}= \pm r_{0}$
so $v= \pm\left(r q_{j}-q r_{j}\right) / r_{0}$
and $u= \pm\left(q r_{j+\epsilon}-r q_{j+\epsilon}\right) / r_{0}$.
If $\operatorname{deg}(q, r \sqrt{x})$

$$
<\operatorname{deg}\left(q_{j+\epsilon}, r_{j+\epsilon} \sqrt{x}\right)
$$

then $\operatorname{deg} v<0$ so $v=0$;
ie., any vector in lattice shorter than $\left(q_{j+\epsilon}, r_{j+\epsilon} \sqrt{x}\right)$
is a multiple of $\left(q_{j}, r_{j} \sqrt{x}\right)$.

Higher-rank lattices

If $M \in \mathbf{F}_{q}[x]^{\ell \times \ell}$ has $\operatorname{det} M \neq 0$
then the columns of M have a nonzero linear combination Q with $\operatorname{deg} Q \leq(\operatorname{deg} \operatorname{det} M) / \ell$.

Can compute Q with
similar speed to matrix mult.
(2003 Giorgi-Jeannerod-Villard + small fix from 2011 Bernstein)
$M \in \mathbf{Z}^{\ell \times \ell}$: loosen bound on Q. (1982 Lenstra-Lenstra-Lovasz: polynomial time;
2011 Novocin-Stehlé-Villard:
almost as fast as $\mathbf{F}_{q}[x]$ case)

Divisors in intervals

Classic problem: Find all
divisors of N in $[A-H, A+H]$, given positive integers N, A, H with $A>H$.

Reformulation: In $\mathbf{Q}[y]$ define $g=H y$ and $f=(A+H y) / N$.
Want all $r \in \mathbf{Q}$ with $|r| \leq 1$, $g(r) \in \mathbf{Z}$, numerator $(f(r))=1$.

Classic solution for many cases:
Find small nonzero polynomial $\varphi \in \mathbf{Z}+\mathbf{Z} f+\mathbf{Z} f g \subset \mathbf{Q}[y]$. For each rational root r of φ, check whether $A+H r$ divides N.

Understanding this solution for $H<(A-H) / 6 N^{1 / 3}$:

Understanding this solution

for $H<(A-H) / 6 N^{1 / 3}$:
$f=\cdots+H y / N$,
$f g=\cdots+H^{2} y^{2} / N$,
so $\operatorname{det}(1, f, f g)=H^{3} / N^{2}$.
Lattice-basis reduction finds φ with coeffs $\leq 2 H / N^{2 / 3}$.

Understanding this solution

for $H<(A-H) / 6 N^{1 / 3}$:
$f=\cdots+H y / N$,
$f g=\cdots+H^{2} y^{2} / N$,
so $\operatorname{det}(1, f, f g)=H^{3} / N^{2}$.
Lattice-basis reduction finds
φ with coeffs $\leq 2 H / N^{2 / 3}$.
Take divisor of N in $[A-H, A+H]$.
Write as $A+H r ; r \in \mathbf{Q},|r| \leq 1$.
Then $|\varphi(r)| \leq 6 H / N^{2 / 3}$.

Understanding this solution

for $H<(A-H) / 6 N^{1 / 3}$:
$f=\cdots+H y / N$,
$f g=\cdots+H^{2} y^{2} / N$,
so $\operatorname{det}(1, f, f g)=H^{3} / N^{2}$.
Lattice-basis reduction finds φ with coeffs $\leq 2 H / N^{2 / 3}$.

Take divisor of N in $[A-H, A+H]$. Write as $A+H r ; r \in \mathbf{Q},|r| \leq 1$. Then $|\varphi(r)| \leq 6 H / N^{2 / 3}$.
$1, f(r), f(r) g(r) \in((A+H r) / N) \mathbf{Z}$ so $\varphi(r) \in((A+H r) / N) \mathbf{Z}$.
But $(A+H r) / N>6 H / N^{2 / 3}$ so $\varphi(r)$ must be 0 .

Classic generalization: Find all divisors of N in $\{A-B H, \ldots$, $A-B, A, A+B, \ldots, A+B H\}$, given positive integers N, A, B, H with $A>B H$.

Mediocre approach: Define $g=H y$ and $f=(A+B H y) / N$. Proceed as before.
Loses factor B^{2} in det.

