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Context: speed

What is the fastest

public-key encryption system

with security level � 2b?

How to evaluate candidates:

Encryption systems

Analyze
attack algorithms

��
Systems with security � 2b

Analyze
encryption algorithms

��
Fastest systems with security � 2b



Example of speed analysis

RSA (with small exponent,

reasonable padding, etc.):

Factoring n costs 2(lgn)1=3+o(1)

by the number-field sieve.

Conjecture: this is the

optimal attack against RSA.

Key size: Can take lgn 2 b3+o(1)

ensuring 2(lgn)1=3+o(1) � 2b.

Encryption: Fast exp

costs (lgn)1+o(1) bit operations.

Summary: RSA costs b3+o(1).



ECC (with strong curve/Fq,

reasonable padding, etc.):

ECDL costs 2(1=2+o(1)) lg q

by Pollard’s rho method.

Conjecture: this is the

optimal attack against ECC.

Can take lg q 2 (2 + o(1))b.

Encryption: Fast scalar mult

costs (lg q)2+o(1) = b2+o(1).

Summary: ECC costs b2+o(1).

Asymptotically faster than RSA.

Bonus: also b2+o(1) decryption.



1978 McEliece system (with

length-n classical Goppa codes,

reasonable padding, etc.):

Conjecture: Fastest attacks

cost 2(�+o(1))n=lgn.

Can take n 2 (1=� + o(1))b lg b.

Encryption: Matrix mult

costs n2+o(1) = b2+o(1).

Summary: McEliece costs b2+o(1).

Is this faster than ECC?

Need more detailed analysis.



ECC encryption:

Θ(lg q) operations in Fq.

Each operation in Fq costs

Θ(lg q lg lg q lg lg lg q).

Total Θ(b2 lg b lg lg b).

McEliece encryption,

with 1986 Niederreiter speedup:

Θ(n=lgn) additions in Fn2 ,

each costing Θ(n).

Total Θ(b2 lg b).

McEliece is asymptotically faster.

Bonus: Much faster decryption.

Another bonus: Post-quantum.
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Algorithmic advances can

change this picture. Examples:

1. Speed up ECC: can reduce

lg lg b using 2007 Fürer; maybe

someday eliminate lg lg b?

2. This paper: asymptotically

faster attack on McEliece.

“Ball-collision decoding.”

Need larger McEliece key sizes.

3. Ongoing: we’re optimizing

“subfield AG” variant of

McEliece. Conjecture:

Fastest attacks cost 2(�+o(1))n;

encryption costs Θ(b2).



Generic decoding algorithms

Some history: 1962 Prange;

1981 Clark (crediting Omura);

1988 Lee–Brickell; 1988 Leon;

1989 Krouk; 1989 Stern; 1989

Dumer; 1990 Coffey–Goodman;

1990 van Tilburg; 1991 Dumer;

1991 Coffey–Goodman–Farrell;

1993 Chabanne–Courteau; 1993

Chabaud; 1994 van Tilburg;

1994 Canteaut–Chabanne;

1998 Canteaut–Chabaud; 1998

Canteaut–Sendrier; 2008 B.–L.–

P.: 2009 Finiasz–Sendrier; 2010

P.; 2011 B.–L.–P, this paper.
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Column normalization

Can also permute columns

without changing problem.

Goal: Find 50 rows with xor s.

: : : 10010 : : :

: : : 01111 : : :
: : : 11001 : : :
: : : 01101 : : :

: : : 10011 : : :

...

s = r1 � r7 � r34 � r47 � � � �

r1
r2
r3

...

r900



Systematic form

Can add one column to another.

) Build an identity matrix.

Goal: Find 50 rows with xor s.

0110 : : : 0000

1000 : : : 0000
0100 : : : 0000
0010 : : : 0000

0000 : : : 0001
1010 : : : 1100

1101 : : : 0111

. . .

...

s = r2 � r3 � r18 � r59 � � � �

r1
r2
r3

r500
r501

...

...

r900



1962 Prange, basic

information-set decoding:

Maybe xor involves

none of last 400 rows.

If so, immediately see that

s has weight 50. Done!

If not, re-randomize and restart.



1962 Prange, basic

information-set decoding:

Maybe xor involves

none of last 400 rows.

If so, immediately see that

s has weight 50. Done!

If not, re-randomize and restart.

1988 Lee–Brickell:

More likely that xor involves

exactly 2 of last 400 rows.

Check for each i; j whether

s� ri � rj has weight 48.



s

1

. . .

1

ri

rj

2 rows/400

48 rows/500
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Much faster to test,

not much loss in success chance.

1989 Stern, collision decoding:p
speedup!

Find collisions between

first 10 bits of s� ri
and first 10 bits of rj .

For each collision, check whether

s� ri � rj has weight 48.
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s

1

. . .

1

ri1
ri2

rj1
rj2

4 rows/400

0 rows/10

46 rows/490

Or s� ri1 � � � � � rip
and rj1

� � � � � rjp .

Optimize choice of p.

Of course, also optimize 10 etc.



New, ball-collision decoding:

Find collisions between (e.g.)

weight-1 Hamming ball around

first 10 bits of s� ri1 � ri2 and

weight-1 Hamming ball around

first 10 bits of rj1
� rj2

.

s

1

. . .

1

ri1
ri2

rj1
rj2

4 rows/400

2 rows/10

44 rows/490



Our main theorem:

For w rows of n� (n� k) matrix,

constant w=n; k=n as n!1,

under standard assumptions,

optimized collision decoding

costs 2(�+o(1))n and

optimized ball-collision decoding

costs 2(�0+o(1))n with �0 < �.

See cr.yp.to/ballcoll.html:

� proof of smaller exponents;

� conservative lower bounds;

� complete reference software.

http://cr.yp.to/ballcoll.html

