
Jet list decoding

D. J. Bernstein

University of Illinois at Chicago

Thanks to: Cisco

University Research Program

And thanks to: NIST

grant 60NANB10D263



Divisors in intervals

Classic problem: Find all

divisors of N in [A�H;A + H],

given positive integers N;A;H

with A > H.

Reformulation: In Q[x] define

g = Hx and f = (A + Hx)=N.

Want all r 2 Q with jrj � 1,

g(r) 2 Z, numerator(f(r)) = 1.

Classic solution for many cases:

Find small nonzero polynomial

' 2 Z + Zf + Zfg � Q[x].

For each rational root r of ',

check whether A + Hr divides N.



Understanding this solution

for H < (A�H)=6N1=3:



Understanding this solution

for H < (A�H)=6N1=3:

f = � � � + Hx=N,

fg = � � � + H2x2=N,

so det(1; f; fg) = H3=N2.

Lattice-basis reduction finds

' with coeffs � 2H=N2=3.



Understanding this solution

for H < (A�H)=6N1=3:

f = � � � + Hx=N,

fg = � � � + H2x2=N,

so det(1; f; fg) = H3=N2.

Lattice-basis reduction finds

' with coeffs � 2H=N2=3.

Take divisor of N in [A�H;A+H].

Write as A + Hr; r 2 Q, jrj � 1.

Then j'(r)j � 6H=N2=3.



Understanding this solution

for H < (A�H)=6N1=3:

f = � � � + Hx=N,

fg = � � � + H2x2=N,

so det(1; f; fg) = H3=N2.

Lattice-basis reduction finds

' with coeffs � 2H=N2=3.

Take divisor of N in [A�H;A+H].

Write as A + Hr; r 2 Q, jrj � 1.

Then j'(r)j � 6H=N2=3.

1; f(r); f(r)g(r) 2 ((A+Hr)=N)Z

so '(r) 2 ((A + Hr)=N)Z.

But (A + Hr)=N > 6H=N2=3

so '(r) must be 0.



Classic generalization: Find all

divisors of N in fA� BH; : : : ;

A� B;A; A + B; : : : ; A + BHg,

given positive integers N;A;B;H

with A > BH.

Mediocre approach: Define

g = Hx and f = (A + BHx)=N.

Proceed as before.

Loses factor B2 in det.



Classic generalization: Find all

divisors of N in fA� BH; : : : ;

A� B;A; A + B; : : : ; A + BHg,

given positive integers N;A;B;H

with A > BH.

Mediocre approach: Define

g = Hx and f = (A + BHx)=N.

Proceed as before.

Loses factor B2 in det.

Much better approach: Define

g = Hx and f = (UA + Hx)=N,

assuming U 2 Z, UB � 1 2 NZ.

If Hr 2 Z and A+BHr divides N

then f(r) 2 ((A + BHr)=N)Z.



Linear combinations as divisors

Further generalization: Find all

divisors As + Bt of N with

1 � s � J; jtj � H; gcdfs; tg = 1.

Generalization of classic solution:

Define g = (H=J)x; U as before;

f = (UA + (H=J)x)=N.

As before find small nonzero

' 2 Z + Zf + Zfg.

Write each rational root of ' as

Jt=Hs with gcdfs; tg = 1, s > 0.

Check whether As + Bt divides N

with s � J and jtj � H.



Understanding this solution

for HJ < (A� BH)=6N1=3:

det(1; f; fg) = H3=J3N2.

Lattice-basis reduction finds

' with coeffs � 2H=JN2=3.

If 1 � s � J and jtj � H

and r = Jt=Hs then
��s2'(r)

�� =��'0s
2 + '1stJ=H + '2t

2J2=H2
��

� 3(2H=JN2=3)J2 = 6HJ=N2=3.

If also As + Bt divides N

then sf(r) = (UAs + t)=N 2
((As + Bt)=N)Z and sg(r) 2 Z

so s2'(r) 2 ((As + Bt)=N)Z.



1984 Lenstra: A + Bt algorithm,

for proving primality.

1986 Rivest–Shamir: A + t,

for attacking constrained RSA.

Many subsequent generalizations.

2003 Bernstein: projective view,

but only affine applications.

Projective applications:

2007 Wu, 2008 Bernstein

(including this As+Bt algorithm),

2009 Castagnos–Joux–

Laguillaumie–Nguyen.



Higher multiplicities

Generalization of A + t algorithm:

Choose a multiplicity k

and a lattice dimension `.

Find small nonzero ' 2
Z + Zf + Zf2 + � � � + Zfk

+Zfkg+Zfkg2+� � �+Zfkg`�k�1.

det =

(H=N)`(`�1)=2N(`�k)(`�k�1)=2

so j'j �
� � � (H=N)(`�1)=2N(`�k)(`�k�1)=2`.