Classic generalization: Find all divisors of N in $\{A-B H, \ldots$, $A-B, A, A+B, \ldots, A+B H\}$, given positive integers N, A, B, H with $A>B H$.

Mediocre approach: Define $g=H y$ and $f=(A+B H y) / N$. Proceed as before.
Loses factor B^{2} in let.
Much better approach: Define $g=H y$ and $f=(U A+H y) / N$, assuming $U \in \mathbf{Z}, U B-1 \in N \mathbf{Z}$.
If $H r \in \mathbf{Z}$ and $A+B H r$ divides N then $f(r) \in((A+B H r) / N) \mathbf{Z}$.

Linear combinations as divisors

Further generalization: Find all divisors $A s+B t$ of N with $1 \leq s \leq J ;|t| \leq H ; \operatorname{gcd}\{s, t\}=1$.

Generalization of classic solution:
Define $g=(H / J) y ; U$ as before;
$f=(U A+(H / J) y) / N$.
As before find small nonzero $\varphi \in \mathbf{Z}+\mathbf{Z} f+\mathbf{Z} f g$.

Write each rational root of φ as
$J t / H s$ with $\operatorname{gcd}\{s, t\}=1, s>0$.
Check whether $A s+B t$ divides N with $s \leq J$ and $|t| \leq H$.

Understanding this solution

 for $H J<(A-B H) / 6 N^{1 / 3}$:$\operatorname{det}(1, f, f g)=H^{3} / J^{3} N^{2}$.

Lattice-basis reduction finds

φ with coeffs $\leq 2 H / J N^{2 / 3}$.
If $1 \leq s \leq J$ and $|t| \leq H$ and $r=J t / H s$ then $\left|s^{2} \varphi(r)\right|=$ $\left|\varphi_{0} s^{2}+\varphi_{1} s t J / H+\varphi_{2} t^{2} J^{2} / H^{2}\right|$ $\leq 3\left(2 H / J N^{2 / 3}\right) J^{2}=6 H J / N^{2 / 3}$.

If also $A s+B t$ divides N then $s f(r)=(U A s+t) / N \in$ $((A s+B t) / N) \mathbf{Z}$ and $s g(r) \in \mathbf{Z}$ so $s^{2} \varphi(r) \in((A s+B t) / N) \mathbf{Z}$.

1984 Lenstra: $A+B t$ algorithm, for proving primality.

1986 Rivest-Shamir: $A+t$, for attacking constrained RSA.

Many subsequent generalizations.
2003 Bernstein: projective view, but only affine applications.

Projective applications:
2007 Wu, 2008 Bernstein
(including this $A s+B t$ algorithm),
2009 Castagnos-Joux-
Laguillaumie-Nguyen.

Higher multiplicities

Generalization of $A+t$ algorithm:
Choose a multiplicity k and a lattice dimension ℓ.

Find small nonzero $\varphi \in$
$\mathbf{Z}+\mathbf{Z} f+\mathbf{Z} f^{2}+\cdots+\mathbf{Z} f^{k}$
$+\mathbf{Z} f^{k} g+\mathbf{Z} f^{k} g^{2}+\cdots+\mathbf{Z} f^{k} g^{\ell-k-1}$.
$\operatorname{det}=$
$(H / N)^{\ell(\ell-1) / 2} N^{(\ell-k)(\ell-k-1) / 2}$
so $|\varphi| \leq$
$\cdots(H / N)^{(\ell-1) / 2} N^{(\ell-k)(\ell-k-1) / 2 \ell}$.
But $\varphi(r) \in(\text { divisor } / N)^{k} \mathbf{Z}$.

Optimize: large ℓ with $k \approx \theta \ell$ if $A-H=N^{\theta}$.
$\#\{t$ possibilities searched $\} \approx N^{\theta^{2}}$.
Same for $A+B t$ etc.
1996 Coppersmith:
$A+t$ with multiplicities; $N^{\theta^{2}}$;
various generalizations.
But algorithm was slower: identified lattice via dual.

1997 Howgrave-Graham:
this algorithm; skip dualization; simply write down f^{k} etc.

The god tweak

Minor tweak: Find all $A+t$ with $|t| \leq H$ and $\operatorname{gcd}\{A+t, N\} \geq N^{\theta}$.

These t 's include previous t 's: if $A+t$ divides N and $A+t \geq N^{\theta}$ then $\operatorname{gcd}\{A+t, N\} \geq N^{\theta}$.

