Jet list decoding

D. J. Bernstein University of Illinois at Chicago Thanks to: NSF 1018836 NIST 60NANB10D263 No thanks to: IEEE violating IEEE policies and forcing authors to take papers offline; see cr.yp.to/writing/ieee.html

Decoding

The $\leq w$ -error decoding problem for a linear code $C \subseteq \mathbf{F}_q^n$:

- Output: $c \in C$.
- Input: $v \in \mathbf{F}_q^n$ with $|v c| \leq w$.

Note that output is unique if $w < \frac{1}{2} \min\{|c| : c \in C - \{0\}\}.$

Notation:

$$egin{aligned} |v| &= \#\{i: v_i
eq 0\} \ &= ext{Hamming weight of } v; \ ext{e.g.} \ |v-c| &= \#\{i: v_i
eq c_i\} \ &= ext{Hamming distance} \ & ext{from } v ext{ to } c. \end{aligned}$$

Reed-Solomon decoding

Choose integer $t \ge 0$, integer $n \ge t$, prime power $q \ge n$, distinct $a_1, \ldots, a_n \in \mathbf{F}_q$.

Define $C \subseteq \mathbf{F}_q^n$ as the code $\{\operatorname{ev} f : f \in \mathbf{F}_q[x], \deg f < n - t\}$ where $\operatorname{ev} f = (f(a_1), \ldots, f(a_n)).$

min{ $|c| : c \in C - \{0\}$ } = t + 1. Exception: ∞ if t = n.

1960 Peterson in some cases, 1961 Gorenstein–Zierler in more, 1965 Forney in general: $\leq \lfloor t/2 \rfloor$ -error decoding for *C* takes time $n^{O(1)}$ if $q \in n^{O(1)}$. Big research direction #1: Decode faster.

1968 Berlekamp: $\leq \lfloor t/2 \rfloor$ -error decoding for *C* costs O(nt) operations in \mathbf{F}_q plus root-finding in \mathbf{F}_q . Time $n^{2+o(1)}$ for typical t, q.

1976 Justesen, independently 1977 Sarwate: Faster algorithm for large n, $n(\lg n)^{2+o(1)}$ instead of O(nt). Time $n^{1+o(1)}$ for typical t, q.

Extensive literature on further speedups.

Decoding more codes

Big research direction #2: Modify C to expand and improve tradeoffs between q, n, #C, w.

e.g. Replace $C \subseteq \mathbf{F}_q^n$, $q = 2^m$, with \mathbf{F}_2 -subfield subcode $\mathbf{F}_2^n \cap C$. $\#C = q^{n-t} \Rightarrow \#(\mathbf{F}_2^n \cap C) \ge 2^{n-mt}$. Any $\le w$ -error decoder for Calso works for $\mathbf{F}_2^n \cap C$.

Can take $\mathbf{F}_2^n \cap C$ where C is RS, but better to twist carefully. Obtain classical \mathbf{F}_2 Goppa codes decoding twice as many errors.

Better for large n: AG codes.

List decoding

Big research direction #3: Decode more errors for same C. Maybe output c isn't unique. Decoding problem asks for some c with $|v - c| \le w$. List-decoding problem asks for

all c with $|v - c| \leq w$.

Trivial approach: Brute force. e.g. guess $w - \lfloor t/2 \rfloor$ errors and use any $\leq \lfloor t/2 \rfloor$ -error decoder. (For list decoding, use a covering set of guesses.) Very slow for large $w - \lfloor t/2 \rfloor$.

Reed–Solomon list decoding

1996 Sudan for smaller w, 1998 Guruswami–Sudan in general: If $w < n - \sqrt{n(n - t - 1)}$ then $\leq w$ -error list decoding for C = $\{ ev f : f \in \mathbf{F}_q[x], \deg f < n - t \}$ takes time $n^{O(1)}$ if $q \in n^{O(1)}$.

