Jet list decoding
D. J. Bernstein

University of Illinois at Chicago
Thanks to: Cisco
University Research Program
And thanks to: NIST grant 60NANB10D263

Divisors in intervals

Classic problem: Find all
divisors of N in $[A-H, A+H]$, given positive integers N, A, H with $A>H$.

Reformulation: In $\mathbf{Q}[x]$ define $g=H x$ and $f=(A+H x) / N$.
Want all $r \in \mathbf{Q}$ with $|r| \leq 1$, $g(r) \in \mathbf{Z}$, numerator $(f(r))=1$.

Classic solution for many cases:
Find small nonzero polynomial $\varphi \in \mathbf{Z}+\mathbf{Z} f+\mathbf{Z} f g \subset \mathbf{Q}[x]$. For each rational root r of φ, check whether $A+H r$ divides N.

Understanding this solution for $H<(A-H) / 6 N^{1 / 3}$:

Understanding this solution

for $H<(A-H) / 6 N^{1 / 3}$:
$f=\cdots+H x / N$,
$f g=\cdots+H^{2} x^{2} / N$,
so $\operatorname{det}(1, f, f g)=H^{3} / N^{2}$.
Lattice-basis reduction finds φ with coeffs $\leq 2 H / N^{2 / 3}$.

Understanding this solution

for $H<(A-H) / 6 N^{1 / 3}$:
$f=\cdots+H x / N$,
$f g=\cdots+H^{2} x^{2} / N$,
so $\operatorname{det}(1, f, f g)=H^{3} / N^{2}$.
Lattice-basis reduction finds
φ with coeffs $\leq 2 H / N^{2 / 3}$.
Take divisor of N in $[A-H, A+H]$.
Write as $A+H r ; r \in \mathbf{Q},|r| \leq 1$.
Then $|\varphi(r)| \leq 6 H / N^{2 / 3}$.

Understanding this solution

for $H<(A-H) / 6 N^{1 / 3}$:
$f=\cdots+H x / N$,
$f g=\cdots+H^{2} x^{2} / N$,
so $\operatorname{det}(1, f, f g)=H^{3} / N^{2}$.
Lattice-basis reduction finds
φ with coeffs $\leq 2 H / N^{2 / 3}$.
Take divisor of N in $[A-H, A+H]$.
Write as $A+H r ; r \in \mathbf{Q},|r| \leq 1$. Then $|\varphi(r)| \leq 6 H / N^{2 / 3}$.
$1, f(r), f(r) g(r) \in((A+H r) / N) \mathbf{Z}$ so $\varphi(r) \in((A+H r) / N) \mathbf{Z}$.
But $(A+H r) / N>6 H / N^{2 / 3}$ so $\varphi(r)$ must be 0 .

Classic generalization: Find all divisors of N in $\{A-B H, \ldots$, $A-B, A, A+B, \ldots, A+B H\}$, given positive integers N, A, B, H with $A>B H$.

Mediocre approach: Define $g=H x$ and $f=(A+B H x) / N$. Proceed as before.
Loses factor B^{2} in det.

Classic generalization: Find all divisors of N in $\{A-B H, \ldots$, $A-B, A, A+B, \ldots, A+B H\}$, given positive integers N, A, B, H with $A>B H$.

Mediocre approach: Define $g=H x$ and $f=(A+B H x) / N$. Proceed as before.
Loses factor B^{2} in det.
Much better approach: Define $g=H x$ and $f=(U A+H x) / N$, assuming $U \in \mathbf{Z}, U B-1 \in N \mathbf{Z}$.
If $H r \in \mathbf{Z}$ and $A+B H r$ divides N then $f(r) \in((A+B H r) / N) \mathbf{Z}$.

Linear combinations as divisors

Further generalization: Find all divisors $A s+B t$ of N with $1 \leq s \leq J ;|t| \leq H ; \operatorname{gcd}\{s, t\}=1$.

Generalization of classic solution:
Define $g=(H / J) x ; U$ as before;
$f=(U A+(H / J) x) / N$.
As before find small nonzero $\varphi \in \mathbf{Z}+\mathbf{Z} f+\mathbf{Z} f g$.

Write each rational root of φ as
$J t / H s$ with $\operatorname{gcd}\{s, t\}=1, s>0$.
Check whether $A s+B t$ divides N with $s \leq J$ and $|t| \leq H$.

