Jet list decoding

D. J. Bernstein
University of Illinois at Chicago
Thanks to: Cisco
University Research Program
And thanks to: NIST
grant 60NANB10D263

Divisors in intervals

Classic problem: Find all divisors of N in [A - H, A + H], given positive integers N, A, H with A > H.

Reformulation: In $\mathbf{Q}[x]$ define g = Hx and f = (A + Hx)/N. Want all $r \in \mathbf{Q}$ with $|r| \leq 1$, $g(r) \in \mathbf{Z}$, numerator(f(r)) = 1.

Classic solution for many cases: Find small nonzero polynomial $\varphi \in \mathbf{Z} + \mathbf{Z}f + \mathbf{Z}fg \subset \mathbf{Q}[x]$. For each rational root r of φ , check whether A + Hr divides N.

Understanding this solution for $H < (A - H)/6N^{1/3}$:

Understanding this solution for $H < (A - H)/6N^{1/3}$:

$$f = \cdots + Hx/N$$
,
 $fg = \cdots + H^2x^2/N$,
so det $(1, f, fg) = H^3/N^2$.
Lattice-basis reduction finds
 φ with coeffs $\leq 2H/N^{2/3}$.

Understanding this solution for $H < (A - H)/6N^{1/3}$:

$$f = \cdots + Hx/N$$
,
 $fg = \cdots + H^2x^2/N$,
so det $(1, f, fg) = H^3/N^2$.
Lattice-basis reduction finds
 φ with coeffs $\leq 2H/N^{2/3}$.

Take divisor of N in [A-H, A+H]. Write as $A+Hr; r \in \mathbf{Q}, |r| \leq 1$. Then $|arphi(r)| \leq 6H/N^{2/3}$. Understanding this solution for $H < (A - H)/6N^{1/3}$:

$$f = \cdots + Hx/N$$
,
 $fg = \cdots + H^2x^2/N$,
so det $(1, f, fg) = H^3/N^2$.
Lattice-basis reduction finds
 φ with coeffs $\leq 2H/N^{2/3}$.

Take divisor of N in [A-H,A+H]. Write as $A+Hr;\ r\in {f Q},\ |r|\leq 1.$ Then $|arphi(r)|\leq 6H/N^{2/3}.$

1, f(r), $f(r)g(r) \in ((A+Hr)/N)Z$ so $\varphi(r) \in ((A+Hr)/N)Z$. But $(A+Hr)/N > 6H/N^{2/3}$ so $\varphi(r)$ must be 0. Classic generalization: Find all divisors of N in $\{A - BH, \ldots, A - B, A, A + B, \ldots, A + BH\}$, given positive integers N, A, B, H with A > BH.

Mediocre approach: Define g = Hx and f = (A + BHx)/N. Proceed as before. Loses factor B^2 in det. Classic generalization: Find all divisors of N in $\{A - BH, \ldots, A - B, A, A + B, \ldots, A + BH\}$, given positive integers N, A, B, H with A > BH.

Mediocre approach: Define g = Hx and f = (A + BHx)/N. Proceed as before. Loses factor B^2 in det.

Much better approach: Define g = Hx and f = (UA + Hx)/N, assuming $U \in Z$, $UB - 1 \in NZ$. If $Hr \in Z$ and A + BHr divides Nthen $f(r) \in ((A + BHr)/N)Z$.

Linear combinations as divisors

Further generalization: Find all divisors As + Bt of N with $1 \leq s \leq J$; $|t| \leq H$; $gcd\{s,t\} = 1$.

Generalization of classic solution:

Define g = (H/J)x; U as before; f = (UA + (H/J)x)/N. As before find small nonzero $\varphi \in \mathbf{Z} + \mathbf{Z}f + \mathbf{Z}fg$.

Write each rational root of φ as Jt/Hs with $gcd\{s,t\} = 1, s > 0$. Check whether As + Bt divides Nwith $s \leq J$ and $|t| \leq H$. Understanding this solution for $HJ < (A - BH)/6N^{1/3}$:

det(1, f, fg) = H^3/J^3N^2 . Lattice-basis reduction finds φ with coeffs $\leq 2H/JN^{2/3}$.

If $1 \le s \le J$ and $|t| \le H$ and r = Jt/Hs then $|s^2\varphi(r)| = |\varphi_0 s^2 + \varphi_1 st J/H + \varphi_2 t^2 J^2/H^2| \le 3(2H/JN^{2/3})J^2 = 6HJ/N^{2/3}.$

If also As + Bt divides Nthen $sf(r) = (UAs + t)/N \in$ ((As + Bt)/N)**Z** and $sg(r) \in$ **Z** so $s^2\varphi(r) \in ((As + Bt)/N)$ **Z**.