Reed–Solomon list decoding

1996 Sudan for smaller w, 1998 Guruswami–Sudan in general: If $w < n - \sqrt{n(n - t - 1)}$ then $\leq w$ -error list decoding for C = $\{ ev f : f \in \mathbf{F}_q[x], \deg f < n - t \}$ takes time $n^{O(1)}$ if $q \in n^{O(1)}$.

2001 Koetter–Vardy:

Assume $q = 2^m$; write n' = n/2. If $w < n' - \sqrt{n'(n' - t - 1)}$ then $\leq w$ -error list decoding for $\mathbf{F}_2^n \cap C$ takes time $n^{O(1)}$ if $q \in n^{O(1)}$.

$$n - \sqrt{n(n{-}t{-}1)} pprox t/2 + t^2/8n.
onumber \ n' - \sqrt{n'(n'{-}t{-}1)} pprox t/2 + t^2/4n.$$

Guruswami–Sudan cost analysis: $O(n^3 \ell^6)$ operations in \mathbf{F}_q where ℓ is an algorithm parameter.

Extensive literature on speedups and adaptations to more codes.

Critical Howgrave-Graham idea, with state-of-the-art subroutines: $n^{1+o(1)}k^{1+o(1)}\ell^{<3}$ where

k is another parameter; $k < \ell$.

For Howgrave-Graham analysis see 2010 Cohn–Heninger (which also adapts to AG etc.), 2011 Bernstein "simplelist" (combining with Koetter–Vardy). What are these parameters k, ℓ ? Obviously critical for speed. Why not take k, ℓ to be small?

Answer: Decreasing k, ℓ forces gap between w and its limit. Almost all list-decoding methods have essentially the same gap. What are these parameters k, ℓ ? Obviously critical for speed. Why not take k, ℓ to be small?

Answer: Decreasing k, ℓ forces gap between w and its limit. Almost all list-decoding methods have essentially the same gap.

But not all!

Much better k, l, w tradeoff in "rational" list-decoding methods: 2007 Wu "New list decoding"; 2008 Bernstein "goppalist"; 2011 Bernstein "jetlist".

<u>Jets</u>

- The set of 1-jets over **R** is the quotient ring $\mathbf{R}[\epsilon]/\epsilon^2$.
- Analogous to the set of complex numbers $\mathbf{C} = \mathbf{R}[i]/(i^2+1)$, but $\epsilon^2 = 0$ while $i^2 = -1$.
- Multiplication of jets: $(a+b\epsilon)(c+d\epsilon) = ac+(ad+bc)\epsilon.$
- Typical construction of a jet: differentiable $f : \mathbf{R} \to \mathbf{R}$ induces jet $f(x + \epsilon) = f(x) + f'(x)\epsilon$ for each $x \in \mathbf{R}$. e.g. $\sin(x + \epsilon) = \sin x + (\cos x)\epsilon$.

Recap for late sleepers

50 years ago: Polynomial-time decoding of $\leq \lfloor t/2 \rfloor$ errors in length-*n* Reed–Solomon code $\{ ev f : f \in \mathbf{F}_q[x], deg f < n - t \}.$

Big research directions since then:

3. Decode more errors.

Output might not be unique: have list of possible codewords.

2. Improve choice of code: classical Goppa codes, AG, et al.

1. Decode faster.

Define $L = (0, 24)\mathbf{Z} + (1, 17)\mathbf{Z}$ = { $(b, 24a + 17b) : a, b \in \mathbf{Z}$ }.

What is the shortest nonzero vector in *L*?

Define $L = (0, 24)\mathbf{Z} + (1, 17)\mathbf{Z}$ = { $(b, 24a + 17b) : a, b \in \mathbf{Z}$ }.

What is the shortest nonzero vector in *L*?

 $L = (0, 24)\mathbf{Z} + (1, 17)\mathbf{Z}$

Define $L = (0, 24)\mathbf{Z} + (1, 17)\mathbf{Z}$ = { $(b, 24a + 17b) : a, b \in \mathbf{Z}$ }.