Understanding this solution

 for $H J<(A-B H) / 6 N^{1 / 3}$:$\operatorname{det}(1, f, f g)=H^{3} / J^{3} N^{2}$.

Lattice-basis reduction finds

φ with coeffs $\leq 2 H / J N^{2 / 3}$.
If $1 \leq s \leq J$ and $|t| \leq H$ and $r=J t / H s$ then $\left|s^{2} \varphi(r)\right|=$ $\left|\varphi_{0} s^{2}+\varphi_{1} s t J / H+\varphi_{2} t^{2} J^{2} / H^{2}\right|$ $\leq 3\left(2 H / J N^{2 / 3}\right) J^{2}=6 H J / N^{2 / 3}$.

If also $A s+B t$ divides N

 then $s f(r)=(U A s+t) / N \in$ $((A s+B t) / N) \mathbf{Z}$ and $s g(r) \in \mathbf{Z}$ so $s^{2} \varphi(r) \in((A s+B t) / N) \mathbf{Z}$.1984 Lenstra: $A+B t$ algorithm, for proving primality.

1986 Rivest-Shamir: $A+t$, for attacking constrained RSA.

Many subsequent generalizations.
2003 Bernstein: projective view, but only affine applications.

Projective applications:
2007 Wu, 2008 Bernstein
(including this $A s+B t$ algorithm),
2009 Castagnos-Joux-
Laguillaumie-Nguyen.

Higher multiplicities

Generalization of $A+t$ algorithm:
Choose a multiplicity k and a lattice dimension ℓ.

Find small nonzero $\varphi \in$
$\mathbf{Z}+\mathbf{Z} f+\mathbf{Z} f^{2}+\cdots+\mathbf{Z} f^{k}$
$+\mathbf{Z} f^{k} g+\mathbf{Z} f^{k} g^{2}+\cdots+\mathbf{Z} f^{k} g^{\ell-k-1}$.
$\operatorname{det}=$
$(H / N)^{\ell(\ell-1) / 2} N^{(\ell-k)(\ell-k-1) / 2}$
so $|\varphi| \leq$
$\cdots(H / N)^{(\ell-1) / 2} N^{(\ell-k)(\ell-k-1) / 2 \ell}$.
But $\varphi(r) \in(\text { divisor } / N)^{k} \mathbf{Z}$.

Optimize: large ℓ with $k \approx \theta \ell$ if $A-H=N^{\theta}$.
$\#\{t$ possibilities searched $\} \approx N^{\theta^{2}}$.

Same for $A+B t$ etc.

1996 Coppersmith:
$A+t$ with multiplicities; $N^{\theta^{2}}$;
various generalizations.
But algorithm was slower: identified lattice via dual.

1997 Howgrave-Graham: this algorithm; skip dualization; simply write down f^{k} etc.

The ged tweak

Minor tweak: Find all $A+t$ with $|t| \leq H$ and $\operatorname{gcd}\{A+t, N\} \geq N^{\theta}$.

These t 's include previous t 's: if $A+t$ divides N and $A+t \geq N^{\theta}$ then $\operatorname{gcd}\{A+t, N\} \geq N^{\theta}$.

Solution: Compute the same φ
from the same lattice as before.
For each rational root r of φ, check $\operatorname{gcd}\{A+H r, N\} \geq N^{\theta}$.

1997 Sudan:
$\mathbf{F}_{q}[z]$ instead of \mathbb{Z},
$N=\left(z-a_{1}\right) \cdots\left(z-a_{n}\right)$,
multiplicity 1 , dual algorithm,
for list decoding.
1999 Guruswami-Sudan: same with high multiplicity.

1999 Goldreich-Ron-Sudan:
\mathbf{Z}, multiplicity 1 , dual.
2000 Boneh:
\mathbf{Z}, high multiplicity.

The list-decoding application:

Given $t \bmod p_{1}, \ldots, t \bmod p_{n}$ for distinct primes p_{1}, \ldots, p_{n}, can interpolate $t \bmod N$ where $N=p_{1} p_{2} \cdots p_{n}$.

Given same with some errors, interpolation produces A where all the other primes divide $t-A$; ie., $\operatorname{gcd}\{t-A, N\}$ is large.

Can find all t
in interval of length $\approx N^{\theta^{2}}$ with $\operatorname{gcd}\{t-A, N\} \geq N^{\theta}$.

