Jet list decoding

D. J. Bernstein
University of Illinois at Chicago

Thanks to: Cisco

University Research Program

And thanks to: NIST
grant 60NANB10D263
Divisors in intervals

Reformulation: In $\mathbb{Q}[x]$ define $g = Hx$ and $f = (A + Hx)/N$. Want all $r \in \mathbb{Q}$ with $|r| \leq 1$, $g(r) \in \mathbb{Z}$, numerator($f(r)$) = 1.

Classic solution for many cases: Find small nonzero polynomial

$\varphi \in \mathbb{Z} + \mathbb{Z}f + \mathbb{Z}fg \subset \mathbb{Q}[x]$. For each rational root r of φ, check whether $A + Hr$ divides N.
Understanding this solution for $H < (A - H)/6N^{1/3}$:
Understanding this solution for $H < (A - H)/6N^{1/3}$:

$f = \cdots + Hx/N,$

$fg = \cdots + H^2x^2/N,$

so $\det(1, f, fg) = H^3/N^2$.

Lattice-basis reduction finds φ with coeffs $\leq 2H/N^{2/3}$.
Understanding this solution for $H < (A - H)/6N^{1/3}$:

$$f = \cdots + Hx/N,$$
$$fg = \cdots + H^2x^2/N,$$
so $\det(1, f, fg) = H^3/N^2$.

Lattice-basis reduction finds φ with coeffs $\leq 2H/N^{2/3}$.

Take divisor of N in $[A-H, A+H]$. Write as $A + Hr; r \in \mathbb{Q}, |r| \leq 1$. Then $|\varphi(r)| \leq 6H/N^{2/3}$.
Understanding this solution for $H < (A - H)/6N^{1/3}$:

\[f = \ldots + Hx/N, \]
\[fg = \ldots + H^2x^2/N, \]
so \[\det(1, f, fg) = H^3/N^2. \]

Lattice-basis reduction finds \(\varphi \) with coeffs \(\leq 2H/N^{2/3} \).

Take divisor of \(N \) in \([A-H, A+H]\). Write as \(A + Hr; r \in \mathbb{Q}, |r| \leq 1 \). Then \(|\varphi(r)| \leq 6H/N^{2/3} \).

1, \(f(r), f(r)g(r) \in ((A+Hr)/N)\mathbb{Z} \)
so \(\varphi(r) \in ((A + Hr)/N)\mathbb{Z} \).

But \((A + Hr)/N > 6H/N^{2/3} \)
so \(\varphi(r) \) must be 0.
Classic generalization: Find all divisors of N in \{ $A - BH, \ldots, A - B, A, A + B, \ldots, A + BH$ \}, given positive integers N, A, B, H with $A > BH$.

Mediocre approach: Define $g = Hx$ and $f = (A + BHx)/N$. Proceed as before. Loses factor B^2 in det.
Classic generalization: Find all divisors of N in \(\{A - BH, \ldots, A - B, A, A + B, \ldots, A + BH\} \), given positive integers N, A, B, H with $A > BH$.

Mediocre approach: Define $g = Hx$ and $f = (A + BHx)/N$. Proceed as before. Loses factor B^2 in det.

Much better approach: Define $g = Hx$ and $f = (UA + Hx)/N$, assuming $U \in \mathbb{Z}$, $UB - 1 \in N\mathbb{Z}$. If $Hr \in \mathbb{Z}$ and $A + BHR$ divides N then $f(r) \in ((A + BHR)/N)\mathbb{Z}$.
Linear combinations as divisors

Further generalization: Find all divisors $As + Bt$ of N with $1 \leq s \leq J; \ |t| \leq H; \ \gcd\{s, t\} = 1$.

Generalization of classic solution:

Define $g = (H/J)x; \ U$ as before; $f = (UA + (H/J)x)/N$.
As before find small nonzero $
\varphi \in \mathbb{Z} + \mathbb{Z}f + \mathbb{Z}fg$.

Write each rational root of φ as Jt/Hs with $\gcd\{s, t\} = 1, \ s > 0$.
Check whether $As + Bt$ divides N with $s \leq J$ and $\ |t| \leq H$.
Understanding this solution for $HJ < (A - BH)/6N^{1/3}$:

$$\det(1, f, fg) = H^3/J^3 N^2.$$

Lattice-basis reduction finds φ with coeffs $\leq 2H/JN^{2/3}$.

If $1 \leq s \leq J$ and $|t| \leq H$ and $r = Jt/Hs$ then $|s^2 \varphi(r)| = \left| \varphi_0 s^2 + \varphi_1 stJ/H + \varphi_2 t^2 J^2/H^2 \right| \leq 3(2H/JN^{2/3})J^2 = 6HJ/N^{2/3}.$

If also $As + Bt$ divides N then $sf(r) = (UA + t)/N \in ((As + Bt)/N)\mathbb{Z}$ and $sg(r) \in \mathbb{Z}$ so $s^2 \varphi(r) \in ((As + Bt)/N)\mathbb{Z}.$
1984 Lenstra: $A + Bt$ algorithm, for proving primality.