What is the shortest nonzero vector in *L*?

 $L = (0, 24)\mathbf{Z} + (1, 17)\mathbf{Z}$ $= (-1, 7)\mathbf{Z} + (1, 17)\mathbf{Z}$

Define $L = (0, 24)\mathbf{Z} + (1, 17)\mathbf{Z}$ = { $(b, 24a + 17b) : a, b \in \mathbf{Z}$ }.

What is the shortest nonzero vector in *L*?

 $L = (0, 24)\mathbf{Z} + (1, 17)\mathbf{Z}$ $= (-1, 7)\mathbf{Z} + (1, 17)\mathbf{Z}$ $= (-1, 7)\mathbf{Z} + (3, 3)\mathbf{Z}$

Define $L = (0, 24)\mathbf{Z} + (1, 17)\mathbf{Z}$ = { $(b, 24a + 17b) : a, b \in \mathbf{Z}$ }.

What is the shortest nonzero vector in *L*?

L = (0, 24)Z + (1, 17)Z= (-1, 7)Z + (1, 17)Z = (-1, 7)Z + (3, 3)Z = (-4, 4)Z + (3, 3)Z.

Define $L = (0, 24)\mathbf{Z} + (1, 17)\mathbf{Z}$ = { $(b, 24a + 17b) : a, b \in \mathbf{Z}$ }.

What is the shortest nonzero vector in *L*?

 $L = (0, 24)\mathbf{Z} + (1, 17)\mathbf{Z}$ = (-1, 7)\mathbf{Z} + (1, 17)\mathbf{Z} = (-1, 7)\mathbf{Z} + (3, 3)\mathbf{Z} = (-4, 4)\mathbf{Z} + (3, 3)\mathbf{Z}.

(-4, 4), (3, 3) are orthogonal. Shortest vectors in *L* are (0, 0), (3, 3), (-3, -3).

What is the shortest nonzero vector in *L*?

What is the shortest nonzero vector in *L*?

 $L = (0, 25)\mathbf{Z} + (1, 17)\mathbf{Z}$

What is the shortest nonzero vector in *L*?

$$L = (0, 25)\mathbf{Z} + (1, 17)\mathbf{Z}$$

= $(-1, 8)\mathbf{Z} + (1, 17)\mathbf{Z}$

What is the shortest nonzero vector in *L*?

$$L = (0, 25)\mathbf{Z} + (1, 17)\mathbf{Z}$$
$$= (-1, 8)\mathbf{Z} + (1, 17)\mathbf{Z}$$
$$= (-1, 8)\mathbf{Z} + (3, 1)\mathbf{Z}.$$

What is the shortest nonzero vector in *L*?

$$L = (0, 25)\mathbf{Z} + (1, 17)\mathbf{Z}$$

= (-1, 8)\mathbf{Z} + (1, 17)\mathbf{Z}
= (-1, 8)\mathbf{Z} + (3, 1)\mathbf{Z}.

Nearly orthogonal. Shortest vectors in L are (0, 0), (3, 1), (-3, -1).

Define $R = \mathbf{F}_2[x]$, $r_0 = (101000)_x = x^5 + x^3 \in R$, $r_1 = (10011)_x = x^4 + x + 1 \in R$, $L = (0, r_0)R + (1, r_1)R$.

What is the shortest nonzero vector in *L*?

Define $R = \mathbf{F}_2[x]$, $r_0 = (101000)_x = x^5 + x^3 \in R$, $r_1 = (10011)_x = x^4 + x + 1 \in R$, $L = (0, r_0)R + (1, r_1)R$.

What is the shortest nonzero vector in *L*?

L = (0, 101000)R + (1, 10011)R

Define $R = \mathbf{F}_2[x]$, $r_0 = (101000)_x = x^5 + x^3 \in R$, $r_1 = (10011)_x = x^4 + x + 1 \in R$, $L = (0, r_0)R + (1, r_1)R$.