RS and GRS codes-
"the GS decoder":
Reconstruct $t \in \mathbf{F}_{q}[z]$ given
$\left(t\left(a_{1}\right), \ldots, t\left(a_{n}\right)\right)+$ errors;
distinct $a_{1}, \ldots, a_{n} \in \mathbf{F}_{q}$;
\#errors $<(1-\theta) n$;
$\operatorname{deg} t \leq \theta^{2} n$.
Reconstruct $t \in \mathbf{F}_{q}[z]$ given
$\left(\beta_{1} t\left(a_{1}\right), \ldots, \beta_{n} t\left(a_{n}\right)\right)+$ errors;
distinct $a_{1}, \ldots, a_{n} \in \mathbf{F}_{q}$;
nonzero $\beta_{1}, \ldots, \beta_{n} \in \mathbf{F}_{q}$;
\#errors $<(1-\theta) n$;
$\operatorname{deg} t \leq \theta^{2} n$.

Higher-degree polynomials

$\operatorname{gcd}\{N, p(t)\} \geq N^{\theta}:$
$\#\{t$ possibilities searched $\}$
$\approx N^{\theta^{2} / d}$ if p monic, $\operatorname{deg} p=d$.
1988 Håstad: $\theta=1, k=1$.
1989 Vallée-Girault-Toffin:
$\theta=1, k=1$, dual.
1996 Coppersmith:
$\theta=1$, high multiplicity, dual.
1997 Howgrave-Graham:
$\theta=1$, high multiplicity.
2000 Boneh:
any θ, high multiplicity.

Gaussian divisors in intervals

New (?) problem: Find all
$t \in\{-H, \ldots,-1,0,1, \ldots, H\}$
with $A_{0}+t+A_{1} i$ dividing $N_{0}+N_{1} i$ in $\mathbf{Z}[i] /\left(i^{2}+1\right)$; assume $A_{0}>H$.

One approach: Take norms.
$\left(A_{0}+t\right)^{2}+A_{1}^{2}$ divides $N_{0}^{2}+N_{1}^{2}$. Use standard degree-2 algorithm. Works for $H \approx\left(N_{0}^{2}+N_{1}^{2}\right)^{\theta^{2} / 2}$ if $\left(A_{0}-H\right)^{2}+A_{1}^{2}=\left(N_{0}^{2}+N_{1}^{2}\right)^{\theta}$.

Worse: Find divisor of $N_{0}^{2}+N_{1}^{2}$ in $\left[\left(A_{0}-H\right)^{2}+A_{1}^{2},\left(A_{0}+H\right)^{2}+A_{1}^{2}\right]$, using degree-1 algorithm.
Works for $A_{0} H \approx\left(N_{0}^{2}+N_{1}^{2}\right)^{\theta^{2}}$.

Another approach:
lattice-basis reduction over $\mathbf{Z}[i]$.
Works, but searches $t \in \mathbf{Z}[i]$, again wasting time.

Another approach:
lattice-basis reduction over $\mathbf{Z}[i]$. Works, but searches $t \in \mathbf{Z}[i]$, again wasting time.

Better approach:
$\left(A_{0}+t\right)^{2}+A_{1}^{2}$ divides
$\left(A_{0}+t-A_{1} i\right)\left(N_{0}+N_{1} i\right)$
so it divides $\left(A_{0}+t\right) N_{1}-A_{1} N_{0}$. Also divides $N_{0}^{2}+N_{1}^{2}$.
$\operatorname{gcd}\left\{\left(A_{0}+t\right) N_{1}-A_{1} N_{0}, N_{0}^{2}+N_{1}^{2}\right\}$
$\geq\left(N_{0}^{2}+N_{1}^{2}\right)^{\theta}$.
Works for $H \approx\left(N_{0}^{2}+N_{1}^{2}\right)^{\theta^{2}}$, assuming $\operatorname{gcd}\left\{N_{0}, N_{1}\right\}=1$.