But '(r) 2 (divisor=N)kZ.



Optimize: large ` with k � �`

if A�H = N�.

#ft possibilities searchedg � N�2
.

Same for A + Bt etc.

1996 Coppersmith:

A + t with multiplicities; N�2
;

various generalizations.

But algorithm was slower:

identified lattice via dual.

1997 Howgrave-Graham:

this algorithm; skip dualization;

simply write down fk etc.



The gcd tweak

Minor tweak: Find all A + t with

jtj � H and gcdfA + t; Ng � N�.

These t’s include previous t’s:

if A + t divides N and A + t � N�

then gcdfA + t; Ng � N�.

Solution: Compute the same '

from the same lattice as before.

For each rational root r of ',

check gcdfA + Hr;Ng � N�.



1997 Sudan:

Fq[z] instead of Z,

N = (z � a1) � � � (z � an),

multiplicity 1, dual algorithm,

for list decoding.

1999 Guruswami–Sudan:

same with high multiplicity.

1999 Goldreich–Ron–Sudan:

Z, multiplicity 1, dual.

2000 Boneh:

Z, high multiplicity.



The list-decoding application:

Given t mod p1; : : : ; t mod pn

for distinct primes p1; : : : ; pn,

can interpolate t mod N

where N = p1p2 � � � pn.

Given same with some errors,

interpolation produces A where

all the other primes divide t� A;

i.e., gcdft� A;Ng is large.

Can find all t

in interval of length � N�2

with gcdft� A;Ng � N�.



RS and GRS codes—

“the GS decoder”:

Reconstruct t 2 Fq[z] given

(t(a1); : : : ; t(an)) + errors;

distinct a1; : : : ; an 2 Fq;

#errors < (1 � �)n;

deg t � �2n.

Reconstruct t 2 Fq[z] given

(�1t(a1); : : : ; �nt(an)) + errors;

distinct a1; : : : ; an 2 Fq;

nonzero �1; : : : ; �n 2 Fq;

#errors < (1 � �)n;

deg t � �2n.



Higher-degree polynomials

gcdfN; p(t)g � N�:

#ft possibilities searchedg
� N�2=d if p monic, deg p = d.

1988 Håstad: � = 1, k = 1.

1989 Vallée–Girault–Toffin:

� = 1, k = 1, dual.

1996 Coppersmith:

� = 1, high multiplicity, dual.

1997 Howgrave-Graham:

� = 1, high multiplicity.

2000 Boneh:

any �, high multiplicity.



Gaussian divisors in intervals

New (?) problem: Find all

t 2 f�H; : : : ;�1; 0; 1; : : : ; Hg
with A0 +t+A1i dividing N0 +N1i

in Z[i]=(i2 + 1); assume A0 > H.

One approach: Take norms.

(A0 + t)2 + A2
1 divides N2

0 + N2
1 .

Use standard degree-2 algorithm.

Works for H � (N2
0 + N2

1 )�
2=2

if (A0 �H)2 + A2
1 = (N2

0 + N2
1 )�.

Worse: Find divisor of N2
0 + N2

1

in [(A0�H)2+A2
1; (A0+H)2+A2

1],

using degree-1 algorithm.

Works for A0H � (N2
0 + N2

1 )�
2
.



Another approach:

lattice-basis reduction over Z[i].

Works, but searches t 2 Z[i],

again wasting time.



Another approach:

lattice-basis reduction over Z[i].

Works, but searches t 2 Z[i],

again wasting time.

Better approach:

(A0 + t)2 + A2
1 divides

(A0 + t� A1i)(N0 + N1i)

so it divides (A0 + t)N1 � A1N0.

Also divides N2
0 + N2

1 .

gcd
�

(A0 + t)N1 � A1N0; N
2
0 + N2

1

	

� (N2
0 + N2

1 )�.

Works for H � (N2
0 + N2

1 )�
2
,

assuming gcdfN0; N1g = 1.



Jet divisors

Easily generalize:

A0s + B0t, other algebras, etc.

My main interest today:

the “1-jet” algebra Z[�]=�2.

To search for small (s; t) 2 Z� Z

with (A0 + A1�)s + (B0 + B1�)t

dividing N0 + N1� in Z[�]=�2: use

gcd
�

∆; N2
0

	 � (N2
0 )� where ∆ =

(A0N1�A1N0)s+(B0N1�B1N0)t.

#f(s; t) searchedg � (N2
0 )�

2
,

assuming gcdfN0; B0N1g = 1.

Searching for A0s + B0t dividing

N0 would search only N�2

0 .



Classical binary Goppa codes

Fix q 2 f2; 4; 8; 16; : : :g.