What is the shortest nonzero vector in *L*?

L = (0, 101000)R + (1, 10011)R= (10, 1110)R + (1, 10011)R

Define $R = \mathbf{F}_2[x]$, $r_0 = (101000)_x = x^5 + x^3 \in R$, $r_1 = (10011)_x = x^4 + x + 1 \in R$, $L = (0, r_0)R + (1, r_1)R$.

What is the shortest nonzero vector in *L*?

L = (0, 101000)R + (1, 10011)R= (10, 1110)R + (1, 10011)R = (10, 1110)R + (111, 1)R.

Define $R = \mathbf{F}_2[x]$, $r_0 = (101000)_x = x^5 + x^3 \in R$, $r_1 = (10011)_x = x^4 + x + 1 \in R$, $L = (0, r_0)R + (1, r_1)R$.

What is the shortest nonzero vector in *L*?

L = (0, 101000)R + (1, 10011)R= (10, 1110)R + (1, 10011)R = (10, 1110)R + (111, 1)R.

(111, 1): shortest nonzero vector. (10, 1110): shortest independent vector.

Degree of $(q, r) \in \mathbf{F}_2[x] \times \mathbf{F}_2[x]$ is defined as max{deg q, deg r}.

Can use other metrics, or equivalently rescale *L*.

e.g. Define $L \subseteq \mathbf{F}_2[\sqrt{x}] \times \mathbf{F}_2[\sqrt{x}]$ as $(0, r_0\sqrt{x})R + (1, r_1\sqrt{x})R$.

Successive generators for *L*: (0, 101000 \sqrt{x}), degree 5.5. (1, 10011 \sqrt{x}), degree 4.5. (10, 1110 \sqrt{x}), degree 3.5. (111, 1 \sqrt{x}), degree 2. Warning: Sometimes shortest independent vector is *after* shortest nonzero vector.

e.g. Define $r_0 = 101000, r_1 = 10111,$ $L = (0, r_0\sqrt{x})R + (1, r_1\sqrt{x})R.$ Successive generators for *L*: $(0, 101000\sqrt{x}),$ degree 5.5. $(1, 10111\sqrt{x}),$ degree 4.5.

 $(10, 110\sqrt{x})$, degree 2.5. $(1101, 11\sqrt{x})$, degree 3. For any $r_0, r_1 \in R = \mathbf{F}_q[x]$ with deg $r_0 > \deg r_1$:

Euclid/Stevin computation: Define $r_2 = r_0 \mod r_1$, $r_3 = r_1 \mod r_2$, etc.

Extended: $q_0 = 0$; $q_1 = 1$; $q_{i+2} = q_i - \lfloor r_i/r_{i+1} \rfloor q_{i+1}$. Then $q_i r_1 \equiv r_i \pmod{r_0}$.

Lattice view: Have $(0, r_0\sqrt{x})R + (1, r_1\sqrt{x})R =$ $(q_i, r_i\sqrt{x})R + (q_{i+1}, r_{i+1}\sqrt{x})R.$

Can continue until $r_{i+1} = 0$. gcd $\{r_0, r_1\} = r_i$ / leadcoeff r_i . Reducing lattice basis for *L* is a "half gcd" computation, stopping halfway to the gcd.

 $\deg r_i$ decreases; $\deg q_i$ increases; $\deg q_{i+1} + \deg r_i = \deg r_0$.

Say j is minimal with $\deg r_j \sqrt{x} \leq (\deg r_0)/2.$ Then $\deg q_j \leq (\deg r_0)/2$ so $\deg(q_j, r_j \sqrt{x}) \leq (\deg r_0)/2.$ Shortest nonzero vector.