Jet divisors

Easily generalize:
$A_{0} s+B_{0} t$, other algebras, etc.
My main interest today:
the " 1 -jet" algebra $\mathbf{Z}[\epsilon] / \epsilon^{2}$.
To search for small $(s, t) \in \mathbf{Z} \times \mathbf{Z}$ with $\left(A_{0}+A_{1} \epsilon\right) s+\left(B_{0}+B_{1} \epsilon\right) t$ dividing $N_{0}+N_{1} \epsilon$ in $\mathbf{Z}[\epsilon] / \epsilon^{2}$: use $\operatorname{gcd}\left\{\Delta, N_{0}^{2}\right\} \geq\left(N_{0}^{2}\right)^{\theta}$ where $\Delta=$ $\left(A_{0} N_{1}-A_{1} N_{0}\right) s+\left(B_{0} N_{1}-B_{1} N_{0}\right) t$.
$\#\{(s, t)$ searched $\} \approx\left(N_{0}^{2}\right)^{\theta^{2}}$, assuming $\operatorname{gcd}\left\{N_{0}, B_{0} N_{1}\right\}=1$.

Searching for $A_{0} s+B_{0} t$ dividing N_{0} would search only $N_{0}^{\theta^{2}}$.

Classical binary Goppa codes

Fix $q \in\{2,4,8,16, \ldots\}$.
Fix distinct $a_{1}, \ldots, a_{n} \in \mathbf{F}_{q}$. Fix monic $D \in \mathbf{F}_{q}[z]$
coprime to $N=\prod_{i}\left(z-a_{i}\right)$.
Define $\Gamma=\Gamma_{2}\left(a_{1}, \ldots, a_{n}, D\right)$ as $\left\{\left(c_{1}, \ldots, c_{n}\right) \in \mathbf{F}_{2}^{n}\right.$:
$\sum_{i} c_{i} /\left(z-a_{i}\right)=0$ in $\left.\mathbf{F}_{q}[z] / D\right\}$.
$\lg \# \Gamma \geq n-(\lg q) \operatorname{deg} D$.
If D is squarefree then min distance of $\Gamma \geq 2 \operatorname{deg} D+1$. Proof: $e=\prod_{i: c_{i}=1}\left(z-a_{i}\right)$ has D dividing $N e^{\prime} / e$, hence e^{\prime}; so D^{2} divides e^{\prime}, so $\operatorname{deg} e^{\prime} \geq 2 \operatorname{deg} D$.

If $C \in \mathbf{F}_{q}[z]$ has
$\operatorname{deg} C<n-\operatorname{deg} D$ and
$c_{i}=C\left(a_{i}\right) D\left(a_{i}\right) / N^{\prime}\left(a_{i}\right) \in \mathbf{F}_{2}$
for all i then $\left(c_{1}, \ldots, c_{n}\right) \in \Gamma$
since $C D=\sum_{i} c_{i} N /\left(z-a_{i}\right)$.
All elements of Γ arise this way.
If $\#$ errors $<(1-\theta) n$ and $n-\operatorname{deg} D-1=\theta^{2} n$, i.e., \#errors $<n-\sqrt{n(n-\operatorname{deg} D-1)}$: can use the GS decoder.

If $C \in \mathbf{F}_{q}[z]$ has
$\operatorname{deg} C<n-\operatorname{deg} D$ and
$c_{i}=C\left(a_{i}\right) D\left(a_{i}\right) / N^{\prime}\left(a_{i}\right) \in \mathbf{F}_{2}$
for all i then $\left(c_{1}, \ldots, c_{n}\right) \in \Gamma$
since $C D=\sum_{i} c_{i} N /\left(z-a_{i}\right)$.
All elements of Γ arise this way.
If $\#$ errors $<(1-\theta) n$ and $n-\operatorname{deg} D-1=\theta^{2} n$, i.e.,
\#errors $<n-\sqrt{n(n-\operatorname{deg} D-1)}$: can use the GS decoder.

2000 Koetter-Vardy:
This is not optimal;
can decode many more errors!

"The KV decoder":

Polynomial-time algorithm
for \#errors $<(1-\theta) n / 2$ and $n / 2-\operatorname{deg} D-1=\theta^{2} n / 2$,
i.e., \#errors $<n / 2-$
$\sqrt{(n / 2)((n / 2)-\operatorname{deg} D-1)}$.
Exploits fact that errors are required to be in \mathbf{F}_{2}.

2011 Bernstein "Simplified highspeed high-distance list decoding for alternant codes" : adaptation of Howgrave-Graham idea to KV.

If D is squarefree then

$\Gamma_{2}(\ldots, D)=\Gamma_{2}\left(\ldots, D^{2}\right)$.
(1970 Goppa?; different, more general, proof: 1975 Sugiyama-Kasahara-Hirasawa-Namekawa)

Allows decoding even more errors.
If $\#$ errors $\leq \operatorname{deg} D$: can use naive decoders for $\Gamma_{2}\left(\ldots, D^{2}\right)$.

