Smaller decoding exponents: ball-collision decoding
D. J. Bernstein University of Illinois at Chicago

Joint work with:
Tanja Lange
Technische Universiteit Eindhoven
Christiane Peters
University of Illinois at Chicago

Context: speed

What is the fastest public-key encryption system?

Context: speed

What is the fastest
public-key encryption system?
RSA-1024 is quite fast.

Context: speed

What is the fastest
public-key encryption system?
RSA-1024 is quite fast.
RSA-512 is faster.

Context: speed

What is the fastest
public-key encryption system?
RSA-1024 is quite fast.
RSA-512 is faster.
RSA-256 is even faster.

Context: speed

What is the fastest
public-key encryption system?
RSA-1024 is quite fast.
RSA-512 is faster.
RSA-256 is even faster.
This question is stupid.

Context: speed

What is the fastest public-key encryption system with security level $\geq 2^{b}$?

Context: speed

What is the fastest public-key encryption system with security level $\geq 2^{b}$?
(Plausible-sounding definition:
breaking costs $\geq 2^{b}$.)

Context: speed

What is the fastest
public-key encryption system with security level $\geq 2^{b}$?
(Plausible-sounding definition:
breaking with probability 1 costs $\geq 2^{b}$.)

Context: speed

What is the fastest
public-key encryption system with security level $\geq 2^{b}$?
(Plausible-sounding definition:
for each $\epsilon>0$,
breaking with probability $\geq \epsilon$ costs $\geq 2^{b} \epsilon$.)

Context: speed

What is the fastest
public-key encryption system with security level $\geq 2^{b}$?
(Plausible-sounding definition:
for each $\epsilon>2^{-b / 2}$,
breaking with probability $\geq \epsilon$ costs $\geq 2^{b} \epsilon$.)

Context: speed

What is the fastest
public-key encryption system with security level $\geq 2^{b}$?

How to evaluate candidates:

Encryption systems

Analyze

attack algorithms
Systems with security $\geq 2^{b}$

> Analyze
encryption algorithms
Fastest systems with security $\geq 2^{b}$

Example of speed analysis

RSA (with small exponent, reasonable padding, etc.):

Factoring n costs $2^{(\lg n)^{1 / 3+o(1)}}$ by the number-field sieve.
Conjecture: this is the optimal attack against RSA.

Key size: Can take $\lg n \in b^{3+o(1)}$ ensuring $2^{(\lg n)^{1 / 3+o(1)}} \geq 2^{b}$.

Encryption: Fast exp
costs $(\lg n)^{1+o(1)}$ bit operations.
Summary: RSA costs $b^{3+o(1)}$.

ECC (with strong curve $/ \mathbf{F}_{q}$, reasonable padding, etc.):

ECDL costs $2^{(1 / 2+o(1)) \lg q}$
by Pollard's rho method.
Conjecture: this is the optimal attack against ECC.

Can take $\lg q \in(2+o(1)) b$.
Encryption: Fast scalar mult costs $(\lg q)^{2+o(1)}=b^{2+o(1)}$.

Summary: ECC costs $b^{2+o(1)}$.
Asymptotically faster than RSA. Bonus: also $b^{2+o(1)}$ decryption.

1978 McEliece system (with length- n classical Goppa codes, reasonable padding, etc.):

Conjecture: Fastest attacks $\operatorname{cost} 2^{(\beta+o(1)) n / \lg n}$.

Can take $n \in(1 / \beta+o(1)) b \lg b$.
Encryption: Matrix mult costs $n^{2+o(1)}=b^{2+o(1)}$.

Summary: McEliece costs $b^{2+o(1)}$.
Is this faster than ECC?
Need more detailed analysis.

ECC encryption:
$\Theta(\lg q)$ operations in \mathbf{F}_{q}.
Each operation in F_{q} costs
$\Theta(\lg q \lg \lg q \lg \lg \lg q)$.
Total $\Theta\left(b^{2} \lg b \lg \lg b\right)$.
McEliece encryption,
with 1986 Niederreiter speedup:
$\Theta(n / \lg n)$ additions in \mathbf{F}_{2}^{n}, each costing $\Theta(n)$.
Total $\Theta\left(b^{2} \lg b\right)$.
McEliece is asymptotically faster.
Bonus: Much faster decryption.
Another bonus: Post-quantum.

Algorithmic advances can change this picture. Examples:

1. Speed up ECC: can reduce $\lg \lg b$ using 2007 Fürer; maybe someday eliminate $\lg \lg b$?

Algorithmic advances can change this picture. Examples:

1. Speed up ECC: can reduce $\lg \lg b$ using 2007 Fürer; maybe someday eliminate $\lg \lg b$?
2. This paper: asymptotically faster attack on McEliece. "Ball-collision decoding."
Need larger McEliece key sizes.

Algorithmic advances can change this picture. Examples:

1. Speed up ECC: can reduce $\lg \lg b$ using 2007 Fürer; maybe someday eliminate $\lg \lg b$?
2. This paper: asymptotically faster attack on McEliece. "Ball-collision decoding." Need larger McEliece key sizes.
3. Ongoing: we're optimizing "subfield AG" variant of McEliece. Conjecture: Fastest attacks cost $2^{(\alpha+o(1)) n}$; encryption costs $\Theta\left(b^{2}\right)$.