- 1984 Lenstra: A + Bt algorithm, for proving primality.
- 1986 Rivest–Shamir: A + t, for attacking constrained RSA.
- Many subsequent generalizations.
- 2003 Bernstein: projective view, but only affine applications.
- Projective applications: 2007 Wu, 2008 Bernstein (including this As + Bt algorithm), 2009 Castagnos–Joux– Laguillaumie–Nguyen.

Higher multiplicities

Generalization of A + t algorithm:

Choose a multiplicity kand a lattice dimension ℓ .

Find small nonzero $\varphi \in$ $\mathbf{Z} + \mathbf{Z}f + \mathbf{Z}f^2 + \cdots + \mathbf{Z}f^k$ $+ \mathbf{Z}f^kg + \mathbf{Z}f^kg^2 + \cdots + \mathbf{Z}f^kg^{\ell-k-1}.$

det = $(H/N)^{\ell(\ell-1)/2} N^{(\ell-k)(\ell-k-1)/2}$ so $|\varphi| \leq \dots (H/N)^{(\ell-1)/2} N^{(\ell-k)(\ell-k-1)/2\ell}$.

But $\varphi(r) \in (\operatorname{divisor}/N)^k \mathbf{Z}$.

Optimize: large ℓ with $k \approx \theta \ell$ if $A - H = N^{\theta}$. $\#\{t \text{ possibilities searched}\} \approx N^{\theta^2}$ Same for A + Bt etc.

1996 Coppersmith: A + t with multiplicities; N^{θ^2} ; various generalizations. But algorithm was slower: identified lattice via dual.

1997 Howgrave-Graham: this algorithm; skip dualization; simply write down f^k etc.

The gcd tweak

Minor tweak: Find all A + t with $|t| \leq H$ and $gcd\{A + t, N\} \geq N^{\theta}$.

These t's include previous t's: if A + t divides N and $A + t \ge N^{\theta}$ then $gcd\{A + t, N\} \ge N^{\theta}$.

Solution: Compute the same φ from the same lattice as before. For each rational root r of φ , check gcd{A + Hr, N} $\geq N^{\theta}$. 1997 Sudan: $\mathbf{F}_q[z]$ instead of \mathbf{Z} , $N = (z - a_1) \cdots (z - a_n)$, multiplicity 1, dual algorithm, for list decoding.

1999 Guruswami–Sudan: same with high multiplicity.

- 1999 Goldreich-Ron-Sudan:
- **Z**, multiplicity 1, dual.
- 2000 Boneh:
- Z, high multiplicity.

The list-decoding application:

Given $t \mod p_1, \ldots, t \mod p_n$ for distinct primes p_1, \ldots, p_n , can interpolate $t \mod N$ where $N = p_1 p_2 \cdots p_n$.

Given same with some errors, interpolation produces A where all the other primes divide t - A; i.e., gcd{t - A, N} is large.

Can find all tin interval of length $\approx N^{\theta^2}$ with gcd{t - A, N} $\geq N^{\theta}$. RS and GRS codes— "the GS decoder":

Reconstruct $t \in \mathbf{F}_q[z]$ given $(t(a_1), \ldots, t(a_n)) + \text{errors};$ distinct $a_1, \ldots, a_n \in \mathbf{F}_q;$ $\#\text{errors} < (1 - \theta)n;$ $\deg t \le \theta^2 n.$

Reconstruct $t \in \mathbf{F}_q[z]$ given $(\beta_1 t(a_1), \dots, \beta_n t(a_n)) + \text{errors};$ distinct $a_1, \dots, a_n \in \mathbf{F}_q;$ nonzero $\beta_1, \dots, \beta_n \in \mathbf{F}_q;$ $\#\text{errors} < (1 - \theta)n;$ $\deg t \leq \theta^2 n.$

Higher-degree polynomials

 $gcd\{N, p(t)\} \ge N^{ heta}$: #{t possibilities searched} $\approx N^{ heta^2/d}$ if p monic, deg p = d.

1988 Håstad: $\theta = 1, k = 1$.

- 1989 Vallée–Girault–Toffin:
- $heta=1,\ k=1,\ \mathsf{dual}.$

1996 Coppersmith: $\theta = 1$, high multiplicity, dual.

1997 Howgrave-Graham: $\theta = 1$, high multiplicity.

2000 Boneh:

any θ , high multiplicity.

