Smaller decoding exponents: ball-collision decoding

D. J. Bernstein University of Illinois at Chicago

Joint work with:

Tanja Lange Technische Universiteit Eindhoven

Christiane Peters University of Illinois at Chicago

What is the fastest public-key encryption system?

What is the fastest public-key encryption system?

RSA-1024 is quite fast.

What is the fastest public-key encryption system?

RSA-1024 is quite fast. RSA-512 is faster.

What is the fastest public-key encryption system? RSA-1024 is quite fast. RSA-512 is faster. RSA-256 is even faster.

What is the fastest public-key encryption system? RSA-1024 is quite fast. RSA-512 is faster. RSA-256 is even faster. This question is stupid.

What is the fastest public-key encryption system with security level $\geq 2^{b}$?

What is the fastest public-key encryption system with security level $\geq 2^{b}$?

(Plausible-sounding definition: breaking costs $\geq 2^{b}$.)

What is the fastest public-key encryption system with security level $\geq 2^{b}$?

(Plausible-sounding definition: breaking with probability 1 costs $\geq 2^{b}$.)

What is the fastest public-key encryption system with security level $\geq 2^{b}$?

(Plausible-sounding definition: for each $\epsilon > 0$, breaking with probability $\geq \epsilon$ costs $\geq 2^{b}\epsilon$.)

What is the fastest public-key encryption system with security level $\geq 2^{b}$?

(Plausible-sounding definition: for each $\epsilon > 2^{-b/2}$, breaking with probability $\geq \epsilon$ costs $\geq 2^{b}\epsilon$.)

What is the fastest public-key encryption system with security level $\geq 2^{b}$?

How to evaluate candidates:

Encryption systems

Analyze attack algorithms

Systems with security $\geq 2^b$

Analyze encryption algorithms

Fastest systems with security $\geq 2^{b}$

Example of speed analysis

RSA (with small exponent, reasonable padding, etc.): Factoring n costs $2^{(\lg n)^{1/3+o(1)}}$ by the number-field sieve. Conjecture: this is the optimal attack against RSA.

Key size: Can take $\lg n \in b^{3+o(1)}$ ensuring $2^{(\lg n)^{1/3+o(1)}} \ge 2^{b}$.

Encryption: Fast exp costs $(\lg n)^{1+o(1)}$ bit operations.

Summary: RSA costs $b^{3+o(1)}$.

ECC (with strong curve/ \mathbf{F}_q , reasonable padding, etc.): ECDL costs $2^{(1/2+o(1)) \lg q}$ by Pollard's rho method. Conjecture: this is the optimal attack against ECC. Can take $\lg q \in (2 + o(1))b$.

Encryption: Fast scalar mult costs $(\lg q)^{2+o(1)} = b^{2+o(1)}$.

Summary: ECC costs $b^{2+o(1)}$. Asymptotically faster than RSA. Bonus: also $b^{2+o(1)}$ decryption. 1978 McEliece system (with length-*n* classical Goppa codes, reasonable padding, etc.):

Conjecture: Fastest attacks cost $2^{(\beta+o(1))n/\lg n}$.

Can take $n \in (1/eta + o(1))b \lg b$.

Encryption: Matrix mult costs $n^{2+o(1)} = b^{2+o(1)}$.

Summary: McEliece costs $b^{2+o(1)}$.

Is this faster than ECC? Need more detailed analysis. ECC encryption: $\Theta(\lg q)$ operations in \mathbf{F}_q . Each operation in \mathbf{F}_q costs $\Theta(\lg q \lg \lg q \lg \lg \lg \lg q)$. Total $\Theta(b^2 \lg b \lg \lg g)$.

McEliece encryption, with 1986 Niederreiter speedup: $\Theta(n/\lg n)$ additions in \mathbf{F}_2^n , each costing $\Theta(n)$. Total $\Theta(b^2 \lg b)$.

McEliece is asymptotically faster. Bonus: *Much* faster decryption. Another bonus: Post-quantum. Algorithmic advances can change this picture. Examples:

Speed up ECC: can reduce
 Ig lg b using 2007 Fürer; maybe
 someday eliminate Ig lg b?

Algorithmic advances can change this picture. Examples:

Speed up ECC: can reduce
 Ig lg b using 2007 Fürer; maybe
 someday eliminate Ig lg b?

2. This paper: asymptotically faster attack on McEliece. "Ball-collision decoding." Need larger McEliece key sizes.

Algorithmic advances can change this picture. Examples:

Speed up ECC: can reduce
 Ig lg b using 2007 Fürer; maybe
 someday eliminate Ig lg b?