If $\#$ errors $<n-$
$\sqrt{n(n-2 \operatorname{deg} D-1)}:$
can use GS etc. for $\Gamma_{2}\left(\ldots, D^{2}\right)$.
If $\#$ errors $<n / 2-$
$\sqrt{(n / 2)((n / 2)-2 \operatorname{deg} D-1)}:$
can use KV etc. for $\Gamma_{2}\left(\ldots, D^{2}\right)$.

A different approach

1975 Patterson:

Assume D irreducible.

Given $\left(w_{1}, \ldots, w_{n}\right) \in \mathbf{F}_{2}^{n}-\Gamma$, compute $s \in \mathbf{F}_{q}[z] / D$ with $1 /\left(s^{2}+z\right)=\sum_{i} w_{i} /\left(z-a_{i}\right)$.

Find shortest nonzero $\left(\alpha_{0}, \beta_{0} \sqrt{z}\right)$ in $(D, 0) \mathbf{F}_{q}[z]+(s, \sqrt{z}) \mathbf{F}_{q}[z]$.

Compute $e_{0}=\alpha_{0}^{2}+\beta_{0}^{2} z$.
If $\#$ errors $\leq \operatorname{deg} D$ then the errors are the roots of e_{0}.

Why this works:
Say errors are $\left(e_{1}, \ldots, e_{n}\right)$:
ie. $\left(w_{1}, \ldots\right)-\left(e_{1}, \ldots\right) \in \Gamma$ and $\#\left\{i: e_{i}=1\right\} \leq \operatorname{deg} D$.

Write $e=\prod_{i: e_{i}=1}\left(z-a_{i}\right)$ as $\alpha^{2}+\beta^{2} z$. Then
$\beta^{2} /\left(\alpha^{2}+\beta^{2} z\right)=e^{\prime} / e=1 /\left(s^{2}+z\right)$
in $F_{q}[z] / D$ so $(\alpha, \beta \sqrt{z}) \in$
$(D, 0) \mathbf{F}_{q}[z]+(s, \sqrt{z}) \mathbf{F}_{q}[z]$.
$\operatorname{det}=D \sqrt{z} ;|(\alpha, \beta \sqrt{z})|^{2} \leq|D| ;$ so $(\alpha, \beta \sqrt{z})$ is multiple of shortest nonzero vector. $\operatorname{gcd}\{\alpha, \beta\}=1$ so mult is cont.

What if \#errors $>\operatorname{deg} D$?

2008 Bernstein:
Find short
$\left(\alpha_{0}, \beta_{0} \sqrt{z}\right),\left(\alpha_{1}, \beta_{1} \sqrt{z}\right)$ generating the same lattice.

Then $(\alpha, \beta \sqrt{z})=$
$c_{0}\left(\alpha_{0}, \beta_{0} \sqrt{z}\right)+c_{1}\left(\alpha_{1}, \beta_{1} \sqrt{z}\right)$
for some c_{0}, c_{1}
so $e=e_{0} c_{0}^{2}+e_{1} c_{1}^{2}$.
Tweak e_{1} so $\operatorname{gcd}\left\{e_{1}, N\right\}=1$.
Find e by finding small linear combination of e_{0}, e_{1} dividing N.

This algorithm decodes

same \#errors as
GS applied to $\Gamma_{2}\left(\ldots, D^{2}\right)$,
and has a big advantage: much smaller lattice rank.

See also 2007 Wu :
Reed-Solomon decoder with same advantage.

KV applied to $\Gamma_{2}\left(\ldots, D^{2}\right)$ decodes many more errors but loses this advantage. Is this tradeoff required?

New, jet list decoding:
Search for divisors of jet
$N+N^{\prime} \epsilon \in \mathbf{F}_{q}[z][\epsilon] / \epsilon^{2}$
as $\mathbf{F}_{q}[z]$-linear combinations of
$e_{0}+e_{0}^{\prime} \epsilon, e_{1}+e_{1}^{\prime} \epsilon$.
In particular find desired
$e+e^{\prime} \epsilon=$
$\left(e_{0}+e_{0}^{\prime} \epsilon\right) c_{0}^{2}+\left(e_{1}+e_{1}^{\prime} \epsilon\right) c_{1}^{2}$.
\#errors should match $D^{2} \mathrm{KV}$, using much smaller lattice rank!