1986 Rivest–Shamir: $A + t$, for attacking constrained RSA.

Many subsequent generalizations.

2003 Bernstein: projective view, but only affine applications.

Projective applications:
2007 Wu, 2008 Bernstein (including this $As + Bt$ algorithm),
Higher multiplicities

Generalization of $A + t$ algorithm:

Choose a multiplicity k
and a lattice dimension ℓ.

Find small nonzero $\varphi \in \mathbb{Z} + \mathbb{Z}f + \mathbb{Z}f^2 + \ldots + \mathbb{Z}f^k + \mathbb{Z}f^k g + \mathbb{Z}f^k g^2 + \ldots + \mathbb{Z}f^k g^{\ell-k-1}$.

$$\det = (H/N)^{\ell(\ell-1)/2} N(\ell-k)(\ell-k-1)/2$$

so $|\varphi| \leq \ldots (H/N)^{(\ell-1)/2} N(\ell-k)(\ell-k-1)/2\ell$.

But $\varphi(r) \in (\text{divisor}/N)^k \mathbb{Z}$.
Optimize: large ℓ with $k \approx \theta \ell$
if $A - H = N^\theta$.

$\#\{t \text{ possibilities searched}\} \approx N^{\theta^2}$.

Same for $A + Bt$ etc.

1996 Coppersmith:
$A + t$ with multiplicities; N^{θ^2}; various generalizations.

But algorithm was slower:
identified lattice via dual.

1997 Howgrave-Graham:
this algorithm; skip dualization;
simply write down f^k etc.
The gcd tweak

Minor tweak: Find all $A + t$ with $|t| \leq H$ and $\gcd(A + t, N) \geq N^\theta$.

These t’s include previous t’s:
if $A + t$ divides N and $A + t \geq N^\theta$
then $\gcd(A + t, N) \geq N^\theta$.

Solution: Compute the same φ from the same lattice as before.
For each rational root r of φ,
check $\gcd(A + Hr, N) \geq N^\theta$.
1997 Sudan: \(\mathbb{F}_q[z] \) instead of \(\mathbb{Z} \),
\[N = (z - a_1) \cdots (z - a_n) \], multiplicity 1, dual algorithm, for list decoding.

1999 Guruswami–Sudan: same with high multiplicity.

1999 Goldreich–Ron–Sudan: \(\mathbb{Z} \), multiplicity 1, dual.

2000 Boneh: \(\mathbb{Z} \), high multiplicity.
The list-decoding application:

Given \(t \mod p_1, \ldots, t \mod p_n \) for distinct primes \(p_1, \ldots, p_n \), can interpolate \(t \mod N \) where \(N = p_1 p_2 \cdots p_n \).

Given same with some errors, interpolation produces \(A \) where all the other primes divide \(t - A \); i.e., \(\gcd\{t - A, N\} \) is large.

Can find all \(t \) in interval of length \(\approx N^{\theta^2} \) with \(\gcd\{t - A, N\} \geq N^{\theta} \).
RS and GRS codes—
“the GS decoder”:

Reconstruct $t \in \mathbf{F}_q[z]$ given
$(t(a_1), \ldots, t(a_n)) + \text{errors}$;
distinct $a_1, \ldots, a_n \in \mathbf{F}_q$;
#errors $< (1 - \theta)n$;
$\deg t \leq \theta^2 n$.

Reconstruct $t \in \mathbf{F}_q[z]$ given
$(\beta_1 t(a_1), \ldots, \beta_n t(a_n)) + \text{errors}$;
distinct $a_1, \ldots, a_n \in \mathbf{F}_q$;
nonzero $\beta_1, \ldots, \beta_n \in \mathbf{F}_q$;
#errors $< (1 - \theta)n$;
$\deg t \leq \theta^2 n$.
Higher-degree polynomials

\[\gcd\{N, p(t)\} \geq N^\theta : \]
\[\#\{t \text{ possibilities searched}\} \approx N^{\theta^2/d} \text{ if } p \text{ monic, } \deg p = d. \]

1988 Hästad: \(\theta = 1, k = 1. \)

1989 Vallée–Girault–Toffin:
\(\theta = 1, k = 1, \text{ dual.} \)

1996 Coppersmith:
\(\theta = 1, \text{ high multiplicity, dual.} \)

1997 Howgrave-Graham:
\(\theta = 1, \text{ high multiplicity.} \)

2000 Boneh:
\(\text{any } \theta, \text{ high multiplicity.} \)
Gaussian divisors in intervals

New (?) problem: Find all
\(t \in \{-H, \ldots, -1, 0, 1, \ldots, H\} \)
with \(A_0 + t + A_1 i \) dividing \(N_0 + N_1 i \)
in \(\mathbb{Z}[i]/(i^2 + 1) \); assume \(A_0 > H \).