Fix distinct a1; : : : ; an 2 Fq.

Fix monic D 2 Fq[z]

coprime to N =
Q

i(z � ai).

Define Γ = Γ2(a1; : : : ; an; D) as�
(c1; : : : ; cn) 2 Fn

2 :
P

i ci=(z � ai) = 0 in Fq[z]=D
	

.

lg #Γ � n� (lg q) degD.

If D is squarefree then

min distance of Γ � 2 degD + 1.

Proof: e =
Q

i:ci=1(z � ai) has

D dividing Ne0=e, hence e0; so

D2 divides e0, so deg e0 � 2 degD.



If C 2 Fq[z] has

degC < n� degD and

ci = C(ai)D(ai)=N
0(ai) 2 F2

for all i then (c1; : : : ; cn) 2 Γ

since CD =
P

i ciN=(z � ai).

All elements of Γ arise this way.

If #errors < (1 � �)n and

n� degD � 1 = �2n, i.e.,

#errors < n�
p
n(n� degD�1):

can use the GS decoder.



If C 2 Fq[z] has

degC < n� degD and

ci = C(ai)D(ai)=N
0(ai) 2 F2

for all i then (c1; : : : ; cn) 2 Γ

since CD =
P

i ciN=(z � ai).

All elements of Γ arise this way.

If #errors < (1 � �)n and

n� degD � 1 = �2n, i.e.,

#errors < n�
p
n(n� degD�1):

can use the GS decoder.

2000 Koetter–Vardy:

This is not optimal;

can decode many more errors!



“The KV decoder”:

Polynomial-time algorithm

for #errors < (1 � �)n=2 and

n=2 � degD � 1 = �2n=2,

i.e., #errors < n=2 �p
(n=2)((n=2) � degD � 1).

Exploits fact that errors

are required to be in F2.

2011 Bernstein “Simplified high-

speed high-distance list decoding

for alternant codes”: adaptation

of Howgrave-Graham idea to KV.



If D is squarefree then

Γ2(: : : ; D) = Γ2(: : : ; D2).

(1970 Goppa?; different, more

general, proof: 1975 Sugiyama–

Kasahara–Hirasawa–Namekawa)

Allows decoding even more errors.

If #errors � degD: can use

naive decoders for Γ2(: : : ; D2).

If #errors < n�p
n(n� 2 degD � 1):

can use GS etc. for Γ2(: : : ; D2).

If #errors < n=2 �p
(n=2)((n=2) � 2 degD � 1):

can use KV etc. for Γ2(: : : ; D2).



A different approach

1975 Patterson:

Assume D irreducible.

Given (w1; : : : ; wn) 2 Fn
2 � Γ,

compute s 2 Fq[z]=D with

1=(s2 + z) =
P

iwi=(z � ai).

Find shortest nonzero (�0; �0
p
z)

in (D; 0)Fq[z] + (s;
p
z)Fq[z].

Compute e0 = �2
0 + �2

0z.

If #errors � degD then

the errors are the roots of e0.



Why this works:

Say errors are (e1; : : : ; en):

i.e. (w1; : : :) � (e1; : : :) 2 Γ

and #fi : ei = 1g � degD.

Write e =
Q

i:ei=1(z � ai)

as �2 + �2z. Then

�2=(�2+�2z) = e0=e = 1=(s2+z)

in Fq[z]=D so (�; �
p
z) 2

(D; 0)Fq[z] + (s;
p
z)Fq[z].

det = D
p
z;
��(�; �

p
z)
��2 � jDj;

so (�; �
p
z) is multiple

of shortest nonzero vector.

gcdf�; �g = 1 so mult is const.



What if #errors > degD?

2008 Bernstein:

Find short

(�0; �0
p
z), (�1; �1

p
z)

generating the same lattice.

Then (�; �
p
z) =

c0(�0; �0
p
z) + c1(�1; �1

p
z)

for some c0; c1

so e = e0c
2
0 + e1c

2
1.

Tweak e1 so gcdfe1; Ng = 1.

Find e by finding small linear

combination of e0; e1 dividing N.



This algorithm decodes

same #errors as

GS applied to Γ2(: : : ; D2),

and has a big advantage:

much smaller lattice rank.

See also 2007 Wu:

Reed–Solomon decoder

with same advantage.

KV applied to Γ2(: : : ; D2)

decodes many more errors

but loses this advantage.

Is this tradeoff required?



New, jet list decoding:

Search for divisors of jet

N + N 0� 2 Fq[z][�]=�2

as Fq[z]-linear combinations of

e0 + e00�, e1 + e01�.

In particular find desired

e + e0� =

(e0 + e00�)c
2
0 + (e1 + e01�)c

2
1.

#errors should match D2 KV,

using much smaller lattice rank!