Solution: Compute the same φ
from the same lattice as before.
For each rational root r of φ, check $\operatorname{gcd}\{A+H r, N\} \geq N^{\theta}$.

1997 Sudan:
$\mathbf{F}_{q}[x]$ instead of \mathbf{Z},
$N=\left(x-a_{1}\right) \cdots\left(x-a_{n}\right)$,
multiplicity 1 , dual algorithm,
for list decoding.
1999 Guruswami-Sudan:
same with high multiplicity.
1999 Goldreich-Ron-Sudan:
Z, multiplicity 1 , dual.
2000 Boneh:
Z, high multiplicity.
"The GS decoder":
Reconstruct $t \in \mathbf{F}_{q}[x]$ given
$\left(t\left(a_{1}\right), \ldots, t\left(a_{n}\right)\right)+$ errors;
distinct $a_{1}, \ldots, a_{n} \in \mathbf{F}_{q}$;
\#errors $<(1-\theta) n$;
$\operatorname{deg} t \leq \theta^{2} n$.
Reconstruct $t \in \mathbf{F}_{q}[x]$ given
$\left(\beta_{1} t\left(a_{1}\right), \ldots, \beta_{n} t\left(a_{n}\right)\right)+$ errors;
distinct $a_{1}, \ldots, a_{n} \in \mathbf{F}_{q}$;
nonzero $\beta_{1}, \ldots, \beta_{n} \in \mathbf{F}_{q}$;
\#errors $<(1-\theta) n$;
$\operatorname{deg} t \leq \theta^{2} n$.

Higher-degree polynomials

$\operatorname{gcd}\{N, p(t)\} \geq N^{\theta}:$
$\#\{t$ possibilities searched $\}$
$\approx N^{\theta^{2} / d}$ if p monic, $\operatorname{deg} p=d$.
1988 Håstad: $\theta=1, k=1$.
1989 Vallée-Girault-Toffin:
$\theta=1, k=1$, dual.
1996 Coppersmith:
$\theta=1$, high multiplicity, dual.
1997 Howgrave-Graham:
$\theta=1$, high multiplicity.
2000 Boneh:
any θ, high multiplicity.

Gaussian divisors in intervals

New (?) problem: Find all
$t \in\{-H, \ldots,-1,0,1, \ldots, H\}$
with $A_{0}+t+A_{1} i$ dividing $N_{0}+N_{1} i$ in $\mathbf{Z}[i] /\left(i^{2}+1\right)$; assume $A_{0}>H$.

One approach: Take norms.
$\left(A_{0}+t\right)^{2}+A_{1}^{2}$ divides $N_{0}^{2}+N_{1}^{2}$. Use standard degree-2 algorithm. Works for $H \approx\left(N_{0}^{2}+N_{1}^{2}\right)^{\theta^{2} / 2}$ if $\left(A_{0}-H\right)^{2}+A_{1}^{2}=\left(N_{0}^{2}+N_{1}^{2}\right)^{\theta}$.

Worse: Find divisor of $N_{0}^{2}+N_{1}^{2}$ in $\left[\left(A_{0}-H\right)^{2}+A_{1}^{2},\left(A_{0}+H\right)^{2}+A_{1}^{2}\right]$, using degree-1 algorithm.
Works for $A_{0} H \approx\left(N_{0}^{2}+N_{1}^{2}\right)^{\theta^{2}}$.

Another approach:
lattice-basis reduction over $\mathbf{Z}[i]$.
Works, but searches $t \in \mathbf{Z}[i]$, again wasting time.

Another approach:
lattice-basis reduction over $\mathbf{Z}[i]$. Works, but searches $t \in \mathbf{Z}[i]$, again wasting time.

Better approach:
$\left(A_{0}+t\right)^{2}+A_{1}^{2}$ divides
$\left(A_{0}+t-A_{1} i\right)\left(N_{0}+N_{1} i\right)$
so it divides $\left(A_{0}+t\right) N_{1}-A_{1} N_{0}$. Also divides $N_{0}^{2}+N_{1}^{2}$.
$\operatorname{gcd}\left\{\left(A_{0}+t\right) N_{1}-A_{1} N_{0}, N_{0}^{2}+N_{1}^{2}\right\}$
$\geq\left(N_{0}^{2}+N_{1}^{2}\right)^{\theta}$.
Works for $H \approx\left(N_{0}^{2}+N_{1}^{2}\right)^{\theta^{2}}$, assuming $\operatorname{gcd}\left\{N_{0}, N_{1}\right\}=1$.