One approach: Take norms.
\((A_0 + t)^2 + A_1^2\) divides \(N_0^2 + N_1^2 \).
Use standard degree-2 algorithm.
Works for \(H \approx (N_0^2 + N_1^2)^{\theta^2/2} \)
if \((A_0 - H)^2 + A_1^2 = (N_0^2 + N_1^2)^\theta \).

Worse: Find divisor of \(N_0^2 + N_1^2 \)
in \([(A_0 - H)^2 + A_1^2, (A_0 + H)^2 + A_1^2] \),
using degree-1 algorithm.
Works for \(A_0 H \approx (N_0^2 + N_1^2)^{\theta^2} \).
Another approach:
lattice-basis reduction over $\mathbb{Z}[i]$. Works, but searches $t \in \mathbb{Z}[i]$, again wasting time.
Another approach: lattice-basis reduction over \(\mathbb{Z}[i] \).
Works, but searches \(t \in \mathbb{Z}[i] \), again wasting time.

Better approach:
\[
(A_0 + t)^2 + A_1^2 \quad \text{divides} \quad (A_0 + t - A_1 i)(N_0 + N_1 i)
\]
so it divides \((A_0 + t)N_1 - A_1 N_0 \).
Also divides \(N_0^2 + N_1^2 \).

\[
\gcd\{ (A_0 + t)N_1 - A_1 N_0, N_0^2 + N_1^2 \} \geq (N_0^2 + N_1^2)\theta.
\]

Works for \(H \approx (N_0^2 + N_1^2)^{\theta^2} \), assuming \(\gcd\{ N_0, N_1 \} = 1 \).
Jet divisors

Easily generalize:
\(A_0 s + B_0 t \), other algebras, etc.

My main interest today:
the “1-jet” algebra \(\mathbb{Z}[\epsilon]/\epsilon^2 \).

To search for small \((s, t) \in \mathbb{Z} \times \mathbb{Z}\) with
\((A_0 + A_1 \epsilon)s + (B_0 + B_1 \epsilon)t\) dividing \(N_0 + N_1 \epsilon\) in \(\mathbb{Z}[\epsilon]/\epsilon^2\):
use \(\gcd\{\Delta, N_0^2\} \geq (N_0^2)^\theta\) where \(\Delta = (A_0 N_1 - A_1 N_0) s + (B_0 N_1 - B_1 N_0) t\).

\#\{(s, t) \text{ searched}\} \approx (N_0^2)^{\theta^2},
assuming \(\gcd\{N_0, B_0 N_1\} = 1\).

Searching for \(A_0 s + B_0 t\) dividing \(N_0\) would search only \(N_0^{\theta^2}\).
Classical binary Goppa codes

Fix $q \in \{2, 4, 8, 16, \ldots \}$.
Fix distinct $a_1, \ldots, a_n \in F_q$.
Fix monic $D \in F_q[z]$ coprime to $N = \prod_i(z - a_i)$.

Define $\Gamma = \Gamma_2(a_1, \ldots, a_n, D)$ as
\[
\{(c_1, \ldots, c_n) \in F_2^n : \sum_i c_i/(z - a_i) = 0 \text{ in } F_q[z]/D\}.
\]

$\lg \#\Gamma \geq n - (\lg q) \deg D$.

If D is squarefree then
\[
\min \text{ distance of } \Gamma \geq 2 \deg D + 1.
\]

Proof: $e = \prod_{i:c_i=1}(z - a_i)$ has D dividing Ne'/e, hence e'; so D^2 divides e', so $\deg e' \geq 2 \deg D$.

If \(C \in \mathbf{F}_q[z] \) has
\[\deg C < n - \deg D \]
and
\[c_i = C(a_i)D(a_i)/N'(a_i) \in \mathbf{F}_2 \]
for all \(i \) then \((c_1, \ldots, c_n) \in \Gamma\) since
\[CD = \sum_i c_i N/(z - a_i). \]

All elements of \(\Gamma \) arise this way.

If \(\#\text{errors} < (1 - \theta)n \) and
\[n - \deg D - 1 = \theta^2n, \text{ i.e.,} \]
\[\#\text{errors} < n - \sqrt{n(n-\deg D-1)} \]:

can use the GS decoder.
If $C \in \mathbf{F}_q[z]$ has
\[\deg C < n - \deg D \quad \text{and} \quad c_i = C(a_i)D(a_i)/N'(a_i) \in \mathbf{F}_2 \]
for all i then $(c_1, \ldots, c_n) \in \Gamma$ since
\[CD = \sum_i c_i N/(z - a_i). \]
All elements of Γ arise this way.