2. This paper: asymptotically faster attack on McEliece.

"Ball-collision decoding." Need larger McEliece key sizes.

3. Ongoing: we're optimizing "subfield AG" variant of McEliece. Conjecture: Fastest attacks cost $2^{(\alpha+o(1))n}$; encryption costs $\Theta(b^2)$.

Generic decoding algorithms

Some history: 1962 Prange; 1981 Clark (crediting Omura); 1988 Lee–Brickell: 1988 Leon: 1989 Krouk; 1989 Stern; 1989 Dumer; 1990 Coffey–Goodman; 1990 van Tilburg; 1991 Dumer; 1991 Coffey–Goodman–Farrell; 1993 Chabanne–Courteau; 1993 Chabaud; 1994 van Tilburg; 1994 Canteaut–Chabanne; 1998 Canteaut–Chabaud: 1998 Canteaut–Sendrier; 2008 B.–L.– P.: 2009 Finiasz–Sendrier; 2010 P.; 2011 B.–L.–P, this paper.

A typical decoding problem

Input: 500-bit vector s; and a 900 × 500 matrix of bits. Goal: Find 50 rows with xor s.

A typical decoding problem

Input: 500-bit vector s; and a 900 × 500 matrix of bits. Goal: Find 50 rows with xor s.

Row randomization

Can arbitrarily permute rows without changing problem. Goal: Find 50 rows with xor *s*.

Row randomization

Can arbitrarily permute rows without changing problem. Goal: Find 50 rows with xor *s*.

Column normalization

Can also permute columns without changing problem. Goal: Find 50 rows with xor *s*.

Column normalization

Can also permute columns without changing problem. Goal: Find 50 rows with xor *s*.

Systematic form

Can add one column to another. \Rightarrow Build an identity matrix. Goal: Find 50 rows with xor *s*.

10000000	r_1
01000000	r_2
00100000	r ₃
·	•
00000001	<i>r</i> ₅₀₀
10101100	r ₅₀₁
	•
1101 0111	r 900
0110 0000	$s = r_2 \oplus r_3 \oplus r_{18} \oplus r_{18}$

1962 Prange, basic information-set decoding:

- Maybe xor involves
- none of last 400 rows.
- If so, immediately see that
- s has weight 50. Done!
- If not, re-randomize and restart.

1962 Prange, basic information-set decoding:

Maybe xor involves

none of last 400 rows.

- If so, immediately see that
- s has weight 50. Done!
- If not, re-randomize and restart.

1988 Lee–Brickell:

More likely that xor involves exactly 2 of last 400 rows.

Check for each i, j whether

 $s \oplus r_i \oplus r_j$ has weight 48.

2 rows/400

1989 Leon, 1989 Krouk: Check for each i, j whether $s \oplus r_i \oplus r_j$ has weight 48 with first 10 bits all zero. Much faster to test, not much loss in success chance.

1989 Leon, 1989 Krouk: Check for each i, j whether $s \oplus r_i \oplus r_j$ has weight 48 with first 10 bits all zero. Much faster to test, not much loss in success chance. 1989 Stern, collision decoding: $\sqrt{}$ speedup! Find collisions between first 10 bits of $s \oplus r_i$ and first 10 bits of r_j . For each collision, check whether $s \oplus r_i \oplus r_j$ has weight 48.

Or $s \oplus r_{i_1} \oplus \cdots \oplus r_{i_p}$ and $r_{j_1} \oplus \cdots \oplus r_{j_p}$. Optimize choice of p. Of course, also optimize 10 etc. New, **ball-collision decoding**: Find collisions between (e.g.) weight-1 Hamming ball around first 10 bits of $s \oplus r_{i_1} \oplus r_{i_2}$ and weight-1 Hamming ball around first 10 bits of $r_{j_1} \oplus r_{j_2}$.

 r_{i_1} r_{i_2} r_{j_1} r_{j_2}

1

S

Our main theorem:

For w rows of $n \times (n - k)$ matrix, constant w/n, k/n as $n \to \infty$, under standard assumptions, optimized collision decoding costs $2^{(\alpha+o(1))n}$ and optimized ball-collision decoding costs $2^{(\alpha'+o(1))n}$ with $\alpha' < \alpha$.

See cr.yp.to/ballcoll.html:

- proof of smaller exponents;
- conservative lower bounds;
- complete reference software.