 $(q_{j+\epsilon}, r_{j+\epsilon}\sqrt{x})$ has degree deg $r_0\sqrt{x} - deg(q_j, r_j\sqrt{x})$ for some $\epsilon \in \{-1, 1\}$. Shortest independent vector. Proof of "shortest":

Take any $(q, r\sqrt{x})$ in lattice. $(q, r\sqrt{x}) = u(q_j, r_j\sqrt{x})$ $+ v(q_{j+\epsilon}, r_{j+\epsilon}\sqrt{x})$ for some $u, v \in R$.

 $q_j r_{j+\epsilon} - q_{j+\epsilon} r_j = \pm r_0$ so $v = \pm (rq_j - qr_j)/r_0$ and $u = \pm (qr_{j+\epsilon} - rq_{j+\epsilon})/r_0$. If deg(q, $r\sqrt{x}$) $< \deg(q_{j+\epsilon}, r_{j+\epsilon} \sqrt{x})$ then deg v < 0 so v = 0; i.e., any vector in lattice shorter than $(q_{j+\epsilon}, r_{j+\epsilon}\sqrt{x})$ is a multiple of $(q_j, r_j \sqrt{x})$.

Classical binary Goppa codes

Parameters determining the code: integers n > 0, m > 1, t > 0; distinct $a_1, \ldots, a_n \in \mathbf{F}_{2^m}$; monic $q \in \mathbf{F}_{2^m}[x]$ of degree t with $g(a_1) \cdots g(a_n) \neq 0$. The code: Define $\Gamma \subseteq \mathbf{F}_2^n$ as set of (c_1, \ldots, c_n) with $\sum_{i} c_{i}/(x - a_{i}) = 0$ in $\mathbf{F}_{2m}[x]/g$. $\lg \# \Gamma > n - mt$. $\min\{|c|: c \in \Gamma - \{0\}\} \ge t + 1.$ Better bounds in the BCH case $q = x^t$ and in many other cases.

Say we receive v = c + e. Define $D, E \in \mathbf{F}_{2^m}[x]$ by $D = \prod_{i:e_i \neq 0} (x - a_i)$ and $E = \sum_i De_i / (x - a_i)$. Say we receive v = c + e. Define $D, E \in \mathbf{F}_{2^m}[x]$ by $D = \prod_{i:e_i \neq 0} (x - a_i)$ and $E = \sum_i De_i / (x - a_i)$.

Lift $\sum_{i} v_i/(x-a_i)$ from $\mathbf{F}_{2^m}[x]/g$ to $s \in \mathbf{F}_{2^m}[x]$ with deg s < t. Find shortest nonzero $(q_j, r_j\sqrt{x})$ in the lattice L = $(0, g\sqrt{x})\mathbf{F}_{2^m}[x] + (1, s\sqrt{x})\mathbf{F}_{2^m}[x]$. Say we receive v = c + e. Define $D, E \in \mathbf{F}_{2^m}[x]$ by $D = \prod_{i:e_i \neq 0} (x - a_i)$ and $E = \sum_i De_i / (x - a_i)$.

Lift $\sum_{i} v_i/(x-a_i)$ from $\mathbf{F}_{2m}[x]/g$ to $s \in \mathbf{F}_{2m}[x]$ with deg s < t. Find shortest nonzero $(q_j, r_j\sqrt{x})$ in the lattice L = $(0, g\sqrt{x})\mathbf{F}_{2m}[x] + (1, s\sqrt{x})\mathbf{F}_{2m}[x]$. Fact: If $|e| \le t/2$ then $E/D = r_j/q_j$ so D is monic denominator of r_j/q_j .

Say we receive v = c + e. Define D, $E \in \mathbf{F}_{2^m}[x]$ by $D = \prod_{i:e_i
eq 0} (x - a_i)$ and $E = \sum_i De_i/(x - a_i).$ Lift $\sum_i v_i/(x-a_i)$ from $\mathbf{F}_{2^m}[x]/g$ to $s \in \mathbf{F}_{2^m}[x]$ with deg s < t. Find shortest nonzero $(q_j, r_j \sqrt{x})$ in the lattice L = $(0, g\sqrt{x})\mathbf{F}_{2}m[x] + (1, s\sqrt{x})\mathbf{F}_{2}m[x].$ Fact: If |e| < t/2then $E/D = r_j/q_j$ so D is monic denominator of r_j/q_j . $e_i = 0$ if $D(a_i) \neq 0$.