Generic decoding algorithms

Some history: 1962 Prange;
1981 Clark (crediting Omura);
1988 Lee-Brickell; 1988 Leon; 1989 Krouk; 1989 Stern; 1989
Dumer; 1990 Coffey-Goodman; 1990 van Tilburg; 1991 Dumer; 1991 Coffey-Goodman-Farrell;
1993 Chabanne-Courteau; 1993
Chabaud; 1994 van Tilburg;
1994 Canteaut-Chabanne;
1998 Canteaut-Chabaud; 1998
Canteaut-Sendrier; 2008 B.-L.-
P.: 2009 Finiasz-Sendrier; 2010
P.; 2011 B.-L.-P, this paper.

A typical decoding problem

Input: 500-bit vector s; and a 900×500 matrix of bits.
Goal: Find 50 rows with xor s.

A typical decoding problem

Input: 500-bit vector s; and a 900×500 matrix of bits.
Goal: Find 50 rows with xor s.

$\ldots .11001 \ldots$	r_{1}
$\ldots .10111 \ldots$	r_{2}
$\ldots 10101 \ldots$	r_{3}
\vdots	
$\ldots 01011 \ldots$	r_{900}

$\ldots 01010 \ldots s=r_{2} \oplus r_{7} \oplus r_{34} \oplus r$

Row randomization

Can arbitrarily permute rows
without changing problem.
Goal: Find 50 rows with xor s.

$\ldots 11001 \ldots$	r_{1}
$\ldots .10111 \ldots$	r_{2}
$\ldots 10101 \ldots$	r_{3}

... $01011 \ldots r_{900}$
... 01010 ...
$s=r_{2} \oplus r_{7} \oplus r_{34} \oplus r$

Row randomization

Can arbitrarily permute rows
without changing problem.
Goal: Find 50 rows with xor s.

$\ldots 10111 \ldots$	r_{1}
$\ldots 11001 \ldots$	r_{2}
$\ldots 10101 \ldots$	r_{3}

... 01011 ... r_{900}
... 01010 ...
$s=r_{1} \oplus r_{7} \oplus r_{34} \oplus r$

Column normalization

Can also permute columns
without changing problem.
Goal: Find 50 rows with xor s.

$\ldots 10111 \ldots$	r_{1}
$\ldots 11001 \ldots$	r_{2}
$\ldots 10101 \ldots$	r_{3}

$\ldots 01011 \ldots r_{900}$
$\ldots 01010 \ldots s=r_{1} \oplus r_{7} \oplus r_{34} \oplus r$

Column normalization

Can also permute columns
without changing problem.
Goal: Find 50 rows with xor s.

$\ldots 01111 \ldots$	r_{1}
$\ldots 11001 \ldots$	r_{2}
$\ldots 01101 \ldots$	r_{3}

... 10011... r_{900}
$\ldots 10010 \ldots s=r_{1} \oplus r_{7} \oplus r_{34} \oplus r$

Systematic form
Can add one column to another. \Rightarrow Build an identity matrix.
Goal: Find 50 rows with xor s.

$1000 \ldots 0000$	r_{1}
$0100 \ldots 0000$	r_{2}
$0010 \ldots 0000$	r_{3}
\ddots	\vdots

0000 ... $0001 r_{500}$
1010... $1100 r_{501}$
1101... $0111 r_{900}$
$0110 \ldots 0000 s=r_{2} \oplus r_{3} \oplus r_{18} \oplus r$

1962 Prange, basic
information-set decoding:
Maybe xor involves
none of last 400 rows.
If so, immediately see that s has weight 50. Done!
If not, re-randomize and restart.

1962 Prange, basic
information-set decoding:
Maybe xor involves
none of last 400 rows.
If so, immediately see that
s has weight 50. Done!
If not, re-randomize and restart.
1988 Lee-Brickell:
More likely that xor involves
exactly 2 of last 400 rows.
Check for each i, j whether
$s \oplus r_{i} \oplus r_{j}$ has weight 48.

1989 Leon, 1989 Krouk:
Check for each i, j whether
$s \oplus r_{i} \oplus r_{j}$ has weight 48
with first 10 bits all zero.
Much faster to test,
not much loss in success chance.

1989 Leon, 1989 Krouk:
Check for each i, j whether $s \oplus r_{i} \oplus r_{j}$ has weight 48 with first 10 bits all zero.

Much faster to test,
not much loss in success chance.
1989 Stern, collision decoding:
$\sqrt{ }$ speedup!
Find collisions between
first 10 bits of $s \oplus r_{i}$ and first 10 bits of r_{j}.
For each collision, check whether $s \oplus r_{i} \oplus r_{j}$ has weight 48.
0 rows/10
48 rows/490
2 rows/400

0 rows /10

4 rows/400

Or $s \oplus r_{i_{1}} \oplus \cdots \oplus r_{i_{p}}$
and $r_{j_{1}} \oplus \cdots \oplus r_{j_{p}}$.
Optimize choice of p.
Of course, also optimize 10 etc.

New, ball-collision decoding:
Find collisions between (e.g.)
weight-1 Hamming ball around first 10 bits of $s \oplus r_{i_{1}} \oplus r_{i_{2}}$ and weight-1 Hamming ball around first 10 bits of $r_{j_{1}} \oplus r_{j_{2}}$. 2 rows/10 44 rows/490 4 rows/400

Our main theorem:
For w rows of $n \times(n-k)$ matrix, constant $w / n, k / n$ as $n \rightarrow \infty$, under standard assumptions, optimized collision decoding costs $2^{(\alpha+o(1)) n}$ and optimized ball-collision decoding costs $2^{\left(\alpha^{\prime}+o(1)\right) n}$ with $\alpha^{\prime}<\alpha$.

See cr.yp.to/ballcoll.html:

- proof of smaller exponents;
- conservative lower bounds;
- complete reference software.