Jet divisors

Easily generalize:
$A_{0} s+B_{0} t$, other algebras, etc.
My main interest today:
the 1-jet algebra $\mathbf{Z}[\epsilon] / \epsilon^{2}$.
To search for small $(s, t) \in \mathbf{Z} \times \mathbf{Z}$ with $\left(A_{0}+A_{1} \epsilon\right) s+\left(B_{0}+B_{1} \epsilon\right) t$ dividing $N_{0}+N_{1} \epsilon$ in $\mathbf{Z}[\epsilon] / \epsilon^{2}$: use $\operatorname{gcd}\left\{\Delta, N_{0}^{2}\right\} \geq\left(N_{0}^{2}\right)^{\theta}$ where $\Delta=$ $\left(A_{0} N_{1}-A_{1} N_{0}\right) s+\left(B_{0} N_{1}-B_{1} N_{0}\right) t$.
$\#\{(s, t)$ searched $\} \approx\left(N_{0}^{2}\right)^{\theta^{2}}$, assuming $\operatorname{gcd}\left\{N_{0}, B_{0} N_{1}\right\}=1$.

Searching for $A_{0} s+B_{0} t$ dividing N_{0} would search only $N_{0}^{\theta^{2}}$.

Classical binary Goppa codes

Fix integers $n \geq 0, m \geq 1$;
distinct $a_{1}, \ldots, a_{n} \in \mathbf{F}_{2 m}$; monic $g \in \mathbf{F}_{2^{m}}[x]$
with $g\left(a_{1}\right) \cdots g\left(a_{n}\right) \neq 0$.
The code: Define $\Gamma \subseteq F_{2}^{n}$ as set of $\left(c_{1}, \ldots, c_{n}\right)$ with
$\sum_{i} c_{i} /\left(x-a_{i}\right)=0$ in $\mathbf{F}_{2^{m}}[x] / g$.
$\min \{|c|: c \in \Gamma-\{0\}\} \geq \operatorname{deg} g+1 ;$ $\lg \# \Gamma \geq n-m \operatorname{deg} g$.
Better bounds in the BCH case $g=x^{k}$ and in many other cases.

Say we receive $v=c+e$. Define $D, E \in \mathbf{F}_{2^{m}}[x]$ by
$D=\prod_{i: e_{i} \neq 0}\left(x-a_{i}\right)$ and
$E=\sum_{i} D e_{i} /\left(x-a_{i}\right)$.

Say we receive $v=c+e$.
Define $D, E \in \mathbf{F}_{2^{m}}[x]$ by
$D=\prod_{i: e_{i} \neq 0}\left(x-a_{i}\right)$ and
$E=\sum_{i} D e_{i} /\left(x-a_{i}\right)$.
Lift $\sum_{i} v_{i} /\left(x-a_{i}\right)$ from $\mathbf{F}_{2 m}[x] / g$
to $s \in \mathbf{F}_{2} m[x]$ with $\operatorname{deg} s<\operatorname{deg} g$.
Find shortest nonzero
$\left(q_{j}, r_{j} \sqrt{x}\right)$ in the lattice $L=$
$(0, g \sqrt{x}) \mathbf{F}_{2^{m}}[x]+(1, s \sqrt{x}) \mathbf{F}_{2^{m}}[x]$.

Say we receive $v=c+e$.
Define $D, E \in \mathbf{F}_{2^{m}}[x]$ by
$D=\prod_{i: e_{i} \neq 0}\left(x-a_{i}\right)$ and
$E=\sum_{i} D e_{i} /\left(x-a_{i}\right)$.
Lift $\sum_{i} v_{i} /\left(x-a_{i}\right)$ from $\mathbf{F}_{2 m}[x] / g$
to $s \in \mathbf{F}_{2} m[x]$ with $\operatorname{deg} s<\operatorname{deg} g$. Find shortest nonzero
$\left(q_{j}, r_{j} \sqrt{x}\right)$ in the lattice $L=$
$(0, g \sqrt{x}) \mathbf{F}_{2^{m}}[x]+(1, s \sqrt{x}) \mathbf{F}_{2^{m}}[x]$.
Fact: If $|e| \leq(\operatorname{deg} g) / 2$
then $E / D=r_{j} / q_{j}$ so
D is monic denominator of r_{j} / q_{j}.