 $e_i = E(a_i)/D'(a_i)$ if $D(a_i) = 0$.

Why does this work?

 $\sum_i e_i/(x-a_i) = E/D$ and $\sum_i c_i/(x-a_i) = 0$ in $\mathbf{F}_{2^m}[x]/g$ so s = E/D in $\mathbf{F}_{2^m}[x]/g$ so $(D, E\sqrt{x}) \in L$. Why does this work?

 $\sum_i e_i/(x-a_i) = E/D$ and $\sum_i c_i/(x-a_i) = 0$ in $\mathbf{F}_{2^m}[x]/g$ so s = E/D in $\mathbf{F}_{2^m}[x]/g$ so $(D, E\sqrt{x}) \in L$.

 $(D, E\sqrt{x})$ is a short vector: $\deg(D, E\sqrt{x}) \le |e| \le t/2$ $< t + 1/2 - \deg(q_j, r_j\sqrt{x}).$ Why does this work?

 $\sum_i e_i/(x-a_i) = E/D$ and $\sum_i c_i/(x-a_i) = 0$ in $\mathbf{F}_{2^m}[x]/g$ so s = E/D in $\mathbf{F}_{2^m}[x]/g$ so $(D, E\sqrt{x}) \in L$.

$$(D, E\sqrt{x})$$
 is a short vector:
 $\deg(D, E\sqrt{x}) \leq |e| \leq t/2$
 $< t + 1/2 - \deg(q_j, r_j\sqrt{x}).$

Recall "shortest" proof: $(D, E\sqrt{x}) \in (q_j, r_j\sqrt{x})\mathbf{F}_{2^m}[x],$ so $E/D = r_j/q_j$. Done!

Euclid decoding: 1975 Sugiyama– Kasahara–Hirasawa–Namekawa.

List decoding for these codes

What if |e| > t/2?

Find shortest nonzero ($D_0, E_0\sqrt{x}$) and independent $(D_1, E_1 \sqrt{x})$ in $(0, g\sqrt{x})\mathbf{F}_{2}m[x] + (1, s\sqrt{x})\mathbf{F}_{2}m[x],$ with degrees $t/2 - \delta$ and $t/2 + 1/2 + \delta$ for some $\delta \in \{0, 1/2, 1, 3/2, ...\}$. Know that $(D, E\sqrt{x}) =$ $u(D_0, E_0\sqrt{x}) + v(D_1, E_1\sqrt{x});$ $v = \pm (ED_0 - DE_0)/g \in \mathbf{F}_{2^m}[x],$ $u = \pm (DE_1 - ED_1)/g \in \mathbf{F}_{2^m}[x],$ $\deg v \le |e| - t/2 - 1/2 - \delta$, $\deg u < |e| - t/2 + \delta.$

Critical facts about *D*:

- $D = uD_0 + vD_1$ with known D_0 and D_1 , bounded u and v.
- *D* divides known

$$N = \prod_i (x - a_i).$$

Critical facts about D:

• $D = uD_0 + vD_1$ with known D_0 and D_1 , bounded u and v.

•
$$D$$
 divides known $N = \prod_i (x - a_i).$

Can use these facts to quickly compute all possible D for surprisingly large |e|.

Critical facts about D:

• $D = uD_0 + vD_1$ with known D_0 and D_1 , bounded u and v.

•
$$D$$
 divides known $N = \prod_i (x - a_i).$

Can use these facts to quickly compute all possible *D* for surprisingly large |*e*|.

- This is essentially 2007 Wu.
- 2008 Bernstein:
- combine with Patterson.
- 1998 Guruswami–Sudan: same |*e*| limit but much slower.