Gaussian divisors in intervals

New (?) problem: Find all $t \in \{-H, \ldots, -1, 0, 1, \ldots, H\}$ with A_0+t+A_1i dividing N_0+N_1i in $\mathbf{Z}[i]/(i^2+1)$; assume $A_0 > H$.

One approach: Take norms. $(A_0 + t)^2 + A_1^2$ divides $N_0^2 + N_1^2$. Use standard degree-2 algorithm. Works for $H \approx (N_0^2 + N_1^2)^{\theta^2/2}$ if $(A_0 - H)^2 + A_1^2 = (N_0^2 + N_1^2)^{\theta}$.

Worse: Find divisor of $N_0^2 + N_1^2$ in $[(A_0 - H)^2 + A_1^2, (A_0 + H)^2 + A_1^2]$, using degree-1 algorithm. Works for $A_0 H \approx (N_0^2 + N_1^2)^{\theta^2}$. Another approach: lattice-basis reduction over Z[i]. Works, but searches $t \in Z[i]$, again wasting time. Another approach: lattice-basis reduction over Z[i]. Works, but searches $t \in Z[i]$, again wasting time.

Better approach: $(A_0 + t)^2 + A_1^2$ divides $(A_0 + t - A_1 i)(N_0 + N_1 i)$ so it divides $(A_0 + t)N_1 - A_1N_0$. Also divides $N_0^2 + N_1^2$.

 $gcd\{(A_0+t)N_1 - A_1N_0, N_0^2 + N_1^2\}$ $\geq (N_0^2 + N_1^2)^{\theta}.$

Works for $H \approx (N_0^2 + N_1^2)^{\theta^2}$, assuming gcd $\{N_0, N_1\} = 1$.

<u>Jet divisors</u>

Easily generalize:

 $A_0 s + B_0 t$, other algebras, etc. My main interest today: the "1-jet" algebra $\mathbf{Z}[\epsilon]/\epsilon^2$.

To search for small $(s, t) \in \mathbb{Z} \times \mathbb{Z}$ with $(A_0 + A_1\epsilon)s + (B_0 + B_1\epsilon)t$ dividing $N_0 + N_1\epsilon$ in $\mathbb{Z}[\epsilon]/\epsilon^2$: use $gcd\{\Delta, N_0^2\} \ge (N_0^2)^{\theta}$ where $\Delta =$ $(A_0N_1 - A_1N_0)s + (B_0N_1 - B_1N_0)t$.

 $\#\{(s,t) \text{ searched}\} pprox (N_0^2)^{ heta^2}, \ ext{assuming gcd}\{N_0, B_0N_1\} = 1.$

Searching for $A_0s + B_0t$ dividing N_0 would search only $N_0^{\theta^2}$.

Classical binary Goppa codes

Fix $q \in \{2, 4, 8, 16, \ldots\}$. Fix distinct $a_1, \ldots, a_n \in \mathbf{F}_q$. Fix monic $D \in \mathbf{F}_q[\mathbf{z}]$ coprime to $N = \prod_i (z - a_i)$. Define $\Gamma = \Gamma_2(a_1, \ldots, a_n, D)$ as $\{(c_1, \ldots, c_n) \in \mathbf{F}_2^n :$ $\sum_{i} c_{i}/(z - a_{i}) = 0$ in $\mathbf{F}_{q}[z]/D$. $\lg \# \Gamma > n - (\lg q) \deg D.$ If D is squarefree then min distance of $\Gamma > 2 \deg D + 1$. Proof: $e = \prod_{i:c_i=1}(z - a_i)$ has D dividing Ne'/e, hence e'; so D^2 divides e', so deg $e' \ge 2 \deg D$.

If
$$C \in \mathbf{F}_q[z]$$
 has
 $\deg C < n - \deg D$ and
 $c_i = C(a_i)D(a_i)/N'(a_i) \in \mathbf{F}_2$
for all i then $(c_1, \ldots, c_n) \in \Gamma$
since $CD = \sum_i c_i N/(z - a_i)$.

All elements of Γ arise this way.

If #errors $< (1 - \theta)n$ and $n - \deg D - 1 = \theta^2 n$, i.e., #errors $< n - \sqrt{n(n - \deg D - 1)}$: can use the GS decoder.

If
$$C \in \mathbf{F}_q[z]$$
 has
 $\deg C < n - \deg D$ and
 $c_i = C(a_i)D(a_i)/N'(a_i) \in \mathbf{F}_2$
for all i then $(c_1, \ldots, c_n) \in \Gamma$
since $CD = \sum_i c_i N/(z - a_i)$.

All elements of Γ arise this way.