Say we receive $v=c+e$.
Define $D, E \in \mathbf{F}_{2 m}[x]$ by
$D=\prod_{i: e_{i} \neq 0}\left(x-a_{i}\right)$ and
$E=\sum_{i} D e_{i} /\left(x-a_{i}\right)$.
Lift $\sum_{i} v_{i} /\left(x-a_{i}\right)$ from $\mathbf{F}_{2 m}[x] / g$
to $s \in \mathbf{F}_{2} m[x]$ with $\operatorname{deg} s<\operatorname{deg} g$. Find shortest nonzero
$\left(q_{j}, r_{j} \sqrt{x}\right)$ in the lattice $L=$
$(0, g \sqrt{x}) \mathbf{F}_{2^{m}}[x]+(1, s \sqrt{x}) \mathbf{F}_{2^{m}}[x]$.
Fact: If $|e| \leq(\operatorname{deg} g) / 2$ then $E / D=r_{j} / q_{j}$ so
D is monic denominator of r_{j} / q_{j}.
$e_{i}=0$ if $D\left(a_{i}\right) \neq 0$.
$e_{i}=E\left(a_{i}\right) / D^{\prime}\left(a_{i}\right)$ if $D\left(a_{i}\right)=0$.

Why does this work?
$\sum_{i} e_{i} /\left(x-a_{i}\right)=E / D$ and
$\sum_{i} c_{i} /\left(x-a_{i}\right)=0$ in $\mathbf{F}_{2 m}[x] / g$
so $s=E / D$ in $\mathbf{F}_{2 m}[x] / g$
so $(D, E \sqrt{x}) \in L$.

Why does this work?
$\sum_{i} e_{i} /\left(x-a_{i}\right)=E / D$ and
$\sum_{i} c_{i} /\left(x-a_{i}\right)=0$ in $\mathrm{F}_{2 m}[x] / g$
so $s=E / D$ in $\mathbf{F}_{2 m}[x] / g$
so $(D, E \sqrt{x}) \in L$.
$(D, E \sqrt{x})$ is a short vector:
$\operatorname{deg}(D, E \sqrt{x}) \leq|e| \leq(\operatorname{deg} g) / 2$
$<\operatorname{deg} g+1 / 2-\operatorname{deg}\left(q_{j}, r_{j} \sqrt{x}\right)$.

Why does this work?
$\sum_{i} e_{i} /\left(x-a_{i}\right)=E / D$ and
$\sum_{i} c_{i} /\left(x-a_{i}\right)=0$ in $\mathbf{F}_{2 m}[x] / g$
so $s=E / D$ in $\mathbf{F}_{2} m[x] / g$
so $(D, E \sqrt{x}) \in L$.
$(D, E \sqrt{x})$ is a short vector:
$\operatorname{deg}(D, E \sqrt{x}) \leq|e| \leq(\operatorname{deg} g) / 2$ $<\operatorname{deg} g+1 / 2-\operatorname{deg}\left(q_{j}, r_{j} \sqrt{x}\right)$.

Recall "shortest" proof:
$(D, E \sqrt{x}) \in\left(q_{j}, r_{j} \sqrt{x}\right) \mathbf{F}_{2 m}[x]$, so $E / D=r_{j} / q_{j}$. Done!

Euclid decoding: 1975 Sugiyama-Kasahara-Hirasawa-Namekawa.

List decoding for these codes

What if $|e|>(\operatorname{deg} g) / 2$?
Find shortest nonzero $\left(D_{0}, E_{0} \sqrt{x}\right)$ and independent $\left(D_{1}, E_{1} \sqrt{x}\right)$ in $(0, g \sqrt{x}) \mathbf{F}_{2^{m}}[x]+(1, s \sqrt{x}) \mathbf{F}_{2 m}[x]$, with degrees $(\operatorname{deg} g) / 2-\delta$ and $(\operatorname{deg} g) / 2+1 / 2+\delta$ for some $\delta \in\{0,1 / 2,1,3 / 2, \ldots\}$. Know that $(D, E \sqrt{x})=$ $u\left(D_{0}, E_{0} \sqrt{x}\right)+v\left(D_{1}, E_{1} \sqrt{x}\right)$; $v= \pm\left(E D_{0}-D E_{0}\right) / g \in \mathbf{F}_{2 m}[x]$, $u= \pm\left(D E_{1}-E D_{1}\right) / g \in \mathbf{F}_{2}[x]$, $\operatorname{deg} v \leq|e|-(\operatorname{deg} g) / 2-1 / 2-\delta$, $\operatorname{deg} u \leq|e|-(\operatorname{deg} g) / 2+\delta$.