Algorithm parameters:

- "multiplicity" $k \ge 1$;
- "lattice dimension" $\ell \geq k+1$.

Assume $gcd\{D_1, N\} = 1$. Otherwise add constant multiple of D_0 to D_1 , extending field if necessary; see 2008 Bernstein for analysis.

Lift D_0/D_1 from $\mathbf{F}_{2^m}[x]/N$ to $S \in \mathbf{F}_{2^m}[x]$ with deg S < n. Then $Su + v \in D\mathbf{F}_{2^m}[x]$.

Note that both u and $x^{\theta}v$ have degree $\leq \lfloor |e| - t/2 + \delta \rfloor$ where $\theta = \lfloor t/2 + \delta \rfloor - \lfloor t/2 - 1/2 - \delta \rfloor$.

For k = 1: In $\mathbf{F}_{2^m}(x)[y]$ define $G_0 = N$, $G_1=S+x^{- heta}y$, $G_2 = (S + x^{-\theta}y)x^{-\theta}y,$ $G_{\ell-1} = (S + x^{-\theta}y)(x^{-\theta}y)^{\ell-2}.$ Substituting $y = x^{ heta} v / u$ and multiplying by $u^{\ell-1}$ produces $Nu^{\ell-1}, (Su+v)u^{\ell-2}, ..., Su+v,$ all of which are in $D\mathbf{F}_{2^m}[x]$. $u^{\ell-1}Q(x^{ heta}v/u)\in D\mathbf{F}_{2^m}[x]$ for any $Q \in G_0 \mathbf{F}_{2^m}[\mathbf{x}] + \cdots + G_{\ell-1} \mathbf{F}_{2^m}[\mathbf{x}].$

View all of these polynomials as coefficient vectors in $\mathbf{F}_{2^m}(x)^{\ell}$. $G_0, G_1, \ldots, G_{\ell-1}$ have determinant $Nx^{-\ell(\ell-1)\theta/2}$, of degree $n - \ell(\ell - 1)\theta/2$.

Use ℓ -dim lattice-basis reduction to find short nonzero Q:

 $\deg Q_i \leq n/\ell - (\ell-1)\theta/2.$

If $|e| > n/\ell + (\ell - 1) \lfloor |e| - t/2 + \delta - \theta/2 \rfloor$ then deg $Q_i(x^{\theta}v)^i u^{\ell-1-i} < |e|$ so deg $u^{\ell-1}Q(x^{\theta}v/u) < |e|$ so $Q(x^{\theta}v/u) = 0$. Find u, v by finding roots of Q.

For general k: Redefine G_i to obtain multiples of D^k . $G_0 = N^k$: $G_1 = (S + x^{-\theta}y)N^{k-1};$ $G_{2} = (S + x^{-\theta}y)^{2}N^{k-2};$ $G_k = (S + x^{- heta}y)^k$; $G_{\ell-1} = (S + x^{-\theta}y)^k (x^{-\theta}y)^{\ell-k-1}.$ $\deg Q_i \leq nk(k+1)/2\ell - (\ell-1)\theta/2.$ If $k|e| > nk(k+1)/2\ell +$ $(\ell - 1) ||e| - t/2 + \delta - \theta/2|$ then $Q(x^{\theta}v/u) = 0$.

e.g. t = 0.1n, w = 0.051n: smallest parameters are $k = 4, \ \ell = 80.$ For comparison, Guruswami–Sudan require multiplicity k and lattice dimension ℓ to satisfy $nk(k+1)/2\ell + (\ell-1)(n-t-1)/2$ < k(n - |e|).

e.g. t = 0.1n, w = 0.051n: smallest parameters are k = 75, $\ell = 80$.