If #errors $< (1 - \theta)n$ and $n - \deg D - 1 = \theta^2 n$, i.e., #errors $< n - \sqrt{n(n - \deg D - 1)}$: can use the GS decoder.

2000 Koetter–Vardy: This is not optimal; can decode many more errors! "The KV decoder":

Polynomial-time algorithm for #errors $< (1 - \theta)n/2$ and $n/2 - \deg D - 1 = \theta^2 n/2$, i.e., #errors $< n/2 - \sqrt{(n/2)((n/2) - \deg D - 1)}$.

Exploits fact that errors are required to be in **F**₂.

2011 Bernstein "Simplified highspeed high-distance list decoding for alternant codes": adaptation of Howgrave-Graham idea to KV. If D is squarefree then $\Gamma_2(..., D) = \Gamma_2(..., D^2).$ (1970 Goppa?; different, more general, proof: 1975 Sugiyama– Kasahara–Hirasawa–Namekawa)

Allows decoding even more errors.

If #errors $\leq \deg D$: can use naive decoders for $\Gamma_2(\ldots, D^2)$.

If $\#\text{errors} < n - \sqrt{n(n-2 \deg D - 1)}$: can use GS etc. for $\Gamma_2(..., D^2)$. If $\#\text{errors} < n/2 - \sqrt{(n/2)((n/2) - 2 \deg D - 1)}$: can use KV etc. for $\Gamma_2(..., D^2)$.

A different approach

1975 Patterson:

Assume D irreducible.

Given $(w_1, \ldots, w_n) \in \mathbf{F}_2^n - \Gamma$, compute $s \in \mathbf{F}_q[z]/D$ with $1/(s^2 + z) = \sum_i w_i/(z - a_i).$

Find shortest nonzero $(\alpha_0, \beta_0 \sqrt{z})$ in $(D, 0)\mathbf{F}_q[z] + (s, \sqrt{z})\mathbf{F}_q[z]$.

Compute $e_0 = \alpha_0^2 + \beta_0^2 z$.

If #errors $\leq \deg D$ then the errors are the roots of e_0 . Why this works:

Say errors are (e_1, \ldots, e_n) : i.e. $(w_1, \ldots) - (e_1, \ldots) \in \Gamma$ and $\#\{i : e_i = 1\} \leq \deg D$.

Write $e = \prod_{i:e_i=1} (z - a_i)$ as $\alpha^2 + \beta^2 z$. Then $\beta^2/(\alpha^2+\beta^2 z) = e'/e = 1/(s^2+z)$ in $\mathbf{F}_{q}[z]/D$ so $(\alpha, \beta\sqrt{z}) \in$ $(D, 0)\mathbf{F}_{q}[z] + (s, \sqrt{z})\mathbf{F}_{q}[z].$ det = $D\sqrt{z}$; $|(\alpha, \beta\sqrt{z})|^2 \le |D|$; so $(\alpha, \beta \sqrt{z})$ is multiple of shortest nonzero vector. $gcd\{\alpha,\beta\} = 1$ so mult is const.

What if #errors > deg D? 2008 Bernstein:

Find short $(\alpha_0, \beta_0 \sqrt{z}), (\alpha_1, \beta_1 \sqrt{z})$ generating the same lattice.

Then $(\alpha, \beta \sqrt{z}) =$ $c_0(\alpha_0, \beta_0 \sqrt{z}) + c_1(\alpha_1, \beta_1 \sqrt{z})$ for some c_0, c_1 so $e = e_0 c_0^2 + e_1 c_1^2$. Tweak e_1 so $gcd\{e_1, N\} = 1$.

Find e by finding small linear combination of e_0 , e_1 dividing N.

This algorithm decodes same #errors as GS applied to $\Gamma_2(\ldots, D^2)$, and has a big advantage: much smaller lattice rank.

See also 2007 Wu: Reed–Solomon decoder with same advantage.

KV applied to $\Gamma_2(\ldots, D^2)$ decodes many more errors but loses this advantage. Is this tradeoff required? New, jet list decoding:

Search for divisors of jet $N + N'\epsilon \in \mathbf{F}_q[\mathbf{z}][\epsilon]/\epsilon^2$ as $\mathbf{F}_q[\mathbf{z}]$ -linear combinations of $e_0 + e'_0\epsilon$, $e_1 + e'_1\epsilon$.

In particular find desired $e + e'\epsilon =$ $(e_0 + e'_0\epsilon)c_0^2 + (e_1 + e'_1\epsilon)c_1^2$. #errors should match D^2 KV, using much smaller lattice rank!