Critical facts about D :

- $D=u D_{0}+v D_{1}$ with known D_{0} and D_{1}, bounded u and v.
- D divides known

$$
N=\prod_{i}\left(x-a_{i}\right) .
$$

Critical facts about D :

- $D=u D_{0}+v D_{1}$ with known D_{0} and D_{1}, bounded u and v.
- D divides known
$N=\prod_{i}\left(x-a_{i}\right)$.
This is exactly the
"linear combinations as divisors"
problem! Solve with lattices.
Reach same $|e|$ as GS, but much smaller k.
(2007 Wu: dual of essentially this algorithm; see 2008 Bernstein for coprimality)

Jet list decoding
Recall $D=\prod_{i: e_{i} \neq 0}\left(x-a_{i}\right)$
and $E=\sum_{i} D e_{i} /\left(x-a_{i}\right)$.
$e_{i} \in\{0,1\}$
so $E=\sum_{i} D /\left(x-a_{i}\right)=D^{\prime}$.
One consequence:
$\Gamma_{2}(g)=\Gamma_{2}\left(g^{2}\right)$ if g is squarefree.
This doubles $\operatorname{deg} g$, drastically increasing \# errors decoded.

But $\Gamma_{2}\left(g^{2}\right)$ decoders vary in effectiveness and efficiency.

1968 Berlekamp decodes
$\operatorname{deg} g$ errors for $\Gamma_{2}\left(g^{2}\right)$.
1975 Patterson: same, faster.
1998 Guruswami-Sudan:
$\approx \operatorname{deg} g+(\operatorname{deg} g)^{2} / 2 n$ errors.
2007 Wu : same, faster;
the "rational" speedup.
2008 Bernstein: even faster; "rational" + Patterson.

1968 Berlekamp decodes
deg g errors for $\Gamma_{2}\left(g^{2}\right)$.
1975 Patterson: same, faster.
1998 Guruswami-Sudan:
$\approx \operatorname{deg} g+(\operatorname{deg} g)^{2} / 2 n$ errors.
2007 Wu: same, faster;
the "rational" speedup.
2008 Bernstein: even faster; "rational" + Patterson.

2001 Koetter-Vardy:
$\approx \operatorname{deg} g+(\operatorname{deg} g)^{2} / n$ errors.
Can "rational" algorithms
correct this many errors?

1968 Berlekamp decodes
deg g errors for $\Gamma_{2}\left(g^{2}\right)$.
1975 Patterson: same, faster.
1998 Guruswami-Sudan:
$\approx \operatorname{deg} g+(\operatorname{deg} g)^{2} / 2 n$ errors.
2007 Wu: same, faster;
the "rational" speedup.
2008 Bernstein: even faster; "rational" + Patterson.

2001 Koetter-Vardy:
$\approx \operatorname{deg} g+(\operatorname{deg} g)^{2} / n$ errors.
Can "rational" algorithms
correct this many errors?
Yes! Jet list decoding.

Works for arbitrary $\Gamma_{2}(g)$.
Notation: N, D, E, \ldots as before.
D divides N so the jet
$D(x+\epsilon)=D+\epsilon D^{\prime}=D+\epsilon E$
divides $N(x+\epsilon)=N+\epsilon N^{\prime}$.
$D+\epsilon E=$
$u\left(D_{0}+\epsilon E_{0}\right)+v\left(D_{1}+\epsilon E_{1}\right)$.
Apply the jet-divisors idea:
find large $\operatorname{gcd}\left\{N^{\prime} D-N E, N^{2}\right\}$.
2007 Wu reaches same $|e|$
in one special case, BCH. Jet list decoding is faster, more general.

Generalize \mathbf{F}_{2} to \mathbf{F}_{q} : use $\operatorname{gcd}\left\{\left(N^{\prime} D\right)^{q-1}-(N E)^{q-1}, N^{q}\right\}$.