Jet list decoding

Recall $D = \prod_{i:e_i
eq 0} (x - a_i)$ and $E = \sum_i De_i / (x - a_i).$

 $e_i \in \{0,1\}$ so $E = \sum_i D/(x-a_i) = D'.$

One consequence: $\Gamma_2(g) = \Gamma_2(g^2)$ if g is squarefree. This doubles t, drastically increasing # errors decoded.

But $\Gamma_2(g^2)$ decoders vary in effectiveness and efficiency.

1968 Berlekamp decodes t errors for $\Gamma_2(g^2)$. 1975 Patterson: same, faster. 1998 Guruswami–Sudan: $\approx t + t^2/2n$ errors. 2007 Wu: same, faster; the "rational" speedup. 2008 Bernstein: even faster; "rational" + Patterson.

1968 Berlekamp decodes t errors for $\Gamma_2(g^2)$. 1975 Patterson: same, faster. 1998 Guruswami–Sudan: $\approx t + t^2/2n$ errors. 2007 Wu: same, faster; the "rational" speedup. 2008 Bernstein: even faster: "rational" + Patterson.

2001 Koetter–Vardy: $\approx t + t^2/n$ errors. Can "rational" algorithms correct > $t + t^2/2n$ errors?

1968 Berlekamp decodes t errors for $\Gamma_2(g^2)$. 1975 Patterson: same, faster. 1998 Guruswami–Sudan: $\approx t + t^2/2n$ errors. 2007 Wu: same, faster; the "rational" speedup. 2008 Bernstein: even faster: "rational" + Patterson.

2001 Koetter–Vardy: $\approx t + t^2/n$ errors. Can "rational" algorithms correct > $t + t^2/2n$ errors? Yes! Jet list decoding. Works for arbitrary $\Gamma_2(g)$. Notation: N, D, E, \ldots as before. D divides N so the jet $D(x + \epsilon) = D + \epsilon D' = D + \epsilon E$ divides $N(x + \epsilon) = N + \epsilon N'$. $(D + \epsilon E)(D - \epsilon E)$ divides $(N + \epsilon N')(D - \epsilon E)$ so

 D^2 divides N'D - NE.

 $(D, E) = u(D_0, E_0) + v(D_1, E_1)$ so N'D - NE =

 $v(N'D_1 - NE_1) + u(N'D_0 - NE_0).$

Lift $(N'D_0 - NE_0)/(N'D_1 - NE_1)$ from $\mathbf{F}_{2^m}[x]/N^2$ to $S \in \mathbf{F}_{2^m}[x]$. Then $Su + v \in D^2\mathbf{F}_{2^m}[x]$.

$$G_{0} = (N^{2})^{k};$$

$$G_{1} = (S + x^{-\theta}y)(N^{2})^{k-1};$$

$$G_{2} = (S + x^{-\theta}y)^{2}(N^{2})^{k-2};$$

$$\vdots$$

$$G_{k} = (S + x^{-\theta}y)^{k};$$

$$\vdots$$

$$G_{\ell-1} = (S + x^{-\theta}y)^{k}(x^{-\theta}y)^{\ell-k-1}.$$

$$u^{\ell-1}Q(x^{\theta}v/u) \in D^{2k}\mathbf{F}_{2}m[x] \text{ if }$$

$$Q \in G_{0}\mathbf{F}_{2}m[x] + \dots + G_{\ell-1}\mathbf{F}_{2}m[x].$$
Roots of shortest nonzero Q
include $x^{\theta}v/u$
if $2k|e| > nk(k+1)/\ell +$
 $(\ell-1) \lfloor |e| - t/2 + \delta - \theta/2 \rfloor.$

e.g. t = 0.1n, w = 0.051n: smallest parameters are k = 1, $\ell = 26$.

e.g. t = 0.1n, w = 0.0521n: smallest parameters are k = 4, $\ell = 80$.

Compared to Koetter–Vardy: same limit on *w*, but much smaller *k* for each *w*.

Same achieved by 2007 Wu in one special case, BCH. Jet list decoding is faster (thanks to Howgrave-Graham) and more general.