If $\#\text{errors} < (1 - \theta)n$ and
\[n - \deg D - 1 = \theta^2 n, \quad \text{i.e.,} \quad \#\text{errors} < n - \sqrt{n(n - \deg D - 1)}: \]
can use the GS decoder.

2000 Koetter–Vardy:
This is not optimal;
can decode many more errors!
“The KV decoder”:

Polynomial-time algorithm for $\#\text{errors} < (1 - \theta)n/2$ and $n/2 - \deg D - 1 = \theta^2 n/2$, i.e., $\#\text{errors} < n/2 - \sqrt{(n/2)((n/2) - \deg D - 1)}$.

Exploits fact that errors are required to be in \mathbb{F}_2.

2011 Bernstein “Simplified high-speed high-distance list decoding for alternant codes”: adaptation of Howgrave-Graham idea to KV.
If D is squarefree then
\[\Gamma_2(\ldots, D) = \Gamma_2(\ldots, D^2). \]

Allows decoding even more errors.

If $\#\text{errors} \leq \deg D$: can use naive decoders for $\Gamma_2(\ldots, D^2)$.

If $\#\text{errors} < n - \sqrt{n(n - 2 \deg D - 1)}$: can use GS etc. for $\Gamma_2(\ldots, D^2)$.

If $\#\text{errors} < n/2 - \sqrt{(n/2)((n/2) - 2 \deg D - 1)}$: can use KV etc. for $\Gamma_2(\ldots, D^2)$.
A different approach

1975 Patterson:

Assume D irreducible.

Given $(w_1, \ldots, w_n) \in \mathbb{F}_2^n - \Gamma$, compute $s \in \mathbb{F}_q[z]/D$ with
\[
1/(s^2 + z) = \sum_i w_i/(z - a_i).
\]

Find shortest nonzero $(\alpha_0, \beta_0 \sqrt{z})$ in $(D, 0)\mathbb{F}_q[z] + (s, \sqrt{z})\mathbb{F}_q[z]$.

Compute $e_0 = \alpha_0^2 + \beta_0^2 z$.

If $\#\text{errors} \leq \deg D$ then the errors are the roots of e_0.
Why this works:

Say errors are \((e_1, \ldots, e_n) \): i.e. \((w_1, \ldots) - (e_1, \ldots) \in \Gamma\)
and \# \{ i : e_i = 1 \} \leq \text{deg} \, D.

Write \(e = \prod_{i : e_i = 1} (z - a_i) \) as \(\alpha^2 + \beta^2 z \). Then
\(\beta^2 / (\alpha^2 + \beta^2 z) = e' / e = 1 / (s^2 + z) \)
in \(F_q[z]/D \) so \((\alpha, \beta \sqrt{z}) \in (D, 0) F_q[z] + (s, \sqrt{z}) F_q[z] \).

\(\text{det} = D \sqrt{z}; \quad |(\alpha, \beta \sqrt{z})|^2 \leq |D|; \)
so \((\alpha, \beta \sqrt{z}) \) is multiple
of shortest nonzero vector.
\(\gcd\{\alpha, \beta\} = 1 \) so mult is const.
What if \#errors > \text{deg} D?

2008 Bernstein:

Find short \((\alpha_0, \beta_0\sqrt{z}), (\alpha_1, \beta_1\sqrt{z})\) generating the same lattice.

Then \((\alpha, \beta \sqrt{z}) = c_0(\alpha_0, \beta_0\sqrt{z}) + c_1(\alpha_1, \beta_1\sqrt{z})\) for some \(c_0, c_1\)

so \(e = e_0c_0^2 + e_1c_1^2\). Tweak \(e_1\) so \(\gcd\{e_1, N\} = 1\).

Find \(e\) by finding small linear combination of \(e_0, e_1\) dividing \(N\).
This algorithm decodes same \#errors as
GS applied to $\Gamma_2(\ldots, D^2)$,
and has a big advantage:
much smaller lattice rank.

See also 2007 Wu:
Reed–Solomon decoder
with same advantage.

KV applied to $\Gamma_2(\ldots, D^2)$
decodes many more errors
but loses this advantage.
Is this tradeoff required?
New, jet list decoding:

Search for divisors of jet \(\mathcal{N} + \mathcal{N}' \epsilon \in F_q[z][\epsilon]/\epsilon^2 \) as \(F_q[z] \)-linear combinations of \(e_0 + e'_0 \epsilon, e_1 + e'_1 \epsilon \).

In particular find desired \(e + e' \epsilon = (e_0 + e'_0 \epsilon)c_0^2 + (e_1 + e'_1 \epsilon)c_1^2 \).

#errors should match \(D^2 \) KV, using much smaller lattice rank!